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Abstract

The spectrum of bound and scattering states of the one dimensional Dirac Hamil-
tonian describing fermions distorted by a static background built from two Dirac delta
potentials is studied. A distinction will be made between ‘mass-spike’ and ‘electrostatic’
δ-potentials. The second quantisation is then performed to promote the relativistic quan-
tum mechanical problem to a relativistic Quantum Field Theory and study the quantum
vacuum interaction energy for fermions confined between opaque plates. The work pre-
sented here is a continuation of [J.M. Guilarte, J.M. Muñoz Castañeda, I. Pirozhenko,
and L. Santamaŕıa-Sanz. Front. Phys. 7 (2019)].

1 Introduction

Since its discovery around 1930s, graphene has attracted growing interest because of its ap-
plications in Condensed Matter Physics [1, 2] and nanoscience [3, 4]. Graphene consists in a
sheet of carbon atoms forming a honeycomb lattice [5, 6]. In the tight-binding approxima-
tion [7], the dynamics of the lower energy charge carriers is described by a (2 + 1)-dimensional
massless Dirac-type equation (also called Weyl equation1). Electrons in graphene have an
effective velocity 300 times smaller than the velocity of light, allowing the experimental study
of interesting relativistic phenomena such as the Klein tunneling [9], the Hall efect [10, 11] or
the Zitterbewegund effect [12]. A wide range of ‘Dirac materials’2 like d-wave superconduc-
tors [14] and topological insulators [15,16] share the same fundamental behavior as graphene.
They all exhibit universal features such as the same power-law temperature dependence of the
fermionic specific heat, the same response to impurities and magnetic fields, the suppression of
backscattering, as well as similar transport properties and optical conductivity (see [17] for a

∗lucia.santamaria@uva.es, lssanz@ubu.es
1For a massive particle, the Dirac wave function is a spinor which describes two spin one-half particles (the

particle and its particle). A massless spin one-half particle is described by a Weyl spinor [8].
2Namely, lattice systems where the excitations are described by relativistic Dirac or Weyl equations. These

materials are usually narrow gap semiconductors where two or more bands get strongly coupled near a level-
crossing. The electrons in these lattices are described by Bloch states. Notice that the aforementioned
relativistic equations cannot be satisfied globally over the whole Brillouin zone, but only locally [13].
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review). Since these materials can be used to test the predictions of quantum electrodynamics,
analysing the dynamics of electrons in them is of great importance both fundamentally and
experimentally.

The aim of this work is the study of relativistic Dirac fermionic particles propagating in
(1 + 1)-dimensional Minkowski space-time R1,1 while interacting with the static zero range
contact potential:

(q11 + λ1γ
0) δ(z + a) + (q21 + λ2γ

0) δ(z − a), λ1, λ2, q1, q2 ∈ R, (1)

with γ0 one of the Dirac gamma matrices and δ(z) the Dirac δ-function. The γ0 term above
will contribute to the Dirac Hamiltonian of the theory as a space-dependent mass term, and
the one multiplied by 1 as an electromagnetic potential. Fermions propagating on a line are
interpreted as the quanta emerging from spinor fields, which are maps from Minkowski space
to the fundamental representation of the Spin(1, 1;R) group. The elements of the fundamental
representation of Spin(1, 1;R) are the spinors [18,19], column vectors of two components taking
values in the complex field. Studying the spectrum of the fermionic fluctuations interacting
with the potential in (1) is the first step before being able to replicate this potential at a given
distance and construct a lattice. In this way, it would be possible to see if there is a connection
between the analytical results that can be obtained in the context of Quantum Field Theory
(QFT) and the experimental measurements, as well as to study the possible applications in
Condensed Matter Physics stated in the first paragraph of this section.

The use of Dirac-type potentials within lattice theories is not a new development. In
fact, Dirac delta potentials are widely used as toy models for realistic materials like quantum
wires [20], and to analyse physical phenomena such as Bose-Einstein condensation in periodic
backgrounds [21] or light propagation in 1D relativistic dielectric superlattices [22]. Despite
being a rather simple idealisation of the real system, the δ-function has also been proved to
correctly represent surface interactions in many models. For instance, Dirac δ-functions have
been set on the plates as models of the electrostatic potential [23] or to represent two finite-
width mirrors [24–26]. They can also be used to study interactions between semitransparent
dielectric surfaces coupled to the electromagnetic field by means of an effective potential [27], as
well as to analyse interactions between an atom and a mirror [28]. Furthermore, it is possible to
describe the permittivity and magnetic permeability in an electromagnetic context by relating
the Dirac potential to the plasma frequency in Barton’s model on spherical shells [29, 30].
In [31, 32] the authors describe how scalar field fluctuations are influenced by this type of
singular Dirac potentials. On the other hand, the specific examples of fermions interacting
with either a single electric or a mass-spike Dirac delta contact interaction were previously
introduced in [32]. Now, I want to extend it to double δ-potentials of the form (1), before
considering the relativistic problem in the associated Dirac combs that can be constructed
from this potential.

Once the spectrum of the Dirac Hamiltonian is completely determined, one could focus
on the QFT. The use of the theory of self-adjoint extensions of elliptic operators [33] for the
computation of the so-called Casimir energy [34,35] has motivated an intense research activity
so far. In particular, it has been frequently used to study scalar quantum fields confined
in domains with boundaries (see [36–39] and references therein). Besides the possibility of
mimicking impurities in periodic structures, the double δ-potential provides an idealised set
up for a pair of partially transparent plates in the Casimir effect [40]. Furthermore, the theory
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of self-adjoint extensions has also been applied for Dirac-type operators [33,41–44] to describe
fundamental phenomena in topological insulators such as the presence of edge states, as well
as to analyse the Casimir pressure for fermionic fields either interacting and confined between
plates. My aim will be to continue these studies and generalise them to the case at stake. I
would like to emphasise at this point the importance of studying the spectrum of the problem
in quantum mechanics from a mathematical and theoretical point of view before tackling well
constructed field theories. To my knowledge, this analysis has not been worked on in such
detail before. Consequently, the work presented here lays the groundwork for future projects in
QFT with important applications to both high energy and Condensed Matter Physics. Notice
that while in the former, the relativistic wave equations in the QFT account for inelastic
processes such as particle-antiparticle pair creation, in the latter the Dirac and the Weyl
equations can be used directly to describe the band structure of Dirac materials at low energy.
In fact, as introduced above, graphene can be studied as a lattice system whose band structure
is described by the Weyl equation near some isolated Dirac points of the Brillouin zone in the
low-energy limit. At these points, the valence and conducting bands touch. Such Dirac points
are protected by space inversion and time-reversal symmetries, and they have been the focus
of attention during the last decades since their experimentally observation by the Nobel Prize
laureates A. Geim and K. Novoselov in 2005 [6, 45]. There exist many experiments which
prove the existence of 2D Dirac-Weyl fermions through the measurement of the Quantum
Hall effect [11]. As a consequence, numerous electronic applications such as graphene-based
field effect transistors [6] have been implemented. Furthermore, it is believed that helical
Dirac fermions3, which are forbidden to exist in conventional materials such as graphene or
bismuth but may exist at the edges of certain types of topologically ordered insulators, will
exhibit topological properties which could manifest as an anomalous half-integer quantisation
of Hall conductance, a realisation of Majorana fermions, and a generation of fractionally
charged particles [46]. This will involve the realisation of fundamentally new phenomena in
Condensed Matter Physics in the coming years.

So far, only massless fermions have been discussed. However, massive Dirac fermions are
going to be addressed in this work. Notice that it is possible to generate gaps at the Dirac
points and to introduce the concept of mass in graphene. One only needs to incorporate
a mass term that acts on the sublattice isospin and anticommutes with the Hamiltonian.
The simplest choice consists in a constant mass term (independent of the quasi-momentum),
similar to that introduced in (1). Including this term spoils the inversion symmetry while
leaving the time-reversal symmetry intact. The arising gapped electronic system is called
Semenov insulator [7] and it is realised for a honeycomb lattice with distinct atoms in the
primitive cell sites, such as BN crystals or cold atoms trapped in tunable optical lattices [47].
Semenov insulators are insulating both in the bulk and along its edges. There are other
interesting types of Dirac insulators showing different topological properties. But the most
important fact is that recently, it has been discovered that ordinary insulators or semimetallic
graphene could be driven into such topological insulators by applying suitable circularly or
linearly polarised light [48,49], openning the door to the study of some topological properties

3Helical Dirac fermions are charge carriers that behave as massless relativistic particles with an intrinsic
angular momentum (spin) locked to its translational momentum. They are guaranteed to be conducting
because of time-reversal symmetry, allowing the unique possibility of carrying spin currents without heat
dissipation.
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and helical fermions. Although these applications are beyond the scope of this paper, it is
impossible to end without mentioning that mass fluctuations are of more than just academic
importance, and it could be generated in a real experiment via crystal symmetry breaking (by
doping techniques and measurement of the detailed resulting band dispersion and density of
states of surface states using Landau level spectroscopy at different magnetic fields [50–52]).
Seeing the huge progress that is being made in this direction from an experimental point
of view, it seems essential to study the theories of massive Dirac fermions interacting with
different background potentials from a theoretical and mathematical point of view, as is the
main objective of this work.

The article is organised as follows: in section 2 a review of the fundamental concepts of
relativistic quantum mechanics is given, and the notation of the article is established. Section
3 collects the description of the spectrum of bound and scattering states for fermionic fields
interacting with a totally generic single Dirac delta potential. Then, in section 4 the same
study is carried out for double delta potentials. In section 5, the second quantisation is
performed in order to promote the relativistic quantum mechanical theory presented so far to
a relativistic QFT. The transformations of the potential under parity, time reversal and charge
conjugation symmetries are summarised. To conclude this work, the study of the quantum
vacuum interaction energy for fermions confined between physically opaque plates mimicked
by unitary boundary conditions is briefly introduced. Section 6 collects the main conclusions
and further work.

2 Spinor Field Fluctuations

Throughout the paper I will use natural units ~ = c = 1 and consequently, M = T = L−1.
Points in the Minkowski space are labelled by real two-vectors xµ ∈ R1,1 with µ = 0, 1 such that
x0 = t, x1 = z. Another important vector is the covariant gradient ∂µ ≡ (∂0 = ∂t, ∂1 = ∂z).
The space-time is equipped with an hyperbolic Lorentzian metric characterised by

ηµν = diag{1,−1} = ηµν .

The Clifford algebra associated to the quadratic form defining the metric in R1,1 is given by:

{γµ, γν} = γµγν + γνγµ = 2ηµν , γ2 = γ0γ1, {γ2, γµ} = 0, (γ2)2 = I . (2)

Above, γi are the Dirac or gamma matrices4. I choose the generators of the Clifford algebra
as the real 2× 2 matrices

γ0 = σ3, γ1 = iσ2, γ2 = σ1, (3)

where {σ1, σ2, σ3} are the Pauli matrices. The antisymmetric element of the Clifford algebra,
σµν = i[γµ, γν ]/4, generates the uni-parametric Spin(1, 1;R) Lie group as

S = exp

[
i

2
ωµνσ

µν

]
with ω01 = −ω10 ∈ R.

The elements of the fundamental representation of this group are the spinors. A minimal
representation of the algebra (2) requires 2× 2 matrices so in the fundamental representation,

4γ2 will be the (1+1)-dimensional analogue of γ5 in Cl (R1,3).
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spinors are two-component column vectors: Ψ =

(
ψ1

ψ2

)
. The spinor field fluctuations are

thus described by maps from the Minkowski space-time to the fundamental representation of
Spin(1, 1;R):

Ψ(xµ) : R1,1 −→ C⊕ C .

Furthermore, the most general static backgrounds can be written in the form

V (x1) = M(x1)1 + γ2 V2(x1) + γµ Vµ(x1),

where M is a Lorentz scalar, V2 one pseudo-scalar and Vµ one vector potential. The Einstein
summation convention over repeated indices has been used. The influence of V (x1) on spinor
field fluctuations is determined by the Lagrangian densities:

LΨ = Ψ̄(xµ)
(
iγµ∂µ −m− V (x1)

)
Ψ(xµ), Ψ̄ = Ψ†γ0,

LΦ = Φ̄(xµ)
(
iγµ∂µ +m− V (x1)

)
Φ(xµ), Φ̄ = Φ†γ0.

The spinor field equations5 read:

i∂0Ψ(x0, x1) =
(
− iα∂1 + β

(
m+ V (x1)

) )
Ψ(x0, x1), with α = γ0γ1 = σ1, (4)

i∂0Φ(x0, x1) =
(
− iα∂1 − β

(
m− V (x1)

) )
Φ(x0, x1), with β = γ0 = σ3. (5)

The time-energy Fourier transform of the spinor fields,

Ψ(x0, x1) =

∫
dω

2π
e−iω x

0

Ψω(x1) and Φ(x0, x1) =

∫
dω

2π
e−iω x

0

Φω(x1),

converts the partial differential equations (4)-(5) into the ordinary differential ones:

HΨ Ψω(z) =
(
− iα∂z + β (m+ V (z))

)
Ψω(z) = ωΨω(z),

HΦ Φω(z) =
(
− iα∂z − β (m− V (z))

)
Φω(z) = ωΦω(z) .

In sum, the problem of determining the spinor field fluctuations in the static background

β V (z) = γ0M(z) + γ1 V2(z) + 1V0(z) + γ2 V1(z) (6)

is equivalent to solve the spectral problem of the Dirac Hamiltonians HΨ and HΦ in one-
dimensional relativistic quantum mechanics. The eigen-spinors of these Hamiltonians will be
the one-particle states to be occupied by electrons and positrons moving on a line after the
fermionic quantisation procedure be implemented.

5Notice that in many field theory books the field equations for the spinor associated to the fermionic particle
Ψ(xµ) and those relative to the anti-fermionic particle Φ(xµ) are obtained only from one single Lagrangian

density. In fact, the Hamiltonians for the free case are related by means of H
(0)
Φ = −

(
H

(0)
Ψ

)∗
. But here, I am

going to treat both problems independently. Thus the notation used as a subscript in the Lagrangian density
and in the successive equations.
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Regarding the potential (6), since in (1+1)-dimensions there is no magnetic field, a gauge
transformation can always be performed so that V1(z) = 0 can be taken without loss of
generality [43]. The original idea of Sundberg and Jaffe is the following: let ψ(z) be a solution
of the time-independent Schrödinger equation when V1(z) = 0. Then the function given by
ε(z) = A(z)ψ(z) = e−i

∫ z
0 V1(y)dy ψ(z) solves the Schrödinger equation for any V1(z). Notice that

V1(z) only affects the phase of the solutions. The density of states only depends on z and on
the energy, but not on V1(z). Thus, the energy density is independent on V1(z) and one could
consider V1(z) = 0 in the model without loss of generality. Furthermore, it is convenient to
choose V2(z) = 0 because γ1 is not Hermitic. Hence, the aforementioned background potential
reduces to one term mimicking an electric potential and another one representing a mass term
depending on the spatial coordinate z. In addition, from now onwards only potentials with
compact support are going to be studied:

V (z) =

{
0, if |z| > L,
ξ(z)1 +M(z)β, if −L < z < L.

In the simplest situation M(z) = 0, ξ(z) = 0, described in [32], the eigen-spinors of the
Hamiltonians can be easily found. The basis of states to be used to generate the bound and
scattering spinors of the quantum problem in following sections are included in Table 1.

MOVEMENT ELECTRONS WITH
ENERGY ω+ > 0

POSITRONS WITH
ENERGY ω+ > 0

From left to right with
momentum k ∈ R+

Ψ
(0)
+ (t, z) ∝

e−iω+teikz u+(k)
Φ

(0)
+ (t, z) ∝

e−iω+t eikz v+(k)

From right to left with
momentum −k ∈ R−

Ψ
(0)
− (t, z) ∝

e−iω+t e−ikz γ0 u+(k)
Φ

(0)
− (t, z) ∝

e−iω+t e−ikz γ0 v+(k)

Table 1: Positive energy electron spinors versus positron ones.

The basis of eigen-spinors used is given by

u+(k) =

(
1
k

m+ω+

)
, v+(k) =

(
k

m+ω+

1

)
,

being ω+ =
√
k2 +m2. Notice that the v+(k) spinors are orthogonal to the positive energy

ones u+(k) because u†+γ
0v+ = 0. In sum, both spectra of H

(0)
Ψ and H

(0)
Φ are unbounded

from below and have a gap [−m,m] with no eigenvalues in between. Following the Dirac sea
prescription6, only the positive energy eigen-spinors in both problems will be considered. All
the negative energy states of both electrons and positrons are filled and the exclusion principle
forbids more than one fermionic particle per state. Therefore, positive energy electrons and
positrons propagate in (1 + 1)-dimensional Minkowski space-time according to the free Dirac
spinors aforementioned.

6The infinite Dirac sea proposed by P. Dirac [53] is a theoretical vacuum with only particles with negative
energy. The positron was thought as a hole or absence of a particle in the Dirac sea until its discovery as real
particle by Carl Anderson [54]. Consequently, in the original prescription, spinors associated to electrons with
negative energy moving in a certain direction are replaced by spinors of positrons with positive energy moving
in the opposite direction.
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3 Dirac spinors interacting with δ-potentials

Following the notation from Ref. [32], the most general form for a Dirac δ-potential standing
at the origin interacting with a Dirac spinor in a (1 + 1)-dimensional space-time reads

V (z) = Γ(q, λ) δ(z), with Γ(q, λ) = q 1 + λβ. (7)

The couplings λ and q set the strength of the interactions. Both parameters are dimensionless
in the natural system of units. The potential (7) is defined through matching conditions
relating the values of the spinors at both sides of the point where the potential stands. As
shown in Ref. [32], these matching conditions are given by7

Ψω(0+) = Tδ(q, λ)Ψω(0−) , Φω(0+) = Tδ(−q, λ)Φω(0−), (8)

where

Tδ(q, λ) = cos(Ω)1− i

2
sin(Ω)

[
Ω

q + λ
(γ2 + γ1) +

q + λ

Ω
(γ2 − γ1)

]
, (9)

and Ω ≡
√
q2 − λ2. It is of note that the matching matrix Tδ(q, λ) leaves the potential (7)

invariant. In this section, I am going to extend the results publised in [32] for a generic single
delta potential in which q, λ 6= 0.

3.1 Scattering states for a single δ-potential.

Eigen-spinors with ω(k) > m > 0 are the scattering states. As happens for the scalar case,
there are two independent scattering spinors for a fixed energy. The left-to-right (“diestro”)
spinor for the electrons

ΨR
ω (z, k) =

e
ikz u+(k) + ρR e

−ikz γ0 u+(k), z < 0,

σR e
ikz u+(k), z > 0,

(10)

and the right-to-left (“zurdo”) scattering state for electrons

ΨL
ω(z, k) =

σL e
−ikz γ0 u+(k), z < 0,

e−ikz γ0 u+(k) + ρL e
ikz u+(k), z > 0.

(11)

The scattering amplitudes {σR, σL, ρR, ρL} can be obtained imposing the matching conditions
(8) for the electron spinors above. Solving the two linear systems arising, I obtain the following
scattering amplitudes for the electrons on the line interacting with a Dirac δ-potential:

σR(k;λ, q) = σL(k;λ, q) =
kΩ

i(qω +mλ) sin Ω + kΩ cos Ω
,

ρR(k;λ, q) = ρL(k;λ, q) =
−i sin Ω(ωλ+mq)

i(qω +mλ) sin Ω + kΩ cos Ω
.

7As usual I will use the notation z = z±0 to denote the limit as z approaches to the point z0 from the right
(+) or from the left (−).
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It is easy to show that:
∣∣σ(k)

∣∣2 +
∣∣ρ(k)

∣∣2 = 1. In addition, as happens in the scalar case,
the reflection and transmission amplitudes are equal for the “diestro” and “zurdo” scattering
states.

The “diestro” and “zurdo” scattering states for the positron spinors can be easily obtained
from Eqs. (10) and (11) by replacing u+(k) by v+(k) and denoting by {σ̃R, σ̃L, ρ̃R, ρ̃L} the
corresponding scattering amplitudes for positrons. Forcing the positron scattering spinors to
satisfy the associated matching condition in Eq. (8) yields the following scattering amplitudes

σ̃R(k;λ, q) = σ̃L(k;λ, q) =
kΩ

−i(qω +mλ) sin Ω + kΩ cos Ω
,

ρ̃R(k;λ, q) = ρ̃L(k;λ, q) =
−i(ωλ+mq) sin Ω

−i(qω +mλ) sin Ω + kΩ cos Ω
.

As expected, the fact that the “diestro” and “zurdo” scattering amplitudes are equal for the
electron (equivalently for the positron) indicates that the Dirac-δ coupled to relativistic spin-
1/2 particles is parity and time-reversal invariant.

3.2 Bound states for a single δ-potential.

Spinor eigen-functions may also arise if k = iκ with κ > 0. Consequently 0 < ω(iκ) < m and
bound states emerge inside the gap when fermions are trapped at the δ-impurity. The ansatz
for the bound state spinor wave functions is given by

Ψb
ω(z, κ) =

A(κ) eκz γ0 u+(iκ), z < 0,

B(κ) e−κz u+(iκ), z > 0,
and Φb

ω(z, κ) =

C(κ) eκz γ0 v+(iκ), z < 0,

D(κ) e−κz v+(iκ), z > 0.
(12)

The exponentially decaying solutions of the systems in (12) (with ω2 = m2 − κ2) in the zone
z < 0 must be related to exponentially decaying solutions of the same systems for z > 0 by
implementing the matching conditions (8) at z = 0. Doing so yields two linear homogeneous
systems. On the one hand, existence of non null solutions for A and B in (12) requires that the
matrix in the corresponding algebraic system has vanishing determinant and consequently:

κ±e− =
m
(
±2q

√
Ω2(λ+ q)4 sin2(Ω) + λΩ(λ+ q)2 sin(2Ω)

)
(λ+ q)2 (λ2 cos(2Ω) + λ2 − 2q2)

. (13)

On the other hand, non null solutions for C and D in (12) requires:

κ±e+ =
m
(
±2q

√
Ω2(q − λ)4 sin2(Ω)− λΩ(q − λ)2 sin(2Ω)

)
(q − λ)2 (λ2 cos(2Ω) + λ2 − 2q2)

. (14)

Figure 1 shows the dependence of κ/m with the parameters q, λ for a pure electric (λ = 0)
delta potential and a pure massive one (q = 0). Remember that only in the domain of the
q-λ plane where one of the κ is real and positive there exists a bound state and one fermion
is trapped at the singularity.
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Figure 1: Left: Wave vector of bound states in a pure electric δ-potential: κ+
e−/m and κ+

e+/m (green)

and κ−e−/m and κ−e+/m (red) from Eqs. (13)-(14) . Right: Wave vector of bound states in a pure massive

δ-potential: κ±e−/m (blue) and κ±e−/m (orange) from Eqs. (13)-(14) .

4 Scattering data and spectrum for double δ potentials

The dynamics of fermionic fields interacting with the more general static background that
incorporate double δ-potentials symmetrically placed around the origin is governed by the
equations

i∂tΨ(t, z) = Hδδ
Ψ Ψ(t, z), i∂tΦ(t, z) = Hδδ

Φ Φ(t, z),

with the Dirac operators

Hδδ
Ψ = −iα ∂z + β [m+ λ1 δ(z + a) + λ2 δ(z − a)] + q1 δ(z + a) + q2 δ(z − a), (15)

Hδδ
Φ = −iα ∂z − β[m− λ1 δ(z + a)− λ2 δ(z − a)] + q1 δ(z + a) + q2 δ(z − a). (16)

Like for single delta potentials, the definition of this background through matching matrices
at the singular points z = ±a:{

Ψω(a+) = Tδ(q2, λ2)Ψω(a−)
Ψω(−a+) = Tδ(q1, λ1)Ψω(−a−)

,

{
Φω(a+) = Tδ(−q2, λ2)Φω(a−)
Φω(−a+) = Tδ(−q1, λ1)Φω(−a−)

, (17)

is equivalent to provide a self-adjoint extension for the Dirac Hamiltonians. Two specific
examples of double delta potentials will be presented below.

4.1 Double electric contact interaction

Next, only two electric Dirac δ-potentials located at z = ±a are going to be considered (i.e.
the choice λ1 = λ2 = 0 is going to be taken in (15)-(17)).

4.1.1 Electron and positron bound states: the discrete spectrum

• Electron bound states (0 < κ < m)
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The spinor takes the form

Ψb
ω(z, κ) =


A1(κ) eκz γ0 u+(iκ), z < −a,
B2(κ) eκz γ0 u+(iκ) + C2(κ) e−κz u+(iκ), −a < z < a,

D3(κ) e−κz u+(iκ), z > a.

(18)

The matching conditions (17) particularised to λ1 = λ2 = 0 implies that non trivial
solutions for {A1, B2, C2, D3} exist whenever the following transcendent equation holds:

e−4aκ = 1 +
κ[κ cos(q1 + q2) +

√
m2 − κ2 sin(q1 + q2)]

m2 sin q1 sin q2

. (19)

Thus, bound states arise at the intersections between the exponential curve e−4aκ and
the transcendent one:

Z1(m,κ, q1, q2) = 1 +
κ[κ cos(q1 + q2) +

√
m2 − κ2 sin(q1 + q2)]

m2 sin q1 sin q2

,

in the κ ∈ (0,m) open interval, assuming m > 0. The number of bound states, i.e. the
number of intersections between these two curves in the physical range of κ, depends on
the values of the parameters {a,m, q1, q2}. By comparing the tangents of the exponential
and the Z1 curves at κ = 0, one can see that the identity between them occurs over the
curve

cot q1 + cot q2

m
= −4a, → cot q1 + cot q2 = −4

p
, (20)

being p−1 = am. This trigonometric transcendent equation describes in the q1-q2 plane
an ordinary curve which is a frontier for the number of solutions of (19) to increase or
decrease by one unit. Furthermore, making κ = m in the transcendent spectral equation
(19) yields the condition for the existence of zero modes:

e−4am = cot q1 cot q2 → e−4/p = cot q1 cot q2. (21)

The distribution of electron bound sates in the q1-q2 plane is displayed in Figure 2 (left).

It is worth stressing that once {q1, q2, a,m} take a specific value, the spinor (18) should
be normalised. It can be achieved by solving the transcendent equation (19) numerically
for these values of {q1, q2, a,m}. Thereafter, one substitutes the specific numerical roots
κ in the homogeneous linear system resulting from replacing the ansatz of the spinor
in the matching conditions (17) to obtain the coefficients A1, B2, C2, D3. Finally, the
normalisation condition |N |2

∫
R Ψ†(x)Ψ(x)dx = 1 is applied to compute the value of the

normalisation constant N . Figures 3 and 4 show one specific example of the two bound
states spinors arising when q1 = 2, q2 = 2.5, a = 1,m = 1.5. Notice that to the highest
value of κ corresponds the lowest bound state energy.
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Figure 2: Bound state map in the q1, q2 space for electrons (left) or positrons (right) trapped by the double
electric δ-potential. Blue area: two bound states. Yellow area: one bound state. Orange area: no bound states.
The green line characterises the existence of zero modes (21). The red line is the trigonometric transcendent
equation (20) in the left plot and (22) in the right plot. In these plots a = 1,m = 1.2.

Figure 3: Ground bound state wave function Ψb
ω0

(z, κ0) for m = 1.5, a = 1, q1 = 2, q2 = 2.5. It corresponds
to κ0 = 1.3669, ω0 = 0.6177. Moreover, the numerical coefficients for this example take the following values:
A1 = 1, B2 = −0.0052, C2 = −0.0648, D3 = 0.1222, N =

√
14.587.

• Positron bound state spinors, 0 < κ < m

The spinor is the same as (18) but replacing u+(iκ) by v+(iκ). An analogous computation
that the one for electrons yields the following transcendent equation:

e−4aκ = 1 +
κ[κ cos(q1 + q2)−

√
m2 − κ2 sin(q1 + q2)]

m2 sin q1 sin q2

.

Now, the trigonometric transcendent equation

− cot q1 + cot q2

m
= −4a, → cot q1 + cot q2 =

4

p
, (22)

11



is the one which describes in the q1-q2 plane an ordinary curve which is a frontier between
areas admitting different number of positron bound states. If κ = m, the positron zero
mode existence is also determined by (21). As in the case of electrons, these two curves
(21) and (22) divide the space of parameters into different zones with zero, one or two
bound sates. The distribution of bound states for positrons in the q1-q2 parameter space
is depicted in Figure 2 (right).

Figure 4: Excited bound state wave function Ψb
ω1

(z, κ1) for m = 1.5, a = 1, q1 = 2, q2 = 2.5. It corresponds
to κ1 = 0.8552, ω1 = 1.2323. Moreover, the numerical coefficients for this example take the following values:
A1 = 1, B2 = 0.8941, C2 = −0.2883, D3 = −4.7115, N =

√
0.2086.

Back to the general case, since there are two electric couplings given by angular coordinates
q1, q2 ∈ [0, 2π] in the model, the space of parameters is the Cartesian product S1 × S1 of two
circles in R3. This is a torus, from a topological point of view. Hence, in the natural system
of units ~ = c = 1, the maximum values of {q1, q2} together with the mass of the particles
and the distance between plates, can be understood as lengths related to the minor and major
radius (r and R, respectively) of two tori:

T1 ≡ {R = a ·max(q1), r = max(q2)/m}, T2 ≡ {r = a ·max(q1), R = max(q2)/m}.

The transcendent equations (20), (21) and (22) describe curves which divide the parameter
space into zones with different number of bound states. Furthermore, these curves do not
depend on {a,m} but on their product. Consequently, one could also represent them over the
Riemann surface of the torus as shown in Figure 5. The parameter p−1 = a ·m and its inverse
fix the complex structure8 of the two tori associated to the family of theories characterised by
{a,m}. Notice that here the torus is a connected complex manifold which is homeomorphic to
the quotient C/L(a1, a2), being L(a1, a2) the lattice generated by a1 = 2πa, a2 = 2π/m ∈ C
[55, 56], as seen in Figure 6. Two lattices are equivalent if they are related by the modular
group9 PSL(2,Z) ≡ SL(2,Z)/Z2. The complex structure of a Lie group in the vector space

8 Associating a complex structure means defining the ring of holomorphic and meromorphic functions. A
torus may carry a number of different complex structures.

9The modular group [57] is the projective special linear group of 2 × 2 matrices with integer coefficients
and determinant equal to one. Its action on the upper half plan of the complex plane H is the group of linear
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C induces that of the torus. C is thus the universal covering space of the torus10. Hence, the
choice of (a1, a2) or equivalently (1, a2/a1), defines the complex structure of the torus, i.e. the
specific way of identifying points in C, modulo PSL(2,Z).

Figure 5: Bound state map for electrons interacting with a double electric delta potential and corresponding
complex torus for p−1 = 1.5 with a = 1,m = 1.5.

Figure 6: Universal covering map between the lattice generated by (a1, a2) and the corresponding torus [56].

Consequently, when studying fermionic fields in a double electric delta potential, the nat-

fractional transformations

z→ a z + b

c z + d
,

with a, b, c, d ∈ Z and ad−bc = 1. The fundamental domain of the modular group can be completely defined as
the set D = {z ∈ H| |Re z| < 1/2 ∪ |z| > 1}, whose closure includes at least one point from each equivalence
class under the modular group.

10Identifying the opposite sides of the parallelogram gives the torus T . Furthermore, there is a universal
covering map π : C → T whose kernel can be identified with the first homology group H1(T,Z). Notice that
the torus is locally isomorphic to C.
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urally arising two-parametric family of theories are related to a subset of the moduli11 of
complex tori or genus one algebraic curves characterised by ma ∈ R. In such a way, once
{a,m} are fixed, to each theory corresponds in principle only two tori associated to p and 1/p.
However, one could see that not all p ∈ H are independent, but the equivalent ones are related
by the modular group. Hence, the equivalence class under the modular group H/PSL(2,Z) is
the reason that only the torus such that p−1 > 1 (i.e. a > 1/m) must be taken into account.

4.1.2 Electron and positron scattering spinors: the continuous spectrum

• Electron scattering spinor waves: k ∈ R.

The scattering spinors for the electrons coming from the left towards the double delta
potential (“diestro” scattering) are:

ΨR
ω (z, k) =


u+(k)eikz + ρR γ0 u+(k)e−ikz, z < −a,
AR u+(k)eikz +BR γ0 u+(k)e−ikz, −a < z < a,

σR u+(k)eikz, z > a,

(23)

whereas scattering spinors for electrons coming from the right towards the double delta
potential (“zurdo”) scattering reads

ΨL
ω(z, k) =


σLγ

0 u+(k)e−ikz, z < −a,
AL u+(k)eikz +BL γ

0 u+(k)e−ikz, −a < z < a,

γ0 u+(k)e−ikz + ρL u+(k)eikz, z > a.

(24)

These piecewise solutions must satisfy the matching conditions (17) for the specific choice
λ1 = λ2 = 0. Consequently, one obtains two algebraic lineal systems of four equations,
one for the four unknowns of the “diestro” scattering {σR, AR, BR, ρR} and other one
for the four unknowns of the “zurdo” scattering {σL, AL, BL, ρL}. Cramer’s procedure
offers the following solution for the scattering amplitudes:

σR(k; q1, q2) = σL(k; q1, q2) =
k2

Λ(k; q1, q2)
= σ(k; q1, q2),

ρR(k; q1, q2) = −2im
√
k2 +m2 sin q1 sin q2 sin(2ak) + ikmΘ(k; q1, q2)

Λ(k; q1, q2)
,

ρL(k; q1, q2) = −2im
√
k2 +m2 sin q1 sin q2 sin(2ak) + ikmΘ∗(k; q1, q2)

Λ(k; q1, q2)
,

AL(k; q1, q2) = BR(k; q1, q2) =
−i k m e2iak sin q1

Λ(k; q1, q2)
,

AR(k; q1, q2) = BL(k; q1, q2) =
k2 cos q1 + ik

√
k2 +m2 sin q1

Λ(k; q1, q2)
,

Λ(k; q1, q2) = k2 cos(q1 + q2) + ik
√
k2 +m2 sin(q1 + q2) +m2 sin q1 sin q2(e4iak − 1),

Θ(k; q1, q2) = e−2iak cos q2 sin q1 + e2iak cos q1 sin q2.

11The moduli is the geometric space where each point represents an isomorphism class of smooth algebraic
curves of a fixed genus.
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It is important to highlight that when only a single delta potential is introduced in
the system, the reflection coefficients for diestro and zurdo scattering are equal to each
other due to the parity symmetry in the system. Now, when two delta potentials are
considered, there could be other type of interactions between the plates due to the
quantum vacuum fluctuations that did not arise in the single δ-case, and parity symmetry
could be broken. This is reflected in the fact that now ρL 6= ρR.

• Positron scattering spinorial waves: k ∈ R.

The procedure is totally analogous to that of electrons. The solution of the two al-
gebraic lineal systems of four equations for the unknowns {σ̃R, ÃR, B̃R, ρ̃R} and for
{σ̃L, ÃL, B̃L, ρ̃L} are the following scattering amplitudes:

σ̃R(k; q1, q2) = σ̃L(k; q1, q2) =
k2

Λ̃(k; q1, q2)
= σ̃(k; q1, q2),

ρ̃R(k; q1, q2) =
2im
√
k2 +m2 sin q1 sin q2 sin(2ak)− ikm Θ̃(k; q1, q2)

Λ̃(k; q1, q2)
,

ρ̃L(k; q1, q2) =
2im
√
k2 +m2 sin q1 sin q2 sin(2ak)− ikm Θ̃∗(k; q1, q2)

Λ̃(k; q1, q2)
,

ÃL(k; q1, q2) = B̃R(k; q1, q2) =
−i k m e2iak sin q1

Λ̃(k; q1, q2)
,

B̃L(k; q1, q2) = ÃR(k; q1, q2) =
k2 cos q1 − ik

√
k2 +m2 sin q1

Λ̃(k; q1, q2)
,

Λ̃(k; q1, q2) = k2 cos(q1 + q2)− ik
√
k2 +m2 sin(q1 + q2) +m2 sin q1 sin q2(e4iak − 1),

Θ̃(k; q1, q2) = e−2iak cos q2 sin q1 + e2iak cos q1 sin q2.

4.2 Double mass spike contact interaction

Consider finally the one-dimensional Hamiltonians for the fermionic particle and antiparticle
moving in the real line in the background of two mass-like Dirac δ-potentials centred at z = ±a,
i.e. (15) and (16) for q1 = q2 = 0. Now, the spectral problems for the Dirac Hamiltonian and
its conjugate must be solved including the matching conditions defined in (17) for q1 = q2 = 0.

4.2.1 Electron and positron bound states: the discrete spectrum

• Electron bound state spinors, 0 < κ < m.

Pugging the ansatz (18) in the matching conditions (17) for q1 = q2 = 0, defines a
homogeneous linear system in the unknowns (A1, B2, C2, D3) with non trivial solutions
providing:

e−4aκ =
(m+ κ cothλ1)(m+ κ cothλ2)

m2 − κ2
. (25)
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The number of bound states depends again on the parameters {m, a, λ1, λ2} through

cothλ1 + cothλ2 = −4

p
, p−1 = am. (26)

The shape of the curve that this hyperbolic transcendent equation describes in the λ1-λ2

plane is similar to that of a hyperbola with two branches. One of the vertices is placed
at the origin, the other at the point (λ1 = λ2 = −arccoth 2), and the axis is the λ1 = λ2

straight line. For points above the upper branch of the curve, no bound states are
encountered. Points in between the two branches correspond to one bound state. Points
in the zone below the lower branch give rise to two bound states. This distribution can
be seen in Figure 7 (left).

Figure 7: Electron (left) and positron (right) bound state map for a double mass-spike contact interaction.
Blue area: 2 bound states. Yellow area: 1 bound state. Orange area: no bound states. The red line is the
hyperbolic transcendent equation (26) in the left plot and (27) in the right one. In this plot a = m = 1.

Contrary to what happens in the case of the electric double delta potential, here there
are no zero modes (ω = 0) in the spectrum because the critical points of the function
in the right hand side of the equality (25) occurs when κ = −m coth[(λ1 + λ2)/2] or
κ = −m tanh[(λ1 + λ2)/2], and consequently λ1 + λ2 should be infinite in order for
κ = m to hold.

• Positron bound state spinors: 0 < κ < m.

An analogous procedure that the one applied for electrons yields the following transcen-
dent equation:

cothλ1 + cothλ2 =
4

p
. (27)

This hyperbolic transcendent equation also describes in the λ1-λ2 plane a curve similar
to an ordinary hyperbola with two branches. One of the vertices is placed at the origin,
the other at the point (λ1 = λ2 = arccoth 2) in the first quadrant, and the axis is the
λ1 = λ2 straight line. For points above the upper branch of the curve, two bound states
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are encountered. Points in between the two branches correspond to one bound state.
Points in the zone below the lower branch correspond to no bound states, as could be
seen in Figure 7 (right). Once more, there are no zero modes.

4.2.2 Electron and positron scattering spinors: the continuous spectrum

• Electron scattering spinorial waves: k ∈ R.

Replacing (23) and (24) in (17) for q1 = q2 = 0 allows to obtain a pair of alge-
braic lineal systems of four equations for the four unknowns of the “diestro” scattering
{σR, AR, BR, ρR}, and for the four unknowns of the “zurdo” scattering {σL, AL, BL, ρL}.
The solution for the electron scattering amplitudes reads:

σR(k;λ1, λ2) = σL(k;λ1, λ2) =
k2

∆(k;λ1, λ2)
= σ(k;λ1, λ2),

ρR(k;λ1, λ2) =
−2im

√
k2 +m2 sinhλ1 sinhλ2 sin(2ak)− ik

√
k2 +m2 Υ(k;λ1, λ2)

∆(k;λ1, λ2)
,

ρL(k;λ1, λ2) =
−2im

√
k2 +m2 sinhλ1 sinhλ2 sin(2ak)− ik

√
k2 +m2 Υ∗(k;λ1, λ2)

∆(k;λ1, λ2)
,

AL(k;λ1, λ2) = BR(k;λ1, λ2) =
−ik
√
k2 +m2 e2iak sinhλ1

∆(k;λ1, λ2)
,

BL(k;λ1, λ2) = AR(k;λ1, λ2) =
k2 coshλ1 + ikm sinhλ1

∆(k;λ1, λ2)
,

∆(k;λ1, λ2) = k2 cosh(λ1+λ2) + (k2 +m2)(e4iak − 1) sinhλ1 sinhλ2 + ikm sinh(λ1+λ2),

Υ(k;λ1, λ2) = e−2iak coshλ2 sinhλ1 + e2iak coshλ1 sinhλ2.

Only if λ1 = λ2 the scattering process is parity invariant, and ρL = ρR. If k = iκ
and 0 < κ < m, the zeroes of ∆(iκ;λ1, λ2), i.e. the poles of σ(k;λ1, λ2) in the positive
imaginary axis of the k-complex plane, enable to recover the zeroes of the transcendent
equation (25).

• Positron scattering spinorial waves: k ∈ R.

Proceeding in a similar way as explained before, scattering of positrons by two mass-like
δ-impurities can be analysed obtaining the following scattering amplitudes:

σ̃R(k;λ1, λ2) = σ̃L(k;λ1, λ2) =
k2

∆̃(k;λ1, λ2)
= σ̃(k;λ1, λ2),

ρ̃R(k;λ1, λ2) =
i2m
√
k2 +m2 sinhλ1 sinhλ2 sin(ak)− ik

√
k2 +m2 Υ̃(k;λ2, λ1)

∆̃(k;λ1, λ2)
,

ρ̃L(k;λ1, λ2) =
i2m
√
k2 +m2 sinhλ1 sinhλ2 sin(ak)− ik

√
k2 +m2 Υ̃∗(k;λ2, λ1)

∆̃(k;λ1, λ2)
,

ÃL(k;λ1, λ2) = B̃R(k;λ1, λ2) =
−i k
√
k2 +m2e2iak sinhλ1

∆̃(k;λ1, λ2)
,
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B̃L(k;λ1, λ2) = ÃR(k;λ1, λ2) =
k2 coshλ1 − i k m sinhλ1

∆̃(k;λ1, λ2)
,

∆̃(k;λ1, λ2) = k2 cosh(λ1+λ2) + (k2 +m2)(e4iak − 1) sinhλ1 sinhλ2 − ikm sinh(λ1+λ2),

Υ̃(k, λ1, λ2) = e−2iak coshλ2 sinhλ1 + e2iak coshλ1 sinhλ2.

Again, only whether λ1 = λ2 = λ then ρ̃R(k;λ, λ) = ρ̃L(k;λ, λ), and positron scattering
through two δ-impurities is parity invariant.

All the S-matrices defined in this section both for electrons and positrons are unitary (i.e.
S†S = I), since it can be checked that

|σ|2 + |ρR|2 = 1, |σ|2 + |ρL|2 = 1, σρ∗L + σ∗ρR = 0.

5 Second quantisation and vacuum energy at zero tem-

perature

In order to build a relativistic QFT, one can postulate the operator

Ψ̂(t, z) =

∫
dk√
4πω

[
b̂(k)u+(k)e−iωteikz + d̂†(k)v+(k)eiωte−ikz

]
, with ω = +

√
m2 + k2,

which satisfies the Dirac equation, and interpret the coefficient b̂ as a particle-annihilation
operator upon the second quantisation is performed. d̂ would be an antiparticle-annihilation
operator [58]. On the contrary, b̂†, d̂† create nucleons and antinucleons of momentum k, re-
spectively. When dealing with fermions, the corresponding states should be antisymmetric to
enforce Pauli’s exclusion principle, and hence b̂, d̂ fulfil the usual anti-commutation relations.
The introduction of antiparticles enables to study the charge conjugation symmetry. As stated
in [32], for the specific choice of the Clifford algebra representation (3), the point supported
potential (1) is invariant under parity transformation defined by PΨ̂(t, z)P−1 = ηpγ

0Ψ̂(t,−z),

time reversal transformations T Ψ̂(t, z)T −1 = ηTγ
0Ψ̂(−t, z), but not under charge conjugation

CΨ̂(t, z)C−1 = ηCγ
2Ψ̂∗(t, z) as long q 6= 0 because TCδ (q, λ) = Tδ(−q, λ). Furthermore, par-

ity and time reversal are intrinsic symmetries of H
(0)
Ψ and H

(0)
Φ for any choice of the Clifford

algebra. Charge conjugation is neither a symmetry of the Dirac Hamiltonian for fermions
nor for antifermions since CH(0)

Ψ C−1 = H
(0)
Φ . On the other hand, the CPT theorem [59–61]

ensures that every relativistic Quantum Field Theory is invariant under a simultaneous CPT
transformation. In this case it is clear that CPT H(0)

Ψ (CPT )−1 = H
(0)
Φ . Since the space of

states has been defined as the tensor product of the space of eigen-states of H
(0)
Ψ times that of

H
(0)
Φ , the CPT symmetry only permutes the order of the components in the tensor product.

This swap keeps the total space unchanged, as was also the case for the charge conjugation
symmetry.

Another interesting question in QFT is the study of the quantum vacuum energy. The
problem of a Dirac field confined in a finite interval [−L/2, L/2] has been studied in [44,62,63].
The main idea explained in these works is that the Dirac Hamiltonian is not self-adjoint while
restricted to square-integrable spinors defined in a finite interval, and there is a non zero
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flux of charge density through the boundaries. However, the Dirac Hamiltonian admits an
infinite set of self-adjoint extensions in one-to-one correspondence with local unitary operators
related to the boundary conditions. Hence, the domain of the self-adjoint extensions is the
set of square-integrable spinors in [−L/2, L/2] that satisfy some specific boundary conditions
for their two components [44]. As a consequence, the unitarity of the QFT translates into
a charge conservation for the Dirac field in the finite interval. It is interesting to note that
the self-adjoint extension of the Dirac operator that represents the interaction of the quantum
field with the boundary is given by the general M.I.T. bag boundary condition12.

Whenever the fermionic field is confined between plates and hence, restricted to live in a
finite interval, the whole spectrum of normal modes is discrete and it can be obtained from
the zeroes of a spectral function h(k). In such a way, the quantum vacuum interaction energy
can be computed by using the Cauchy’s theorem of complex analysis as:

E0 = −
∑
k∈R+

2
√
m2 + k2

∣∣∣
h(k)=0

=

∮
C

i dk

π

√
m2 + k2 ∂k log h(k), (28)

where the minus sign in the first equality has been added due to the negative energy of the
Dirac sea, and the factor 2 comes from the fact that positrons and electrons contribute in the
same way to the summation over the spectrum. In [44] the contour C is chosen as a semiring
of inner radius m and outer infinite radius satisfying Re(k) > m. This formalism explained
in [44] can be also applied in the present work for two specific cases:

1. If λ = 0 and q = π. It can be checked that in this case T = −12. Following [44], the
spectral function is:

h(k) = (−
√
m2 + k2 +m) sin(2ka).

From this point one could compute E0 by using the equation (28), and by subtracting
the divergences in a similar way that the one explained in [38, 68]. It can be checked in
Figure 3 of [44] that for heavy fermions such that ma = 10 the numerical result for the
quantum vacuum interaction energy between plates is positive.

2. If qr =
√
λ2 + π2r2, being r ∈ Z − {0}. It is easy to show that now T = −12 if r is an

odd number and T = 12 if r is even. The resulting spectral functions take the form:

h(k) = (∓
√
m2 + k2 +m) sin(2ka).

The quantum vacuum interaction energy between plates is also positive in this occasion.

These two cases are essentially analogous to one presented for bosons in [38], when the bound-
ary conditions mimicking the plates are Dirichlet or Neumann ones. In that particular instance,
the plates became physically opaque and fluctuation propagation was restricted to the com-
pact space between plates. However, when the boundary condition defined by T (q, λ) in (9)

12The M.I.T. bag model was proposed by A. Chodos, R. L. Jaffe, K. Johnson, C.B. Thorn and V. Weisskopf
[64] to study the confinement of quarks in the hadron model. This bag is a classical spherical cavity with quarks
and gluons moving freely but confined inside it. In QFT, this implies that the fermionic current through the
surface of the bag must be equal to zero and thus, certain specific boundary conditions must be imposed over
the field representing the quarks, as also explained in [65]. Due to the confinement, there are no exterior
modes. This confinement gives rise to the Casimir effect (see [42,66,67] and references therein).
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is not unitary, or if the fermionic field also lives outside the finite interval [−L/2, L/2], the
method explained in [38,68] and used in [44] can no longer be applied. It would be necessary
to approach the problem from other perspectives that go beyond the limits of this work.

6 Conclusions

In this work I study the spectrum of bound and scattering states of relativistic fermionic par-
ticles interacting with double Dirac δ-potential in (1+1)-dimensional theories. The fermions
propagating on the real line are interpreted as quanta emerging from the spinor fields. The
problem has been addressed by solving at the same time the spectral problem of either the
Dirac Hamiltonian HΨ and its conjugate HΦ in one-dimensional relativistic quantum mechan-
ics. The eigen-spinors of both Hamiltonians have been interpreted as the one particle states
with positive energy to be occupied by electrons and positrons after the fermionic second
quantisation procedure be implemented. It has also been explained that the boundary condi-
tion matrix which represents the δ-potential is parity and time-reversal invariant but it is not
charge-conjugated invariant for the specific choice of the representation of the Clifford algebra
{γ0 = σ3, γ

1 = iσ2, γ
2 = σ1}.

I deal with two particular cases, namely a double electric δ-potential and a double mass-
spike δ-potential. In both cases, the transcendent equations for computing the momenta of
the bound states have been completely determined. It has been possible to elaborate a map
of the number of bound states (two, one or zero) and zero modes present in the problem for
a specific choice of {q1, q2, λ1, λ2, p

−1 = am}. Notice that this map would be crucial to build
the associated QFT in future works, because the states with negative energy will break the
unitarity of the QFT and a mass term must be introduced to avoid the absorption phenomena
problem. It has been shown that in the electric case, there could be zero, one and two bound
states as well as zero modes depending on the values of the parameters. Furthermore, the
bi-parametric family of theories indexed by the coefficients of the δ-functions is in one-to-one
correspondence with a subset of the moduli of complex tori. The topology of the torus is
determined by the two angular coordinates given by q1, q2. The complex structure of the torus
is completely characterised by p−1, i.e. by the product of the mass of the particles and the
distance between the two electric δ-potentials. On the other hand, for the massive Dirac deltas
case, there could be one, two or zero bound states depending of the value of λ1, λ2 and p−1,
but there are no zero modes. It is also worth stressing that either in the electric and the
massive case, the S-matrices and the scattering data have been computed.

Lastly, it has been completely understood that only if λ = 0, q = π or qr =
√
λ2 + π2r2 with

r ∈ Z − {0}, the boundary condition matrix Tδ(q, λ) which defines the self-adjoint extension
of the Dirac Hamiltonian is unitary. In these cases, which represent totally opaque plates, the
formalism developed in [44] can be applied to compute the spectral function and the quantum
vacuum interaction energy for fermions confined between plates.

The new objective for future work is to extend this work to the computation of the Casimir
force for a system of fermions under the influence of two general Dirac delta potentials. And
whatsoever, once this system was studied, it would be straightforward to generalise it to
fermions propagating in general Dirac delta-type lattices. This is a relevant topic in Condensed
Matter Physics due to the edge states which appear in some meta materials that can be
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mimicked by these type of theories. On the other hand, the analysis of the Green’s function
for fermions confined between plates modelled by general delta potentials in higher spatial
dimensions will be left for further investigation.
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A Dirac double electric potential with q1 = q2 = π/2,

m = 1.5, a = 1

In the main part of this work, the general analytic formulas and data that characterise the
bound and scattering states for fermions propagating under the influence of Dirac delta poten-
tials have been collected, without going into particular cases. These general results will be of
direct use in future work since they will appear in the calculations of the Casimir energy [69],
the density of states, and other thermodynamic quantities in the associated QFT.

Take into account that in this article the problem of positrons and electrons are treated
separately, as two different problems. However, one can consider the case in which there are
one bound state at the same time in each one of the two separate problems. In this appendix
such a case is going to be considered. From now on, consider q1 = q2 = π/2,m = 1.5, a = 1.

Concerning the scattering, one could prove from the general equations in section 4.1.2
that ρR = ρL = −ρ̃R = −ρ̃L and σ = σ̃. Both problems for electrons and positrons are
thus time reversal and parity invariant. As can be seen in Figure 8, all the scattering data
is highly oscillatory for small values of the momentum. This behaviour is attenuated as k
increases. The value of the modulus of the transmission coefficient tends to one when the
particle has high energy, as expected13. Concerning the bound state, the momentum solution
of the trascendental equation (19) will be κ = 1.49813. The corresponding wave function is
represented in Figure 9. The lower component of the electron spinor is continuous but not
differentiable at the impurities. The electron/positron is shared by the two delta potentials.
The upper component presents finite discontinuities at the points where the deltas are placed.
There exists parity symmetry and wave functions are either even or odd linear combinations
of the localised states of the fermions around each impurity. The spinor for the positron case
is analogous.

One could also consider other possible cases (two bound states for electrons, two for
positrons, one bound state for electrons, one for positrons, no bound states in electrons and no
in positrons, for both the massive and electric cases, as well as the case in which both electron

13In scattering theory, particles with high energy do not sense the potential and pass through it without
been scattered.
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and positron have a bound state at the same time in the massive Dirac delta case). The cor-
responding plots of the wave functions may change qualitatively but will maintain the same
fundamental behavior described above, i.e., the real and imaginary parts of the two spinor
components have either finite discontinuities at the points where the deltas are placed or have
abrupt peaks that make the wave function continuous but not derivable at the same points.
Furthermore, if the modulus of the coefficients q1, q2 (or similarly λ1, λ2 in the double masive
Dirac delta case) are not equal to each other, the wave functions may not have well-defined
parity properties about the origin.

Figure 8: Scattering coefficients σ, ρR = ρ as a function of k for the case q1 = q2 = π/2,m = 1.5, a = 1.

Figure 9: Left: Two non-zero spinor components for electrons as a function of z for the particular case
q1 = q2 = π/2,m = 1.5, a = 1. The numerical coefficients for this example take the following values:
A1 = 1, B2 = −C2 = 0.05004, D3 = −1, N =

√
7.92853. Right: Two non-zero spinor components for

positrons as a function of z for the case q1 = q2 = π/2,m = 1.5, a = 1. The numerical coefficients for this
example take the following values: A1 = 1, B2 = C2 = −0.05004, D3 = 1, N =

√
7.9285.
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B Scattering data for double Dirac delta potentials. Spe-

cific examples

In this appendix, the transmission and reflection coefficients will be analysed for the possible
specific situations of the spectrum described in the article (two, one or zero bound states)
in different configurations of both the electric and the massive double Dirac delta potential.
Only the electron scattering coefficients are going to be considered in figures from 10 to 15.
The positron scattering data can be obtained from the general data in subsections 4.1.2 and
4.2.2 in a similar way.

• Case: λ1 = λ2 = 2, q1 = q2 = 0,m = a = 1. The spectrum has no bound states.

Figure 10: Left: Real (blue) and imaginary part (orange) of σ as a function of k. Right: Real (red) and
imaginary part (green) of ρR as a function of k. In both plots, λ1 = λ2 = 2,m = a = 1.

• Case: λ1 = 1, λ2 = −2, q1 = q2 = 0,m = a = 1. The spectrum has one bound state.

Figure 11: Left: Real (blue) and imaginary part (orange) of σ as a function of k. Right: Real (red) and
imaginary part (green) of ρR as a function of k. In both plots, λ1 = 1, λ2 = −2,m = a = 1.

• Case: λ1 = λ2 = −2, q1 = q2 = 0,m = a = 1. The spectrum has two bound states.
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Figure 12: Left: Real (blue) and imaginary part (orange) of σ as a function of k. Right: Real (red) and
imaginary part (green) of ρR as a function of k. In both plots, λ1 = λ2 = −2,m = a = 1.

• Case: λ1 = λ2 = 0, q1 = q2 = 2,m = 1.5, a = 1. The spectrum has two bound states.

Figure 13: Left: Real (blue) and imaginary part (orange) of σ as a function of k. Right: Real (red) and
imaginary part (green) of ρR as a function of k. In both plots, q1 = q2 = 2,m = 1.5, a = 1.

• Case: λ1 = λ2 = 0, q1 = 1, q2 = 2,m = 1.5, a = 1. The spectrum has one bound states.

Figure 14: Left: Real (blue) and imaginary part (orange) of σ as a function of k. Right: Real (red) and
imaginary part (green) of ρR as a function of k. In both plots, q1 = 1, q2 = 2,m = 1.5, a = 1.

• Case: λ1 = λ2 = 0, q1 = q2 = 1,m = 1.5, a = 1. The spectrum has no bound states.
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Figure 15: Left: Real (blue) and imaginary part (orange) of σ as a function of k. Right: Real (red) and
imaginary part (green) of ρR as a function of k. In both plots, q1 = q2 = 1,m = 1.5, a = 1.

At this point, some caveats are worth stressing. For the electric case the boundary matrix
Tδ(q, 0) in (9) is a unitary matrix and, as can be seen from the plots, the scattering coefficients
are such that |σ| → 1 and |ρ| → 0 as k becomes large enough. This is in agreement with
Chapter 4 of [70]. On the other hand, for the massive case (with the exception of the choice14

λ = iπ+2iπn or λ = 2iπn for n ∈ R), the matrix Tδ(0, λ) is not unitary. Furthermore, it is easy
to see from the plots above that some resonances appear for the scattering coefficients at some
particular values of k. This situation can be checked to hold almost periodically as k becomes
large (a detailed study shows that the periodic interval is not exact, it decreases as k increases).
This resonances appear because in the spectrum of the quantum vacuum fluctuations there
are also resonant states of the form k = x0 + iy0 with x0 > 0 and y0 < 0∧ |y0| � 1 (see Figure
16). They are poles of the unitary S-matrix. Moreover, it can be seen in the figures above
that in this case, the widths of the resonances do not increase significantly with energy and
do not become progressively less pronounced above the background. This is slightly different
from the case of a single delta potential explained in [70].

Figure 16: Solutions of Re(Denominator ofσ) = 0 (purple) and solutions of Im(Denominator ofσ) = 0
(yellow) for the case q1 = q2 = 0,m = a = 1, λ1 = 1, λ2 = −2. The intersecting points between both curves
are poles of the S-matrix with the form x0 + iy0 (i.e. they correspond to resonant states in the spectrum).

14In this particular case, the matching condition Tδ(0, λ) is unitary, and σ = 1, ρ = 0,∀k.
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Laurens W. Molenkamp, Xiao-Liang Qi, and Shou-Cheng Zhang. Quantum Spin Hall
Insulator State in HgTe Quantum Wells. Science, 318:766–770, 2007.

26



[16] Xiao-Liang Qi and Shou-Cheng Zhang. Topological insulators and superconductors. Rev.
Mod. Phys., 83:1057–1110, 2011.

[17] T.O. Wehling, A.M. Black-Schaffer, and A.V. Balatsky. Dirac materials. Advances in
Physics, 63:1–76, 2014.

[18] M. Veltmann. Diagrammatica: The Path to Feynman Diagrams. Cambridge Lecture Notes
in Physics, Series Number 4. Cambridge University Press, Cambridge, 1994.

[19] T. Friedrich. Dirac operators in Riemannian Geometry. American Mathematical Society,
Providence, Rhode Island, 2000.
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for finite temperature quantum field theory under the influence of periodic backgrounds.
Eur. Phys. J. C, 80:221, 2020.
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