
Quantifying performance
Benchmarks

V 1.0
José M. Cámara

(checam@ubu.es)

Motivation

Performance must be measured to:
Assess the behavior of a computing system.
Compare various systems.
Optimize utilization.
Remove bottlenecks.

Quantifying performance is a daunting task:
Systems are distinct from one another.
They are very complex.
Handle a broad variety of applications and data.

Metrics

Latency: time to complete an action: deliver a
message, execute a program, fulfill a request…
According to the scenario it can be expressed in
terms of: execution time or response time too.

Throughput: tasks completed per time unit:
instructions, messages, queries…

Throughput = 1/ latency only when no overlap is
produced (instruction or message pipe-line).
Otherwise throughput > 1/ latency.

Benchmarks

Concept: application program used to quantify
computer’s performance.

Goal: results must be numeric, objective and fair.
Types:
 Real programs.
Synthetic.
Kernels.
Toys.
Suites.

Benchmarks
Real programs may seem the most objective option but

in many occasions their results are hard to interpret
since too many computer systems are affected by them
in uncertain and variable ways.

Synthetic benchmarks are designed to reflect the
performance of certain subsystems.

Therefore, in order to evaluate all subsystems, usually a
suite is preferred.

Kernels are close to real programs. They eliminate all
that is not relevant, such as user interface, calculation
results, etc.

Toy benchmarks are short programs that produce
results already known to the user.

Evaluating results
Benchmark suites are a common tool but since they

are composed by a number of programs. Systems may
perform differently under each one.

Direct comparison is not possible then. A more
elaborated metric must be obtained:

Arithmetic mean:𝐴𝐴𝐴𝐴 = ∑ 𝑟𝑟𝑖𝑖𝑁𝑁
𝑖𝑖
𝑁𝑁

. Not accurate when the tests
are unrelated. The longest test tends to prevail.

Geometric mean:𝐺𝐺𝐴𝐴 = ∏ 𝑟𝑟𝑖𝑖𝑁𝑁
𝑖𝑖

𝑁𝑁
 . Its utility is unclear.

Harmonic mean:𝐻𝐻𝐴𝐴 = 𝑁𝑁
∑ 1

𝑟𝑟𝑖𝑖
𝑁𝑁
𝑖𝑖

Results 𝑟𝑟𝑖𝑖 may be absolute execution times (or their
inverses) or speed-ups (referred to a precise system).

Comparing means

Let’s think of a set of tests where the execution
times are: 1s, 4s and 10s.

The arithmetic mean of them is 5s. This is correct
but, taking into account that the shortest
programs may be executed more times than the
longest, maybe they should weigh more on the
average.

The harmonic mean is 3/1,35 = 2,22s. That could
reflect more accurately the expected
performance of the system.

Selecting benchmarks
Distinct systems require distinct benchmarks.
We are considering two types of servers:

supercomputers & data centers.
For supercomputers, regardless the subsystem we

intend to stress, what matters is execution time
(throughput is also relevant in many cases). Results are
usually given in terms of FLOPS.

For data centers the response time is what the user
perceives as “performance”. Throughput doesn’t make
much sense in this environment. Results may be given
in terms of SLO/SLA ratio. For example: 99% of
responses below 100ms.

Benchmarking supercomputers
 By far, the most popular benchmark for supercomputers is Linpack. Provides

performance in FLOPS under the execution of a kernel based on the resolution of
systems of linear equations. It has a number of variations to adapt itself to many
computer architectures. Is the test bed for the Top500 supercomputer rank.

 NAS NPB: suite of kernels developed by NASA. Kernels try to reflect the core of
calculations commonly performed by fluid mechanics applications and other usual
programs related to its activity. All benchmarks impose heavy calculation on the
system; differ on the problem they solve and the amount of communication traffic
they generate:
 EP: Embarrassingly Parallel. It involves calculation but very little communication

between processors.
 MG: Multigrid. Unlike the former one, it requires communication between both close

and remote processors.
 CG: Conjugate Gradient. Communication is low and scattered among close and remote

nodes.
 FT: Fourier Transform. Heavy communication pattern evenly distributed.
 IS: Integer Sort. Communication, although heavy and uniform is not as heavy and

uniform as in the previous case.
 LU, SP & BT: address the same mathematical problem using different algorithms. BT is

“less parallel” than the rest.

Linpack
• It first release (Linpack 100) dates back to 1977.

– It used n=100 size matrices.
– It didn’t allow for code manipulation.
– Only compiler level optimizations were allowed.
– It used level 1 BLAS (Basic Linear Algebra Subprograms).

• The next release (Linpack 1000) date back to 1986.
– Matrices were n=1000 in size.
– Manual optimizations of code were permitted.
– Using level 3 BLAS.

• Top500 rank is based on HPL (high performance Linpack) released in 1991.
– Matrices can be any size.
– Manual optimizations are allowed.
– It is a message passing parallel implementation.
– For mathematical operation it uses BLAS o VISPL.
– The use of derived versions of there libraries, allows HPL to extend to

heterogeneous systems. E.g. cuBLAS for CPU + GPU systems.
– MPI is used for message passing.

Benchmarking data centers
 Benchmarking data centers is not simple. There are two

possible approaches:
 From the users point of view, response time to queries,

searches, etc, is what matters.
 To provide low response times, managers need to test many

subsystems.
 Benchmarking data centers is a recent challenge.

Nevertheless, there is already certain agreement on what
good benchmarks should comprise.
 Include diverse workloads.
Workloads and software stacks must be representative.
 Involve state of the art techniques.
Must be “usable”, that is, easy to deploy, configure and run.

Benchmarking data centers
Today’s top Internet sites are (http://www.alexa.com/topsites/global;0):
Search engines: 40%. Handle mainly text data on

queries.
Social networks: 25%. Handle graph data.
E-comerce: 15%. Table data.

Common algorithms used by theses sites are:
Sort.
Scan.
Classification.
Graph mining.
Segmentation.

Example

• A 6 processor, 24 cores cluster takes 91,07
seconds to complete a matrix multiply
program on 5000x5000 size matrices.
– Determine performance in FLOPS.
– Find out the position of this cluster in the Top500

historical database.

References
 Advanced Computer Architecture: Introduction to quantitative analysis.

Prof. Sherief Reda. School of Engineering. Brown University.
 BigDataBench: a Big Data Benchmark Suite from Internet Services. Lei

Wang et al. The 20th IEEE International Symposium On High Performance
Computer Architecture (HPCA-2014), February 15-19, 2014, Orlando,
Florida, USA.

 DCBench: a Benchmark Suite for Data Center Workloads. Zhen Jia. HVC
tutorial in conjunction with The 19th IEEE International Symposium on
High Performance Computer Architecture (HPCA 2013).

 Notes on Calculating Computer Performance. Bruce Jacob and Trevor
Mudge. Advanced Computer Architecture Lab. EECS Department,
University of Michigan.

 The LINPACK Benchmark: past, present and future. Jack J. Dongarra, Piotr
Luszczek and Antoine Petitet. CONCURRENCY AND COMPUTATION:
PRACTICE AND EXPERIENCE. Concurrency Computat.: Pract. Exper. 2003;
15:803–820 (DOI: 10.1002/cpe.728).

 The NAS parallel benchmarks. D.H. Bailey et al. The International Journal
of Supercomputer Applications (1991).

	Quantifying performance
	Motivation
	Metrics
	Benchmarks
	Benchmarks
	Evaluating results
	Comparing means
	Selecting benchmarks
	Benchmarking supercomputers
	Linpack
	Benchmarking data centers
	Benchmarking data centers
	Example
	References

