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Abstract: This study deals with an analysis of the cognitive load indicators produced in virtual
simulation tasks through supervised and unsupervised machine learning techniques. The objectives
were (1) to identify the most important cognitive load indicators through the use of supervised and
unsupervised machine learning techniques; (2) to study which type of task presentation was most
effective at reducing the task’s intrinsic load and increasing its germane load; and (3) to propose
an explanatory model and find its fit indicators. We worked with a sample of 48 health sciences
and biomedical engineering students from the University of Burgos (Spain). The results indicate
that being able to see the task before performing it increases the germane load and decreases the
intrinsic load. Similarly, allowing students a choice of presentation channel for the task respects how
they process information. In addition, indicators of cognitive load were found to be grouped into
components of position, speed, psychogalvanic response, and skin conductance. An explanatory
model was proposed and obtained acceptable fit indicators.

Keywords: eye tracking; galvanic skin response; cognitive load; simulation tasks; machine
learning techniques

1. Introduction

This paper will first address the state of the art of the concept of cognitive load
during task or problem solving. Secondly, it will address the challenge of interpreting
cognitive load indicators through statistical and machine learning algorithms (supervised
and unsupervised). Finally, a suggested model of analysis will be analysed as an advance
in the knowledge of cognitive load and its application to fieldwork.

1.1. Cognitive Load Definition and Measurement

In recent years, the measurement of cognitive load with respect to task performance or
problem solving has become a necessary process, as it helps us understand performance and
facilitates an analysis and adjustment of how tasks or problems are presented. Interest arises
from a variety of fields and contexts (the educational and instructional sector, marketing,
driving, aviation, business, etc.). However, there are many challenges involved in what
seems at first to be manageable.

The concept of cognitive load is based on the idea that cognitive resources are lim-
ited. Cognitive load develops as a complex interaction between the different demands of
tasks and the cognitive processes required to process and execute them, and a subject’s
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performance often decreases when cognitive demands are either very low or very high.
The techniques for measuring cognitive load can be classified into four main categories:
(1) performance-based, (2) subjective, (3) behavioural and (4) physiological [1–3]. Perfor-
mance can be measured through learning outcomes, subjectivity through learning history
and the use of scales, and behaviours through behavioural analyses. When it comes to
physiological components, various indicators can be applied to measure physiological
responses during task performance or problem solving. For example, research using eye
tracking technology shows that the frequency of fixations, saccades and pupil diameter
appear to be suitable indicators for predicting task difficulty at an early stage [4].

The theory of cognitive load is related to studies in the field of developmental edu-
cational psychology and instructional cognitive psychology, specifically the study of the
relationship between working memory and long-term memory (LTM) [5]. The theory first
appeared in 1976 with Sweller’s studies [6]. Subsequently, in the late 1980s, the concept of
cognitive load was used to explain performance on different tasks with respect to the use
of various forms of information processing. A distinction was made between the intrinsic
cognitive load (which refers to the complexity of the knowledge to be processed by the
learner and is independent of how the task is presented) [7] and extrinsic cognitive load
(referring to how the task is presented) [8,9]. Cognitive load seems to be related to divided
attention with respect to information received through different channels (visual, auditory,
or both). This information must be integrated in order for the learning agent to gain an
understanding of a task [9,10]. The comprehension process also seems to be influenced
by the way the task is presented [11]. These results are based on Baddeley’s theory [12],
according to which memory is divided into different types of storage [short-term memory
(STM), working memory, and LTM]. For Baddeley [12], working memory consists of an
auditory subsystem and a visual subsystem.

Until the second half of the 1990s, research on cognitive load theory focused on
instructional designs seeking to reduce the extrinsic cognitive load, since at that time
the intrinsic load was difficult to measure or manipulate. Later, the concept of germane
cognitive load was used to refer to the mental resources that learners deploy to deal
with the intrinsic cognitive load of learning tasks [8]. It was introduced in reference to
the development of cognitive schemas in LTM on knowledge integration. Subsequently,
studies by Sweller [13] showed that integrating information through different channels
(visual or auditory) does not always lead to better learning. The explanation was that
eliminating redundant information can be beneficial in the learning process.

Sweller tried to integrate cognitive load theory into the broader theoretical framework
of evolutionary theory [13]. This new view was explained by a representation of the
cognitive architecture in which there are different memory stores. More specifically, the
working memory store has a limited capacity when dealing with new information and
cannot combine or contrast more than four pieces of information at a time [13,14]. In
addition, information in working memory is lost in approximately 20 s [15]. In LTM,
information is organised into higher-order units called cognitive schemas, according to
Baddeley [12]. When the number of information units that are processed simultaneously
exceeds the capacity of working memory, these units must be combined into cognitive
schemas in order to understand the information [16]. In short, each cognitive process that
requires conscious control places a cognitive load on working memory. In this framework,
germane load helps in the construction and automation of schemas. Therefore, according
to the theory of cognitive load, the germane load should be increased as much as possible.

In addition, explanations of cognitive load should consider Vygotsky’s theory of the
Zone of Proximal Development (ZDP) [17], where the success of learning new information
is related to the cognitive links that the learner makes with respect to similar information.
The construction of new information will be based on this interaction [13,17]. Likewise,
the theory of cognitive load is currently explained by a theory of instruction [18] that
differentiates between primary biological information. This refers to information that we
as members of the species have about different abilities (speaking, walking, etc.) that we
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execute unconsciously. However, when the learner presents certain delays in development
or is subjected to socio-environmental deprivation factors, there may be problems in the
acquisition of these skills. In addition, this theory of cognitive load includes secondary
biological information, which requires conscious effort to successfully learn various skills
such as reading, writing, arithmetic, etc. Acquiring this knowledge needs the application of
various specific metacognitive strategies (orientation, planning, evaluation, and elaboration
of information).

Putting all that together, the starting point is therefore an explanatory scheme that
begins with an input of information where the learner first of all perceives information
(this can be visual, auditory, tactile, or any combination thereof). The learner then selects
some of the information and starts processing it. Some of this information passes to STM
and working memory (this store cannot remember more than 7 items of novel information
and cannot process more than 3–4 items, and these actions cannot last more than about
20 s). Subsequently, the retained information will pass to LTM (this store has more storage
capacity than STM and the information remains more stable). LTM would therefore be
the key to the individual difference in human processing, as each learner will relate new
information to existing information in a different way. The load here is both intrinsic and
extrinsic. In order to achieve good learning, learners’ motivation has to be enhanced in
the way information is presented by seeking novelty and avoiding redundancy. On the
other hand, improving the retention of novel information requires facilitating practice and
automation of task resolution procedures. Each of these effects will facilitate the acquisition
of information stored in LTM by reducing the load on working memory [18], although all
of these processes are subject to individual differences in learners [18].

This means that understanding the human cognitive architecture is important for de-
velopmental educational psychology and instructional cognitive psychology, as knowledge
of the types of processing will provide the teacher with information for tailoring the design
of learning tasks [18]. Therefore, knowledge of the cognitive load in the performance of a
given task is important for adjusting the task to each learner’s performance possibilities.
However, this remains a challenge, as the same task may need to be presented in different
ways for each type of learner, and learners may experience different cognitive loads for the
same task [19].

Research is currently ongoing about the cognitive load experienced in virtual envi-
ronments that apply simulation tasks [19]. These studies show that cognitive load is a
useful indicator for analysing learning processes in simulated environments. They also
differentiate between intrinsic cognitive load, task-specific germane cognitive load, and
extraneous cognitive load. If the total cognitive load (the sum of the three types) exceeds
the capacity of working memory, performance may suffer [20]. Another classification of
cognitive load differentiates between primary cognitive load (referring to domain-specific
task performance) and secondary cognitive load (referring to metacognitive performance
that supports primary performance). If the secondary cognitive load is activated, per-
formance may be better but the total cognitive load is increased, and so the relationship
between cognitive load and performance may be positive or negative depending on the
type of task, the type of learner, the task design, and the context of task performance [21].

Research about performance analysis in simulated learning environments has shown
psychophysiological indicators of cognitive load to be the most reliable. These include pupil
dilation (an involuntary response reflecting noradrenergic activity of the locus coeruleus
that regulates arousal, cognitive activity, and emotion), which can indicate the cognitive
load related to the emotion that the task produces in the learner [22,23]. However, this
measure may be affected by factors other than an individual’s processing, such as the
type of lighting. Other indicators of cognitive load include the duration and total time of
fixation [22], the number of saccades, and the amplitude of the saccades [24,25]. These are
all static indicators, but dynamic indicators should also be considered. Dynamic indicators
refer to the route that each learner takes in the task resolution process. The route refers
to the steps followed in order of priority and the duration of each step in the spatial
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coordinate space during execution. An analysis of each learner’s tracking pattern on the
multimedia interface used in the simulation environments can give information about how
this information has been retained in working memory and how it has been processed in
LTM. The type of interface can increase or decrease a task’s cognitive load, depending on
the individual learner [26].

In summary, physiological measurements during task performance can provide infor-
mation on different indicators such as pupil diameter [27] or the galvanic skin response
(GSR), which measures skin conductance by recording the sweat secreted from the sweat
glands [28]. This can be divided into tonic components, giving information on the level
of skin conductance, and phasic components, providing the skin conductance response
(SCR), a rapidly changing signal that takes one to five seconds to reflect the response to
a stimulus [29]. These two measures, GSR and SCR, are considered reliable indicators
for measuring cognitive load levels [27,29], although they can be contaminated by other
external factors. As noted above, pupillary activity can be subject to illumination-related
factors [30]. Similarly, skin conductance indicators may be affected by the user’s physical
activity (e.g., GSR-equipped hand movements) [29]. Therefore, to prevent external or inter-
nal factors from affecting the physiological measurement of cognitive load, these external
variables should be controlled as much as possible [31]. Moreover, current lines of research
are aimed at using several indicators to measure cognitive load, understanding this as a
multimodal approach [31,32]. Such an approach has many advantages, as using various
indicators of cognitive load can mitigate the potential limitations of individual measures
and thus provide a more comprehensive analysis of the cognitive load experienced by dif-
ferent users. In addition, recording physiological measures allows real-time data collection,
facilitating a more objective analysis of cognitive load [31]. Another factor that is relevant
to cognitive load studies is the design of the materials (content, interface, etc.) used in
the task to be solved [33]. Table 1 presents a list of possible variables that can influence
learners’ performance of a task or problem solving. An analysis of these variables may
provide researchers with information about each learner’s characteristics with respect to
the intrinsic and germane cognitive loads experienced in each task.

Table 1. List of elements to be considered in the task performance space and measurement indicators.

Elements to Consider Measurement

Task characteristics, indicators of the extrinsic cognitive load (form of
task presentation (visual—image, text, etc.)) and extrinsic cognitive load
written, auditory, all), multimedia learning environment
simulation, task execution schedule, etc.

Description of the type of task
Analysis of the presentation of the task

Physical space [characteristics of the space in which the
task takes place (lighting, space, etc.)].

Indicators for brightness, temperature, noise, time, and
time of day

Learner characteristics (age, gender, prior knowledge, motivation to-
wards the task, way of responding, way of solving, type of reasoning
applied, etc.).

Variables assigned (age, gender, etc.)
Analysis of prior knowledge
Cognitive style and learning style

Physiological indicators of the intrinsic cognitive load

Pupil diameter
Fixations
Saccades
GSR amplitude
SCR count

Perception of the germane load Performance indicators in the
execution of the task

1.2. Machine Learning Algorithms Used in the Interpretation of Cognitive Load

As discussed above, many different factors can influence the performance of a task
or the resolution of a problem. Measuring them provides a huge amount of data to be
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processed. Various statistical and machine learning techniques can be used to carry out this
processing. These techniques are divided into supervised techniques using labelled data
to train models (within which we can differentiate between classification and regression
techniques); unsupervised techniques that do not require labels and are used to discover
hidden patterns in the data; and semi-supervised learning (combines the most appropriate
supervised and unsupervised approach in each case of study).

The techniques include algorithms such as logistic regression [34]. These can help
in the classification of intrinsic cognitive load into levels (low, medium, and high) [19].
A probabilistic study from a percentile analysis can also be used for this purpose [35].
Similarly, supervised machine learning algorithms can be used—where it is advisable to
select features beforehand in order to detect the most influential ones [19]. Next, regression
and/or classification techniques can be applied. Regression techniques may include linear
regression, Support Vector Machine (SVM), Decision tree, and Neural Network algorithms.
Classification techniques that can be used include discriminant analysis and k-Nearest
neighbour (KNN) algorithms, among others.

Unsupervised learning techniques (clustering) include applying algorithms such as
k-Means, k-Medoids, and s-Means [36]. Therefore, before data processing, it is important
for noise to be removed and classifiers to be found. The aim is to determine the best
indicators of cognitive load in each task [19]. Principal component analysis can also be
applied to find a feature matrix [37]. For example, many workload studies have used the
SVM algorithm in multiclass classification [36], whereas other studies have used KNN,
Naive Bayes, Random Forest, SVM [38–40], and neural network-based models to infer
cognitive load levels [41,42]. Classifier effectiveness can be determined using accuracy,
recall, and precision indicators in the different algorithms used [41–43]. Fit can be examined
using goodness-of-fit index models, which include various fit tests (NFI = normed-fit-index;
RMSEA = root-mean-square error of approximation; SRMR = standardised root-mean-
square residual; TLI = Tucker–Lewis index; CFI = comparative fit index; AIC = Akaike
information criterion; and ECVI = parsimony index) [44].

In contrast, as already indicated, unsupervised learning clustering techniques can
be used to learn the clustering profile with respect to different indicators of cognitive
load without applying a prior classifier [45]. Algorithms can also be used to perform
pattern analysis. These include distance analysis through string edit methods [46], which
are applied in the study of patterns detected with a scan path or gaze point. Similarly,
more traditional statistical algorithms such as Analysis of Variance (ANOVA), Analysis of
Covariance (ANCOVA), and Multivariate Analysis of Variance (MANOVA) can be used
to determine the significant differences in indicators of cognitive load between different
types of users [47]. Table 2 presents a summary of the algorithms and their usefulness in
the study of cognitive load.

Table 2. Different algorithms and their usefulness for measuring cognitive load.

Contrast Tests Usefulness in Measuring Cognitive Load

Feature selection [19,37] The use of feature selection algorithms provides information in
a hierarchical order on which features are most relevant.

Logistic regression [34]
Probabilistic study (percentile analysis) [36].

Helps in the detection of intrinsic cognitive load levels (low,
medium, and high) [19].
Allows a determination of the level of execution (low, medium,
and high).

Predictions (linear regression, SVM, Decision tree, Neuronal
Networks)

Provide information on cognitive load indicators that may be
more relevant in explaining, e.g., learning outcomes.

Classification (analysis, discriminant analysis, KNN, SVM,
Naive Bayes, Random Forest [38–40], and Neural
networks [41,42])

The classifiers provide information on the most important
cognitive load indicators with respect to ranking groups of
variables in relation to a reference variable, such as academic
performance.
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Table 2. Cont.

Contrast Tests Usefulness in Measuring Cognitive Load

Clustering (k-Means, k-Medoids, s-Means) [45], string-edit
Methods [46]

Determines interaction profiles of task performance without
prior grouping variables. Identifies route maps in different
types of learners.

Adjustment indicators (accuracy, recall, and precision) [41–43],
goodness-of-fit indices (NFI, RMSEA, SRMR, TLI, CFI, AIC,
ECVI) [44]

Determine the effectiveness, fit and precision when comparing
the results obtained with different algorithms.

Parametric statistics (ANOVA, ANCOVA, MANOVA and effect
sizes) [47]
If the sample does not have a normal distribution, similar tests
would be applied in a non-parametric context (Mann–Whitney
U test, Kruskal–Wallis, Wilcoxon signed-rank test, etc.)

Determine whether there are significant differences in terms of
variables considered as
independent variables on variables considered as dependent
variables. Also, determine the size of the significant effect.

1.3. Proposed Models for Measuring Cognitive Load

Taking the above into account, the current challenge is to create models to explain
cognitive processing in different types of learners during the same task [48]. As noted
above, various algorithms have been advanced for measuring the cognitive load of different
users during the execution of different tasks [49]. Proposed explanatory and analytical
models are based on the construction of multimodal machine learning models that help
to estimate people’s cognitive loads. However, one potential limitation of these models
is that they usually use data extracted from the same scenario. Therefore, the models
would need to be tested in learning contexts other than the source application and include
information on the execution of different learning tasks. Furthermore, predictive results
should be accompanied by estimates of uncertainty (percentage error) in order to reduce
misclassification [50].

In summary, the current research focuses on finding robust models that can predict
certain situations and facilitate early intervention [51]. These models are based on using
machine learning techniques because, as noted above, the assessment of cognitive load is
complex. Current research [52] indicates that machine learning techniques such as Deep
Learning (DL) are a good resource for finding the most relevant information, allowing a
more reliable classification. In particular, hybrid DL architectures that integrate convolution
operators and Long Short-Term Memory (LSTM) have been found to produce significantly
better results than other models. Similarly, the proposed models should be tested in
domains other than the source context, in addition to taking into account individualised
differentiation with respect to users [53]. Models that apply inverse reinforcement learning
are also proving particularly effective at explaining complex cognitive tasks [54]. Likewise,
hyper long-short-term-memory-based modules from time-series multimodal information
models have been shown to be effective at explaining the cognitive load in driving tasks [55].
The use of data fusion techniques [56] and Transformer models are likely to be particularly
useful resources in explaining the cognitive load experienced by users in the execution of
different tasks [57–59]. In recent years, various studies have applied a variety of techniques,
such as the Gaussian Mixture Variational-Based Transformer Domain Adaptation Fault
Diagnosis method (applying it to diagnosing faults in bearings) [60], and the Prototypical
Contrastive-Based Domain Adaptation method to achieve learning-based fault diagnosis
under variable working conditions [61].

In summary, modelling is important in different research fields (neurodegenerative
diseases, cancer processes, autism spectrum disorders, learning disabilities, etc.) where an
early differential diagnosis is essential, as early therapeutic or instructional intervention is
critical for a good prognosis. Therefore, cognitive load indicators (biomarkers) need to be
identified, and predictive and classification models need to be proposed [62]. Furthermore,
the results of current research advocate the use of an approach that includes several
indicators of cognitive load collected through different devices. This is because this working
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methodology increases the reliability of cognitive load detection and the identification of
individual differences. Similarly, attention needs to be paid to the design of the task and
the development of the interface where it is applied. This area of research faces challenges
such as noise reduction with respect to the signal collection devices and the extrapolation
of the results produced in laboratories [19].

Based on the state of the art above, the objectives of this study were as follows:
Objective 1. To select characteristics with respect to different indicators of cognitive

load related to the performance of simulation tasks in virtual environments.
Objective 2. To determine participants’ levels of cognitive load (low, medium, and high).
Objective 3. To apply supervised machine learning prediction techniques to determine

how the variables of presentation type 1 (not having previously watched the lab vs. having
done so) and presentation type 2 (visual–auditory vs. visual) from the virtual laboratories
predict the indicators of cognitive load and learning results.

Objective 4. To apply supervised machine learning techniques for classification in
order to determine the most representative classifiers of cognitive load.

Objective 5. To apply unsupervised machine learning techniques to identify possible
groupings without a prior assignment variable with respect to cognitive load indicators
and learning outcomes.

Objective 6. To determine whether there are significant differences in the indicators
of cognitive load and learning results depending on the type of task and the way it is
presented (visual–auditory vs. visual) in the participating groups.

Objective 7. To propose an analysis model for the markers of cognitive load.

2. Materials and Methods
2.1. Participants

We worked with a convenience sample of 48 undergraduate students in their final
years at the University of Burgos: 21 were studying for a degree in Occupational Therapy,
of whom 20 were women and 1 was a man (Group 1); 10 were studying for a degree in
Biomedical Engineering (1), of whom 8 were women and 2 were men (Group 2); and 17
were studying for a degree in Biomedical Engineering (2), of whom 9 were women and 8
were men (Group 3). Groups 2 and 3 were different groups, although they shared the same
degree and academic level. The mean age of the participants was between 21–23 years
old. Participation in the study was voluntary, required written informed consent, and was
without financial compensation.

2.2. Instruments

(a) Tobii pro lab (Stockholm, Sweden) version 1.194 with 64 Hz.
It is eye-tracking software that provides a visual user interface and dedicated soft-
ware functions that support the researcher in all phases of an eye-tracking experiment,
from test design and recording to analysis. An image of the device used is shown in
Figure 1 below.

(b) Laptop computer. Falkon i7. Screen 15.6”; processor Intel core I7-9750H; hard disk
512 Gb SSD; memory 16 Gb of RAM; Geforce RTX 2070 MAX-Q GDDR6 8 GB; Win-
dows 10 Professional; connections: HDMI/USB-C/USB 3.1/RJ45 × 1/HDMI ×
1/3.5 mm Jack/USB-A 3.1 × 4/Thunderbolt × 1—Bluetooth/WiFi/Gigabit Ethernet.
Display resolution of 1080 × 1920.

(c) Shimmer3 GSR+ (galvanic skin response) (Europe Research Ltd., Dublin, Ireland)
single-channel galvanic skin response data acquisition unit (measures electrodermal
resistance (EDR)/electrodermal activity (EDA)). The GSR+ unit is suitable for mea-
suring the electrical characteristics or conductance of skin. Traditional galvanic skin
response theory is based on the idea that the electrical resistance of the skin varies
with the state of the sweat glands. Sweating in the human body is regulated by the
autonomous nervous system (ANS). More specifically, if the sympathetic branch (SNS)
of the ANS is excited, the activity of sweat glands increases, which in turn increases
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skin conductance. This device is compatible with Tobii pro lab version 1.194 and
allows for the integration of records. Figure 2 shows the device and how it is placed
to record EDA.

(d) Virtual lab for the resolution of clinical cases. This lab was developed within the Euro-
pean project “Specialized and updated training on supporting advance technologies
for early childhood education and care professionals and graduates”, eEarlyCare-T-No.
2021-1-ES01-KA220-SCH-000032661. In this study, the virtual lab is a representation
of a dialogue between two avatars: a student and a teacher.
Two labs were used in this study. In Group 1 and Group 2, a general simulation
virtual lab was applied (this referred to content that could be used in both degrees, as
they were general and about patient intervention processes). This lab is extensively
described in the study by Sáiz-Manzanares et al. [32] (see Figure 1 in that publication).
In addition, a specific lab with biomedical engineering content was applied to Group
3. This lab can be found in Supplementary Materials (Figure S1). Both virtual labs
can be accessed and used free of charge by logging into the Virtual Classroom in the
eEarlyCare-T project https://www2.ubu.es/eearlycare_t/en/project (accessed on 16
August 2024).

(e) Learning Strategies Scales (ACRA) by Román and Gallego [63]. This is an instrument
that has been widely tested in research. It identifies 32 strategies at different points in
the information processing cycle and has reliability indicators between α = 0.75 and
α = 0.90, and content validity indicators between r = 0.85 and r = 0.88. In the present
study, we applied the metacognitive skills subscale, which includes 17 strategies on
the use of metacognitive skills in problem-solving tasks that are distributed over three
subscales: Self-knowledge, Planning, and Self-Evaluation.

Figure 1. Example of a test performed with Tobii pro lab version 1.194 with 64 Hz, recording eye
movements and GSR.

https://www2.ubu.es/eearlycare_t/en/project
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Figure 2. Example of the Shimmer3 GSR+ device.

2.3. Procedure

Prior approval was obtained for the study from the Bioethics Commission of the
University of Burgos: No. IO 03/2022 (for carrying out the study) and No. IO 04/2022 (for
application of the labs). Written informed consent was then obtained from all participants,
their participation was voluntary and without financial compensation. The virtual labs were
then implemented for all three groups throughout the second semester. In all cases, lighting
and temperature conditions were equivalent (the light and temperature conditions were
stable, as the studies were always carried out at the same time with the same light conditions
and the temperature was always regulated by a thermostat at 21◦). The time each participant
spent viewing each lab was discretionary, as they were able to spend as long as they felt
necessary to watch the scenes making up each lab. The labs could be watched with audio (an
avatar narrating the written text presented in each lab scene) or with only the image of the
scene showing the avatars and the text of their dialogue. At the beginning of the lab, each
participant was informed that they could voluntarily choose how they wanted to watch
(with audio vs. without audio). Group 1 and Group 2 saw the same lab, which included
general health content (which can be found in Figure 1 in the paper by Sáiz-Manzanares
et al. [32]). The participants in these groups had not previously seen the lab. Group 3
watched a lab that included specific biomedical engineering content (specifically referring
to the functionality of using eye-tracking technology and its measurement indicators) (see
Figure S1 in Supplementary Materials document). Participants in this group were able
to see the lab before watching it again in the in the experimental room. After all three
groups had watched the lab in the experimental room, a test was administered to test the
knowledge acquired. The test was multiple choice with a single correct answer for each
question. The test given to Group 1 and 2 is provided in the Supplementary Materials,
Figure S2, and the test given to group 3 is in Figure S3. As the number of questions in the
check tests were not equal in order to compare the answers, the answers were categorised
into correct versus not correct answers.

2.4. Data Analysis

Table 3 presents the tests and instruments used to test the research objectives.

Table 3. Research objectives, counterfactuals, and analytical tools.

Research Objectives Test Test Instrument

Objective 1. To select characteristics with respect to different indicators of
cognitive load related to the performance of simulation tasks in virtual
environments.

Feature selection WEKA v.3.8.5 [64]

Objective 2. To determine participants’ levels of cognitive load (low, medium,
and high). Percentiles (25, 50, and 75) SPSS v. 28 [65]

Objective 3. To apply supervised machine learning prediction techniques to
determine how the variables of presentation type 1 (not having previously
watched the lab vs. having done so) and presentation type 2 (visual–auditory
vs. visual) from the virtual laboratories predict the indicators of cognitive load
and learning results.

Multiple linear regression SPSS v. 28 [65]
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Table 3. Cont.

Research Objectives Test Test Instrument

Objective 3 (continued) To apply principal component analysis to determine
the groupings of the cognitive load indicators.

Principal component
analysis SPSS v. 28 [65]

Objective 4. To apply supervised machine learning techniques for classification
in order to determine the most representative classifiers of cognitive load.

Discriminant analysis
KNN SPSS v. 28 [65]

Objective 5. To apply unsupervised machine learning techniques to find
possible groupings without a prior assignment variable
with respect to cognitive load indicators and learning outcomes.

k-means SPSS v. 28 [65]

Objective 6. To determine whether there are significant differences in the
indicators of cognitive load and learning outcomes
depending on the type of task and the way it is presented
(visual–auditory vs. visual) in the participating groups.

Two-factor fixed-effect
MANOVA SPSS v. 28 [65]

Objective 7. To propose an analysis model for the indicators of cognitive load. Structural equation
modelling AMOS v. 29 [66]

3. Results
3.1. Objective 1: To Select Characteristics with Respect to Different Indicators of Cognitive Load
Related to the Performance of Simulation Tasks in Virtual Environments

WEKA algorithm [58] Evaluator, weka.attributeSelection.CfsSubsetEval, evaluates the
value of a subset of attributes taking into account the individual predictive ability of each
feature together with the degree of redundancy between features. More information is
available at https://weka.sourceforge.io/doc.dev/weka/attributeSelection/CfsSubsetEval.
html (accessed on 20 August 2024). The search is weka.attributeSelection.BestFirst; this
searches the attribute subset space using the greedy hill climbing method augmented
with a backtracking function. More information is available at https://weka.sourceforge.
io/doc.dev/weka/attributeSelection/BestFirst.html (accessed on 20 August 2024). Forty-
eight instances and 10 attributes were analysed (mean duration, fixation point X, fixation
point Y, average pupil diameter, saccade direction, average velocity, peak velocity, saccade
amplitude, average GSR, and SCR count). The results were the merit of best subset found,
0.75, and the features selected were the fixation point X and average GSR.

3.2. Objective 2: To Determine Cognitive Load Levels (Low, Medium, and High) in the
Participating Groups

Descriptive statistics, maximum and minimum values, and percentiles were calculated
for each of the characteristics. The 25th percentile indicates a low value, the 50th percentile
an intermediate value, and the 75th percentile a high value, see Table 4.

Table 4. Descriptive statistics and percentiles for cognitive load indicators.

Indicators of
Cognitive Load Mean SD Minimum Maximum

Percentiles

25 50 75

Group 1
Mean duration 140.72 34.77 105.33 224.75 118.63 140.72 174.36

Fixation point X 994.84 288.42 750.66 1924.86 798.22 994.84 1227.70
Fixation point Y 866.17 195.53 635.68 1247.70 693.81 866.17 1048.09

Average pupil diameter 5311.03 1286.28 3715.67 7991.97 4338.36 5311.03 6558.44
Saccade direction 278,133.97 70,405.30 130,426.22 431,082.91 238,321.58 278,133.97 329,400.50
Average velocity 233,191.56 250,444.66 152,868.39 1,260,057.37 187,812.06 233,191.56 339,436.29

Peak velocity 336,697.42 260,723.55 230,621.84 1,398,529.00 261,396.24 336,697.42 493,273.13
Saccade amplitude 6173.42 2359.82 2020.85 10,407.48 5115.04 6173.42 8437.59

Average GSR 1.47 1.38 0.01 7.44 1.47 1.47 1.47
SCR Count 10.18 5.76 0.00 34.00 10.13 10.18 10.24

https://weka.sourceforge.io/doc.dev/weka/attributeSelection/CfsSubsetEval.html
https://weka.sourceforge.io/doc.dev/weka/attributeSelection/CfsSubsetEval.html
https://weka.sourceforge.io/doc.dev/weka/attributeSelection/BestFirst.html
https://weka.sourceforge.io/doc.dev/weka/attributeSelection/BestFirst.html
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Table 4. Cont.

Indicators of
Cognitive Load Mean SD Minimum Maximum

Percentiles

25 50 75

Group 2
Mean duration 153.58 35.61 93.25 237.41 136.26 153.58 173.51

Fixation point X 1119.89 527.97 158.17 2424.80 988.74 1119.89 1276.17
Fixation point Y 951.40 438.04 162.18 2023.44 849.83 951.40 1132.69

Average pupil diameter 6371.50 4451.51 1132.41 19,140.53 4432.29 6371.50 7298.63
Saccade direction 319,974.78 115,718.13 41,797.90 397,630.64 267,580.33 319,974.78 375,132.14
Average velocity 229,531.47 94,148.06 49,784.31 382,706.45 199,910.41 229,531.47 266,353.23

Peak velocity 331,430.91 132,544.18 64,173.60 537,397.30 272,005.44 331,430.91 398,652.17
Saccade amplitude 7372.37 2653.55 989.92 9646.79 5714.81 7372.37 8285.77

Average GSR 1.10 1.12 0.01 3.17 0.01 1.10 1.99
SCR count 8.00 11.33 0.00 38.00 0.00 8.00 16.00

Group 3
Mean duration 250.43 54.94 134.61 399.59 239.68 250.43 286.75

Fixation point X 2919.06 1260.15 1162.95 6185.12 2068.23 2919.06 4091.90
Fixation point Y 2643.52 1307.08 959.91 6157.44 2225.84 2643.52 3557.76

Average pupil diameter 25,055.68 7498.00 11,358.53 40,122.79 19,702.44 25,055.68 29,343.05
Saccade direction 105,956.02 24,936.85 51,991.70 149,285.16 89,490.71 105,956.02 120,311.50
Average velocity 84,465.25 18,890.28 51,017.96 121,059.84 71,890.70 84,465.25 97,068.89

Peak velocity 105,569.23 24,746.30 64,997.00 152,861.24 95,035.23 105,569.23 127,999.83
Saccade amplitude 2006.29 521.67 1300.68 2952.87 1785.50 2006.29 2645.64

Average GSR 0.86 4.11 0.01 14.11 0.18 0.86 4.75
SCR count 11.00 12.14 0.00 39.00 6.00 11.00 24.50

Note: SD = standard deviation; GSR = galvanic skin response, SCR = skin conductance responses.

3.3. Objective 3: To Apply Supervised Machine Learning Prediction Techniques to Determine How
the Variables of Presentation Type 1 (Not Having Previously Watched the Lab vs. Having Done So)
and Presentation Type 2 (Visual–Auditory vs. Visual) from the Virtual Laboratories Predict the
Indicators of Cognitive Load and Learning Results

The presentation type 1 variable (not having previously watched the lab vs. having
done so) predicted 76.3% (R2 = 0.763) of the variance with respect to the cognitive load
indicators (see Supplementary Materials, Table S1 for the results of the linear regression
analysis). The values of tolerance—the proportion of variance not explained by the rest
of the variables (1-R2), where the higher the Tolerance, the more independent the variable
in question—were all less than 1. The variance inflation (VIF) values—which quantifies
the intensity of multicollinearity in a normal least squares regression analysis, and the
higher the variance of the estimated regression coefficient, the higher the collinearity—
were high for the cognitive load indicators average pupil diameter, saccade direction and
average velocity.

The presentation type 2 variable (visual–auditory vs. visual) predicted 25.5% (R2 = 0.255)
of the variance with respect to the cognitive load indicators (see Supplementary Materials,
Table S2 for the results of the linear regression analysis). In this case, very low values
of tolerance were found for the cognitive load indicators fixation point Y, average pupil
diameter, saccade direction and average velocity, while there were very high VIF values for
the indicators average pupil diameter, saccade direction and peak velocity.

Based on these results, which point to collinearity between the variables, a principal
component analysis was carried out to group the cognitive load levels into the most relevant
load components (see Supplementary Materials, Figure S4). Three principal components
were found (see Supplementary Materials, Table S3 for the matrix of principal components).
Component 1 comprised the cognitive load indicators mean duration, fixation point X,
fixation point Y, average pupil diameter and saccade direction; Component 2 comprised the
indicators average velocity and peak velocity; while Component 3 comprised the indicators
average GSR and SCR count.
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3.4. Objective 4: To Apply Supervised Machine Learning Classification Techniques to Identify the
Most Representative Classifiers of Cognitive Load

A discriminant analysis was carried out to determine the behaviours of the groups
with respect to the cognitive load indicators. As Figure 3 shows, the behaviour in cognitive
load for Group 1 and Group 2, where the students had not previously watched the lab
(which contained general health content), was quite similar to each other, but differed from
the behaviour of Group 3, where the students had previously viewed the lab (which was
about content specific to the degree). Similarly, all the values of Wilks’ lambda (a method
for selecting variables by discriminant analysis steps that selects the variables to be added
into the equation based on how much they contribute to decreasing Wilks’ lambda—at
each step, the variable that minimises the overall Wilks’ Lambda is added) for the cognitive
load indicators was significant except for the average GSR and SCR count indicators (see
Table 5).
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Table 5. Test of equality of group means.

Cognitive Load
Indicators

Lambda
Wilks F df1 df2 pLambda

Mean duration 0.36 40.10 2 45 <0.001 *
Fixation point X 0.38 36.12 2 45 <0.001 *
Fixation point Y 0.39 35.28 2 45 <0.001 *

Average pupil diameter 0.20 92.56 2 45 <0.001 *
Saccade direction 0.35 41.44 2 45 <0.001 *
Average velocity 0.71 9.04 2 45 <0.001 *

Peak velocity 0.62 13.91 2 45 <0.001 *
Saccade amplitude 0.42 31.26 2 45 <0.001 *

Average GSR 0.93 1.79 2 45 0.18
SCR count 0.94 1.43 2 45 0.25

* p < 0.05. Note: df = degree of freedom; GSR = galvanic skin response, SCR = skin conductance response.

The KNN algorithm was also applied, giving the most representative cognitive load
indicators as fixation point X, fixation point Y, and mean duration.
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Figure 4 shows the representation of the focal points with respect to the fixation point
X classifier and the distribution of subjects with respect to the other indicators of cognitive
load. Figure 5 shows the representation with respect to the fixation point Y classifier and
Figure 6 with respect to the mean duration classifier. The numbers in the focal graphs
indicate the participant. Thus, it is possible to know the position of each participant with
respect to the classifiers and the focal points. This fact is important for being able to design
specific tasks for each of them.

Figure 4. Analysis of the focal points with respect to the fixation point X classifier.

Figure 5. Analysis of the focal points with respect to the fixation point Y classifier.



Appl. Sci. 2024, 14, 9831 14 of 22

Figure 6. Analysis of the focal points with respect to the mean duration classifier.

3.5. Objective 5: Apply Unsupervised Machine Learning Techniques to Determine Possible
Groupings Without a Prior Assignment Variable with Respect to Cognitive Load Indicators and
Learning Outcomes

Three clusters were found for the indicators of cognitive load and for the results in the
learning check test (see Table 6). ANOVA was also performed to test whether there were
significant differences between the clusters in the cognitive load indicators and in the test
results (see Table 7). Significant differences were found in all cognitive load indicators except
average GSR and SCR count. No significant differences were found in the outcome test.

Table 6. Final cluster centres of k-means when k = 3 is used.

Indicators of Cognitive Load
Cluster

1
n = 22

2
n = 25

3
n = 1

Mean duration 150.58 225.34 172.44
Fixation point X 1165.44 2315.30 994.84
Fixation point Y 997.23 2190.93 921.50
Average pupil diameter 6178.29 17,931.22 6156.46
Saccade direction 322,067.82 140,859.37 130,426.22
Average velocity 298,529.77 109,142.61 1,260,057.37
Peak velocity 406,223.39 147,998.56 1,398,529.00
Saccade amplitude 7562.57 3058.55 2861.72
Average GSR 1.64 2.31 1.47
SCR count 11.54 12.86 10.15
Results test 1 1 1

Note: GSR = Galvanic Skin Response, SCR = Skin Conductance Responses.

Table 7. Cluster ANOVA on indicators (cognitive load and test results).

Cluster Error
F p

Mean Square df Mean Square df

Mean duration 32,856.22 2 3367.96 45 9.756 <0.001 *
Fixation point X 8,035,738.38 2 1,267,468.79 45 6.340 0.004 *
Fixation point Y 8,584,531.38 2 1,266,594.11 45 6.778 0.003 *
Average pupil diameter 827,482,721.38 2 72,932,182.36 45 11.346 <0.001 *



Appl. Sci. 2024, 14, 9831 15 of 22

Table 7. Cont.

Cluster Error
F p

Mean Square df Mean Square df

Saccade direction 196,570,633,958.60 2 4,242,830,417.24 45 46.330 <0.001 *
Average velocity 762,312,710,583.10 2 7,488,341,771.28 45 101.800 <0.001 *
Peak velocity 1,014,921,268,496.76 2 8,945,463,462.81 45 113.457 <0.001 *
Saccade amplitude 121,297,203.11 2 3,563,210.06 45 34.042 <0.001 *
Average GSR 2.76 2 7.55 45 0.365 0.696
SCR count 12.45 2 100.40 45 0.124 0.884
Results test 0.44 2 1.16 45 0.378 0.687

* Note: df = degree of freedom; GSR = galvanic skin response, SCR = skin conductance responses.

Cluster 2 exhibits a longer mean duration compared to the virtual lab display. The
mean pupil diameter is also larger, the mean velocity is lower, and the saccade amplitude
and maximum velocity have intermediate values.

Cross-tabulation was then performed to test the relationship between cluster member-
ship and group of origin (see Table 8). A contingency coefficient of C = 0.60 p < 0.001 was
found. All members of Group 3 are in Cluster 2. Members of Group 1 and 2 are distributed
between Clusters 1 and 2.

Table 8. Cluster number of cases and degree type cross-tabulation.

Cluster Number of Cases
Degrees

Total
1 2 3

1 13 9 0 22
2 7 1 17 25
3 1 0 0 1

Total 21 10 17 48

3.6. Objective 6: To Determine Whether There Are Significant Differences in the Indicators of
Cognitive Load and Test Results Depending on the Type of Task and the Way the Task Is Presented
(Visual–Auditory vs. Visual) in the Participation Groups

First, the normality of the sample was examined with respect to the scores on the ACRA
metacognitive strategies scale, a test that was applied before the intervention phase in the
three groups. Because the sample size was less than 50 (n = 48), the Shapiro–Wilk test was
applied, which, as Table 9 shows, indicated a normal distribution. Therefore, parametric
statistics were applied to test Objective 6, which in this case was a two-factor multivariate
analysis (MANOVA) with fixed effects and eta-squared effect size (η2) (presentation type
1 (not having previously watched the lab vs. having done so) and presentation type 2
(visual–auditory vs. visual) (see Table 10). Significant differences from for presentation
type 1 (prior watching vs. not) were found for all cognitive load indicators except for the
average GSR and SCR count. The effect value was small for the cognitive load indicators
average velocity, fixation point X, fixation point Y, and peak velocity, intermediate for
the mean duration, saccade direction and saccade amplitude, and high for the average
pupil diameter. No differences were found in the outcome test. No significant differences
were found for presentation type 2 (visual–auditory vs. visual) or for the interaction of
the two factors (presentation type 1 and presentation type 2). Descriptive statistics can be
found in the Supplementary Materials in Table S4.
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Table 9. Shapiro–Wilk normality test.

Metacognitive
Strategies Groups

Shapiro–Wilk test

Statistic df p

Self-knowledge 1 0.96 21 0.53
2 0.90 10 0.23
3 0.91 17 0.10

Planning 1 0.92 21 0.08
2 0.86 10 0.08
3 0.89 17 0.04

Self-Evaluation 1 0.91 21 0.05
2 0.97 10 0.86
3 0.791 17 0.09

p < 0.05. Note: df = degree of freedom.

Table 10. Multivariate two-factor fixed effects analysis.

Source Indicators F df p η2

Display 1 (no preview vs. display) Mean duration 25.17 2 0.00 * 0.55
Fixation point X 17.25 2 0.00 * 0.45
Fixation point Y 16.90 2 0.00 * 0.45
Average pupil diameter 54.18 2 0.00 * 0.72
Saccade direction 30.31 2 0.00 * 0.59
Average velocity 6.79 2 0.00 * 0.24
Peak velocity 10.48 2 0.00 * 0.33
Saccade amplitude 21.68 2 0.00 * 0.51
Average GSR 0.31 2 0.74 0.01
SCR count 0.32 2 0.73 0.02
Results test 0.21 2 0.81 0.01

Visualisation 2 (visual–auditory vs. visual) Mean duration 0.37 1 0.55 0.01
Fixation point X 2.21 1 0.15 0.05
Fixation point Y 2.26 1 0.14 0.05
Average pupil diameter 0.40 1 0.53 0.01
Saccade direction 2.27 1 0.14 0.05
Average velocity 1.35 1 0.25 0.03
Peak velocity 1.07 1 0.31 0.02
Saccade amplitude 1.30 1 0.26 0.03
Average GSR 1.62 1 0.21 0.04
SCR count 1.54 1 0.22 0.04
Results test 0.08 1 0.77 0.00

Interaction Visualisation 1 * Visualisation 2 Mean duration 0.90 2 0.41 0.04
Fixation point X 2.97 2 0.06 0.12
Fixation point Y 2.21 2 0.12 0.10
Average pupil diameter 0.52 2 0.60 0.02
Saccade direction 0.70 2 0.50 0.03
Average velocity 1.79 2 0.18 0.08
Peak velocity 2.01 2 0.15 0.09
Saccade amplitude 0.58 2 0.56 0.03
Average GSR 0.57 2 0.57 0.03
SCR count 0.25 2 0.78 0.01
Results test 0.10 2 0.90 0.00

* p < 0.05. Note. GSR = galvanic skin response, SCR = skin conductance responses; df = degree of freedom;
η2 = eta-squared effect size, where values were interpreted according to Cohen [67]: below 0.20 is no effect,
between 0.21 and 0.49 is a small effect, between 0.50 and 0.69 is a moderate effect, and ≥0.7 is a large effect.

3.7. Objective 7: To Propose a Model of Analysis of the Markers of Cognitive Load

The results found in testing Objectives 1–6 are summarised in Table 11.
We propose a model for analysing cognitive load indicators that considers the follow-

ing components. Component 1 includes the cognitive load indicators of position, durations
and amplitudes of fixations and saccades, and pupil diameter; Component 2 includes
cognitive load indicators of velocity; Component 3 includes indicators of psychogalvanic
response and skin conductance; and Component 4 includes the pre-task presentation
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characteristics and single or multi-channel presentation. A representation of the model is
shown in Figure S5. A goodness-of-fit index analysis was then performed to check the fit
of the model. The proposed model obtained a better fit in the different fit indices than the
stand-alone model (see Table 12). However, the fit was not optimal in some indices, such as
RMSEA. Figure 7 shows a representation of the model.

Table 11. Results with respect to the research objectives.

Research Objectives Results

Objective 1. To select characteristics with respect to different
indicators of cognitive load related to performance of
simulation tasks in virtual environments.

Feature selection
Fixation point X, average GSR

Objective 2. To determine participants’ levels of cognitive load
(low, medium, and high).

Low P25–49
Medium P50–74
High P75–99

Objective 3. To apply supervised machine learning prediction
techniques to determine how the variables of presentation type
1 (not having previously watched the lab vs. having done so)
and presentation type 2 (visual–auditory vs. visual) from the
virtual laboratories predict the indicators of cognitive load and
learning results.

Presentation type 1 [form of task presentation (generalist vs.
specific content) and preview vs. no preview] explains 76.3% of
the results for the cognitive load indicators. Presentation type 2
[form of task display (visual–audio vs. audio)] explains 25.5% of
the results for the cognitive load indicators. However, some of
the cognitive load indicators may accumulate redundant
information. Three main components were found. Component 1
was related to indicators of duration, position, pupil diameter,
saccade direction, and saccade amplitude. Component 2 is
related to indicators of velocity, and Component 3 is related to
indicators of conductance.

Objective 4. To apply supervised machine learning techniques
for classification in order to determine the most representative
classifiers of cognitive load.

Differences were found for all indicators of cognitive load
depending on the way the task was presented, except for those
related to skin conductance. Likewise, the classifiers found were
related to the gaze position at point X and Y, and the average
duration of cognitive load.

Objective 5. To apply unsupervised machine learning
techniques to find possible groupings without a prior
assignment variable
with respect to cognitive load indicators and learning outcomes.

The clusters found showed greater homogeneity in the group
that was able to watch the information before the test.
Differences were found in all indicators of cognitive load, except
those related to skin conductance and in the results of the
knowledge test.

Objective 6. To determine whether there are significant
differences in the indicators of cognitive load and learning
outcomes
depending on the type of task and the way it is presented
(visual–auditory vs. visual) in the participating groups.

Significant differences were found with respect to the way the
task was presented in all cognitive load indicators, except those
related to skin conductance; no differences were found in the
results of the knowledge test. No significant differences were
found for the display type variable.

Table 12. Standardised estimates of the default model.

Goodness-
of-Fit Index Default Model 1 Independence

Model 1 Accepted Value

χ2 85.98, df = 38 p = 0.00 *. - p > 0.05 α = 0.95
RAMSEA 0.16 0.45 >0.05–0.08

RAMSEA intervals (LO 90) 0.12 0.42 >0.05–0.08
SRMR 0.06 - >0.05–0.08

NFI 0.85 0.00 0.85–0.90<
TLI 0.90 0.00 0.85–0.90<
IFC 0.90 0.00 0.95–0.97<
AIC 163.98 623.68 The lowest value

ECVI 3.49 13.27 The lowest value
ECVI interval (90%) 2.99 11.70 The lowest value

* p < 0.05. Note. df = degree of freedom; χ2 = Chi-squared; RMSEA = root-mean-square error of approxima-
tion; SRMR = standardised root-mean-square Residual; NFI = normed fit index; TLI = Tucker–Lewis index;
CFI = comparative fit index; AIC = Akaike information criterion; ECVI = parsimony index.
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Figure 7. Standardised estimates. Note: Component 1 (C1) includes the following indicators of cognitive
load: MD = Mean duration, FX = Fixation point X, FY = Fixation point Y, PD = Average pupil diameter,
and SD = Saccade direction. Component 2 (C2) includes the indicators AV = Average velocity and
PV = Peak velocity; Component 3 (C3) includes AV = preview, and PV = type of presentation (audio and
text vs. audio); and Component 4 (C4) includes the Average GSR and SCR count.

4. Discussion

This study found that the intrinsic cognitive load experienced by students seems to be
related to whether they are able to see the task beforehand and to the use of specific learning
tasks. However, these conditions did not translate into differences in learning outcomes.
Furthermore, these conditions also produced differences with respect to the germane
cognitive load, which refers to the construction and automatisation of cognitive schemas in
LTM [8,13,17]. Seeing the task beforehand and task-specific content may be related to how
the information is processed and the learner’s engagement with the task [18,19,21]. One
possible explanation is that facilitating knowledge of the information enhances placement
of the information in the learner’s Proximate Development Zone (PDZ), which helps to
improve information processing [17]. At this point, it is assumed that each learner has
their own way of processing information [18]; however, by allowing them to see the task
before attempting it in the in the simulation lab, it seems that the way information was
processed was somehow equalised, with this fact having more explanatory weight than
the intrinsic cognitive load that the student might have experienced [20]. The explanation
may be related to the fact that the learners’ being able to see the information beforehand
may help to eliminate redundant information [20] which aids in processing information in
working memory and long-term memory [8,9,13,17]. However, this hypothesis will need
to be tested in future studies with different tasks and in different groups.

We also found that whether information was presented through one or two channels
had an effect on the indicators of cognitive load. This result may be related to the possibility
given to students in all groups to voluntarily choose how the task was presented, which may
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boost the personalisation of the learning process and increase student motivation [18,19,21]
as it respects individuality in the way information is processed.

On the other hand, it seems that some of the indicators of cognitive load considered
in this study were measuring the same thing with respect to information processing. We
found three main components in this study: one related to the cognitive load indicators
of duration, position, pupil diameter, saccade direction and saccade amplitude; another
related to velocity; and a third related to the psychogalvanic response and skin conductance,
i.e., a more emotional component. This result opens the way for future research aimed
at studying indicators of cognitive load in terms of explanation from the perceptual and
neurological functioning of information processing in different tasks.

Finally, we proposed an explanatory model of cognitive functioning in the execution
of simulation tasks. This is intended to highlight the need for applied research to test the
generalisability of the research results. More specifically, in this study, we used a data fusion
model [56] to analyse the different indicators (cognitive load and type of presentation) and
the fit of the results was checked using a goodness-of-fit index. However, future studies
will be able to expand on the number of cognitive load indicators, including electroen-
cephalographic recordings; the characteristics of the tasks; and the application of other
more powerful models for data processing that include generative artificial intelligence,
such as the Transformer model [57–59].

5. Conclusions

Firstly, the results from this study should be considered with caution, as we worked
with samples from a single university selected through convenience sampling. In addition,
the students voluntarily agreed to participate without receiving any financial compensation,
which is a bias in itself. However, the analysis of human processing in learning environ-
ments is complex and does not allow for brief tests with very large samples. Therefore,
the way to increase generalisability is to replicate research in other contexts with other
participants, which will undoubtedly improve the generalisability of the results.

Secondly, bearing in mind that caution is needed when interpreting the results, the
study does raise a number of unknowns for future research in this field. It seems that
being able to preview tasks in virtual simulation contexts is an important element for
homogenising the intrinsic load and increasing the germane load. One possible explanation
is that this may help the learner to eliminate the redundant load and improve the processing
of information in working memory and long-term memory, which may help increase
learning engagement and thus motivation. Another key aspect is to facilitate the learner’s
choice of information display channel(s). This respects each learner’s type of processing
(auditory, visual, or both). Therefore, the design of the tasks and the application of the tasks
seem to be important elements in improving information processing.

Finally, proposing explanatory models is important. These models must be analysed in
terms of their fit and reliability indicators. This is undoubtedly a challenge for developmen-
tal educational psychology and cognitive instructional psychology. At this point, the use
of generative artificial intelligence similar to what is used in the Transformer models will
undoubtedly be of great help in this field of research. Therefore, we stress the importance
of working with interdisciplinary teams that include professionals from educational and
cognitive psychology, computer science, and information technology in order to effectively
address these challenges.

In summary, using characteristic selection techniques can offer researchers important
information that helps them understand which of the variables (features in data mining
terminology) may be more significant in the study they are conducting. Moreover, an
analysis of percentiles with regard to the metrics recorded by multi-channel eye-tracking
devices can help researchers to categorise the different types of users (or instances in data
mining parlance). Applying supervised machine learning regression techniques gives
information about percentage predictions of numerical values, in this case values related
to the metrics from multi-channel eye-tracking and GSR devices. Along similar lines,
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supervised machine learning classification techniques give researchers information about
the prediction of previously defined categories. In contrast, non-supervised machine
learning clustering techniques help identify hidden patterns, as they do not apply prior
labels—unlike supervised learning. Using statistical techniques such as MANOVA allows
researchers to determine whether there are significant differences in defined independent
variables between the groups being tested. All of these results allow researchers to interpret
and develop explanatory models, in this case about information processing during a
learning task in a self-regulated virtual lab. Finally, using goodness-of-fit indices gives
researchers an idea of how well the proposed model fits.
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