
Lecture 1

Multiprocessor Architectures:
shared memory MIMD computers

V 1.1

José M. Cámara (checam@ubu.es)

Multiprocessors & multicomputers

 Multiprocessors: integrated by a number of
processors working in parallel. Communication is
achieved by common variables in a shared memory.

 Multicomputers: each processor in the system owns a
private memory unreachable by the rest. This is
known as a distributed memory system.
Communication is achieved by a message passing
mechanism.

Shared memory
 UMA

 Processor
1

Processor
2

Processor
n

SHARED
MEMORY

IN
TER

C
O

N
N

EC
T

 NUMA

Processor
1

Processor
2

Processor
n

Memory 1
Local

Memory 2
Local

Shared memory

Local
Memory n

IN
TER

C
O

N
N

EC
T

Shared memory

Coherence conflicts due to:

Data sharing

Process migration

Input - output

To accomplish:

Write propagation

Write serialization

Cache Coherence
Bus snoopy protocols:

Write invalidate

Write update

Source snoopy protocols:

Directory based protocols:

Full mapping

Limited

Chained

Snoopy protocols:
Invalidate:

Write-trough

Write-back

MSI

MESI (Intel)

MOESI (AMD)*

MESIF (Intel)*

Update:
Firefly

Dragon

SHARED MEMORY

Cache Cache
controller

Process
or

Cache Cache
controler

Process
or

* Are not associated to a bus but rather to point to point connections

Write through

PRw

PRw PRr

Bw

Br

Bw

Br

PRw

PRr

PRr

V I

MSI protocol

Multimedia content available

https://youtu.be/AGDBXdYVlJo

MESI protocol

Multimedia content available

https://youtu.be/2EphLPdsybE

Dragon protocol

Multimedia content available

https://youtu.be/L4L3E2edFMo

Directories
 Stored in main memory.
 Provide the memory controller information

about all copies of cache lines present in local
caches.

 Each cache line has an attached tag.
 There are 3 types of directories:

 Full map directories
 Limited directories
 Chained directories

Full map directories
 Tag includes a single bit field for each possible owner

of copy (normally all processors).
 An additional single field bit indicates if write rights

have been granted to any processor. In that case,
only the requester’s bit on the tag will be active.

 Before granting write access, the memory controlled
hass to invalidate all other copies.

 Full map directories do not scale well:
 Tags’ sizes grow proportionally to the number of nodes > too much

space in main memory to store the directory.

Full map directory example

 512 node computer; 2 Gbytes main memory on each
node.

 64 bytes cache lines.
 1024GB/64bytes = 240/26=234 cache lines= tags
 Each tag 512 + 1 bits ≈ 29 bits = 26 bytes
 234 tags * 26 bytes/tag = 240 directory bytes

Limited directories
 Tag includes only some fields to keep track of copies on a limited

number of nodes.
 Although less in number, fields have to be big enough to point to

any node on the network: log2 (number of nodes).
 The write permission field does exist as well.
 Total tag’s size is reduced if the number of fields is severely

restricted.
 In compensation, the number of copies in local caches is

accordingly reduced. If all fields are being occupied and a new
processor request a copy of the cache line, another one has to be
removed. This leads to unnecessary swaps and a swapping
algorithm has to be implemented.

Chained directories
 Tags in main memory point only to the last copy owner to join the

list.
 Each one on the list has a pointer to the previous one.
 When a new node joins the list, it is placed at its end and given a

pointer to its predecessor.
 It a write request is issued, it has to be propagated to the beginning

so all nodes are aware and invalidate their copies. Eventually, the
memory controller grants write access.

 This is a space saving but slow procedure. Directory space in main
memory is optimized but some of as well as management
capabilities have to be assumed by the nodes.

Directories

 Full-map directories

N 1 bit fields 1 dirty bit

Tag

• N processors in the system
• M cache lines in main memory

Directory:
M tags

 Limited directories

 Chained directories

log2(N) bits fields

Tag

Directory:
M tags

1 dirty bit

1 log2(N) bits field

Directory:
M tags

Tag

Cache

Cache

Cache

Actual bus example: TLSB
 Introduced in Alpha computers such as

Alphaserver 8400.
 Second half of the 90s.
 Synchronous bus with separated address

and data buses.
 256 bits data bus.
 BW up to 3,2 Gbytes/s: 32bytes / 100MHz.

TLSB: Addressing I
 Three address lines for geographical

addressing of the modules. Up to 9 modules
can be connected since 000 address is
shared by device 0 and the required I/O
module.

 Virtual addressing scheme for devices such
as memory banks and CPUs whom, in this
way are given an address within the system.
Each module can hold up to 8 virtual
addresses.

TLSB: Addressing II
 Up to 1TB main memory can be addresses

via a 40 bits address scheme.
 The address is decoded by the requester

to extract the bank’s virtual address.
 Up to 16 memory banks can be supported.
 Cache line size is 64 bytes.
 The requester may launch a bus request

and check local cache alongside. If a
cache hit happens, the request is
invalidated.

TLSB: Addressing III
 Bits 6 to 39 are used as cache line

address.
 Bit 5 is used to determine the order in

which the two 32 bytes parts of the line
are delivered: High>low or Low>high.

 The 5 bits remaining are used to code
the virtual address (up to 16 CPUs & up
to 16 memory banks).

TLSB: Arbitrage
 Any transaction on the bus must be initiated as

a request from the module will to
communicate.

 TLSB implements a distributed arbitrage
mechanism. That means that there is no
arbiter. Conflicts have to be solve by the
competing modules with no external
intervention.

 Priority is set according to the geographical
address at star up.

 At run time a Round Robin mechanism is used
to guarantee fairness.

TLSB: Transfers
 When a slave node is ready to deliver the requested

data, it takes over the bus.
 The slave activates TLSB_SEND_DATA line, forcing

the nodes storing copies of the same cache line to
set TLSB_SHARED or TLSB_DIRTY lines.

 TLSB_SHARED set means that there is another node
possessing a valid copy and wants to keep it.

 TLSB_DIRTY set means that a more recent copy of
the line exists and, in this case, the node that set the
line will complete the transaction.

 Bus specifications do not reference any coherence
protocol in particular. They just set up the basis to
make it possible.

References
 [1] K. Whang. Advances Computer Architectures.

McGraw Hill.
 [2] Alphaserver8400 system handbook.

	Lecture 1
	Multiprocessors & multicomputers
	Shared memory
	Shared memory
	Shared memory
	Cache Coherence
	Snoopy protocols:
	Write through
	MSI protocol
	MESI protocol
	Dragon protocol
	Directories
	Full map directories
	Full map directory example
	Limited directories
	Chained directories
	Directories
	Actual bus example: TLSB
	TLSB: Addressing I
	TLSB: Addressing II
	TLSB: Addressing III
	TLSB: Arbitrage
	TLSB: Transfers
	References

