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a b s t r a c t

A few decades ago, farmers could precisely monitor their croplands just by walking over the fields, but this task 
becomes more difficult as farm size increases. Precision viticulture can help better understand the vineyard and 
measure some key structural parameters, such as the Leaf Area Index (LAI). Remote Sensing is a typical approach 
to monitoring vegetation which measures the spectral information directly emitted and reflected from vegetation. 
This study explores a new method for estimating LAI which measures the projected shadows of plants using UAV 
(unmanned aerial vehicle) imagery. A flight mission over a vineyard was scheduled in the afternoon (15:30 to 16:00 
solar time), which is the optimal time for the projection of vine shadows on the ground. Real LAI was measured 
destructively by removing all the vegetation from the area. Then, the projected shadows in the image were detected 
using machine learning methods (k-means and random forest) and analysed at pixel level using a customised R code. 
A strong linear relationship (R² = 0.76, RMSE = 0.160 m² m-2 and MAE = 0.139 m² m-2) was found between the 
shaded area and the LAI per vine. This is a quick and simple method, which is non-destructive and gives accurate 
results; moreover, flights can be scheduled during other periods of the day than solar noon, such as in the morning or 
afternoon, thus enabling pilots to extend their working day. Therefore, it may be a viable option for determining LAI 
in vineyards trained on Vertical Shoot Positioned (VSP) systems.
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INTRODUCTION 

According to European Union policies 
(Zarco-Tejada et al., 2014), Precision Agriculture 
is a farming management concept based on 
observing, measuring, and responding to inter- 
and intra-field variability in crops, and in which 
the spatial variability of vineyards plays a vital 
role. Vineyards are characterised by a strong 
spatial structure that is generally stable over 
time (Bramley and Lamb, 2003) and is affected 
by several factors, some of which are quite 
constant over time and can be dealt with through 
differentiated crop management (Bramley and 
Hamilton, 2004). Although Precision Agriculture 
can improve yields, the most significant advantage 
is the reduction of yield variations over time, 
which leads to more stability and resilience to a 
changing climate (Yost et al., 2016). On the other 
hand, until a few decades ago, farmers could 
precisely monitor their croplands just by walking 
over the fields, but with increasing farm size this 
task is becoming more difficult without using 
technology (Balafoutis et al., 2017). All of this has 
led to a growing interest in precision viticulture 
and further research efforts (Santesteban, 2019), 
but results can vary significantly depending on 
knowledge of the crop. Therefore, it is necessary to 
use methods that precisely define key variables to 
avoid any problems; for example, over-cropping, 
which will lead to a canopy with an insufficient 
amount of healthy active leaves which will not 
be able to produce enough sugar to obtain the 
desirable level of ripening in all clusters, resulting 
in grapes lacking in aroma/flavour and/or the 
desirable phenol compounds (Reynolds, 2010). 
Key variables to be defined include cluster, flower 
or berry number, which directly affect yield and 
ripening, and leaf area, which is an important 
variable to monitor, because the ripening of grape 
clusters depends on the leaf area/fruit weight 
ratio (Keller, 2015; Jackson, 2020). Leaves are 
organs specialised in intercepting radiation, which 
is necessary for photosynthesis. Leaf area is 
commonly measured using the Leaf Area Index, 
LAI (Lambers and Oliveira, 2019), which is 
closely related to photosynthetic active radiation 
assimilation (Pessarakli, 2014) and is defined as 
the vegetative development of a crop per unit area 
of land (Watson, 1947). 

1. Leaf Area Index in viticulture 

In viticulture, LAI is one of the most used parameters 
to represent canopy area (Delrot et al., 2010); it is 
a key indicator, since leaf area directly correlates 
with other critical parameters, such as transpiration, 

root development and photosynthetic capacity, 
thus limiting yield (Keller, 2015). Furthermore, 
LAI is related to canopy transpiration and water 
use, and can thus influence irrigation decisions 
(Netzer et al., 2008; Munitz et al., 2019), and it 
is affected by management and environmental 
factors, such as irrigation, nutrient management, 
and training systems (Oliveira and Santos, 1995). 

2. Current Remote Sensing methods for 
estimating leaf area index

LAI can be measured using traditional 
methods, such as the Carbonneau method 
(Carbonneau, 1976), the adapted Point Quadrat 
(Smart and Robinson, 1991), the Lopes and Pinto 
method (Lopes and Pinto, 2005), or by measuring 
specific parameters related to leaf shape (Williams 
and Martinson, 2003). However, these methods 
are inefficient, time-consuming and, in some 
cases, destructive.

Remote Sensing is a quicker way of estimating 
LAI via; different technologies can be used, such 
as field spectroradiometers (Wang et al., 2019), 
multispectral and hyperspectral data 
(Mananze et al., 2018), satellite imagery 
(Meyer et al., 2019; Dube et al., 2019) and 
thermal imagery (Neinavaz et al., 2019). These 
technologies can vary in accuracy and complexity:

 i) Different results have been reported 
for satellite imagery; for example, 
Johnson et al. (2003) showed a significant 
correlation between image-based leaf area 
and ground-based leaf area (R² > 0.7), while 
Beeri et al. (2020) found a weak relationship 
between satellite information and LAI 
(R² > 0.3). 

 ii) Specific tools have been developed 
exclusively for indirect LAI estimation based 
on the measurement of radiation extinction 
through the foliage, such as the Plant Canopy 
Analyzer (PCA, LAI-2000 and 2200, 
Li-Cor Inc., Lincoln, NE, USA). Johnson and 
Pierce (2004) have reported high accuracy 
using PCA in viticulture, but even though this 
tool has been specifically developed to measure 
LAI, it is not easy to employ it correctly, 
since there are different protocols for its use 
(White et al., 2018).

 iii) General-purpose sensors such as 
conventional RGB cameras have also shown 
great potential for measuring LAI using various 
methods. For example, Fuentes et al. (2014) 
used a camera mounted on a pole to acquire 
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downward-looking digital images from the 
middle of the plant, and De Bei et al. (2016) 
developed an app (VitiCanopy) to assess canopy 
architecture parameters in vineyards using 
upward-looking imagery. Diago et al. (2012) 
used an RGB camera mounted on a tripod 
set normal to the canopy plane, 2 m from 
the row axis and 1.05 m aboveground.  
Both authors used an RGB camera successfully, 
reporting high accuracy. Furthermore, these 
RGB cameras can be mounted on unmanned 
aerial vehicles (UAVs), thus increasing their 
possibilities improving the accuracy of the 
results. Kalisperakis et al. (2015) used a low-
cost standard RGB camera to estimate LAI, 
obtaining good results (R² > 0.7), and they 
improved the results (R² > 0.8) by mounting a 
hyperspectral VNIR imaging sensor on a UAV.

 iv) Hyperspectral and multispectral sensors 
are an improvement on RGB cameras. 
Using multispectral airborne images, 
Hall et al. (2008) found close relationships 
between the planimetric canopy area and 
ground-based measurements of LAI at several 
phenological stages, whereas no significant 
relationships were found between NDVI and 
LAI. Towers et al. (2019) used a multispectral 
sensor to capture nadir-view images of 
the canopy, reporting varying accuracies 
depending on whether soil values were used or 
not, and showing that soil backscattering can 
contribute more to the signal than vegetation 
cover can. In a similar way, but capturing 
the images from a UAV, Comba et al. (2020) 
used a multispectral camera combined with 
point cloud creation and 3D modelling using 
SfM (Structure from Motion) to estimate LAI, 
obtaining good results (R² > 0.8). Mathews and 
Jensen (2013) captured images from nadir and 
varying oblique angles, obtaining less accurate 
results than Comba et al. (2020) (R² > 0.5), and 
showing that increasing the number of differing 
angles/perspectives with overlap improves 
the SfM product. Kalisperakis et al. (2015) 
reported good accuracy (R² > 0.8) by creating 
a 3D model via 3D triangulation; they used 
aerial RGB images to generate a dense point 
cloud by employing dense stereo and multi-
image matching algorithms. Therefore, 
even when the same sensors and technology  
(RGB cameras) are used, different methods 
can result in different levels of accuracy.

 v) An alternative approach involves the use 
of specific tools that can capture the three 
dimensions (3-D) of the area. For example, 
Arnó et al. (2013) computed geometric and 
structural parameters using a tractor-mounted 
LiDAR system to measure vines (using TAI, 
tree area index) in a transverse direction along 
rows with high accuracy (R² > 0.8). 

Each method has its advantages and limitations. 
Some are cheap to implement (e.g., RGB cameras 
(Fuentes et al., 2014; Diago et al., 2012)), but 
may have different drawbacks depending on the 
method; for example, Diago et al. (2012) had 
problems using RGB cameras in terms of distance 
to the remnant foliage when the defoliation process 
was performed over highly dense canopies. 
Del-Moral-Martínez et al. (2016) reported that 
LiDAR needs to be very precisely set up, otherwise 
it can generate incorrect LAI values for vines 
with poor leaf development, recording zones in 
the canopy containing a considerable percentage 
of gaps as effective leaf wall area. Mathews and 
Jensen (2013) reported that the SfM approach 
needs more time than other UAV missions due to 
the higher number of images, angles or overlap. 
In addition, some methods are more expensive 
than others due to the technologies involved, 
such as multispectral (Towers et al., 2019; 
Comba et al., 2020) and hyperspectral cameras 
(Kalisperakis et al., 2015) or a tractor for mounting 
the LiDAR system on. Even a low-cost version of 
LiDAR (Arnó et al., 2013) can still be much more 
expensive than a standard RGB camera.

For most of these methods, strong correlations 
with LAI can generally be found (R² > 0.7), 
and a key requirement of most of them is to 
measure data around midday to minimise the 
effects of shadowing between the vine rows. The 
development of new methods that will complement 
current techniques and help expand target areas 
and extend the work to other periods of the day 
could be very beneficial for the application of 
these techniques in practice.

3. Remote Sensing approach to shadows 

In Precision Agriculture, Remote Sensing is 
typically used for monitoring vegetation by 
measuring the spectral information directly emitted 
and reflected from the vegetation; each band is 
analysed separately, or indices are calculated, such 
as NDVI (Rouse et al., 1973), which is related 
to vineyard vegetation (Vélez et al., 2020b). In 
these approaches, shadows are frequently treated 
as non-desirable information (Ma et al., 2008; 
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Zhang and Chen, 2010; Wu and Bauer, 2013; 
Aboutalebi et al., 2018) and are usually removed 
from datasets (Poblete-Echeverría et al., 2017; 
Jiang et al., 2018). Nevertheless, some problems 
can arise when the images are not obtained close 
to solar noon, as a result of the shaded and sunlit 
parts of leaves having different reflectance values. 
In addition, shaded areas can generate noisy 
data, which significantly affect the estimation of 
vegetation parameters (Zhang et al., 2015).

4. Proposed approach

The leaf area of the plant is correlated with 
intercepted light and can be estimated by measuring 
its shadow (Baeza et al., 2010). Therefore, a 
newer and less time-consuming approach to 
estimating LAI could be the study of the shaded 
soil area within the vineyard using UAVs. Each 
plant projects its own shadow and image analysis 
can be used to measure the lateral leaf area of the 
vines in the shaded inter-row space. 

UAV platforms have been extensively used for 
studying and exploring vineyards, offering valuable 
technology for estimating numerous vineyard 
parameters (e.g.; Mathews and Jensen, 2013; 
Zarco-Tejada et al., 2013; Matese et al., 2016; 
Santesteban et al., 2017; Weiss and Baret, 2017; 
Poblete-Echeverría et al., 2017). In general, UAV 
offers the possibility of obtaining precise and 
high-resolution multispectral imagery, which 
is critical for measuring the shape of the vine 
shadows correctly. Furthermore, it allows the time 
of the flight to be chosen (Vélez et al., 2020a), 
which was a crucial factor in this study as the flight 
needed to be scheduled according to sun elevation, 
period of the year and desired shadow size (related 
to plant height). Other authors have hypothesised 
that shadows can be used as an indirect measure 
of leaf area and canopy characteristics (Zheng 
and Moskal, 2009), or have even suggested the 
possibility of using optical remote Sensing close 
to solar noon to monitor and map vineyard shaded 
area (Johnson and Scholasch, 2005). However, to 
our knowledge, this is the first study to follow and 
evaluate a field protocol for measuring vine leaf 
area using the shaded area under real conditions. 
This study takes advantage of advances in image 
capturing and UAV technologies, combining 
previous knowledge in viticulture with remote 
Sensing and machine learning methods.

In the present study, LAI is estimated by capturing 
plant shadows using UAV imagery. This method 
is compatible with previous methods because 
they are all based on the need to find a quick, 

non-destructive, and accurate way of measuring 
leaf area. However, as previously stated, these 
methods usually require measurements to be 
carried out around midday to minimise the effect 
of shadowing between vine rows. 

MATERIALS AND METHODS

1. Experimental site

A large-scale field experiment was carried out in 
a vineyard (cv. Cabernet-Sauvignon) located in 
‘Zamadueñas estate’ (coordinates: 41.7013º N, 
4.7088º W, Valladolid, Spain), which belongs to 
the Agricultural Technology Institute of Castilla 
y León (ITACyL). According to the WRB 
classification (FAO), the soil is medium-coarse 
textured (FLc) Calcaric Fluvisol + (FLe) Eutric 
Fluvisol (Nafría et al., 2013). The climate is 
Csb (temperate with dry or temperate summer 
- Köppen-Geiger Climate Classification) and 
is characterised by dry summers and mild, wet 
winters (AEMET, 2011). Table 1 summarises the 
meteorological data from the study site collected 
by ‘VA101 Finca Zamadueñas’ weather station. 
The information is available at http://www.
inforiego.org/.

TABLE 1. Climatic characterisation of the study 
area. Data collected between 1st January and 31 
July 2019.

Variable Average Total value
Daily average temperature (ºC) 12.0 2550.8

Daily max temperature (ºC) 20.1 4250.8
Daily min temperature (ºC) 4.7 989.6

Radiation (MJ/m2) 19.1 4059.0
Cumulative rain (mm) 2.2 133.1

The vineyard comprised a vertical shoot positioned 
trellis (VSP), and the vines were spur pruned (with 
bilateral cordon training), with eight spurs per 
plant, two buds per spur, 2.5 m x 1.2 m row and 
plant-spacing respectively, and 1.8 m average vine 
height. The orientation was NE-SW (northeast-
southwest), 35 º to the north. The soil was kept 
free of any weeds that would have affected image 
processing (Fountas et al., 2014).

2. Field determination of LAI

In June 2019, the vines were removed from 
the vineyard. The vines were geo-positioned 
(Figure 1a) using a GPS Triumph-2 JAVAD 
GNSS model (Triumph-2, JAVAD GNSS Inc, 
San Jose, California, USA; Figure 1b) with 
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centimetre accuracy to mark the vines in the field 
to be removed within the study area. The GPS 
TRIUMPH-2 has 216 channels of dual-frequency 
GPS and GLONASS and could be connected 
to the mobile phone via Bluetooth and Wi-Fi to 
access the local GNSS Reference Station Network. 
Each grapevine was cut in the lower-middle part 
(Figure 1c) and all the material was extracted from 
the vineyard. 

The real LAI (Leaf Area Index) was determined 
on a sample of 36 vines. The total leaf area of 
each removed vine was measured using the 
EasyLeafArea application (Easlon and Bloom, 
2014). The EasyLeafArea app automatically 
calculates leaf area from green leaf and red scale 
areas. 

It is important to note that the shadow area analysed 
in this study represents PAI (Plan Area Index), as it 
captures all plant structures and not only the leaves.  

However, the term LAI is used in the present 
manuscript, because, like other indirect methods 
based on images, the method employed in this 
study does not distinguish between leaf and non-
leaf material in the analysis; therefore, LAI was 
used for consistency with real leaf area values 
obtained using the EasyLeafArea application, 
and from previous literature (Fuentes et al., 2014; 
Kalisperakis et al., 2015; De Bei et al., 2016; 
Towers et al., 2019; Beeri et al., 2020). In addition, 
there is a strong relationship between PAI and LAI 
from May to October. Doring et al. (2014) observed 
that estimated PAI did not differ substantially from 
directly measured LAI in a vineyard, showing a 
remarkably high correlation between PAI and 
LAI (R² = 0.93). Moreover, Arnó et al. (2013) 
found a very high correlation between PAI and 
LAI (R² = 0.99) using ‘TAI’ instead of ‘PAI’ since 
LiDAR does not distinguish between green and 
non-green elements.

FIGURE 1. (a) GPS Triumph-2 JAVAD GNSS (b) Vine geo-positioning (c) Vine removal (d) 3DR UAV.
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3. Image acquisition

3.1 Flight campaign/survey

The UAV images were acquired on 27 June 
2019. Considering the average vine height and 
using basic trigonometry (Figure 2a), the sun 
elevation was fixed at β = 45 º. As a result, the 
flight was scheduled for 15:30 to 16:00 solar time 
(18:00 local time) using NOAA Solar Calculator  
(https://www.esrl.noaa.gov/gmd/grad/solcalc/), 
and under 1 Okta cloud cover conditions and 
azimuth α = 265 °. This time was used to maximise 
the vine shadow projection on the floor.

3.2. Unmanned Aerial System (UAS)

Before the UAV flight, a set of 12 ground control 
points (GCPs) were located in the vineyard and 
georeferenced using a real-time kinematic (RTK) 
GPS Triumph-2 JAVAD to improve the geometric 
accuracy of the image mosaicking process (Figure 
2b). Toffanin (2019) defines a Ground Control 
Point (GCP) as a position measurement made on 
the ground that can be set using existing structures 
like pavement corners or lines on a parking lot. 
A minimum of five GCPs are enough when they 
include points near corners and within the study 
area. In this study, clearly distinguishable field 
structures such as lampposts, maintenance holes 
and vineyard posts were used (Figure 2b).

An Unmanned Aerial System (UAS) composed 
of a 3DR quadcopter platform (3DR SOLO, 3D 
Robotics, Berkeley, California, USA, Figure 1d) 
was used to fly autonomously on a previously 

planned mission using open-source autopilot 
software: ArduCopter 3.3 (Ardupilot) installed on 
Pixhawk 2.0 mainboard (3D Robotics, Berkeley, 
California, USA). The image was acquired 
using a MAPIR® low-cost RGB+RGN system 
(Survey3W, MAPIR® Inc, San Diego, California, 
USA) commanded by a drone’s flight controller 
and composed of two cameras with 12-megapixel 
rolling shutter CMOS sensors. These sensors 
had a focal length of 3.37 mm with a horizontal 
field of view (HFOV) of 87 ° and -1 % extreme 
low distortion glass lens and dual-band filter 
made of silicon, which is sensitive in the Visible 
and Near-Infrared spectrum from about 400 to 
1200 nm. The sensor captures Blue (450 nm), 
Green (550 nm), Red (660 nm) and Near Infrared 
light (850 nm). Each camera had a f/2.8 aperture 
and was factory calibrated. The images were 
automatically geotagged using an attached GNSS 
system (NEO-m8, u-blox, Thalwil, Switzerland).

Flight paths (Figure 2b) were designed using the 
Mission Planner (1.3.68 Version, Michael Oborne, 
GNU license), and the flight control was provided 
by Tower Ground Control V.4.0.0 open-source 
app. The UAV horizontal speed was 3 m/s, and the 
flying height was 22 m above ground level (AGL) 
with a 75 % forward and 80 % side overlap. 
Moreover, it is crucial to correctly configure the 
camera settings (shutter speed, ISO and EV) so 
that no pixels reach the maximum pixel value. 
If a pixel is higher than the maximum value, the 
information will be lost. Pixels have a value that 
ranges from a minimum to a maximum based 
on the image bitrate. The higher the bitrate, the 

FIGURE 2. (a) Azimuth and relationship between sun elevation and shadows (b) Planned flight mission. 
Yellow line: UAV path. Red points: GCPs.

https://www.esrl.noaa.gov/gmd/grad/solcalc/
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more information that can be stored in the image. 
A sensor captures each image in a RAW format 
and then saves the RAW or converts it to a 
more standard format (typically by compressing 
it). Based on the information provided by the 
manufacturer, the Survey3 cameras capture 16-
bit RAW photos per RGB/RGN channel, which 
means that there are 16 bits (65,536) pixels and 
that a pixel value ranges from 0 to 65,535. In this 
work, since the reflectance of light was captured 
to analyse differences between pixels to identify 
shadows, RAW was the used format. In order to 
keep the pixels from reaching the maximum value 
mentioned above, the camera was configured as 
follows: shutter speed: 1/1000 seconds, ISO:50, 

and exposure: +0.0. The Ground Sample Distance 
(GSD) estimated by the software (Mission planner) 
for the used camera profile (SURVEY 3W) and a 
flight height of 22 was 1.01 cm/px.

3.3. Orthomosaic generation

The 16-bit raw images were first converted to tiff 
format using MAPIR® Camera Control (MCC) 
software. Each pixel was corrected using a 
known reflectance value by capturing a photo of 
the ‘MAPIR® Camera Reflectance Calibration 
Ground Target Package’ just before the survey; the 
photo contained four targets that were measured 
along incremental wavelengths by a calibrated 
spectrometer (based on the information provided 

FIGURE 3. LAI estimation workflow.
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by the manufacturer, reflective measurements were 
made along incremental wavelengths of 1 nm and 
from 350 nm to 1100 nm using multiple Shimadzu 
spectrophotometers with an integrating sphere). 
The pixel values of the captured target image were 
then compared with the known reflectance values 
of the targets. Using this information in MAPIR® 
Camera Control (MCC), the pixel values were 
transformed, and thus the survey images were 
calibrated. Then, the images were imported into 
image mosaicking software (Agisoft Metashape 
1.5.2, Agisoft LLC, St Petersburg, Russia) based 
on the structure-from-motion method (SfM) 
algorithm (Westoby et al., 2012) to generate the 
orthophotos. The Exif metadata of each image 
from the GNSS was first used to help in the image 
alignment process. Then the locations of GCPs 
from the JAVAD GNSS were manually identified 
and added to the aligned images to optimise 
camera positions and orientation data and in turn 
to improve orthophoto accuracy.

4. Data analysis

The data analysis pipeline is presented in Figure 
3. Shadows were detected using remote sensing 
data via three methods: i) Image reclassification 
(sensitivity method/manual), ii) K-means, and iii) 
Random Forest. Each plant area was then cropped 
and the shadow within the area was measured and 
correlated with real LAI.

4.1. Grid definition

A vectorial grid was developed in order to isolate 
the shadow of each vine. First, azimuth and 
row orientations were used to calculate the grid 
angles, resulting in a parallelepiped with angles 
of 95 ° (360 - 265 = 95 °) and 35 ° (Figure 4a) 
and four sides which were 1.2 and 1.8 m long. The 
next step was to replicate the grid in the whole 
vineyard (Figure 4b), excluding a 0.7 m width line 
corresponding to the vegetation. 

Once the grid was designed (Figure 4c), the points 
taken in the field using GPS were used to indicate 
which grid area corresponds to each vine. Finally, 
the image was cropped crop using the grid to 
isolate the area that belonged to each vine.

4.2. Shadow recognition models

4.2.1 Pixel value analysis 

Once the image corresponding to each vine 
was isolated, a random sampling strategy was 
manually carried out at various points where there 
was shade, obtaining the R, G, B and NIR values. 

Subsequently, a sensitivity threshold was defined 
by the ‘ a ‘ coefficient:

f(x) = (1 ± a) x
whereby the detected shaded area is a function 
of the band value x modified by the sensitivity 
coefficient a. As a result, a range was defined by an 
upper and lower limit, depending on the sensitivity 
value. Within the range, the value is considered 
‘shadow positive’. It is important to consider that 
not all shades have the same intensity due to the 
differences in vegetative development modifying 
intercepted radiation (Zheng and Moskal, 2009, 
Baeza et al., 2010); therefore, in order to establish 
an optimal sensitivity value, a visual analysis was 
performed of the threshold effect on the image. The 
coefficient varied from 0.1 to 1(10 % to 100 %) 
at intervals of 0.1 (10 levels in total), covering 
the whole range of shadows: from low to high 
shadow intensity. This process was carried out for 
each band, reclassifying the image with the values 
corresponding to the range of shadows, where ‘1’ 
corresponds to ‘shadow’ and ‘0’ indicates ‘absence 
of shadow’ (Figure 5a). 

Subsequently, the bands were combined to 
create an RGB or RGN product comprising a 
combination of the corresponding bands (Figure 
5b); the corresponding shaded area was calculated 
from the total area of the vine and a product with 
the following shaded area was obtained:

𝑓𝑓(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) = (1 ± 𝑎𝑎)𝑥𝑥 · (1 ± 𝑏𝑏)𝑦𝑦 · (1 ± 𝑐𝑐)𝑧𝑧 
 
 
4639 - EQUATION 1 
 

where x, y and z are the band values (RGB or 
RGN) and a, b and c are the sensitivity coefficients 
for each band (10 levels ranging from 0.1 to 1.0). 
For each RGB and RGN product, 103 = 1000 cases 
were calculated. This information was validated 
with the real LAI values in order to find the closest 
relationship between the detected shadows and 
the LAI. The best result was used as input for the 
machine learning algorithms.

Finally, the potential of the method is shown 
by the classification of the vines depending on 
shaded area into three LAI levels (high, medium, 
and low), thus demonstrating that the method 
could be useful for real applications, such as 
zoning for differential management, irrigation, or 
fertilisation.

4.2.2. K-means clustering (Unsupervised 
machine learning)

K-means clustering is an unsupervised machine 
learning method that classifies the input data 
objects into multiple classes based on their inherent 
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FIGURE 4. (a) Area definition, (b) Ground area of one vine, (c) Vineyard grid.

FIGURE 5. (a) Pixel reclassification method, (b) Single-vine shadow, Reclassified single-vine shadow 
(multi-band) and Reclassified final product.

(c) 

(a) (b) 
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distance from each other, thus dividing the input 
data set into k clusters previously defined by the 
user (Hung et al., 2005). The clustering problem 
can be formulated as an optimisation problem, 
described by:

𝑃𝑃:minimise	𝑧𝑧(𝑊𝑊,𝑀𝑀) =00𝑤𝑤!"𝑑𝑑3𝑥𝑥! , 𝜇𝜇"6
#

"$%

&

!$%

 

subject	to0𝑤𝑤!" = 1, for	𝑖𝑖 = 1,… , 𝑛𝑛,
#

"$%

 

𝑤𝑤!" = 0	or	1, for	𝑖𝑖 = 1,… , 𝑛𝑛, 𝑎𝑎𝑛𝑛𝑑𝑑	𝑗𝑗 = 1,… , 𝑘𝑘, 
 
 
4639 - EQUATION 3 
 

where wij = 1 implies object xi belongs to cluster 
G(j), and d(xi, μj) denotes the Euclidean distance 
between xi and μj for i = 1,…, n and j = 1,…, k. 
(Pérez-Ortega et al., 2020). The standard version 
of the algorithm consists of four steps: 1) centroids 
(k points) are randomly generated in the space, 
2) each point is assigned to its closest centroid, 
according to the distance from all the centroids, 
3) new centroids are calculated using the mean 
value of the objects that belong to each cluster, 
and 4) the process is repeated from step 2 until 
equilibrium is reached (i.e. when the number of 
points remains stable within each cluster).

By using k-means it is possible to classify 
pixels automatically without training samples. 
The number of k clusters was set from 2 to 6 to 
determine the effect of different clusters in the 
shadow classification process. Subsequently, the 
cluster with the best visual coincidence with the 
shadow locations was assigned to the shadow 
class. The initial location of the centroids was set 
randomly, and the maximum number of iterations 
was set to 1000. 

4.2.3. Random Forest classification 
(Supervised machine learning) 

Random Forest is a supervised machine learning 
method that uses a decision tree for classification 
and prediction. The algorithm fits many 
classification trees to a dataset and then combines 
the predictions from all the trees. Each tree can 
be computed separately from other trees, because 
each tree is independently constructed using a 
bootstrap sample of the data set (Kuhn, 2008).

The Random Forest algorithm works in four 
steps: 1) many bootstrap samples from the data 
are selected, 2) a classification tree is fit to each 
bootstrap sample, 3) each tree is used to predict the 
out-of-bag observations, and 4) the predicted class 
of an observation is calculated by majority vote 

of the out-of-bag predictions for that observation 
(Cutler et al., 2007). The observations in the 
original dataset that do not occur in a bootstrap 
sample are the out-of-bag observations. In this 
study, the number of trees was set to 500, and the 
training set was divided into four classes: soil, 
shadows, shaded vegetation, and vegetation. 

4.3. Model comparison

Calibration (cross-validated, 50 % split) and 
validation were used to assess and compare the 
ability of each model to predict actual LAI. The 
coefficient of determination (R²), root mean square 
error (RMSE) and mean absolute error (MAE) 
were used to define the model’s performance. 

Some authors recommend MAE as the most natural 
measure of average error magnitude instead of 
RMSE, since measures of average error (such as 
RMSE), which are based on the sum of squared 
errors, are functions of the average error (MAE), 
the distribution of error magnitudes (or squared 
errors) and n1/2; therefore, they do not describe 
average error alone and MAE is less sensitive to 
the effect of outliers than RMSE as an indicator 
of model performance (Willmott and Matsuura, 
2005). However, RMSE is also indicated, since 
it is commonly used in Remote Sensing literature 
(López-Lozano et al., 2009; Li et al., 2014; 
Darvishzadeh et al., 2019; Beeri et al., 2020; 
Campos et al., 2021). 

All image and data analyses were carried out using 
AutoCAD® (version 2021 R.47.X Autodesk, 
Inc. San Rafael, California, USA), QGIS 
(version 3.14.X, QGIS developer team 2020), 
customised codes written in R (version 3.6.X, R 
Core Team 2019) and R packages stat, caret and 
randomForest obtained from the Comprehensive 
R Archive Network (CRAN).

RESULTS

1. Shadow pixel analysis

The sensitivity of the thresholds for the shadow 
detection of each band was adjusted separately 
(Figure 6a). Most of the bands have a maximum 
correlation with LAI at a sensitivity level of 
around 30 %. 

Once the maximum R² value is reached, the 
correlation decreases progressively. As previously 
explained, the band combinations were analysed 
using sensitivity values from 0.1 to 1.0, at 
intervals of 0.1 (10 levels in total). A strong linear 
correlation can be observed between the real LAI 
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and the area obtained from the shadows. For the 
RGB product, using a sensitivity for all coefficients 
of 0.3, the maximum R² value was 0.57. For the 
RGN product, the maximum was R² = 0.64 (Table 
2), using a sensitivity of 0.4 (Figure 6b).

To increase accuracy, combinations of different 
coefficients were formed for each band, showing 
that the highest correlation for RGB was 
f(x, y, z) = (1 ± 0.3)R · (1 ± 0.3)G · (1 ± 0.4)B, with 
R2 = 0.61, and for RGN it was f(x, y, z) = (1 ± 0.3)
R · (1 ± 0.5)G · (1 ± 0.4), with R² = 0.68 (Table 2).

2. Shadow pixels classification

RGN was the input selected for the machine 
learning models, since it achieved the maximum 
correlation with real LAI. Figure 7 shows k-means 
clustering results for each cluster number. Since 
the input data is automatically classified using 
an unsupervised machine learning method, the 
products obtained differed substantially; however, 
for any number of clusters, and beginning from 
k = 2, k-means was able to identify shadows. 
Regarding Random Forest, the algorithm was 

FIGURE 6. Correlation values (y-axis) for each sensitivity level (x-axis).
Sensitivity values from 0.1 to 1.0, in intervals of 0.1 (10 levels in total). (a) single-band, and (b) multi-band.

TABLE 2. Maximum R2 values for each product and combination. 

BAND R2 p-value
Coefficients

a b c
R 0.36 < 0.01 0.3 - -
G 0.46 < 0.01 0.3 - -
B 0.36 < 0.01 0.2 - -

NIR 0.60 < 0.01 0.3 - -
RGB 0.57 < 0.01 0.3 0.3 0.3
RGN 0.64 < 0.01 0.4 0.4 0.4
RGB 0.61 < 0.01 0.3 0.3 0.4
RGN 0.68 < 0.01 0.3 0.5 0.4

a, b and c are the sensitivity coefficients used for each band.
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able to identify the four required classes, and the 
shadows were appropriately classified (Figure 8).

3. Observed vs predicted LAI values

First, RGB and RGN datasets were compared, 
because they had the highest correlation with LAI. 
Once the model was defined, the predicted LAI 
was compared with the observed LAI (Figure 9).

For the RGB product, the best result was 
obtained using coefficients a = 0.3, b = 0.3 and 
c = 0.4 (y = 1.005x + 0.741), with R² = 0.71, 
RMSE = 0.141 m2 m-2, and MAE = 0.110 m2 
m-2. For RGN, the highest accuracy was obtained 
using the coefficients a = 0.3, b = 0.5 and 
c = 0.4 (y = 1.163x + 0.642), with R² = 0.74, 
RMSE = 0.146 m2 m-2, and MAE = 0.123 m2 m-2.

FIGURE 7. K-means classification results. 
The number of k clusters was set from 2 to 6. (a) Original image, (b) k-means, k = 2, (c) k-means, k = 3, (d) K-means, k = 4, (e) 
k-means, k = 5, and (f) k-means, k = 6.

FIGURE 8. Random Forest classification results.
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FIGURE 9. Observed vs. Predicted LAI. (a) RGB, (b) RGN.

FIGURE 10. Observed vs. Predicted LAI. (a) Random Forest, (b) k-means, k = 2, (c) k-means, k = 3, (d) 
k-means, k = 4, (e) k-means, k = 5, and (f) k-means, k = 6.
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Regarding machine learning models (Figure 10), 
Random Forest slightly improved the previous 
RGN accuracy. It showed the highest accuracy for 
predicting LAI (R² = 0.76, RMSE = 0.160 m2 m-2, 
and MAE = 0.139 m2 m-2) matched by k-means 
with k = 6 (R² = 0.76, RMSE = 0.165 m2 m-2, 
and MAE = 0.142 m2 m-2). However, Random 
Forest had slightly lower error values. The rest of 
k-means classification moved from R² = 0.62 to 
0.75. The worst correlation was found for k-means 
with k = 4.

DISCUSSION

Aerial orthophotography provides information 
about the canopy size in two dimensions, but 
shadows comprise a projection in the third 
dimension, providing additional valuable 
information. The shadows depend not only on the 
shape of the vegetation but also on the lighting. 
Therefore, it is imperative to have an optimal light 
source (sunny days). Shadows vary throughout the 
day depending on the position of the sun; therefore, 
it is possible to plan the flight at the optimum time 
when the sun is in the desired position (e.g., in 
the afternoon). However, images can be captured 
at other times of the day, as long as there are 
shadows, but the accuracy will probably be related 
to the size and quality of the shadows.

Our results show that it is possible to accurately 
plan a flight at a given time by calculating the 
azimuth and elevation of the sun so that the 

information extracted from the shadows can be 
maximised. This study shows that, in terms of 
shadow extraction, the afternoon is a good time 
to take images; however, the exact time should be 
adjusted depending on vineyard characteristics. 
At the optimal time, shadows effectively cover the 
ground between rows, but they are neither affected 
by the vegetation in the adjacent line, nor by the 
lack of precision due to an absence of shade. A 
balance can thereby be achieved, and the maximum 
amount of information can be obtained from the 
shadows generated on the ground. The optimum 
time for taking the image will be determined by 
the height of the vines and the distance between 
the rows of plants.

Overall, the results showed a significant positive 
relationship between the plant shadows and the 
LAI. According to the results of the RGB and RGN 
analysis, a correctly identified shadow resulted 
in a positive and close significant relationship 
of up to R² = 0.74. Figure 6 shows a maximum 
correlation between the shadows and the LAI at 
around 30 % sensitivity: if the sensitivity is too 
low, the plant’s shadows cannot be easily detected, 
whereas if it is too high, the algorithm will identify 
pixels as shadows when they are not (Figure 11). 
Therefore, errors can occur by overestimating or by 
underestimating the shadows. However, the slope 
is much more stable after reaching the maximum 
value of R²; thus, in order to detect shadows, it 
is better to overestimate than to underestimate 

FIGURE 11. Effect of the sensitivity level.
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the value of the pixels. In this study, the models 
tend to underestimate at high LAI values and 
overestimate at low LAI values (Figures 9 and 
10), which is probably due to an increase in leaf 
overlap in big canopies.

When comparing RGB and RGN products, the 
results show RGN to be a better approach, probably 
because NIR can identify the shaded vegetation, 
thus helping to discern it from shaded soil.

Regarding machine learning methods, Random 
Forest improved the RGN accuracy for predicting 
LAI reaching R² = 0.76; this was matched by 
k-means with k = 6 (R² = 0.76). The rest of the 
k-means classifications showed good accuracy, 
even in the worst case, with R² ranging from 0.62 
to 0.75. The best accuracy was obtained for k = 3 
and k = 6, and the worst was found for k = 4, 
showing that in k-means, a higher number of 
clusters for classification is not strictly related to a 
better accuracy level.

1. Method considerations

In order to ensure that this method works 
optimally, several essential factors must be taken 
into consideration, for example:

 i) Sun position, which influences the shape 
of the shadows; it is, therefore, essential to 
consider azimuth and elevation.

 ii) Grapevine management. Trimming the 
vegetation will modify the vineyard shadows. 
Depending on the phenological stage, new 
leaves may cover the gaps. Moreover, errors in 
shadow detection can occur if the vegetation is 
not within the trellis for mainly two reasons:

→ a. The vegetation covers the shade, which 
therefore goes undetected (Figure 12a)

→ b. The vegetation itself creates shaded 
areas onto itself (Figure 12b). NIR can help 
identify them since the values of shade in 
NIR are different from that in RGB, thus 
explaining why it is better to use NIR for the 
detection of vegetation.

 iii) Weed management. Weeds can add 
noise to the image and render shade detection 
difficult.

 iv) Vineyard orientation. The optimum 
orientation for late-day image capture in the 
study zone is close to SSE-NW, since it is the 
orthogonal plane regarding the path of the sun. 
The applicability of this method decreases as 
the difference between the real plane and the 
optimum plane increases. However, this should 
not be an issue in viticulture, since rows are 
generally oriented close to north-south to 
maximise light interception on both sides of the 
canopy for a part of the day (Jackson, 2020).

FIGURE 12. Shadow recognition issues: (a) vegetation over the shadows, and (b) shadows in the vegetation.
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2. Limitations of the method

There are some limitations and important points to 
raise related to the vineyard characteristics and the 
method itself:

 i) The vineyard vegetation growing in the 
assigned area extends along the whole length 
of the vertical trellis, so that it is possible for 
the vegetation of one grapevine to mix with 
the adjacent one and thus be wrongly assigned 
to the other vine. However, this is inherent to 
the farming system, and it is not a source of 
error specific to this method.

 ii) If the vineyard dimensions are not exact, 
by creating an equal and regular mesh of 
parallelepipeds at certain points, it is possible 
to under- or overestimate the vegetation due 
to the error introduced by the designated area. 
This could be overcome by delineating a 
boundary (box) around and above each vine 
trunk using a centroid approach (with prior 
knowledge of vine spacing).

 iii) Proper overlap is extremely important 
in order to obtain good quality data and avoid 
defects such as blotchy artefacts or errors in 
image alignment.

 iv) The effect of the slope on the shadows 
could be a problem; however, the effects of 
topography can be addressed by proper flight/
mission planning and the use of DEMs/DCMs. 
The terrain slope effect was ignored in this 
work because the vineyard was on flat terrain.

 v) Light intensity. This study was carried out 
under good light conditions, and according to 
our results, a clear sky is needed. If the light 
intensity varies because of clouds or diffuse 
radiation, the shadows will not be defined, and 
the results will be affected. 

 vi) Structures, such as VSP wires, poles or 
irrigation pipes project shadows which could 
get mixed up with the shadows of the vines.

 vii) The method might not work in high-
density vineyards/orchards due to the mutual 
shading of vines/trees.

3. Comparison with other Remote Sensing 
methods to estimate LAI

As previously discussed, each method has its 
advantages and disadvantages. Table 3 briefly 
compares some previously described methods. 
The comparison considered similar factors to 

those considered by Jin et al. (2021), including 
‘economic cost’ in an attempt to represent the 
cost of the operation, including all the equipment 
involved and ‘time investment’, which is the 
estimated time required for data collection in the 
field. 

In terms of time investment, our proposed 
method is much quicker than methods that 
employ specific instrumentation such as PCAs 
or ceptometers, which are carried on foot to 
survey plants one at a time (Johnson and Pierce, 
2004; López-Lozano and Casterad, 2013; 
White et al., 2018). LiDAR must be mounted on a 
ground vehicle (Arnó et al., 2013), as is generally 
the case for equipment in any field survey 
method (Diago et al., 2012; Fuentes et al., 2014; 
Towers et al., 2019). Compared to other methods 
that use similar technologies (UAV/Airborne 
+ camera), our method involves similar input 
time (Hall et al., 2008; Kalisperakis et al., 2015; 
Comba et al., 2020) and is quicker than SfM 
methods, which require more images (Mathews 
and Jensen, 2013). However, it is still necessary 
to go to the vineyard to collect the data; therefore, 
satellite methods are even quicker (Johnson, 2003; 
Beeri et al., 2020). 

The proposed method is low-cost as basic UAV and 
normal RGB+RGN cameras can be used. The best 
performance was obtained with the RGN camera, 
which is slightly more expensive than an RGB 
camera, such as that used in Diago et al. (2012) and 
Fuentes et al. (2014); however, it is cheaper than the 
multispectral sensors used by Towers et al. (2019) 
and Comba et al. (2020) or the hyperspectral 
sensor used by Kalisperakis et al. (2015). Specific 
sensors such as PCA or ceptometer are also more 
expensive. Moreover, when considering the cost 
of the platform, the UAV used in the study is much 
cheaper than a ground vehicle (Arnó et al., 2013).

As regards accuracy, our method is in line with 
other suitable methods in studies reporting similar 
correlation values. Furthermore, to our knowledge, 
this is the first time a method of this kind has been 
developed and will therefore likely be improved 
in further experiments, which has been in the 
case in other studies; for example, Mathews and 
Jensen (2013) reported R² > 0.5 accuracy, but in 
subsequent studies, Kalisperakis et al. (2015) and 
Comba et al. (2020) reported higher accuracy 
(R² > 0.8).

In summary, the method described in this article 
is cheaper and less time-consuming than other 
methods for calculating LAI and similar levels of 
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accuracy can be obtained (Table 3). Lastly, other 
methods usually require the experiment to be 
carried out close to solar noon, or they try to at least 
avoid shadows; the present method thus allows the 
flight to be scheduled during other periods of the 
day than solar noon, such as morning or afternoon, 
enabling pilots to extend their working day.

It should be noted that this comparison only aims 
to highlight the potential and accuracy of existing 
methods versus the usefulness of the method 
proposed in this paper. The results presented in 
the literature are not fully comparable, because 
they have been obtained from studies carried 
out under different experimental conditions. 
The reference LAI used was not obtained in the 
same way in all the experiments. In the present 
study, real LAI was used, which was measured 
destructively to validate the estimated results, but 
other authors have used LAI estimated by other 
methods, such as with a Li-COR PCA (Johnson, 
2003; Fuentes et al., 2014) or an AccuPAR LP-80 
ceptometer (Mathews and Jensen, 2013).

4. Potential applications

This method can be applied to other woody 
crops, such as olive or walnut trees, where mutual 
shading of consecutive trees has a lower effect, 

depending on the planting distance. However, in 
these cases (bigger canopies), the internal leaf 
overlap is higher, an effect which would need to 
be considered in the application/calibration of 
the proposed method. In addition, given that the 
vegetation of one plant can mix with the adjacent 
in vertical-trellis trained crops, this method may 
be even more effective when applied to non-trellis 
trained crops.

Images could also be taken several times a year 
to monitor the growth of the vegetation (for plant 
vigour). From the image history of the crop, it 
would be possible to create a temporal model of 
the evolution of the shadows, and therefore of the 
LAI, and thereby adjust vineyard management 
accordingly (e.g., irrigation, treatments, and 
leaf removal). However, the number of woody 
structures covered by the leaves will certainly 
affect the accuracy of the method.

Finally, to illustrate the real applicability of the 
method, a cluster analysis was developed: the 
dataset was split into three groups, with each plant 
being classified according to shaded area on three 
LAI levels (high, medium, and low), and 0.88, 
0.75 and 0.63 m2 of soil shaded area as centroids 
and 1.79, 1.54 and 1.31 for high, medium, and low 
LAI respectively. Figure 13a shows three different 

TABLE 3. Comparison between current Remote Sensing LAI measurement methods and shadow 
measurement methods. 

Method Platform Economic  
cost

Time  
invested LAI Correlation Authors

Shadow measurement UAV Low Low R2 > 0.7 Present study

3D SfM
UAV Low Low R2 > 0.5 Mathews and Jensen (2013)
UAV Low Low R2 > 0.8 Kalisperakis et al. (2015)
UAV Medium Low R2 > 0.8 Comba et al. (2020)

2D RGB 
Or multispectral

UAV Low Low R2 > 0.7 Kalisperakis et al. (2015)
Ground Low High R2 > 0.8 Diago et al. (2012)
Ground Medium High R2 > 0.9 Fuentes et al. (2014)
Ground Medium High R2 > 0.5 Towers et al. (2019)

Airborne Medium Low R2 > 0.5 Hall et al. (2008)
LiDAR Ground High Medium R2 > 0.8 Arnó et al. (2013)

Hyperspectral camera UAV High Low R2 > 0.8 Kalisperakis et al. (2015)

Plant canopy analyser Ground Medium High R2 > 0.7
Johnson and Pierce (2004)

White et al. (2018)

Satellite Satellite Low Very low
R2 > 0.3 Beeri et al. (2020)
R2 > 0.7 Johnson et al. (2003)

The R2 values are the values reported by the authors. The ‘Economic cost’ and ‘Time invested’ values are based on the methods 
described by authors compared to the present study method. In ‘Economic cost’: ‘low’ total cost up to 3,000; ‘medium’ up to 
6,000 $; ‘high’ more than 6,000 $.
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clusters in which the vines are grouped according to 
LAI; k-means classification was used for this, but 
other machine learning methods could be applied. 
Figure 13b shows the result of the classification 
on a map, showing that this method could be used 
for, for example, zoning the vineyard according to 
different irrigation or fertilisation management.

The previously mentioned factors prove that 
shadows can estimate the LAI. Furthermore, the 
results show that, by using simple equations and 
machine learning methods and by controlling 
the limitation factors, leaf surface area can be 
estimated from the shadow of the plants. Therefore, 
all advantages and limitations considered, the 
shadow captured from UAV images is a good 
estimator of LAI, provided that the method used 
to obtain the shadows is the appropriate one.

Further research is needed to assess the temporal 
stability of the relationship between plant shadows 
and LAI, and the applicability of the method to other 

woody crops and farming systems or vineyards 
planted with cover crops. Moreover, it would be 
interesting to explore whether this method can 
be used to estimate other vineyard parameters 
or to assess the possibility of extracting more 
information about canopy structure and vegetation 
density; for example, Figure 11 shows gaps in the 
detected vegetation using different sensitivity 
levels (a, b and c) due to differing shadow 
intensities for each pixel, indicating that it may 
be possible to use this method for extracting more 
information about canopy structure and vegetation 
density. Other authors (Zheng and Moskal, 2009; 
Baeza et al., 2010) have studied the relationships 
between the incident radiation intercepted by the 
vine, LAI, and aboveground biomass, concluding 
that the measurement of the gap fraction is a way 
of analysing canopy structure and that it can be 
parameterised by LAI and leaf angle distribution. 
Additional research is required in this area.

FIGURE 13. (a) Classification according to LAI level using k-means and (b) Mapping/zoning according 
to LAI level.
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CONCLUSIONS

This study shows a simple and effective method 
for estimating LAI in vineyards using machine 
learning tools and projected shadows captured 
by a UAV. It is a combination of methods known 
for centuries and modern image recognition 
techniques. 

A strong positive relationship was observed 
between the shaded area and the leaf area 
of the vines, thus resulting in a high level of 
accuracy for the LAI estimation. (R² = 0.76, 
RMSE = 0.160 m2 m-2 and MAE = 0.139 m2 m-2). 
However, to accurately estimate LAI, shadow 
areas must be correctly identified, otherwise errors 
can occur due to over- or underestimating the 
shadows. In addition, it is essential to manage the 
influence of parameters on the method (e.g., the 
position of the sun, vineyard management or weed 
management) to avoid noise in the image.

The results of the study are useful because LAI is an 
essential parameter for vineyard management and 
zoning. Moreover, this method is fully compatible 
with other Remote Sensing methods and can be 
incorporated into a flexible working day.
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