

Subcritical water, a cleaner nanosizing technique to simultaneously enhance sustainability and circularity of nanocellulose manufacturing

Cherif Ibrahima Khalil Diop, Sagrario Beltran and Maria-Teresa Sanz

Department of Food Science and Biotechnolgy (Chemical Engineering Section) University of Burgos, (Spain)

February 2023

Cherifi.diop@gmail.com

Nanocellulose from cellulose

Michelin et al. (2020)

١., 0

Cellulose, being one of the most important natural polymers on Earth and virtually inexhaustible, is a key source of sustainable materials suitable for industrial applications (Klemm et al. 2011).

Different types of nanocellulose depending on the process

Cellulose nanofibrils (CNF) Mechanical treatment

Tajvidi et al. (2017)

Bacterial Cellulose: *Acetobacter Xylinum*

Figure 2: The different types of nanocellulose: Macrostructure and Nanostructure

Potential industrial applications of nanocelluloses

- Young's modulus: 138 GPa strength: 2 to 3 GPa
- reactive surfaces containing —OH side groups
- high aspect ratio entangled web-like structures
- nano-order scale high specific surface area thermal stability
- desired constituents with relatively high carbon content
- various resources and multiple fabrication methods

Performance

- prospective mechanical properties
- chemical modification /integration
- flexible substrates
- thermal stable nanoporous materials
- precursor for carbon-based materials
- various structures and surface chemistry properties

Xie et al. (2018)

Figure 3: Characteristics and potential industrial applications of nanocellul/ose

Most common cellulose nanocrystal (CNC) production route

Advantage and Drawbacks of sulfuric acid hydrolysis route of Cellulose nanocrystal production

Strong mineral acid
$$p$$
Ka of sulfuric acid is 1.92 at 25 °C $HO - S - OH$

Figure 5: Concentrated sulfuric acid solution

Advantages:

- fast reaction
- Produce surface charged rod like particles
- Stable coloidal suspension
- low energy consumption but is not ecofriendly and pretreatments are necessary starting from lignocellulosic matrices

Main drawbacks:

- - For every 25 kg CNCs production it require:
 - \circ 296 kg sulphuric acid,
 - 37200 L water are consumed (<u>Reiner and Rudie, 2013</u>)
- High corrosivity
- Environmental impact: discharges of high quantity acidic waste,
- Acid recycling challenging and costly
- Result in costly CNCs as high as \$25/kg

Alternative: Assessment of more sustainable CNC routes via subcritical treatment.

Exploitation of the autoHydrolysis potential of water molecules at high temperature (100 -374°C) and high pressure acidification of the medium.

Method 1: Dilute-sulfuric acid Pressurized hot liquid (Subcritical) hydrolysis Reduction of the [H₂SO₄] : 1.5 to 3% Vs 64% (w: v) Temperature: 130°C, Time: 60 minutes.

Results

	% N	% C	% H	% S	% O
CNC regular	-	39.8 ± 0.1	5.4 ± 0.3	1.4 ± 0.3	48.5 ± 0.3
Pressurized hot water 0% H ₂ SO ₄	-	42.4 ± 0.5	6.2 ± 0.1	0.0 ± 0	51.7 ± 0.1
Pressurized hot water 1.5% H ₂ SO ₄	-	41.9 ± 0.4	5.4 ± 0.1	0.6 ± 0.4	51.6 ± 0.1
Pressurized hot water 3% H ₂ SO ₄	-	42.6 ± 0.1	5.6 ± 0.1	↓ 0.7 ± 0.2	50.9 ± 0.1

Elemental Analyser EA Flash 2000 (Thermo Fisher Scientific)

FE-SEM Microstructure of CNC isolated from dilute sulfuric acide / PLE Method 1

Figure 8: Thermal stability of the CNC via dilute acid PLE hydrolysisis

Figure 9 : Structural composition of the CNC via dilute acid PLE hydrolysisis

Method 2: Ultrasounds pretreatment assisted Pressurized hot maleic acid hydrolysis.

Figure 5: functionment principle of ulstrasound and pressurized hot (subcritical) liquid

Maleic acid used as sulfuric acid replacement

Chemical structure of maleic acid

Figure 6: Maleic acid cristal salt

- □ Weak, colorless organic crystal acid salt
- □ Safe storage
- Low transportation cost
- □ soluble in water.
- Able to hydrolyze cellulose
- □ Non-corrosive to equipment
- environmentally friendly: Easily recyclable
- \Box Stable up to 130°C
- **D** pKa = 1.83

Code	Maleic acid	Ultrasound	Glass reactor	PLE	Temperature (°C)	Time (min)	Yield (%)
MA-85	50%				80	90	≈ 16
MA-PL	50%				130	60	≈ 2 9
MA-UR	50%			-	80	60	≈ 33
MA-UP	50%				130	60	≈ 4 1

Table 2: Evaluation of the ultrasound /PLE assited maleic acid hydrolysis

Regular CNC

MA-85

MA-UR

Figure: FE-SEM nanostructure of maleic acid hydrolysi CNC production

MA-UP

Conclusion

- Pressurized liquid or subcritical liquid technology showed strong potentialities for rendering more sustainable the manufacturing route of cellulose nanocrystal.
- Dilute acid at concentration as low as 3% (W:V) was able to produce CNC at aceptable yield (21%) when combined to subcritical water.
- * isolation of esterified rod-like particles, with thermostability comparable to neat cellulose.
- \clubsuit However: corrosivity at concentration > 3% for equipment reduced their potential use at higher scale.
- Combining utrasound treatment and subcritical treatment Foster the hydrolysis potential of maleic acid.
- * Maleic acid as a weak acid, can foster CNC at yields comparable to the common sulfuric acid hydrolysis route.
- The possibility of recovering and reusing maleic acid at the end of the process make the process highly scalable and environmentally friendly.
- Therefore Subcritical treatment can simultaneously enable the sustainabilit and circularity of nanocellulose manufacturing.

THANK YOU FOR YOUR ATTENTION!

This work was supported by the European Commission, Horizon 2020 program through the Marie-Curie Individual Fellowship (H2020-MSCA-IF-2019), with regards to the ALGWAS-BIOR project (Grant agreement number <u>898804</u>).

