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Abstract 
The option to leave your current partner in response to his behavior, also known as 
conditional dissociation, is a mechanism that has been shown to promote the emergence and 
stability of cooperation in many social interactions. This mechanism, nevertheless, has always 
been studied in combination with other factors that are known to support cooperation by 
themselves. In this paper, we isolate the effect of conditional dissociation on the evolution of 
cooperation and show that this mechanism is enough to sustain a significant level of 
cooperation if the expected lifetime of individuals is sufficiently long. 
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1. Introduction 
The issue of how cooperation can evolve in social dilemmas has long been a central research 
topic in modern evolutionary theory.1 Many alternative routes have been proposed to explain 
such a “paradox,” often modeling the question in terms of individuals involved in an iterated 
Prisoner’s Dilemma. In this context, some of the mechanisms considered have been, for 
example, schemes for punishing defectors, local or preferential interactions among selected 
members (e.g. kin selection, tag-based groups or spatial structure), tit-for-tat-like reciprocity, 
or selective matching based on memory or reputation.  

Most of these alternatives presume what, in some biological contexts, may be considered as 
rather advanced cognitive capacities.2 In social contexts, on the other hand, the fact that 
sophisticated behavior in humans should be conceived as costly naturally raises the question 
of whether cooperation can emerge and be sustained also through very simple mechanisms.3 
One particularly stark answer to this question is provided in this paper. Specifically, we show 
that the option to leave a partner in response to his action can just by itself provide an 
evolutionary basis for the rise of cooperation. It does so by generating endogenous positive 
assortment –i.e., a high probability of interacting with someone who plays the same action as 
you do (Bergstrom, 2003; Rivas, 2013)–, even if the matching mechanism is completely 
random, under conditions that we will characterize precisely. 

More specifically, our model studies a dynamic population of cooperators and defectors who 
repeatedly interact to play a Prisoner’s Dilemma, and remain together in couples until one of 
them decides to leave or dies. There is, therefore, the potential for voluntary (conditional) 
dissociation: after each round of play, individuals may decide to leave their partner or stay 
with him, depending on the latter’s action. This delineates a scenario with only eight different 
possible strategies, in which we simply postulate that their respective frequencies vary 
according to relative success (i.e. the average payoffs they earn). In this context, our main 
conclusion can be succinctly stated as follows: it is sufficient that the expected lifetime of 
individuals be long enough for a significant extent of cooperation to emerge and stabilize in 
the long run –either globally (from any initial conditions) if the expected lifetime is 
sufficiently long, or only locally (around the unique cooperative equilibrium) for intermediate 
lifetime values. 

A key role in our results is played by the strategy that always cooperates and breaks the 
relationship immediately if, and only if, the partner defects. We shall label this behavior as 
cooperative conditional dissociation, where the term “dissociation” (in contrast to 
“association”) emphasizes that individuals use their capacity to discard their current partner 
but have no control over the new one. 4 Essentially this same strategy –or closely related 

1 See Nowak (2006) and Bowles and Gintis (2011) for recent surveys of this literature from complementary 
perspectives.  
2 For example, Bergmüller et al. (2010) provide many biological examples where cooperation has evolved in 
species where individual animals display little or no behavioral plasticity. 
3 There is a relatively large literature that, following the lead of Rubinstein (1986) and Abreu and Rubinstein 
(1988), studies the implications of complexity costs in the behavior displayed by agents playing the repeated 
Prisoner’s Dilemma. In fact, a significant fraction of this literature has pursued an evolutionary approach. 
Binmore and Samuelson (1992), Cooper (1996), Volij (2002) and van Veelen & García (2010) are some 
representative examples, differing in a number of important modeling details. They also differ in their respective 
conclusions, which range from the possibility of supporting full cooperation to the impossibility of supporting 
any at all. None of these papers, however, contemplates a scenario where voluntary dissociation is an option and 
the matching pool is adjusted accordingly. 
4 This was also the term we used in a preceding paper (Izquierdo et al., 2010), which studied this behavior in a 
substantially more complex scenario. In particular, besides the option to leave a partnership, agents could also 
change their behavior within a given (maintained) relationship in response to their partner’s preceding behavior. 
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variants– has been studied before in the literature under different names. Noteworthy 
examples are CONCO (Schuessler, 1989), Out-for-Tat (Hayashi, 1993), MOTH (Joyce et al., 
2006) or Walk Away (Aktipis, 2004).5 

The customary approach of this literature has been to show, through computationally 
implemented contests, that such a strategy can prevail and hence promote cooperation when 
confronted with different specific subsets of other strategies –for example, suitably adapted 
versions of Tit-for-Tat or the so-called Pavlov. Albeit insightful in many respects, this 
methodology is not best suited to attain a clear-cut analysis of the effects and mechanics of 
conditional dissociation in the promotion of cooperation. Since this is the primary purpose of 
this paper, we propose instead a “minimalist setup” that, while including the option to leave or 
stay in response to partner’s behavior, remains instead devoid of any other considerations that 
could cloud the key forces at work. In such a setup, we ask the following two basic questions:  
Can conditional dissociation alone give rise to cooperative behavior?  If so, what are the 
dynamic (evolutionary) properties of the mechanism induced by conditional dissociation? 

To answer these questions, we purposely focus on the simplest strategy space that allows for 
conditional dissociation in an unbiased manner and nothing else, i.e. one where individuals 
are either cooperators or defectors, and they can only condition their decision to leave on their 
partner’s behavior. This admittedly simplistic setting seems the natural starting point to assess 
whether the appearance of a certain trait –i.e. conditional dissociation– may provide an initial 
footing for the evolutionary emergence of cooperation, since evolution tends to gradually 
move from simplicity to greater sophistication, rather than the other way around. Nonetheless, 
the question of whether the potential appearance of greater behavioral complexity –in the 
form of more sophisticated strategies– may destabilize cooperation will also be addressed at 
the end of the paper (see Section 6 and Appendix A). 

We end this introduction by relating our model to that studied by Fujiwara-Greve and Okuno-
Fujiwara (2009) –hereafter referred to as FO– which is the closest to our approach. In line 
with the work by Ghosh and Ray (1996), Kranton (1996), or Carmichael and Macleod (1997), 
FO consider an infinitely large population of agents who play the repeated Prisoner’s 
Dilemma and always have the option of voluntary separation and re-match. They conduct a 
thorough static analysis of this voluntarily separable repeated Prisoner’s Dilemma without 
restrictions on the strategy space, other than assuming that individuals do not know the past 
history of their new partners when re-matching, i.e., players can react to any possible history 
of actions taken in their current partnership.6    

FO’s approach and ours are complementary. On the one hand, our strategy space is much 
simpler than theirs but, on the other hand, this purposefully self-imposed restriction allows us 
to analyze the dynamics of the model. To be clear, FO investigate evolutionary stability 
following  a static approach, which leads to a characterization of equilibria under certain 

That paper, therefore, combines conditional dissociation with other strategic considerations and hence does not 
provide a sharp understanding of that mechanism. See below a similar point concerning related literature. 
5 Further interesting examples where conditional dissociation or an exit option has been shown to promote 
cooperation in networks are Pacheco et al. (2006), Santos et al. (2006) and, in experimental studies, Boone and 
Macy (1999), Coricelli et al. (2004), or Hauk and Nagel (2001). Also related is the study of continuous-action 
social dilemmas where there is a co-evolution of a player’s level of contribution to the partnership and the 
minimum contribution she requires from her partner in order not to break the partnership (McNamara et al., 
2008; Sherratt and Roberts, 1998). 
6 In a recent independent paper, Fujiwara-Greve and Okuno-Fujiwara (2012) consider whether cooperation can 
be supported by immediate voluntary separation alone. Even allowing for other more general strategies, they find 
that such support of cooperation is possible (in a neutrally stable configuration), provided entrants are restricted 
to being trust-building equilibrium entrants in the sense of Swinkels (1992). We elaborate further on this 
question in section 6 of this paper, where we discuss different issues of robustness. 
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idealized conditions (including, among others, the assumption of infinite populations and a 
strict separation between the timescales at which selection and mutation operate). While the 
static analysis provides very useful insights, its results cannot be directly applied to any real 
system –for which, by definition, some of the idealized hypotheses do not apply. Perhaps 
more importantly, the static analysis is silent about the tendency of the evolutionary process to 
gravitate towards one equilibrium or another, about the effect of initial conditions on the 
dynamic path followed by the system and on its end points (Huttegger and Zollman, 2013), 
about the possible transitions that may occur among different equilibria over time, or about 
the effect that mutation may have on the displacement or even the existence of dynamic 
attractors. These are some of the aspects that we address in our analysis.  

The rest of the paper is organized as follows. First, in Section 2, we provide a detailed 
description of the evolutionary process on a given finite population. Next, in Section 3, we 
conduct some exploratory computer simulations that anticipate and illustrate our main 
conclusion, namely, that the system is able to support a high-cooperation regime if, and only 
if, individuals’ expected lifetime is long enough. The following two sections summarize the 
main theoretical analysis of the model. In Section 4 we carry out a static analysis that follows 
the approach undertaken in FO. As explained, this static analysis provides candidate centers 
of attraction for the dynamics of the process under some limiting conditions. In particular, we 
identify (a) the set of Nash equilibria of an underlying population game and (b) the subset of 
Nash equilibria that are neutrally stable.  

Section 5 contains the core of our analysis. In it we conduct a dynamic analysis of the system 
and show that its behavior is well captured by the mean dynamics (Sandholm, 2010), 
particularly in terms of convergence to one of two possible attractors (a defective one and a 
partially cooperative one). The location and characteristics of these attractors are determined 
for different mutation rates. We find that a comparative analysis on the effect of the 
parameters of the model is fully in line with intuition, i.e. both the basin of attraction of the 
cooperative attractor and the extent of cooperation it displays grow with the expected lifetime 
of individuals. In Section 6 we discuss the robustness of our results to changes in two 
notorious simplifying assumptions of our model, namely the limited size of the strategy space 
and the absence of matching friction.  

The paper ends in Section 7 with the conclusions. For the sake of smooth exposition, the 
detailed proofs of our results are relegated to Appendix A, while in Appendix B we study a 
variation of the model that includes matching friction. This latter appendix confirms that none 
of our conclusions are affected if the re-matching mechanism allows for either some delay 
and/or some outside payoff. 

2. The model 
We consider an evolutionary model of conditional dissociation where a finite population of 
individuals interact in pairs in every period to play a Prisoner’s Dilemma. Their strategies 
have three components. The first component X1 ∈ {C, D} determines whether the individual 
is a cooperator or a defector in all of his interactions. The second component X2 ∈ {L, S} 
specifies whether he leaves or stays with his current partner after the latter has cooperated, 
while the third component X3 ∈ {L, S} specifies an analogous choice after the current partner 
has defected. Overall, such a range of behavior gives rise to a strategy set 𝚲 consisting of 
eight possible strategies for each individual, X1X2X3 ∈ {C, D} × {L, S}2. 
We formulate the model in discrete time. Within each period, the following sequence of 
events takes place in order: 
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1. The individuals who enter the period being single are randomly matched in pairs to form 
new partnerships, while the rest continue to interact with their previous partners. 

2. The pair of individuals involved in each partnership play a Prisoner’s Dilemma. Each of 
them chooses his action (C or D) as determined by the first component of their respective 
strategy. They then obtain their corresponding payoff, as follows: if both cooperate, they 
receive R (Reward); if both defect, P (Punishment); if one cooperates and the other 
defects, the cooperator obtains S (Sucker) and the defector obtains T (Temptation). As 
usual, the aforementioned payoffs are assumed to satisfy T>R>P>S≥ 0. 

3. Each individual independently decides whether to stay in his current partnership or leave 
(S or L), as prescribed by the two last components of his strategy –i.e., by the second 
component if the partner has cooperated, or by the third component if the partner has 
defected. If an individual chooses to leave, his current partnership is broken and both 
players involved in it move to the pool of singles.  

4. Every individual dies with probability (1-δ) –a stochastically independent event across 
individuals. Hence δ is the one-step survival rate, which leads to an individual’s expected 
lifetime given by f = (1-δ)-1. If only one individual in a partnership dies, his partner enters 
the pool of singles.  

5. Dead individuals are immediately replaced by new entrants. (Thus, for simplicity, the size 
of the population remains constant, but this assumption is inessential.) The entrants 
independently copy the decision rules of the individuals who played the game in the 
current period; the probability that any particular individual’s strategy will be copied is 
proportional to the individual’s payoff in the current period –“reproductive fitness,” 
therefore, is proportional to payoffs. There is, however, a small probability µ of 
“mutation” for every entrant, in which case his strategy becomes equal to any particular 
strategy 𝑠 ∈ 𝚲 with probability ms > 0. Naturally, entrants are temporarily placed in the 
pool of singles. 

The process described above defines a stochastic Markov process in which the state of the 
system can be chosen to be the number of partnerships that display each possible strategy pair 
{𝑠,𝑠′} after the matching has taken place (i.e. right after stage 1 above). Our analysis will 
focus on studying the fraction of strategies of each type that prevail in the long run. As 
advanced, a prominent role will be played by the strategy CSL that prescribes cooperative 
behavior and has the individual stay with his partner if and only if the latter also cooperates. 
This strategy embodies the intuitive idea of “cooperative conditional dissociation”.7 

3. Some illustrative simulations 
In this section we illustrate the essential features of the model through some representative 
parameterizations. The model requires specifying the following set of parameters: the 
population size N, the payoffs in the game, the one-step survival probability 𝛿 (or, 
equivalently, the expected lifetime f), the probability of mutation 𝜇 ∈ [0,1], and the 
probabilities ms of mutating to each strategy s. As a typical case for medium or large 
populations, we show results for N = 400, [T = 4, R = 3, P = 1, S = 0], 𝜇 = 0.05 and ms = 1/8.  
Let xCC be the fraction of CC outcomes, or “level of cooperation,” and let us define xDD and 
xCD similarly. Simulations of this process for short expected lifetimes (f < 8) present a quick 
evolution towards a situation where the level of cooperation is almost null (xCC ≈ 0, while xDD 

7 Note that models confronting strategies where dissociation is not allowed (i.e. CSS vs. DSS), or where 
dissociation is not conditional (i.e., including CLL and DLL), cannot lead to any degree of cooperation. 
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is close to 1) –i.e., a non-cooperative regime is reached, as displayed in Fig. 1. The reader can 
replicate all simulation results presented in this paper by using the applet provided in the 
supplementary material. 

 
Fig. 1. Evolution of the fraction of CC outcomes for 8 different runs with short expected lifetime (f = 5), each 
run starting with the whole population using one of the 8 different strategies. Parameterization: N = 400, T = 4, R 
= 3, P = 1, S = 0, µ = 0.05, ms = 1/8. 

In stark contrast, for long expected lifetimes (f > 30), and after some periods of adjustment, 
the simulations evolve towards a situation with a significant level of cooperation –i.e. a 
cooperative regime–, as displayed in Fig. 2. We show below that the level of cooperation xCC 
in this cooperative regime can be well approximated by a reference value xCC

*
  that is 

calculated from the mean dynamics equations provided in Section 5. The most prevalent 
strategies at this polymorphic regime are CSL and DSL, followed by DLL. 

 

 
Fig. 2. Evolution of the fraction of CC outcomes for 8 different runs with long expected lifetime (f = 50), each 
run starting with the whole population using one of the 8 different strategies. Parameterization: N = 400, T = 4, R 
= 3, P = 1, S = 0, µ = 0.05, ms = 1/8. 
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To gain intuition on the dynamic competition among strategies taking place in the simulation 
runs summarized in Fig. 2, consider Fig. 3, which shows the evolution of each strategy share 
in one representative run starting with the whole population using strategy CSS.  

 
Fig. 3. Evolution of the fraction of individuals using each strategy in one representative run with long expected 
lifetime (f = 50), starting with the whole population using strategy CSS. Parameterization: N = 400, T = 4, R = 3, 
P = 1, S = 0, µ = 0.05, ms = 1/8. 

The initial population of naïve CSS cooperators is soon invaded by defective strategies –
notably DSL– who are able to exploit CSS without mercy. However, such exploitation cannot 
last long, since naïve cooperators obtain very low payoffs and, consequently, evolutionary 
pressures select against them. As CSS individuals die off, DSL exploiters find it harder to 
thrive, and CSL individuals are then able to take over by avoiding long exploitations (when 
matched with defective strategies) and establishing stable cooperative partnerships mostly 
with each other. 

For intermediate values of the expected lifetime f,  the process typically evolves towards 
either the cooperative or the non-cooperative regime, with possible transitions between them 
(Fig. 4). In general, starting from random conditions, there is an initial tendency of the process 
to approach the non-cooperative regime, but then –especially for high values of f – a transition 
to a longer-lasting cooperative regime often occurs. 

 
Fig. 4. Evolution of the fraction of CC outcomes for 8 different runs with intermediate expected lifetime (f = 20), 
each run starting with the whole population using one of the 8 different strategies. Parameterization: N = 400, T 
= 4, R = 3, P = 1, S = 0, µ = 0.05, ms = 1/8. 
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The time series shown above provide useful insights on the dynamics of the model, but a 
proper understanding of the problem requires a systematic analysis of the model under the 
whole range of possible parameter values. This is what we do in the next two sections. To this 
end, we follow a common approach in the literature and consider limit scenarios for the 
following three key variables: population size N, mutation rate 𝜇, and time t. 8 
Concerning the population size, the analysis focuses on the case where N is very large –that 
is, formally, we maintain the assumption that it can be well approximated by a continuum. 
Then, concerning the other two variables, 𝜇 and t, we conduct two different limit exercises. 
First, in Section 4, we focus our analysis on the stationary states that may prevail in the 
asymptotic time limit, under the implicit assumption that the mutation rate 𝜇 is positive but 
infinitesimally small. Formally, this amounts to considering those stationary configurations of 
the mutation-free dynamics that are evolutionarily robust to some infrequent mutation (see 
below for a formal definition). As already explained, this exercise is inherently static. 
Therefore, in Section 5 we turn our attention to the study of the evolutionary dynamics in full 
interplay with the mutation process. This is done through the study of a set of mean dynamics 
equations where the processes of selection and mutation operate on the same time scale (with 
the latter working at a rate that can be small but is always positive).  

4. Static analysis 
Our static analysis of the model is based on the concepts and results developed by FO, 
suitably adapted to our context. This involves, in particular, the restriction to our strategy 
space 𝚲, which rules out the possibility that individuals may display any action plasticity 
when playing the Prisoner’s Dilemma with a given partner. Specifically, this implies that in 
the matching stage the stationary strategy distributions in the pool of singles are of the form 
𝒙 ∈ 𝒫(𝚲), where 𝒫(𝚲) denotes the set of all strategy distributions in our model (which 
coincides with the 7-simplex; thus we may make 𝒫(𝚲) ≡ Δ7).  

Given any such distribution 𝒙  assumed to be stationary, one can define the average payoff 
𝜋�𝑠(𝒙) obtained by any given strategy 𝑠 ∈ 𝚲. On the basis of these payoffs, FO define the 
concepts of Nash Distribution (ND) and Neutrally Stable Distribution (NSD), whose 
counterpart in our case can be defined as follows:  

 

Definition 1. Nash Distribution (ND) A stationary strategy distribution in the matching pool 
𝒙 ∈ 𝒫(𝚲) is a Nash Distribution if for all 𝑠 ∈ 𝑠𝑢𝑝𝑝(𝒙) and 𝑠′ ∈ 𝚲, 

𝜋�𝑠(𝒙) ≥ 𝜋�𝑠′(𝒙) 

 

Definition 2. Neutrally Stable Distribution (NSD) A stationary strategy distribution in the 
matching pool 𝒙 ∈ 𝒫(𝚲) is a Neutrally Stable Distribution if, for any 𝑠′ ∈ 𝚲, there exists 
𝜀̅ ∈ (0,1) such that for any 𝑠 ∈ 𝑠𝑢𝑝𝑝(𝒙) and any 𝜀 ∈ (0, 𝜀)̅, 

𝜋�𝑠�(1 − 𝜀)𝒙 + 𝜀𝒔′� ≥ 𝜋�𝑠′�(1 − 𝜀)𝒙 + 𝜀𝒔′� 

where 𝒔′ ∈ 𝒫(𝚲) is the strategy distribution consisting only of strategy 𝑠′. 

8 It is well understood that, in evolutionary models, the order in which these limits are taken often leads to 
fundamentally different conclusions (see Beggs, 2002; Binmore and Samuelson, 1997; Binmore et al., 1995; 
Sandholm, 2010). Thus, in general, the particular order being chosen must depend on the specific question being 
posed and the right theoretical framework to address it. 
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Using these concepts, we prove the following results for our model (see Appendix A): 

 

Proposition 1. Assume 𝛿 > 0 and let   

𝛿𝑀𝑖𝑛 =
�(𝑅 − 𝑆)(𝑃 − 𝑆) + �(𝑇 − 𝑅)(𝑇 − 𝑃)

𝑇 − 𝑆
< 1 

𝜓 = 𝑃 + 𝑅 − 2𝑃𝛿2 + (𝑆 + 𝑇)(−1 + 𝛿2) 
Then, the set of all Nash distributions can be characterized as follows: 

a) If 𝛿 < 𝛿𝑀𝑖𝑛, it consists of all strategy distributions whose support contains defective 
strategies only. 

b) If 𝛿 ≥ 𝛿𝑀𝑖𝑛, it includes both the set of strategy distributions specified in (a), as well as 
the set of partially cooperative distributions where a fraction 𝛼 ∈ (0,1) of the players 
choose CSL and the other (1 − 𝛼) fraction of the players choose DSL and/or DLL, 
with the following two possible values for 𝛼: 

𝛼 =
1

2(𝑇 − 𝑃)𝛿2
(𝜓 ±  �𝜓2 − 4(𝑇 − 𝑃)𝛿2(𝑃 − 𝑆)(1 − 𝛿2)) 

 

Proposition 2. Let 𝛿𝑀𝑖𝑛 be defined as in Proposition 1. Among the Nash Distributions 
identified there, the subset of Neutrally Stable Distributions can be characterized as follows. 

a) If 𝛿 ≤ 𝛿𝑀𝑖𝑛, it consists of all strategy distributions whose support contains defective 
strategies only. 

b) If 𝛿 > 𝛿𝑀𝑖𝑛, it includes both the set of strategy distributions specified in (a), as well as 
the set of partially cooperative distributions where a fraction 𝛼 ∈ (0,1) of the players 
choose CSL and the other (1 − 𝛼) fraction of the players choose DSL and/or DLL, 
where 𝛼 is given by: 

𝛼 =
1

2(𝑇 − 𝑃)𝛿2
(𝜓 +  �𝜓2 − 4(𝑇 − 𝑃)𝛿2(𝑃 − 𝑆)(1 − 𝛿2)) 

The level of cooperation xCC given by the fraction of cooperating pairs is xCC = 0 in case (a), 
whilst at the partially cooperative NSDs it is given by: 

𝑥cc =
𝛼2

1 − 𝛿2(1− 𝛼2). 

 

The present (static) evolutionary analysis of the system singles out two sets of NSDs –a non-
cooperative equilibrium set and a partially cooperative one– and characterizes the level of 
cooperation in each of them. As we will show in the next section, these two sets of equilibria 
constitute the centers of attraction for the dynamics of our system if the mutation rate is small 
(under the maintained assumption that the population is very large). This will represent the 
first step in our dynamic analysis. Building on it, our objective will be to shed light on the 
following two important respects: 

i) The behavior of the system over time. Specifically, we shall provide the closed-form 
equations that approximate the dynamics of the system from its initial conditions to its long-
run behavior in a continuous fashion.  

9 
 



ii) The impact of mutation on the existence, location, and strategy composition of the centers 
of attraction. In general, it is clear that, if mutation is not truly negligible, some of the NSDs 
may constitute a poor approximation of the regimes actually displayed by our system. To 
illustrate this possibility, consider for instance the simulations depicted in Fig. 2, which were 
conducted for a mutation rate 𝜇 = 0.05. There we find that for large values of the expected 
lifetime, the non-cooperative NSD becomes a very poor predictor of the long-run behavior of 
the process, even if the system departs from it and remains for many periods with a very low 
level of cooperation. As a different illustration, refer to the simulations shown in Fig. 4, 
corresponding to the same mutation rate. There we see that the partially cooperative regime 
induces an average level of cooperation xCC = 68%, which contrasts with the predicted level if 
one uses the cooperative NSD (xCC = 86%) for the same expected lifetime. 

In the following section we present an analytical approximation to the dynamics of the system 
that will help address the previous questions. In particular, it will identify the centers of 
attraction and accurately describe the expected behavior of the system over time for any given 
mutation rate 𝜇. We will also show that the limiting rest points of the approximated dynamics 
(as 𝜇 → 0) must correspond to Nash distributions, hence providing a link between the static 
equilibria and the evolutionary dynamics. 

5. Mean dynamics 
As explained before, we may regard the evolutionary process described in Section 2 as a 
Markov chain whose states specify the number of partnerships associated to each possible 
strategy pair right after the matching stage. Given the population size, an equivalent way of 
representing a state of this process is in terms of the vector 𝒑 = [𝑝𝑠,𝑠′] that specifies, for every 
possible pair of strategies 𝑠, 𝑠′ ∈ 𝚲, the fraction 𝑝𝑠,𝑠′ of individuals in the whole population 
who are choosing strategy 𝑠 and are paired with an individual who is choosing strategy 𝑠′. 
Naturally, 𝑝𝑠,𝑠′ = 𝑝𝑠′,𝑠 and ∑ 𝑝𝑠,𝑠′𝑠,𝑠′ = 1, so 𝒑 contains 35 independent variables. 

This is indeed a complicated system to describe and analyze exhaustively. To tackle the 
problem, we shall follow the customary approach of focusing the analysis on its expected 
motion. This gives rise to the so-called mean dynamics, which is expected to be a good 
approximation of the stochastic evolution of the original Markov chain when the population is 
large and the process changes gradually (Sandholm, 2010). 

In essence, the mean dynamics approach is based on the presumption that, since the original 
(finite-state) Markov process embodies a collection of stochastically independent events in 
every period, its mean (deterministic) counterpart can suitably approximate aggregate 
behavior if the population is large. In practice, such a deterministic law of motion is built 
upon an identification of the following pairs of ex ante and ex post magnitudes: 

a) ex ante matching probabilities and ex post frequencies at the pairing stage,  
b) expected number of deaths and average number of deaths for each group of strategists,  
c) ex ante mutation probabilities and ex post frequencies. 

As explained below, such identification allows the formulation of the mean dynamics which, 
at each point in time, reflects the expected motion of the original process.  

As a first step, we start by calculating the expected law of motion for each frequency 𝑝𝑠,𝑠′. To 
do this, we shall find it useful to denote by 𝚽 the set of strategy pairs that induce a stable 
partnership: 

𝚽 = � 〈𝐶𝑆𝑆,𝐶𝑆𝑆〉, 〈𝐶𝑆𝑆,𝐶𝑆𝐿〉, 〈𝐶𝑆𝑆,𝐷𝑆𝑆〉, 〈𝐶𝑆𝑆,𝐷𝑆𝐿〉, 〈𝐶𝑆𝐿,𝐶𝑆𝐿〉,
〈𝐶𝐿𝑆,𝐷𝑆𝑆〉, 〈𝐶𝐿𝑆,𝐷𝑆𝐿〉, 〈𝐷𝑆𝑆,𝐷𝑆𝑆〉, 〈𝐷𝑆𝑆,𝐷𝐿𝑆〉, 〈𝐷𝐿𝑆,𝐷𝐿𝑆〉� 
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and then introduce the corresponding indicator function:  

ϕ𝑠,𝑠′ = �1 if 〈𝑠, 𝑠′〉 ∈ 𝚽
0 if 〈𝑠, 𝑠′〉 ∉ 𝚽

� 

This then allows us to write: 

𝑝𝑠,𝑠′(𝑡 + 1) = ϕ𝑠,𝑠′𝛿2𝑝𝑠,𝑠′(𝑡) + 𝑦𝑠(𝑡) 𝑦𝑠′(𝑡)
𝑦(𝑡)     [1] 

where 𝑦𝑠(𝑡) denotes the fraction of players in the population who are single and choose 
strategy 𝑠 at the end of period t, while 𝑦(𝑡) = ∑ 𝑦𝑠(𝑡)𝑠∈Λ  represents the total fraction of 
singles.  

Now, to compute the fractions of singles 𝑦𝑠(𝑡) prevailing at the end of t for each strategy s, 
we need information on the payoffs earned by the different strategies. Let 𝜋(𝑠, 𝑠′) stand for 
the stage payoff obtained by strategy 𝑠 ∈ 𝚲 in a partnership with strategy 𝑠′ ∈ 𝚲, and denote 
by 𝜋�𝑠(𝒑) = 1

𝑝𝑠
∑ 𝑝𝑠,𝑠′𝜋(𝑠, 𝑠′)𝑠′∈𝚲  the average payoff obtained by players choosing 𝑠 ∈ 𝚲 

under 𝒑 –here, for expositional simplicity, we assume that 𝑝𝑠 = ∑ 𝑝𝑠,𝑠′𝑠′∈𝚲 > 0 for all 𝑠 ∈ 𝚲. 
Further denote by 𝜋�(𝒑) = ∑ 𝑝𝑠 · 𝜋�𝑠(𝒑)𝑠∈𝚲  the average payoff earned by individuals across the 
whole population. Then, within the mean dynamics framework, the fractions 𝑦𝑠(𝑡) can be 
computed as follows (dispensing with the explicit dependence on t from the right-hand side): 

𝑦𝑠(𝑡) = (1 − 𝛿) �(1 − 𝜇) 𝑝𝑠𝜋�𝑠(𝒑)
𝜋�(𝒑) + 𝜇 𝑚𝑠� + 𝛿2 ∑ �1 −ϕ𝑠,𝑖�𝑝𝑠,𝑖𝑖∈Λ + 𝛿(1 − 𝛿)𝑝𝑠  [2] 

where each of the terms in the right-hand side of [2] corresponds in turn to: 

1. newborn 𝑠-strategists; 
2. surviving 𝑠-strategists involved in broken partnerships where the partner also survived; 
3. surviving 𝑠-strategists whose partner died (regardless of whether the partnership was stable 

or not).   

A combination of [1] and [2] also allows us to find an expression for the expected motion of 
the population frequency of each strategy 𝑠 (again, dependence on t is omitted on the right-
hand side): 

𝑝𝑠(𝑡 + 1) = � 𝑝𝑠𝑗(𝑡 + 1)
𝑗∈Λ

= � �ϕ𝑠,𝑗𝛿2𝑝𝑠,𝑗 + 𝑦𝑠
𝑦𝑗
𝑦
�

𝑗∈Λ
= 𝛿2� ϕ𝑠,𝑗𝑝𝑠,𝑗

𝑗∈Λ
+
𝑦𝑠
𝑦
� 𝑦𝑗

𝑗∈Λ
= 

= 𝛿2� ϕ𝑠,𝑗𝑝𝑠,𝑗
𝑗∈Λ

+ (1 − 𝛿) �(1 − 𝜇)
𝑝𝑠𝜋�𝑠
𝜋�

+ 𝜇 𝑚𝑠� + 𝛿2� �1 − ϕ𝑠,𝑖�𝑝𝑠,𝑖
𝑖∈Λ

+ 𝛿(1 − 𝛿)𝑝𝑠 = 

= 𝛿2 ∑ 𝑝𝑠,𝑗𝑗∈Λ + (1 − 𝛿) �(1 − 𝜇) 𝑝𝑠𝜋�𝑠
𝜋�

+ 𝜇 𝑚𝑠� + 𝛿(1 − 𝛿)𝑝𝑠 = 𝛿𝑝𝑠 + (1 − 𝛿) �(1 − 𝜇) 𝑝𝑠𝜋�𝑠
𝜋�

+ 𝜇 𝑚𝑠�. 

For analytical convenience, we shall treat time as a continuous variable, conceiving such a 
continuous-time setup as the limit of one in discrete time with a period length 𝜏 ∈ (0,1] that 
becomes infinitesimally small. Naturally, in this exercise we assume that in a time interval of 
length 𝜏 only a corresponding fraction 𝜏 of individuals are drawn to go through the entire 
sequence of events listed above. Formally, this amounts to reformulating the expressions in 
[1] as follows: 

𝑝𝑠,𝑠′(𝑡 + 𝜏) = (1 − 𝜏)𝑝𝑠,𝑠′(𝑡) + 𝜏 �ϕ𝑠,𝑠′𝛿2𝑝𝑠,𝑠′(𝑡) + 𝑦𝑠(𝑡)
𝑦𝑠′(𝑡)
𝑦(𝑡)

� 

or 
𝑝𝑠,𝑠′(𝑡+𝜏)−𝑝𝑠,𝑠′(𝑡)

𝜏
= ϕ𝑠,𝑠′𝛿2𝑝𝑠,𝑠′(𝑡) + 𝑦𝑠(𝑡) 𝑦𝑠′(𝑡)

𝑦(𝑡) − 𝑝𝑠,𝑠′(𝑡). 
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Accounting now for the fact that the period length is taken to become infinitesimally small, 
we take the limit 𝜏 → 0 in the expression above and obtain 

𝑑𝑝𝑠,𝑠′(𝑡)
𝑑𝑡

= ϕ𝑠,𝑠′𝛿2𝑝𝑠,𝑠′(𝑡) + 𝑦𝑠(𝑡) 𝑦𝑠′(𝑡)
𝑦(𝑡) − 𝑝𝑠,𝑠′(𝑡).   [3] 

The introduction of [2] into [3] gives rise to a system of differential equations in 𝒑 = [𝑝𝑠,𝑠′] 
that defines a continuous-time mean dynamics that approximates the original discrete-time 
stochastic evolutionary process described in Section 2. Such a dynamical system on the 
frequencies of strategy pairs can easily be seen to lead to an aggregate dynamics on the 
marginal frequencies of individual strategies given by 

𝑑𝑝𝑠(𝑡)
𝑑𝑡

= (1 − 𝛿)�(1 − 𝜇) 𝑝𝑠(𝑡)𝜋�𝑠(𝒑)
𝜋�(𝒑) + 𝜇 𝑚𝑠 − 𝑝𝑠(𝑡)� .               [4] 

As a preliminary step in our dynamic analysis, it is interesting to compare the stationary 
points of [4] with the game-theoretic equilibrium notions considered in the previous section.9 
Naturally, to carry out this comparison in a meaningful manner, we must consider a context 
where the mutation rate µ is small (albeit positive), i.e., we focus on configurations that are 
labeled limit stationary states. Mathematically, these are identified with the limit of a 
sequence of stationary states obtained as 𝜇 → 0 (see Samuelson, 1997), and constitute a strict 
subset of the stationary states for 𝜇 = 0. (As an example, the cooperative monomorphic 
distributions are stationary states of the mean dynamics with 𝜇 = 0, but they are not limit 
stationary states.) We obtain the following result: 

 

Proposition 3. Assume 𝑚𝑠 > 0 ∀𝑠 ∈ 𝚲.  A limit stationary state 𝒑∗ of the mean dynamics 
induces a stationary strategy distribution in the matching pool, 𝒙∗ ∈ ∆𝟕, that is a Nash 
Distribution. 
 

This result implies that, in striving to identify the long-run predictions of the dynamic process 
for low mutation rates in large populations, it is enough to restrict attention to those stationary 
states that induce Nash Distributions in the matching pool of singles. Intuitively, it can be 
seen as the dynamic counterpart of the result stated in Proposition 2 for the static analysis –i.e. 
in both cases, we find that Nash behavior is a necessary condition for evolutionary stability. 
Now, however, rather than refining Nash equilibrium through a static evolutionary concept 
such as NSD, we shall rely on a genuinely dynamic approach to the problem. Specifically, we 
shall turn our attention to the time paths induced by the mean dynamics on the marginal 
distribution of strategy frequencies, as captured by [4].  

In Figures 5-7 below we present the time paths [𝑝𝑠]𝑠∈Λ for the same parameter values under 
which we conducted the simulations respectively described by Figures 1, 2 and 4 in Section 3. 
We observe that the mean dynamics provide an effective way of smoothly tracing the 
behavior displayed by the simulations under the different parameter configurations 
considered. This illustrates that, as advanced, the (deterministic) mean approach represents a 
useful tool to study the (stochastic) behavior generated by the original evolutionary process 
when the population is large. For a more exhaustive comparison, these two dynamics –the 
mean dynamics and the stochastic evolutionary process– can be compared side by side using 
the applet provided in the supplementary material for any parameter value.   

9 Note that, in contrast with the static approach, here stationarity is not assumed, but derived as a property that 
only a small subset of states display for the explicit dynamics given by equation [4].  
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Fig. 5. Time paths for the fraction of CC outcomes in the mean dynamics equations, for 8 different initial 
conditions with short expected lifetime (f = 5); each path starts with the whole population using one of the 8 
different strategies. Parameterization: T = 4, R = 3, P = 1, S = 0, µ = 0.05, ms = 1/8. 

 
Fig. 6. Time paths for the fraction of CC outcomes in the mean dynamics equations, for 8 different initial 
conditions with long expected lifetime (f = 50); each path starts with the whole population using one of the 8 
different strategies. Parameterization: T = 4, R = 3, P = 1, S = 0, µ = 0.05, ms = 1/8. 

 
Fig. 7. Time paths of the fraction of CC outcomes in the mean dynamics equations, for 8 different initial 
conditions with intermediate expected lifetime (f = 20); each path starts with the whole population using one of 
the 8 different strategies. Parameterization: T = 4, R = 3, P = 1, S = 0, µ = 0.05, ms = 1/8. 
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We now summarize a systematic numerical exploration of the limit behavior induced by the 
mean dynamics equations. We considered different parameterizations [T, R, P, S, µ > 0, ms > 
0] and, for each of them, explored a wide range of different values of the expected lifetime f 
starting from a fine grid of initial conditions 𝒑(𝑡 = 0). This analysis revealed the existence of 
two threshold values for the expected lifetime, f1  and f2, (dependent on the specific 
parameterization) such that: 10 

i) If f < f1, all the trajectories converge to a stationary state characterized by a vanishing 
fraction of CC outcomes (i.e. a value of xCC close to 0) – see Fig. 5. We label such a 
situation the non-cooperative attractor. 

ii) If f1 ≤ f < f2, the trajectories converge either to a non-cooperative stationary state as 
before, or to an alternative one characterized by a high fraction of CC outcomes, which 
we label as the cooperative attractor –see Fig. 7 for an illustration. Denote by xCC

* (f) the 
fraction of cooperating pairs in this attractor, which is a function of the expected life f. 
The higher the value of f, the higher the value of xCC

* (f), as well as the larger it is the 
basin of attraction of the corresponding cooperative attractor (i.e. the set of initial 
conditions from which the dynamical system converges to the cooperative attractor). 

iii)  If f ≥ f2, all trajectories converge to a cooperative attractor, whose fraction of cooperating 
pairs again displays a monotonically increasing relationship with the expected lifetime f – 
see Fig. 6. 

Given that the mean dynamics equations constitute a good (continuous and deterministic) 
approximation of the original evolutionary process, we can use them to uncover interesting 
properties of the original stochastic model. As a particularly interesting example, consider the 
clear-cut mean-dynamics prediction that, when the expected lifetime f renders cooperation 
possible, the system is eventually absorbed by one of two attractors: a non-cooperative 
attractor where the level of cooperation essentially vanishes, and a cooperative attractor 
displaying a well-defined level of cooperation that is uniquely associated to the underlying 
parameters. Does the discrete evolutionary process admit a similarly dichotomous 
categorization of the possible long-run outcomes? In what follows, we confirm that this is 
indeed the case. 

A first conceptual problem in addressing the issue is how to define the counterparts of the 
cooperative and non-cooperative attractors in the discrete evolutionary process where, by its 
stochastic nature, even any aggregate predictions must be subject to some residual noise. To 
this end, we formally define two regimes: a Cooperative Regime (CR) and a Non-Cooperative 
Regime (NCR), each defined in terms of the corresponding attractors as follows. First, for the 
CR, we identify a state in the discrete process to be part of this regime if its level of 
cooperation (measured by the fraction xCC of cooperating pairs) is close to the level xCC

*(f) 
displayed asymptotically by the mean dynamics for the same value of f and the other 
underlying parameters. More specifically, we require that |xCC - xCC

*(f)| < 0.1, where a band 
width amounting to 20% of the population is simply chosen for concreteness. A similar 
approach is undertaken in order to define the NCR for the discrete process, a state being 
defined to lie in the NCR if its fraction xDD of non-cooperating pairs satisfies xDD > 0.8.  

Fig. 8 shows that, even for a moderate population size (N = 400) with regular inflow of 
mutants (µ = 0.05), the categorization of the two regimes in terms of their mean-dynamics 
counterparts is remarkably successful in condensing the actual dynamics of the process for 

10 Focusing, for concreteness, on the representative parameterization of payoffs given by [T = 4, R = 3, P = 1, S = 
0], and setting ms = 1/8, we provide here the values of f1  and f2, for different mutation rates: {µ = 0.05, f1 = 9, f2 
= 38}; {µ = 0.01, f1 = 8, f2 = 182};{µ = 0.001, f1 = 8, f2 > 1000}. 
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every value of the expected lifetime f. The two regimes always span more than 90% of the 
time of the process, and therefore represent a good dichotomous description of its evolution. 
As expected from our mean-dynamics analysis, when the parameter configuration is such that 
the two regimes coexist, their relative importance depends on the expected life. Specifically, 
we find that the NCR completely dominates the long-run behavior of the process for low 
values of f (i.e. f < f1

µ=0.05
 = 9) and then the CR gradually gains time share until the level of f 

= f2
µ=0.05

 = 38, critical value from which the CR essentially becomes fully dominant. 
Heuristically, this can be seen as the reflection of the impact that f has on relative strength 
(depth and size) of the “basins of attraction” of the cooperative and non-cooperative regimes 
(i.e. on the probability that a randomly selected initial condition leads to either of them). 

 

 
Fig. 8. Fraction of periods spent in the Cooperative (CR) and Non-Cooperative (NCR) Regimes as a function of 
the expected lifetime f. The values in each column are compiled over 103 simulation runs. Every run is measured 
between periods 3·103 and 104, with random initial conditions. N = 400, T = 4, R = 3, P = 1, S = 0, µ = 0.05, ms = 
1/8. 

 

A complementary perspective on the issue is provided by Fig. 9, where we compare the level 
of cooperation in the CR obtained in simulations of the original process (Sim) and the 
corresponding level of cooperation induced by the mean dynamics (MD). (For completeness, 
we also include the prediction of the static analysis that is embodied by the NSD concept.) It 
is remarkable that, despite the fact that the band that is used to define the CR for the discrete 
evolutionary process is quite narrow (i.e. xCC

*(f) ± 0.1),  the induced average level of 
cooperation is very well captured by the mean-dynamics prediction, even with mutation rates 
that span an order of magnitude. This observation can be regarded as further evidence that, 
despite the unavoidable noise, the behavior displayed by the discrete process is well anchored 
around the corresponding mean-dynamics predictions.  
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Fig. 9. Level of cooperation in the cooperative regime of the stochastic simulations (Sim) and in the cooperative 
attractor of the mean dynamics (MD) for different values of the expected life and mutation rate µ. The isolated 
points (Sim) correspond to average values computed from simulations of the original stochastic process as in 
Fig. 8. For comparison, we also include the predicted level of cooperation in the cooperative Neutrally Stable 
Distribution (NSD). Parameterization: N = 400, T = 4, R = 3, P = 1, S = 0, ms = 1/8. 

 

Another issue of interest is to understand what strategies support each of the two regimes, 
both in the medium and in the long run. In the medium run, some strategies can play a key 
role as a temporary bridge to attain the regime in question from given initial conditions. 
Instead, in the long run, other strategies can be the ones needed to sustain the regime in a 
stationary manner (recall the dynamics shown in Fig. 3). Again, the mean dynamics can be 
used to shed light on this issue and hence clarify the results obtained in actual 
implementations of the original stochastic process. For the Cooperative Regime CR, we find 
that a typical path of the mean dynamics is as shown in Fig. 10. Initially, in a heterogeneous 
population, defection gains population share through sophisticated defectors (i.e. those who, 
by playing the strategy DSL, exploit naïve cooperators by staying with them, but immediately 
quit other defectors.) But this adaptation eventually saturates and self-imposes a bound on 
how much it can profit from such a behavior. At this point, sophisticated cooperators (who 
stay with cooperators but abandon defectors) take over and dominate in the long run, at the 
induced steady state.   
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Fig. 10. Time paths of the fraction of individuals using each strategy in one run of the mean dynamics equations 
starting from initial conditions where the 8 strategies are equally represented, and converging to the cooperative 
attractor. Parameterization: f = 20, T = 4, R = 3, P = 1, S = 0, µ = 0.01, ms = 1/8. 

 

Concerning such long-run cooperative behavior, it is interesting to see how the strategy 
profile at the cooperative attractor depends on the parameters of the model –most importantly, 
on the expected lifetime. Fig. 11 shows the distribution of strategies in the cooperative 
attractor of the MD when µ = 0.01, under different values of the expected lifetime f. The 
analogous figure for the discrete evolutionary process is basically identical, so we do not 
include it here. We see that there is a clear predominance of CSL, followed by DSL and DLL. 
Thus, as illustrated also in Fig. 10, the simple and intuitive strategy that stays with a 
cooperator but abandons a defector is the key cornerstone on which cooperation is sustained 
in the CR across all relevant values of the expected lifetime f. In contrast, for the non-
cooperative regime, all the defective strategies can be found, with a predominance of DSL in 
general. When defection is the dominant behavior, no significant differences in behavior 
follow from alternative defection-based strategies. 

 

 
Fig. 11. Composition of strategies in the cooperative attractor. Parameterization: T = 4, R = 3, P = 1, S = 0, µ = 
0.01, ms = 1/8. 
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6. Robustness 
In this section, we discuss the robustness of our results to changes in two prominent 
simplifying features of our model, i.e. the assumption of immediate re-matching and the 
limited size of our strategy space. While we clarify that introducing re-matching frictions 
would not affect the gist of our analysis, the limits imposed on the strategy space are 
explained to be essential. In fact, we argue that some such limits are unavoidable if one wants 
to find a compromise between non-existence and wide-range multiplicity. In this sense, our 
sharp limitation to strategies that focus on dissociation alone appears a natural choice to 
achieve the aim of our analysis. 

Let us consider first the specification of the matching mechanism operating in every period. 
Our simplifying assumption in this respect has been that the players who enter the pool of 
singles are immediately re-matched, i.e. there are no delay frictions in finding a partner. In 
general, it may be natural to posit that not all players in the pool of singles are re-matched 
with probability one every period and that, when single players remain unmatched, they 
receive only a relatively low payoff. Would this variation reduce the level of cooperation? In 
Appendix B we show that this is not the case; intuitively, note that defectors tend to suffer a 
greater number of separations, and thus incur in higher re-matching costs. Hence the model 
happens to be robust to the consideration of those matching frictions. 

Turning now to extensions on the strategy space, let us discuss the static stability of 
distributions in the unrestricted strategy space. First of all, it should be noted that the partially 
cooperative regime composed by strategies CSL, DSL and DLL is not robust to entrants of any 
complexity; to be precise, it does not constitute a NSD in the unrestricted strategy space. 
Consider, for instance, the so-called 1-period trust-building strategy C1, which starts 
defecting, keeps the partnership if and only if its partner also defects in their first interaction, 
and from then onwards stays and cooperates indefinitely if and only if its partner also 
cooperates –otherwise it leaves (Fujiwara-Greve and Okuno-Fujiwara, 2009). Following the 
arguments put forward by FO (2009, pg. 1005), it can be shown that the deviation made by C1 
is profitable when compared with DSL and DLL, i.e. C1 can always invade the (1 − 𝛼) share 
of DSL-DLL (Fujiwara-Greve and Okuno-Fujiwara, 2012).11 Elaborating upon this idea, we 
next show that any reasonably strong result on stability within this framework will require 
some constraints on the strategy space. 

In the unrestricted space of strategy distributions with finite support, we prove in Appendix 
A.6 that if the expected life is sufficiently long, no strategy distribution can be Robust Against 
Indirect Invasions (RAII; van Veelen, 2012), consequently precluding any other stronger 
stability concept such as evolutionary stability.12,13 In other words, there is always a chain of 
neutral mutants that can open the door to an invasion. Consequently, the situation in the 
unrestricted framework with an option to leave is analogous to that pointed out by van Veelen 
& García (2010) for the standard iterated prisoner’s dilemma: if the discount factor or 
continuation probability is large enough, every equilibrium can be upset, either by a mutant –

11 Clearly, if other restrictions on the strategy space are considered, this equilibrium can regain certain stability. 
For instance, Fujiwara-Greve and Okuno-Fujiwara (2012) show that the equilibrium formed by CSL and DLL 
constitutes an evolutionarily stable distribution under trust-building equilibrium entrants, in the sense of 
Swinkels (1992). 
12 The set of strategy distributions with finite support is the set of distributions in which the number of pure 
strategies that can be played is finite. In particular, this set includes all strategies distributions made up of a finite 
number of mixed strategies with finite support. 
13 Robustness against indirect invasion is a stability criterion that is weaker than evolutionary stability and 
stronger than neutral stability (van Veelen, 2012). 
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if the equilibrium is not neutrally stable–, or by a succession of mutants –if it is neutrally 
stable. 

Focusing on the weaker stability concept of NSDs, the nonexistence situation is reversed in 
the sense that there are an infinite number of such distributions. In particular, FO identify a 
family of NSDs made up of the so-called trust-building strategies, though many of these 
equilibria have been shown not to be robust to within-partnership mixed strategy entrants 
(Vesely & Yang, 2012).14 

7. Conclusion 
Our model shows that, in contexts where agents have some control over the continuation of 
their partnerships, even the simplest form of conditional dissociation can induce cooperation 
in the Prisoner’s Dilemma through the operation of the standard evolutionary forces (selection 
and mutation). The “disciplinary mechanism” that constrains the spread of defection in this 
context is simply the possibility of terminating a relationship with a defecting party. And this 
abandonment acts as enough punishment because, when the system is in a Cooperative 
Regime (CR), the proportion of defectors in the pool of singles is much greater than the 
proportion of defectors in the population. 

All the cooperative strategies present at significant levels in the CR are non-exploitable in the 
sense that they immediately leave a defecting partner. Defectors, therefore, are almost 
constantly changing partner, while pairs of cooperators usually remain together for much 
longer, thus generating some positive assortment. Heuristically, the role of this phenomenon 
is to introduce some endogenous adverse-selection, analogous to the classical Gresham’s law 
(Rolnick and Weber, 1986) –i.e., worn-out, torn, or generally low-quality notes are found 
mainly in circulation, whilst notes that are in better shape are preferentially kept in wallets 
and safes. Similarly, in the CR the pool of singles concentrates a higher than average 
proportion of defectors (i.e. low-quality individuals), often “in circulation”, while cooperators 
(i.e. high-quality partners) are mainly found playing in stable couples within a largely separate 
segment of the “market.” 

When strategies of any complexity are allowed, it turns out that there is no finite distribution 
that is robust against indirect invasions. In other words, given any finite distribution, one can 
always find a sequence of neutral mutant distributions (or mixed strategies) that can open the 
door to a full invasion. 
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Appendix A. Proofs 
Appendix A is organized as follows: 

A.1. Notation and definitions 

A.2. Lemma 1 

A.3. Proof of Proposition 1 

A.4. Proof of Proposition 2 

A.4.a. Strategy distributions whose support contains defective strategies only 

A.4.b. Partially cooperative ND 𝑥𝛼,𝛽 where a fraction 𝛼 ∈ (0,1) of the players are CSLs 

A.4.c. The level of cooperation at the partially cooperative NSDs 

A.5. Proof of Proposition 3 

A.6. Nonexistence of RAII distributions 

A.6.a. Introduction 

A.6.b. Definition (Evolutionarily equal and better performers). 

A.6.c. Definition (RAII distributions). 

A.6.d. Proposition 4. 

 

A.1. Notation and definitions  
Strategies. Let 𝚲 be the set of possible strategies, 𝚲𝐂 ≡ {𝐶𝑆𝑆,𝐶𝑆𝐿,𝐶𝐿𝑆,𝐶𝐿𝐿} the set of 
cooperative strategies, and 𝚲𝐃 ≡ {𝐷𝑆𝑆,𝐷𝑆𝐿,𝐷𝐿𝑆,𝐷𝐿𝐿} the set of defective strategies. Let  𝚽 
denote the set of stable strategy pairs, and ϕ𝑠,𝑠′ the corresponding indicator function, as 
defined in Section 5. Let 𝒫(𝚲) be the set of all strategy distributions in the population. 

Expected Partnership Length. Let 𝐿(𝑠, 𝑠′) be the expected length of the partnership of 
𝑠 ∈ 𝚲 and 𝑠′ ∈ 𝚲, measured in number of periods. Note that 𝐿(𝑠, 𝑠′) = �1 − ϕ𝑠,𝑠′𝛿

2�
−1

. 

Average payoff at stationary distributions. Let 𝑥𝑖 denote the share of individuals with 
strategy 𝑖 ∈ 𝚲 in the matching pool. Let 𝒙 = {𝑥𝑖}𝑖∈Λ ∈ 𝒫(𝚲) be a stationary strategy 
distribution in the matching pool. Then, the average payoff 𝜋�𝑠(𝒙) obtained by strategy s in a 
stationary strategy distribution 𝒙 is (Fujiwara-Greve and Okuno-Fujiwara, 2009): 

𝜋�𝑠(𝒙) =
∑ 𝑥𝑖𝑖∈𝚲 · 𝐿(𝑠, 𝑖) · 𝜋(𝑠, 𝑖)

∑ 𝑥𝑖 · 𝐿(𝑠, 𝑖)𝑖∈𝚲
 

where 𝜋(𝑠, 𝑖) is the per-period payoff obtained by strategy s in a partnership with strategy 𝑖.  
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A.2. Lemma 1 
Lemma 1 formalizes the intuitive notion that it is best to stay with cooperators and leave 
defectors. 

Lemma 1. Let 𝒙 ∈ 𝒫(𝚲) be a stationary strategy distribution in the matching pool. Then, for 
every 𝑠𝐶 ∈ 𝚲𝐂 and every 𝑠𝐷 ∈ 𝚲𝐃: 

𝜋�𝐶𝑆𝐿(𝒙) ≥ 𝜋�𝑠𝐶(𝒙);  𝜋�𝐷𝑆𝐿(𝒙) ≥ 𝜋�𝑠𝐷(𝒙) 

Furthermore, if 𝒙 ∈ int(𝒫(𝚲)), then for every 𝑠𝐶 ≠ 𝐶𝑆𝐿 and every 𝑠𝐷 ≠ 𝐷𝑆𝐿: 

𝜋�𝐶𝑆𝐿(𝒙) > 𝜋�𝑠𝐶(𝒙);  𝜋�𝐷𝑆𝐿(𝒙) > 𝜋�𝑠𝐷(𝒙). 

Proof of Lemma 1 
Note that for strategy distribution in the matching pool 𝒙 ∈ ∆7, every 𝑠𝐶 ∈ 𝚲𝐂 and every 
𝑠𝐷 ∈ 𝚲𝐃: 

𝜋�𝑠𝐶(𝒙) = 𝑅
∑ 𝑥𝑖 · 𝐿(𝑠𝐶 , 𝑖)𝑖∈𝚲𝐂
∑ 𝑥𝑖 · 𝐿(𝑠𝐶 , 𝑖)𝑖∈𝚲

+ 𝑆
∑ 𝑥𝑖 · 𝐿(𝑠𝐶 , 𝑖)𝑖∈𝚲𝐃
∑ 𝑥𝑖 · 𝐿(𝑠𝐶 , 𝑖)𝑖∈𝚲

 

𝜋�𝑠𝐷(𝒙) = 𝑇
∑ 𝑥𝑖 · 𝐿(𝑠𝐷 , 𝑖)𝑖∈𝚲𝐂
∑ 𝑥𝑖 · 𝐿(𝑠𝐷, 𝑖)𝑖∈𝚲

+ 𝑃
∑ 𝑥𝑖 · 𝐿(𝑠𝐷 , 𝑖)𝑖∈𝚲𝐃
∑ 𝑥𝑖 · 𝐿(𝑠𝐷 , 𝑖)𝑖∈𝚲

 

Let 𝑥𝐶(𝑠;𝒙) and 𝑥𝐷(𝑠;𝒙) be defined as follows: 

𝑥𝐶(𝑠;𝒙) =
∑ 𝑥𝑖·𝐿(𝑠,𝑖)𝑖∈𝚲𝐂
∑ 𝑥𝑖·𝐿(𝑠,𝑖)𝑖∈𝚲

  𝑥𝐷(𝑠;𝒙) =
∑ 𝑥𝑖·𝐿(𝑠,𝑖)𝑖∈𝚲𝐃
∑ 𝑥𝑖·𝐿(𝑠,𝑖)𝑖∈𝚲

= 1 − 𝑥𝐶(𝑠;𝒙) 

𝑥𝐶(𝑠;𝒙) can be interpreted as the expected fraction of one-shot game interactions where the 
partner of an 𝑠-strategist will cooperate, and 𝑥𝐷(𝑠;𝒙) can be interpreted as the expected 
fraction of one-shot game interactions where the partner will defect. 

Note that for every 𝑠𝐶 , 𝑠𝐶′ ∈ 𝚲𝑪 and every 𝑠𝐷 , 𝑠𝐷′ ∈ 𝚲𝑫: 

𝐿(𝐶𝑆𝐿, 𝑠𝐶′ ) ≥  𝐿(𝑠𝐶 , 𝑠𝐶′ ); 𝐿(𝐶𝑆𝐿, 𝑠𝐷′ ) ≤  𝐿(𝑠𝐶 , 𝑠𝐷′ ); 

𝐿(𝐷𝑆𝐿, 𝑠𝐶′ ) ≥  𝐿(𝑠𝐷 , 𝑠𝐶′ ); 𝐿(𝐷𝑆𝐿, 𝑠𝐷′ ) ≤  𝐿(𝑠𝐷 , 𝑠𝐷′ ); 

Also, for every 𝑠𝐶 ∈ 𝚲𝑪, 𝑠𝐶 ≠ 𝐶𝑆𝐿, there exists a strategy 𝑠(𝐶𝑆𝐿, 𝑠𝐶) ∈ 𝚲 such that: 

{ 𝑠(𝐶𝑆𝐿, 𝑠𝐶) ∈ 𝚲𝑪 AND 𝐿(𝐶𝑆𝐿, 𝑠(𝐶𝑆𝐿, 𝑠𝐶)) >  𝐿(𝑠𝐶 , 𝑠(𝐶𝑆𝐿, 𝑠𝐶)) } 
OR 
{ 𝑠(𝐶𝑆𝐿, 𝑠𝐶) ∈ 𝚲𝑫 AND 𝐿(𝐶𝑆𝐿, 𝑠(𝐶𝑆𝐿, 𝑠𝐶)) <  𝐿(𝑠𝐶 , 𝑠(𝐶𝑆𝐿, 𝑠𝐶)) } 

 
Informally, the inequalities above state that, when comparing CSL with any other cooperative 
strategy 𝑠𝐶, CSL either stays strictly longer than 𝑠𝐶 with some cooperative strategy, or stays 
strictly less than 𝑠𝐶 with some defective strategy (or both). 

Similarly, for every 𝑠𝐷 ∈ 𝚲𝑫, 𝑠𝐷 ≠ 𝐷𝑆𝐿, there exists a strategy 𝑠(𝐷𝑆𝐿, 𝑠𝐷) ∈ 𝚲 such that: 

{ 𝑠(𝐷𝑆𝐿, 𝑠𝐷) ∈ 𝚲𝑪 AND 𝐿(𝐷𝑆𝐿, 𝑠(𝐷𝑆𝐿, 𝑠𝐷)) >  𝐿(𝑠𝐷, 𝑠(𝐷𝑆𝐿, 𝑠𝐷)) } 
OR  
{ 𝑠(𝐷𝑆𝐿, 𝑠𝐷) ∈ 𝚲𝑫 AND 𝐿(𝐷𝑆𝐿, 𝑠(𝐷𝑆𝐿, 𝑠𝐷)) <  𝐿(𝑠𝐷, 𝑠(𝐷𝑆𝐿, 𝑠𝐷)) } 
 

The set of inequalities indicated above are sufficient to prove that for every 𝑠𝐶 ∈ 𝚲𝑪: 
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� 𝑥𝑖𝐿(𝐶𝑆𝐿, 𝑖)
𝑖∈𝚲𝑪

≥ � 𝑥𝑖𝐿(𝑠𝐶 , 𝑖)
𝑖∈𝚲𝑪

 

� 𝑥𝑖𝐿(𝐶𝑆𝐿, 𝑖)
𝑖∈𝚲𝑫

≤ � 𝑥𝑖𝐿(𝑠𝐶 , 𝑖)
𝑖∈𝚲𝑫

 

And if 𝒙 ∈ int(𝒫(𝚲)), then at least one of the two inequalities above is strict for 𝑠𝐶 ≠ 𝐶𝑆𝐿. 
Similarly, for every 𝑠𝐷 ∈ 𝚲𝑫: 

� 𝑥𝑖𝐿(𝐷𝑆𝐿, 𝑠′)
𝑖∈𝚲𝑪

≥ � 𝑥𝑖𝐿(𝑠𝐷 , 𝑖)
𝑖∈𝚲𝑪

 

� 𝑥𝑖𝐿(𝐷𝑆𝐿, 𝑠′)
𝑖∈𝚲𝑫

≤ � 𝑥𝑖𝐿(𝑠𝐷 , 𝑖)
𝑖∈𝚲𝑫

 

And if 𝒙 ∈ int(𝒫(Λ)), then at least one of the two inequalities above is strict for 𝑠𝐷 ≠ 𝐷𝑆𝐿. 

Using the simple algebraic facts that for all 𝑣,𝑤,𝑎, 𝑏 > 0: 

�𝑣 ≥ 𝑎
𝑤 ≤ 𝑏�⟹ �

𝑣
𝑣+𝑤

≥ 𝑎
𝑎+𝑏

𝑤
𝑣+𝑤

≤ 𝑏
𝑎+𝑏

� �𝑣 > 𝑎
𝑤 ≤ 𝑏�⟹ �

𝑣
𝑣+𝑤

> 𝑎
𝑎+𝑏

𝑤
𝑣+𝑤

< 𝑏
𝑎+𝑏

� 

we can conclude that for every 𝑠𝐶 ∈ 𝚲𝑪 and every 𝑠𝐷 ∈ 𝚲𝑫: 

𝑥𝐶(𝐶𝑆𝐿;𝒙) ≥ 𝑥𝐶(𝑠𝐶;𝒙) 𝑥𝐷(𝐶𝑆𝐿;𝒙) ≤ 𝑥𝐷(𝑠𝐶;𝒙)  

𝑥𝐶(𝐷𝑆𝐿;𝒙) ≥ 𝑥𝐶(𝑠𝐷;𝒙) 𝑥𝐷(𝐷𝑆𝐿;𝒙) ≤ 𝑥𝐷(𝑠𝐷;𝒙)  

Furthermore, if 𝒙 ∈ int(𝒫(Λ)), then, for 𝑠𝐶 ≠ 𝐶𝑆𝐿 and 𝑠𝐷 ≠ 𝐷𝑆𝐿, the four inequalities above 
are strict. And recalling that  

𝜋�𝑠𝐶(𝒙) = 𝑅 · 𝑥𝐶(𝑠𝐶;𝒙) + 𝑆 · 𝑥𝐷(𝑠𝐶;𝒙) 
𝜋�𝑠𝐷(𝒙) = 𝑇 · 𝑥𝐶(𝑠𝐷;𝒙) + 𝑃 · 𝑥𝐷(𝑠𝐷;𝒙) 

and T > R > P > S, this concludes the proof. ■ 
 

A.3. Proof of Proposition 1 
It is straightforward to see that any combination of defective strategies is indeed a Nash 
Distribution (ND), since any cooperative strategy would obtain the lowest payoff S < P in any 
such distribution. Note also that any combination of cooperative strategies cannot be a ND, 
since any defective strategy would obtain the highest payoff T > R in any such distribution. 
Thus, to identify the remaining NDs, we can focus on distributions that contain at least one 
defective strategy and at least one cooperative strategy in its support. Formally, let 𝒙𝑵𝑫 =
{𝑥𝒊}𝒊∈𝚲 ∈ 𝒫(𝚲) be a (partially cooperative) ND such that �∃ 𝑠𝐶 ∈ 𝚲𝑪 | 𝑥 𝑠𝐶 > 0� and �∃ 𝑠𝐷 ∈
𝚲𝑫 | 𝑥 𝑠𝐷 > 0}. Let us first prove that the only strategies that could potentially be part of the 
support of a partially cooperative ND 𝒙𝑵𝑫 are CSL, DSL, and DLL. To simplify the 
derivations, let us define 𝛾 = (1 − 𝛿2)−1 > 1, and recall that 

𝜋�𝑠(𝒙𝑵𝑫) =
∑ 𝑥𝑖𝑖∈𝚲 · 𝐿(𝑠, 𝑖) · 𝜋(𝑠, 𝑖)

∑ 𝑥𝑖 · 𝐿(𝑠, 𝑖)𝑖∈𝚲
 

Consider the following facts: 
 
ND.1. 𝐶𝐿𝑆 ∉ 𝑠𝑢𝑝𝑝(𝒙𝑵𝑫) and 𝐶𝐿𝐿 ∉ 𝑠𝑢𝑝𝑝(𝒙𝑵𝑫), since 𝜋�𝐶𝐿𝑆(𝒙𝑵𝑫) ≤ 𝜋�𝐶𝐿𝐿(𝒙𝑵𝑫) <
𝜋�𝐷𝐿𝐿(𝒙𝑵𝑫). The proof follows: 
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𝜋�𝐶𝐿𝑆(𝒙𝑵𝑫) =
𝑅(𝑥𝐶𝑆𝑆 + 𝑥𝐶𝑆𝐿 + 𝑥𝐶𝐿𝑆 + 𝑥𝐶𝐿𝐿) + 𝑆(𝛾𝑥𝐷𝑆𝑆 + 𝛾𝑥𝐷𝑆𝐿 + 𝑥𝐷𝐿𝑆 + 𝑥𝐷𝐿𝐿)

(𝑥𝐶𝑆𝑆 + 𝑥𝐶𝑆𝐿 + 𝑥𝐶𝐿𝑆 + 𝑥𝐶𝐿𝐿) + (𝛾𝑥𝐷𝑆𝑆 + 𝛾𝑥𝐷𝑆𝐿 + 𝑥𝐷𝐿𝑆 + 𝑥𝐷𝐿𝐿)

≤
𝑅(𝑥𝐶𝑆𝑆 + 𝑥𝐶𝑆𝐿 + 𝑥𝐶𝐿𝑆 + 𝑥𝐶𝐿𝐿) + 𝑆(𝑥𝐷𝑆𝑆 + 𝑥𝐷𝑆𝐿 + 𝑥𝐷𝐿𝑆 + 𝑥𝐷𝐿𝐿)

(𝑥𝐶𝑆𝑆 + 𝑥𝐶𝑆𝐿 + 𝑥𝐶𝐿𝑆 + 𝑥𝐶𝐿𝐿) + (𝑥𝐷𝑆𝑆 + 𝑥𝐷𝑆𝐿 + 𝑥𝐷𝐿𝑆 + 𝑥𝐷𝐿𝐿)
= 𝜋�𝐶𝐿𝐿(𝒙𝑵𝑫)

<
𝑇(𝑥𝐶𝑆𝑆 + 𝑥𝐶𝑆𝐿 + 𝑥𝐶𝐿𝑆 + 𝑥𝐶𝐿𝐿) + 𝑃(𝑥𝐷𝑆𝑆 + 𝑥𝐷𝑆𝐿 + 𝑥𝐷𝐿𝑆 + 𝑥𝐷𝐿𝐿)

(𝑥𝐶𝑆𝑆 + 𝑥𝐶𝑆𝐿 + 𝑥𝐶𝐿𝑆 + 𝑥𝐶𝐿𝐿) + (𝑥𝐷𝑆𝑆 + 𝑥𝐷𝑆𝐿 + 𝑥𝐷𝐿𝑆 + 𝑥𝐷𝐿𝐿)
= 𝜋�𝐷𝐿𝐿(𝒙𝑵𝑫) 

 
ND.2. 𝐷𝑆𝑆 ∉ 𝑠𝑢𝑝𝑝(𝒙𝑵𝑫), since that would mean that 𝑥𝐷𝑆𝑆 > 0 and, bearing in mind that 
�∃ 𝑠𝐶 ∈ 𝚲𝑪 | 𝑥 𝑠𝐶 > 0�, it would be the case that 𝜋�𝐷𝑆𝑆(𝒙𝑵𝑫) < 𝜋�𝐷𝑆𝐿(𝒙𝑵𝑫). The proof follows 
(assuming 𝑥𝐷𝑆𝑆 > 0 and �∃ 𝑠𝐶 ∈ 𝚲𝑪 | 𝑥 𝑠𝐶 > 0�): 

𝜋�𝐷𝑆𝑆(𝒙𝑵𝑫) =
𝑇(𝛾𝑥𝐶𝑆𝑆 + 𝑥𝐶𝑆𝐿 + 𝛾𝑥𝐶𝐿𝑆 + 𝑥𝐶𝐿𝐿) + 𝑃(𝛾𝑥𝐷𝑆𝑆 + 𝑥𝐷𝑆𝐿 + 𝛾𝑥𝐷𝐿𝑆 + 𝑥𝐷𝐿𝐿)

(𝛾𝑥𝐶𝑆𝑆 + 𝑥𝐶𝑆𝐿 + 𝛾𝑥𝐶𝐿𝑆 + 𝑥𝐶𝐿𝐿) + (𝛾𝑥𝐷𝑆𝑆 + 𝑥𝐷𝑆𝐿 + 𝛾𝑥𝐷𝐿𝑆 + 𝑥𝐷𝐿𝐿)

<
𝑇(𝛾𝑥𝐶𝑆𝑆 + 𝑥𝐶𝑆𝐿 + 𝛾𝑥𝐶𝐿𝑆 + 𝑥𝐶𝐿𝐿) + 𝑃(𝑥𝐷𝑆𝑆 + 𝑥𝐷𝑆𝐿 + 𝑥𝐷𝐿𝑆 + 𝑥𝐷𝐿𝐿)

(𝛾𝑥𝐶𝑆𝑆 + 𝑥𝐶𝑆𝐿 + 𝛾𝑥𝐶𝐿𝑆 + 𝑥𝐶𝐿𝐿) + (𝑥𝐷𝑆𝑆 + 𝑥𝐷𝑆𝐿 + 𝑥𝐷𝐿𝑆 + 𝑥𝐷𝐿𝐿)
= 𝜋�𝐷𝑆𝐿(𝒙𝑵𝑫) 

 
ND.3. 𝐷𝐿𝑆 ∉ 𝑠𝑢𝑝𝑝(𝒙𝑵𝑫), since that would mean that 𝑥𝐷𝐿𝑆 > 0 and, bearing in mind that 
�∃ 𝑠𝐶 ∈ 𝚲𝑪 | 𝑥 𝑠𝐶 > 0�, it would be the case that 𝜋�𝐷𝐿𝑆(𝒙𝑵𝑫) < 𝜋�𝐷𝐿𝐿(𝒙𝑵𝑫). The proof follows 
(assuming 𝑥𝐷𝐿𝑆 > 0 and �∃ 𝑠𝐶 ∈ 𝚲𝑪 | 𝑥 𝑠𝐶 > 0�): 

𝜋�𝐷𝐿𝑆(𝒙𝑵𝑫) =
𝑇(𝑥𝐶𝑆𝑆 + 𝑥𝐶𝑆𝐿 + 𝑥𝐶𝐿𝑆 + 𝑥𝐶𝐿𝐿) + 𝑃(𝛾𝑥𝐷𝑆𝑆 + 𝑥𝐷𝑆𝐿 + 𝛾𝑥𝐷𝐿𝑆 + 𝑥𝐷𝐿𝐿)

(𝑥𝐶𝑆𝑆 + 𝑥𝐶𝑆𝐿 + 𝑥𝐶𝐿𝑆 + 𝑥𝐶𝐿𝐿) + (𝛾𝑥𝐷𝑆𝑆 + 𝑥𝐷𝑆𝐿 + 𝛾𝑥𝐷𝐿𝑆 + 𝑥𝐷𝐿𝐿)

<
𝑇(𝑥𝐶𝑆𝑆 + 𝑥𝐶𝑆𝐿 + 𝑥𝐶𝐿𝑆 + 𝑥𝐶𝐿𝐿) + 𝑃(𝑥𝐷𝑆𝑆 + 𝑥𝐷𝑆𝐿 + 𝑥𝐷𝐿𝑆 + 𝑥𝐷𝐿𝐿)

(𝑥𝐶𝑆𝑆 + 𝑥𝐶𝑆𝐿 + 𝑥𝐶𝐿𝑆 + 𝑥𝐶𝐿𝐿) + (𝑥𝐷𝑆𝑆 + 𝑥𝐷𝑆𝐿 + 𝑥𝐷𝐿𝑆 + 𝑥𝐷𝐿𝐿)
= 𝜋�𝐷𝐿𝐿(𝒙𝑵𝑫) 

 
Thus, statements ND.1-3 above prove that the only strategies that could potentially be part of 
the support of 𝒙𝑵𝑫 are CSS, CSL, DSL, and DLL. Now consider the following facts: 
 
ND.4. CSS and DSL cannot be both in the support of 𝒙𝑵𝑫 since that would mean that 𝑥𝐶𝑆𝑆 >
0 and 𝑥𝐷𝑆𝐿 > 0, and then it would be the case that 𝜋�𝐶𝑆𝑆(𝒙𝑵𝑫) < 𝜋�𝐶𝑆𝐿(𝒙𝑵𝑫). The proof 
follows (assuming 𝑥𝐶𝑆𝑆 > 0 and 𝑥𝐷𝑆𝐿 > 0): 

𝜋�𝐶𝑆𝑆(𝒙𝑵𝑫) =
𝑅(𝛾𝑥𝐶𝑆𝑆 + 𝛾𝑥𝐶𝑆𝐿 + 𝑥𝐶𝐿𝑆 + 𝑥𝐶𝐿𝐿) + 𝑆(𝛾𝑥𝐷𝑆𝑆 + 𝛾𝑥𝐷𝑆𝐿 + 𝑥𝐷𝐿𝑆 + 𝑥𝐷𝐿𝐿)

(𝛾𝑥𝐶𝑆𝑆 + 𝛾𝑥𝐶𝑆𝐿 + 𝑥𝐶𝐿𝑆 + 𝑥𝐶𝐿𝐿) + (𝛾𝑥𝐷𝑆𝑆 + 𝛾𝑥𝐷𝑆𝐿 + 𝑥𝐷𝐿𝑆 + 𝑥𝐷𝐿𝐿)

<
𝑅(𝛾𝑥𝐶𝑆𝑆 + 𝛾𝑥𝐶𝑆𝐿 + 𝑥𝐶𝐿𝑆 + 𝑥𝐶𝐿𝐿) + 𝑆(𝑥𝐷𝑆𝑆 + 𝑥𝐷𝑆𝐿 + 𝑥𝐷𝐿𝑆 + 𝑥𝐷𝐿𝐿)

(𝛾𝑥𝐶𝑆𝑆 + 𝛾𝑥𝐶𝑆𝐿 + 𝑥𝐶𝐿𝑆 + 𝑥𝐶𝐿𝐿) + (𝑥𝐷𝑆𝑆 + 𝑥𝐷𝑆𝐿 + 𝑥𝐷𝐿𝑆 + 𝑥𝐷𝐿𝐿)
= 𝜋�𝐶𝑆𝐿(𝒙𝑵𝑫) 

 
ND.5. CSS and DLL cannot be both in the support of 𝒙𝑵𝑫 since that would mean that 𝑥𝐶𝑆𝑆 >
0 and 𝑥𝐷𝐿𝐿 > 0, and then it would be the case that 𝜋�𝐷𝐿𝐿(𝒙𝑵𝑫) < 𝜋�𝐷𝑆𝐿(𝒙𝑵𝑫). The proof 
follows (assuming 𝑥𝐶𝑆𝑆 > 0 and 𝑥𝐷𝐿𝐿 > 0): 
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𝜋�𝐷𝐿𝐿(𝒙𝑵𝑫) =
𝑇(𝑥𝐶𝑆𝑆 + 𝑥𝐶𝑆𝐿 + 𝑥𝐶𝐿𝑆 + 𝑥𝐶𝐿𝐿) + 𝑃(𝑥𝐷𝑆𝑆 + 𝑥𝐷𝑆𝐿 + 𝑥𝐷𝐿𝑆 + 𝑥𝐷𝐿𝐿)

(𝑥𝐶𝑆𝑆 + 𝑥𝐶𝑆𝐿 + 𝑥𝐶𝐿𝑆 + 𝑥𝐶𝐿𝐿) + (𝑥𝐷𝑆𝑆 + 𝑥𝐷𝑆𝐿 + 𝑥𝐷𝐿𝑆 + 𝑥𝐷𝐿𝐿)

<
𝑇(𝛾𝑥𝐶𝑆𝑆 + 𝑥𝐶𝑆𝐿 + 𝛾𝑥𝐶𝐿𝑆 + 𝑥𝐶𝐿𝐿) + 𝑃(𝑥𝐷𝑆𝑆 + 𝑥𝐷𝑆𝐿 + 𝑥𝐷𝐿𝑆 + 𝑥𝐷𝐿𝐿)

(𝛾𝑥𝐶𝑆𝑆 + 𝑥𝐶𝑆𝐿 + 𝛾𝑥𝐶𝐿𝑆 + 𝑥𝐶𝐿𝐿) + (𝑥𝐷𝑆𝑆 + 𝑥𝐷𝑆𝐿 + 𝑥𝐷𝐿𝑆 + 𝑥𝐷𝐿𝐿)
= 𝜋�𝐷𝑆𝐿(𝒙𝑵𝑫) 

The five statements above (ND.1-5) together prove that the only strategies that could 
potentially be part of the support of a partially cooperative ND 𝒙𝑵𝑫 are CSL, DSL, and DLL. 
Thus, let us parameterize all possible (partially cooperative) mixtures of strategies {CSL, 
DSL, DLL} using a generic distribution 𝒙𝜶,𝜷 where a fraction 𝛼 ∈ (0,1) of the players are 
CSLs and the other (1 − 𝛼) of the players are DSLs and/or DLLs, in proportions determined 
by 𝛽 ∈ [0,1] according to the following formula: 

𝒙𝜶,𝜷 = 𝛼𝒔𝑪𝑺𝑳 + (1 − 𝛼)(𝛽𝒔𝑫𝑺𝑳 + (1 − 𝛽)𝒔𝑫𝑳𝑳) 

where 𝒔𝒊 is the strategy distribution consisting only of i-strategists. Note that DSL and DLL 
are behaviorally identical in 𝒙𝜶,𝜷 for any 𝛼 ∈ (0,1) and 𝛽 ∈ [0,1]. The payoffs for each 
strategy in 𝒙𝜶,𝜷 are (for any 𝛽 ∈ [0,1]): 

𝜋�𝐶𝑆𝐿�𝒙𝜶,𝜷� =
𝛼 𝑅
1−𝛿2

+ (1 − 𝛼)𝑆

𝛼 1
1−𝛿2

+ (1 − 𝛼) · 1
 

𝜋�𝐷𝑆𝐿�𝒙𝜶,𝜷� = 𝜋�𝐷𝐿𝐿�𝒙𝜶,𝜷� =
𝛼𝑇 + (1 − 𝛼)𝑃

𝛼 · 1 + (1 − 𝛼) · 1
= 𝛼𝑇 + (1 − 𝛼)𝑃 

A necessary condition to be a ND is 𝜋�𝐶𝑆𝐿�𝒙𝜶,𝜷� = 𝜋�𝐷𝑋𝐿�𝒙𝜶,𝜷�, where the letter X in the name 
of a strategy can be replaced by L or S. This defines a 2nd order polynomial in 𝛼, which has at 
most 2 real solutions, which are: 

𝛼∗ =
1

2(𝑇 − 𝑃)𝛿2
(𝜓 ±  �𝜓2 − 4(𝑇 − 𝑃)𝛿2(𝑃 − 𝑆)(1− 𝛿2)) 

𝜓 = 𝑃 + 𝑅 − 2𝑃𝛿2 + (𝑆 + 𝑇)(−1 + 𝛿2) 

The equation 𝜋�𝐶𝑆𝐿�𝒙𝜶,𝜷� = 𝜋�𝐷𝑋𝐿�𝒙𝜶,𝜷� has one real solution if 𝛿 = 𝛿𝑀𝑖𝑛 and two if 𝛿 > 𝛿𝑀𝑖𝑛 

𝛿𝑀𝑖𝑛 =
�(𝑅 − 𝑆)(𝑃 − 𝑆) + �(𝑇 − 𝑅)(𝑇 − 𝑃)

𝑇 − 𝑆
< 1 

Finally, using the fact (see Lemma 1) that for any 𝒙 ∈ 𝒫(𝚲), every 𝑠𝐶 ∈ 𝚲𝐂 and every 
𝑠𝐷 ∈ 𝚲𝐃: 

𝜋�𝐶𝑆𝐿(𝒙) ≥ 𝜋�𝑠𝐶(𝒙);  𝜋�𝐷𝑆𝐿(𝒙) ≥ 𝜋�𝑠𝐷(𝒙) 

we can conclude that any solution to the equation 𝜋�𝐶𝑆𝐿�𝒙𝜶,𝜷� = 𝜋�𝐷𝑋𝐿�𝒙𝜶,𝜷� is indeed a ND. ■ 
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A.4. Proof of Proposition 2 
It is clear that any NSD is a ND. Thus, we can restrict our search for NSDs to the set of ND 
(see Proposition 1). 

A.4.a. Strategy distributions whose support contains defective strategies only 
Let 𝒙𝑫 be an arbitrary strategy distribution whose support contains defective strategies only. 
Then, for any 𝑠𝐶 ∈ 𝚲𝐂 and any 𝑠𝐷 ∈ 𝚲𝐃: 

𝜋�𝑠𝐶(𝒙𝑫) = 𝑆 < 𝑃 = 𝜋�𝑠𝐷(𝒙𝑫)  
Thus, for any 𝑠𝐷 , 𝑠𝐷′ ∈ 𝚲𝐃, 𝜀 ∈ [0,1]: 

𝜋�𝑠𝐷�(1 − 𝜀)𝒙𝑫 + 𝜀𝒔𝑫′ � = 𝜋�𝑠𝐷′ �(1 − 𝜀)𝒙𝑫 + 𝜀𝒔𝑫′ � = 𝑃 

And noting that the function 𝜋�𝑠�(1 − 𝜀)𝒙𝑫 + 𝜀𝒔′� is right-continuous in 𝜀 = 0, we can also 
state that there exists 𝜀̅ ∈ (0,1) such that for any 𝑠𝐷 ∈ 𝚲𝐃, any 𝑠𝐶 ∈ 𝚲𝐂, and any 𝜀 ∈ (0, 𝜀)̅, 

𝜋�𝑠𝐷�(1 − 𝜀)𝒙𝑫 + 𝜀𝒔𝑪� > 𝜋�𝑠𝐶�(1 − 𝜀)𝒙𝑫 + 𝜀𝒔𝑪� 

This concludes the proof that any strategy distribution whose support contains defective 
strategies is a NSD. 

A.4.b. Partially cooperative ND 𝒙𝜶,𝜷 where a fraction 𝜶 ∈ (𝟎,𝟏) of the players are 
CSLs 
Following the notation in Proposition 1, we study the set of partially cooperative distributions 
𝒙𝜶,𝜷 where a fraction 𝛼 ∈ (0,1) of the players are CSLs and the other (1 − 𝛼) of the players 
are DSLs and/or DLLs in proportions determined by 𝛽 ∈ [0,1]. The payoffs for each strategy 
in 𝒙𝜶,𝜷 are (for any 𝛽 ∈ [0,1]): 

𝜋�𝐶𝑆𝐿�𝒙𝜶,𝜷� =
𝛼 𝑅
1−𝛿2

+ (1 − 𝛼)𝑆

𝛼 1
1−𝛿2

+ (1 − 𝛼) · 1
 

𝜋�𝐷𝑆𝐿�𝒙𝜶,𝜷� = 𝜋�𝐷𝐿𝐿�𝒙𝜶,𝜷� =
𝛼𝑇 + (1 − 𝛼)𝑃

𝛼 · 1 + (1 − 𝛼) · 1
= 𝛼𝑇 + (1 − 𝛼)𝑃 

Note that the functions above have the following important properties: 

𝜋�𝐶𝑆𝐿�𝒙𝜶=0,𝜷� = 𝑆 < 𝑃 = 𝜋�𝐷𝑋𝐿�𝒙𝜶=0,𝜷�      [A.1] 

𝜋�𝐶𝑆𝐿�𝒙𝜶=1,𝜷� = 𝑅 < 𝑇 = 𝜋�𝐷𝑋𝐿�𝒙𝜶=1,𝜷�      [A.2]
𝜕𝜋�𝐶𝑆𝐿�𝒙𝜶,𝜷�

𝜕𝛼
= (𝑅−𝑆)(1−𝛿2)

(1−(1−𝛼)𝛿2)2 > 0       [A.3] 

𝜕2𝜋�𝐶𝑆𝐿�𝒙𝜶,𝜷�
𝜕𝛼2

= −2(𝑅−𝑆)𝛿2(1−𝛿2)
(1−(1−𝛼)𝛿2)3 < 0       [A.4] 

𝜕𝜋�𝐷𝑋𝐿�𝒙𝜶,𝜷�
𝜕𝛼

= 𝑇 − 𝑃 > 0        [A.5] 

𝜕2𝜋�𝐷𝑋𝐿�𝒙𝜶,𝜷�
𝜕𝛼2

= 0         [A.6] 

First, we show that if equation 

𝜋�𝐶𝑆𝐿�𝒙𝜶,𝜷� = 𝜋�𝐷𝑋𝐿�𝒙𝜶,𝜷�        [A.7] 

has one unique solution 𝛼∗, then 𝒙𝜶∗,𝜷 is not a NSD. Note that  
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�𝜕𝜋�𝐷𝑋𝐿�𝒙𝜶,𝜷�
𝜕𝛼

�
𝛼=𝛼∗

= �𝜕𝜋�𝐶𝑆𝐿�𝒙𝜶,𝜷�
𝜕𝛼

�
𝛼=𝛼∗

 (since 𝛼∗ is unique, and using eq. [A.1] and eq. [A.2]), 

and 

�𝜕2𝜋�𝐷𝑋𝐿�𝒙𝜶,𝜷�
𝜕𝛼2

�
𝛼=𝛼∗

> �𝜕2𝜋�𝐶𝑆𝐿�𝒙𝜶,𝜷�
𝜕𝛼2

�
𝛼=𝛼∗

  (using eq. [A.4] and eq. [A.6]) 

And therefore, for any 𝛽 ∈ [0,1], there exists 𝜀̅ ∈ (0,1) such that for any 𝜀 ∈ (0, 𝜀)̅, 

𝜋�𝐷𝑋𝐿 �(1 − 𝜀)𝒙𝜶∗,𝜷 + 𝜀𝒔𝑫𝑿𝑳� > 𝜋�𝐶𝑆𝐿 �(1 − 𝜀)𝒙𝜶∗,𝜷 + 𝜀𝒔𝑫𝑿𝑳� 

Thus, 𝒙𝜶∗,𝜷 cannot be a NSD. 

Now we show that if equation [A.7] has two solutions, then the smaller solution 𝛼1 cannot 
be a NSD. If 𝛼1 is the smaller solution: 

�𝜕𝜋�𝐶𝑆𝐿�𝒙𝜶,𝜷�
𝜕𝛼

�
𝛼=𝛼1

> �𝜕𝜋�𝐷𝑋𝐿�𝒙𝜶,𝜷�
𝜕𝛼

�
𝛼=𝛼1

  (using eq. [A.1] and eq. [A.2]) 

And therefore, for any 𝛽 ∈ [0,1], there exists 𝜀̅ ∈ (0,1) such that for any 𝜀 ∈ (0, 𝜀)̅, 

𝜋�𝐶𝑆𝐿 �(1 − 𝜀)𝒙𝜶𝟏,𝜷 + 𝜀𝒔𝑪𝑺𝑳� > 𝜋�𝐷𝑋𝐿 �(1 − 𝜀)𝒙𝜶𝟏,𝜷 + 𝜀𝒔𝑪𝑺𝑳� 

Thus, 𝒙𝜶𝟏,𝜷 cannot be a NSD. 

Assuming equation [A.7] has two solutions, let 𝛼2 be the greater one, which is (see 
Proposition 1) 

𝛼2 =
1

2(𝑇 − 𝑃)𝛿2
(𝜓 +  �𝜓2 − 4(𝑇 − 𝑃)𝛿2(𝑃 − 𝑆)(1 − 𝛿2)) 

Note that for 𝛿 ∈ [0,1), it holds that 𝛼2 ∈ (0,1) and lim𝛿→1 𝛼2 = 𝑅−𝑃
𝑇−𝑃

< 1. Let 𝛿𝑀𝑖𝑛 be the 
minimum number such that 𝛼2 exists for all 𝛿 > 𝛿𝑀𝑖𝑛, as defined in Proposition 1. 

The distribution 𝒙𝜶𝟐,𝜷 is indeed a NSD for any 𝛽 ∈ [0,1] . We show this by testing the 
NSD condition for each possible entrant. To simplify the derivation, let 𝒛𝜺,𝒊 be the post-
entry distribution when strategy i enters 𝒙𝜶𝟐,𝜷 with a proportion 𝜀, i.e. 

𝒛𝜺,𝒊 = (1 − 𝜀)𝒙𝜶𝟐,𝜷 + 𝜀𝒔𝒊 

where 𝒔𝒊 is the strategy distribution consisting only of i-strategists. 

 
Statement A.4.1. Note that for any 𝑠 ∈ 𝑠𝑢𝑝𝑝(𝒛𝜺,𝒊), the function 𝜋�𝑠�𝒛𝜺,𝒊� is right-
continuous in 𝜀 = 0. Thus, if  

𝜋�𝑠�𝒛0,𝒊� > 𝜋�𝑖�𝒛0,𝒊� 

then there exists 𝜀̅ ∈ (0,1) such that for any 𝜀 ∈ (0, 𝜀)̅, 𝜋�𝑠�𝒛𝜺,𝒊� > 𝜋�𝑖�𝒛𝜺,𝒊�. 

 

Lastly, recall that  

𝜋�𝐶𝑆𝐿�𝒙𝜶𝟐,𝜷� = 𝜋�𝐶𝑆𝐿�𝒛0,𝒊� =
𝛼2

𝑅
1−𝛿2

+ (1 − 𝛼2)𝑆

𝛼2
1

1−𝛿2
+ (1 − 𝛼2)

= 𝛼2𝑇 + (1 − 𝛼2)𝑃 = 𝜋�𝐷𝑋𝐿�𝒙𝜶𝟐,𝜷� = 𝜋�𝐷𝑋𝐿�𝒛0,𝒊� 

And note that 
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 �𝜕𝜋�𝐶𝑆𝐿�𝒙𝜶,𝜷�
𝜕𝛼

�
𝛼=𝛼2

< �𝜕𝜋�𝐷𝑋𝐿�𝒙𝜶,𝜷�
𝜕𝛼

�
𝛼=𝛼2

   (using eq. [A.1] and eq. [A.2])  [A.8]  

Now let us study each potential entrant in turn. 

A.4.b.1. Entrant CSS 

𝜋�𝐶𝑆𝑆�𝒛𝟎,𝑪𝑺𝑺� =
𝛼2

𝑅
1−𝛿2

+ (1 − 𝛼2)𝛽 𝑆
1−𝛿2

+ (1 − 𝛼2)(1 − 𝛽)𝑆

𝛼2
1

1−𝛿2
+ (1 − 𝛼2)𝛽 1

1−𝛿2
+ (1 − 𝛼2)(1− 𝛽)

 

If 𝛽 ≠ 0, then 𝜋�𝐶𝑆𝑆�𝒛𝟎,𝑪𝑺𝑺� < 𝜋�𝐶𝑆𝐿�𝒛𝟎,𝑪𝑺𝑺� = 𝜋�𝐷𝑋𝐿�𝒛𝟎,𝑪𝑺𝑺�, so bearing in mind Statement 
A.4.1, the condition for NSD is satisfied. 
If 𝛽 = 0, then 𝜋�𝐶𝑆𝑆�𝒛𝟎,𝑪𝑺𝑺� = 𝜋�𝐶𝑆𝐿�𝒛𝟎,𝑪𝑺𝑺� = 𝜋�𝐷𝐿𝐿�𝒛𝟎,𝑪𝑺𝑺�, so we have to study the case 
where 𝜀 > 0 explicitly. Defining ℎ(𝛼2, 𝜀) = 𝛼2(1 − 𝜀) + 𝜀, we can write: 

𝜋�𝐶𝑆𝑆�𝒛𝜺,𝑪𝑺𝑺� = 𝜋�𝐶𝑆𝐿�𝒛𝜺,𝑪𝑺𝑺� =
ℎ 𝑅
1−𝛿2

+ (1 − ℎ)𝑆

ℎ 1
1−𝛿2

+ (1 − ℎ)
 

𝜋�𝐷𝐿𝐿�𝒛𝜺,𝑪𝑺𝑺� = ℎ𝑇 + (1 − ℎ)𝑃 

Thus (recall that 𝛼2 < 1 since 𝛿 < 1, and eq. [A.8]): 

�𝜕𝜋�𝐶𝑆𝑆�𝒛𝜺,𝑪𝑺𝑺�
𝜕𝜀

�
𝜀=0

= �𝜕𝜋�𝐶𝑆𝐿�𝒛𝜺,𝑪𝑺𝑺�
𝜕𝜀

�
𝜀=0

= �𝜕𝜋�𝐶𝑆𝐿�𝒛𝜺,𝑪𝑺𝑺�
𝜕ℎ

�
ℎ=𝛼2

�𝜕ℎ
𝜕𝜀
�
𝜀=0

= �𝜕𝜋�𝐶𝑆𝐿�𝒙𝜶,𝜷�
𝜕𝛼

�
𝛼=𝛼2

�𝜕ℎ
𝜕𝜀
�
𝜀=0

= �𝜕𝜋�𝐶𝑆𝐿�𝒙𝜶,𝜷�
𝜕𝛼

�
𝛼=𝛼2

(1 − 𝛼2)

< �𝜕𝜋�𝐷𝑋𝐿�𝒙𝜶,𝜷�
𝜕𝛼

�
𝛼=𝛼2

(1 − 𝛼2) = �𝜕𝜋�𝐷𝑋𝐿�𝒙𝜶,𝜷�
𝜕𝛼

�
𝛼=𝛼2

�𝜕ℎ
𝜕𝜀
�
𝜀=0

= �𝜕𝜋�𝐷𝑋𝐿�𝒛𝜺,𝑪𝑺𝑺�
𝜕ℎ

�
ℎ=𝛼2

�𝜕ℎ
𝜕𝜀
�
𝜀=0

= �𝜕𝜋�𝐷𝑋𝐿�𝒛𝜺,𝑪𝑺𝑺�
𝜕𝜀

�
𝜀=0

 

In short, �𝜕𝜋�𝐶𝑆𝑆�𝒛𝜺,𝑪𝑺𝑺�
𝜕𝜀

�
𝜀=0

= �𝜕𝜋�𝐶𝑆𝐿�𝒛𝜺,𝑪𝑺𝑺�
𝜕𝜀

�
𝜀=0

< �𝜕𝜋�𝐷𝑋𝐿�𝒛𝜺,𝑪𝑺𝑺�
𝜕𝜀

�
𝜀=0

. 

And therefore, the condition for NSD is satisfied also for 𝛽 = 0, since there exists 
𝜀̅ ∈ (0,1) such that for any 𝜀 ∈ (0, 𝜀)̅, 

𝜋�𝐶𝑆𝑆 �(1 − 𝜀)𝒙𝜶𝟐,𝟎 + 𝜀𝒔𝑪𝑺𝑺� = 𝜋�𝐶𝑆𝐿 �(1 − 𝜀)𝒙𝜶𝟐,𝟎 + 𝜀𝒔𝑪𝑺𝑺�

< 𝜋�𝐷𝐿𝐿 �(1 − 𝜀)𝒙𝜶𝟐,𝟎 + 𝜀𝒔𝑪𝑺𝑺� 

A.4.b.2. Entrant CSL 
The condition for NSD is satisfied since (eq. [A.8]) 

�𝜕𝜋�𝐶𝑆𝐿�𝒙𝜶,𝜷�
𝜕𝛼

�
𝛼=𝛼2

< �𝜕𝜋�𝐷𝑋𝐿�𝒙𝜶,𝜷�
𝜕𝛼

�
𝛼=𝛼2
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A.4.b.3. Entrant CLS 

𝜋�𝐶𝐿𝑆�𝒛0,𝑪𝑳𝑺� =
𝛼2𝑅 + (1 − 𝛼2)𝛽 𝑆

1−𝛿2
+ (1 − 𝛼2)(1 − 𝛽)𝑆

𝛼2 + (1 − 𝛼2)𝛽 1
1−𝛿2

+ (1 − 𝛼2)(1 − 𝛽)
< 𝜋�𝐶𝑆𝐿�𝒛0,𝑪𝑳𝑺�

= 𝜋�𝐷𝑋𝐿�𝒛0,𝑪𝑳𝑺� 

So bearing in mind Statement A.4.1, the condition for NSD is satisfied. 

A.4.b.4. Entrant CLL 

𝜋�𝐶𝐿𝐿�𝒛0,𝑪𝑳𝑳� =
𝛼2𝑅 + (1 − 𝛼2)𝑆
𝛼2 + (1 − 𝛼2) < 𝜋�𝐶𝑆𝐿�𝒛0,𝑪𝑳𝑳� = 𝜋�𝐷𝑋𝐿�𝒛0,𝑪𝑳𝑳� 

So bearing in mind Statement A.4.1, the condition for NSD is satisfied. 

A.4.b.5. Entrant DSS 
𝜋�𝐷𝑆𝑆�𝒛𝟎,𝑫𝑺𝑺� = 𝜋�𝐶𝑆𝐿�𝒛𝟎,𝑫𝑺𝑺� = 𝜋�𝐷𝑋𝐿�𝒛𝟎,𝑫𝑺𝑺�, so we have to study the case where 𝜀 > 0 
explicitly. Note that 

𝜋�𝐷𝑋𝐿�𝒛𝜺,𝑫𝑺𝑺� = 𝛼2(1 − 𝜀)𝑇 + �1 − 𝛼2(1 − 𝜀)�𝑃 

𝜋�𝐷𝑆𝑆�𝒛𝜺,𝑫𝑺𝑺� =
𝛼2(1 − 𝜀)𝑇 + (1 − 𝛼2)(1 − 𝜀)𝑃 + 𝜀 𝑃

1−𝛿2

𝛼2(1 − 𝜀) · 1 + (1 − 𝛼2)(1− 𝜀) · 1 + 𝜀 1
1−𝛿2

< 𝜋�𝐷𝑋𝐿�𝒛𝜺,𝑫𝑺𝑺� 

The inequality above can be understood noting that both 𝜋�𝐷𝑆𝑆�𝒛𝜺,𝑫𝑺𝑺� and 𝜋�𝐷𝑋𝐿�𝒛𝜺,𝑫𝑺𝑺� 
are weighted averages that place weight 𝛼2(1 − 𝜀) on T, whilst the weight placed by 

𝜋�𝐷𝑆𝑆�𝒛𝜺,𝑫𝑺𝑺� on P  is �(1 − 𝛼2)(1 − 𝜀) + 𝜀 1
1−𝛿2

�, which is strictly greater than the weight 

placed by 𝜋�𝐷𝑋𝐿�𝒛𝜺,𝑫𝑺𝑺� on P, which equals �1 − 𝛼2(1 − 𝜀)� = �(1 − 𝛼2)(1− 𝜀) + 𝜀�. 

𝜋�𝐶𝑆𝐿�𝒛𝜺,𝑫𝑺𝑺� =
𝛼2(1 − 𝜀) 𝑅

1−𝛿2
+ �1 − 𝛼2(1 − 𝜀)�𝑆

𝛼2(1 − 𝜀) 1
1−𝛿2

+ �1 − 𝛼2(1 − 𝜀)�
 

Defining ℎ(𝛼2, 𝜀) = 𝛼2(1 − 𝜀), and applying the same arguments as with entrant CSS, 
(note that 𝛼2 > 0) we can show that: 

�𝜕𝜋�𝐷𝑋𝐿�𝒛𝜺,𝑫𝑺𝑺�
𝜕𝜀

�
𝜀=0

< �𝜕𝜋�𝐶𝑆𝐿�𝒛𝜺,𝑫𝑺𝑺�
𝜕𝜀

�
𝜀=0

 

And therefore, the condition for NSD is satisfied, since there exists 𝜀̅ ∈ (0,1) such that for 
any 𝜀 ∈ (0, 𝜀)̅, 

𝜋�𝐶𝑆𝐿 �(1 − 𝜀)𝒙𝜶𝟐,𝜷 + 𝜀𝒔𝑫𝑺𝑺� > 𝜋�𝐷𝑋𝐿 �(1 − 𝜀)𝒙𝜶𝟐,𝜷 + 𝜀𝒔𝑫𝑺𝑺�

> 𝜋�𝐷𝑆𝑆 �(1 − 𝜀)𝒙𝜶𝟐,𝜷 + 𝜀𝒔𝑫𝑺𝑺� 

A.4.b.6. Entrant DSL 
The condition for NSD is satisfied since 𝜋�𝐶𝑆𝐿�𝒙𝜶,𝜷� = 𝜋�𝐷𝑆𝐿�𝒙𝜶,𝜷� 

and (eq. [A.8]) 

�𝜕𝜋�𝐶𝑆𝐿�𝒙𝜶,𝜷�
𝜕𝛼

�
𝛼=𝛼2

< �𝜕𝜋�𝐷𝑆𝐿�𝒙𝜶,𝜷�
𝜕𝛼

�
𝛼=𝛼2
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A.4.b.7. Entrant DLS 
Note that DLS behaves in 𝒛𝜺,𝑫𝑳𝑺 exactly as DSS behaves in 𝒛𝜺,𝑫𝑺𝑺.Thus, the analysis of the 
entrant DLS is completely analogous to the analysis of the entrant DSS above. 

A.4.b.8. Entrant DLL 
The condition for NSD is satisfied since 𝜋�𝐷𝐿𝐿�𝒙𝜶,𝜷� = 𝜋�𝐷𝑆𝐿�𝒙𝜶,𝜷� 

and (eq. [A.8]) 

�𝜕𝜋�𝐶𝑆𝐿�𝒙𝜶,𝜷�
𝜕𝛼

�
𝛼=𝛼2

< �𝜕𝜋�𝐷𝐿𝐿�𝒙𝜶,𝜷�
𝜕𝛼

�
𝛼=𝛼2

 

■ 

A.4.c. The level of cooperation at the partially cooperative NSDs  
Note that partially cooperative NSDs correspond to stationary states of the mean dynamics 
(see section 5) for 𝜇 = 0, in a system in which surviving CC couples always remain 
together, whereas CD and DD couples always split up. Therefore, the flow of surviving CC 
couples is 𝛿2𝑥CC, the flow of singles to be re-matched is 𝑦 = (1 − 𝛿2𝑥CC), the fraction of 
C-strategies (CSL) in the pool of singles is 𝛼, and a stationary 𝑥CC must satisfy the 
equation: 

𝑥CC = 𝛼2 · 𝑦 + 𝛿2𝑥CC 
Thus, 

𝑥CC =
𝛼2

1 − 𝛿2(1− 𝛼2) 

■ 

A.5. Proof of Proposition 3 
Note first that any stationary state 𝒑 induces a stationary strategy distribution in the 
matching pool 𝒙(𝒑) ∈ 𝒫(𝚲).15 Then, at stationary states we can use the formula 

𝜋�𝑠(𝒑) = 𝜋�𝑠(𝒙(𝒑)) =
∑ 𝑥𝑠′𝑠′∈𝚲 · 𝐿(𝑠, 𝑠′) · 𝜋(𝑠, 𝑠′)

∑ 𝑥𝑠′ · 𝐿(𝑠, 𝑠′)𝑠′∈𝚲
 

which allows us to characterize the payoff distribution at any stationary state of the system 
𝒑 by simply knowing the (stationary) strategy distribution in the matching pool 𝒙 ∈ ∆7 
induced by 𝒑.  

We will prove that if  𝑚𝑠 > 0 ∀𝑠 ∈ 𝚲, then every limit stationary state p* must satisfy the 
following two conditions: 

a) If 𝑝𝑠∗ > 0 then 𝜋�𝑠 = 𝜋�   
b) If 𝑝𝑠∗ = 0 then 𝜋�𝑠 ≤ 𝜋�   

Consequently, the associated stationary strategy distribution in the pool of singles is a Nash 
distribution.  

From the mean dynamics equations in strategies, a critical point 𝒑𝜇 must satisfy: 

0 = (1 − 𝜇)
𝑝𝑠
𝜇 𝜋�𝑠
𝜋�

+  𝜇 𝑚𝑠 − 𝑝𝑠
𝜇 

15 The precise mapping reads: 𝑥𝑠(𝒑) = 𝑦𝑠
𝑦

= 𝑝𝑠−𝛿2 ∑ ϕ𝑠,𝑖𝑝𝑠,𝑖𝑖
1−𝛿2 ∑ ϕ𝑠,𝑖𝑝𝑠,𝑖𝑠,𝑖

. 
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And, consequently, 

0 =  (1 − 𝜇) 𝑝𝑠
𝜇 (𝜋�𝑠−𝜋�)

𝜋�
+ 𝜇 (𝑚𝑠 − 𝑝𝑠

𝜇)       [A.9] 
Consider a sequence of critical points 𝒑𝜇 converging to some limit stationary state 𝒑∗ as 
𝜇 → 0. 

a) Taking the limit as 𝜇 → 0 in eq. [A.9], it follows that if 𝑝𝑠∗ > 0 at a limit stationary 
state 𝒑∗, then 𝜋�𝑠 − 𝜋� must converge to zero as 𝜇 → 0 and, by continuity of 𝜋�𝑠(𝒑𝜇), 
𝜋�𝑠 = 𝜋�   at 𝒑∗.  

b) The proof of the second condition is based on Samuelson (1997). Note first that, for 
𝜇 > 0 and 𝑚𝑠 > 0, any critical point must satisfy 𝑝𝑠

𝜇 > 0, as [A.9] would not hold 
for 𝑝𝑠

𝜇 = 0 (the value of the right-hand side of [A.9] would then be 𝜇 𝑚𝑠, greater 
than 0). If 𝑝𝑠∗ = 0, then the second term on the right-hand side of [A.9], 𝜇 (𝑚𝑠 −
𝑝𝑠
𝜇), is or becomes positive as 𝒑𝜇 approaches 𝒑∗, which requires a negative first 

term, i.e., 𝜋�𝑠 < 𝜋� as 𝒑𝜇 approaches 𝒑∗. Consequently, by continuity, 𝜋�𝑠 ≤ 𝜋� at 𝒑∗.  
 

Note that the reasoning underlying this proof is valid for other evolutionary dynamics 
where the selection mechanism (i.e. the driver of the dynamics in the absence of mutation) 
is such that strategies performing above the population average tend to increase their share, 
in the sense that, when considering their mean dynamics without mutation, 𝑠𝑖𝑔𝑛 �𝑑𝑝𝑠(𝑡)

𝑑𝑡
� =

𝑠𝑖𝑔𝑛(𝜋�𝑠 − 𝜋�) for 0 < ps < 1. Thus, in the limit when the mutation mechanism fades out, 
and the selection mechanism dominates, the strategies which are not present (ps = 0) at a 
limit stationary state must be earning no more than the population average (since otherwise 
they would be favored by both the selection and the mutation mechanisms in a 
neighborhood of that state, which precludes the existence of other stationary states in that 
neighborhood). ■ 

A.6. Nonexistence of RAII distributions 

A.6.a. Introduction 
Let us start by defining RAII (Robust Against Indirect Invasion) stationary strategy 
distributions. The concept is completely analogous to van Veelen’s (2012) definition of 
RAII strategies. We adapt it here only to use it for strategy distributions in the Voluntarily 
Separable Repeated Prisoner’s Dilemma (VSRPD; FO).  

Let 𝑺 be the set of pure strategies of VSRPD and 𝒫(𝑺) the set of all possible strategy 
distributions with finite support. Note that a strategy distribution 𝒔 ∈ 𝒫(𝑺) can correspond 
to or be interpreted as a finite mixture of pure strategies, a single mixed strategy with finite 
support, or a finite mixture of mixed strategies with finite support.16 

Recall that 𝜋�𝑠(𝒙) denotes the average per-period payoff that pure strategy 𝑠 ∈ 𝑺 expects to 
obtain against stationary distribution 𝒙 in the matching pool (FO). For strategy 
distributions or mixed strategies, if 𝒔 ∈ 𝒫(𝑺) assigns probability 𝑝𝒔(𝑠𝑖) to each pure 
strategy 𝑠𝑖 ∈ 𝑺 in its support, then,  

𝜋�𝒔(𝒙) =
∑ 𝑝𝒔(𝑠𝑖) 𝑠𝑖∈𝑠𝑢𝑝𝑝(𝒔) 𝐿(𝑠𝑖;𝒙)𝜋�𝑠𝑖(𝒙)

∑ 𝑝𝒔(𝑠𝑖) 𝑠𝑖∈𝑠𝑢𝑝𝑝(𝒔) 𝐿(𝑠𝑖;𝒙)
 

where 𝐿(𝑠𝑖;𝒙) is the expected length of a match of 𝑠𝑖 in 𝒙 ∈ 𝒫(𝑺) (FO). 

16 A mixed strategy assigns a probability distribution over pure strategies. These probabilities are used to 
randomly select one pure strategy at the beginning of every new partnership.  
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A.6.b. Definition (Evolutionarily equal and better performers).  
Following van Veelen (2012), we define two sets for any stationary strategy distribution in 
the matching pool with finite support, 𝒙 ∈ 𝒫(𝑺):  

a) The set 𝑆𝐸(𝒙) of strategy distributions (or mixed strategies) that are evolutionarily 
equal performers (or neutral mutants) in 𝒙 ∈ 𝒫(𝑺): 

𝑆𝐸(𝒙) = {𝒔 ∈ 𝒫(𝑺) |𝜋�𝒔(𝒙) =  𝜋�𝒙(𝒙) and 𝜋�𝒔(𝒔) =  𝜋�𝒙(𝒔) } 

b) The set 𝑆𝐵(𝒙) of strategy distributions that are evolutionarily better performers in 
𝒙 ∈ 𝒫(𝑺): 

𝑆𝐵(𝒙) = �𝒔 ∈ 𝒫(𝑺) |𝜋�𝒔(𝒙) >  𝜋�𝒙(𝒙) or �𝜋�𝒔(𝒙) =  𝜋�𝒙(𝒙) and  𝜋�𝒔(𝒔) >  𝜋�𝒙(𝒔)� � 

A.6.c. Definition (RAII distributions).  
A stationary strategy distribution in the matching pool with finite support 𝒙 ∈ 𝒫(𝑺) is 
robust against indirect invasions (RAII) if: 

a) 𝑆𝐵(𝒙) = ∅ and 

b) ∄𝒔𝟏, … , 𝒔𝒏 ,𝑛 ≥ 2, such that �
𝒔𝟏 ∈ 𝑆𝐸(𝒙)
𝒔𝒊 ∈ 𝑆𝐸(𝒔𝒊−𝟏)
𝒔𝒏 ∈ 𝑆𝐵(𝒔𝒏−𝟏)

�  , 2 ≤ 𝑖 ≤ 𝑛 − 1 

A.6.d. Proposition 4.  
Let δ2 be the discount factor or continuation probability of a partnership without voluntary 
break-up in the VSRPD (Voluntarily Separable Repeated Prisoner’s Dilemma). If 𝛿2 >
𝑃−𝑆
𝑇−𝑆

, no stationary strategy distribution in the matching pool with finite support is RAII. 

Proposition 4 states that, if 𝛿2 > 𝑃−𝑆
𝑇−𝑆

 , there are always neutral mutants which can open the 
door to an invasion. 

Proof of Proposition 4.  
The proof is based on the following three results: 

4.1.- Any distribution 𝒙 ∈ 𝒫(𝑺) with an average payoff  𝜋�𝒙(𝒙) < 𝑃 is not Nash, so it is 
not RAII. 

4.2.- If 𝛿2 > 𝑃−𝑆
𝑇−𝑆

 , any distribution 𝒙 ∈ 𝒫(𝑺) with an average payoff  𝜋�𝒙(𝒙) = 𝑃 is not 
RAII. 

4.3.- Any Nash distribution 𝒙 ∈ 𝒫(𝑺) with an average payoff  𝜋�𝒙(𝒙) > 𝑃 is not RAII.   

___________ 

Proof of 4.1. 
Any strategy 𝑠 ∈ 𝑆 that always plays D obtains at least a payoff 𝜋�𝑠(𝒙) = 𝑃.  

Proof of 4.2. 
Let 𝒙 ∈ 𝒫(𝑺) be a distribution with an average payoff 𝜋�𝒙(𝒙) = 𝑃. Any strategy 𝑠 ∈ 𝑆 that 
always plays D in the prisoner’s dilemma, obtains at least a payoff 𝜋�𝑠(𝒙) = 𝑃, and any 
other strategy playing against it obtains at most a payoff equal to P. Consider the strategy 
𝑠𝐷 ∈ 𝑆 which always plays D and stays. If 𝑠𝐷 ∈ 𝑆𝐵(𝒙) then 𝒙 is not RAII and the proof is 
over. Otherwise 𝑠𝐷 is a neutral mutant in 𝒙, i.e. 𝑠𝐷 ∈ 𝑆𝐸(𝒙).  
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Let 𝒔𝑫 ∈ 𝒫(𝑺) be a distribution exclusively composed of 𝑠𝐷. Consider the strategy “nice-
trigger” 𝑠𝑁𝑇 ∈ 𝑆, which never leaves and in a new partnership plays D until its partner 
plays C, from which moment 𝑠𝑁𝑇 turns to playing C forever. “Nice trigger” 𝑠𝑁𝑇 is a 
neutral mutant in 𝒔𝑫, i.e. 𝑠𝑁𝑇 ∈ 𝑆𝐸(𝒔𝑫).  

Let 𝒔𝑵𝑻 ∈ 𝒫(𝑺) be a distribution where the only strategy is “nice-trigger” 𝑠𝑁𝑇. Consider 
the strategy 𝑠𝐶𝑡ℎ𝑒𝑛𝐷 ∈ 𝑆, which never leaves, plays C when meeting a new partner and 
turns to playing D from then onwards. Then the per-period average payoffs are   

𝜋�𝑠𝐶𝑡ℎ𝑒𝑛𝐷(𝒔𝑵𝑻) = ( 1 −  δ2)(𝑆 + δ2 𝑇  +  δ4 𝑇 +  … ) = 𝑆(1 −  δ2) +  δ2 𝑇   

𝜋�𝑠𝑁𝑇(𝒔𝑵𝑻) = ( 1 −  δ2) (𝑃 + δ2 𝑃  +  δ4 𝑃 +  … ) = 𝑃  

If the discount factor is 𝛿2 > 𝑃−𝑆
𝑇−𝑆

, then 𝜋�𝑠𝐶𝑡ℎ𝑒𝑛𝐷(𝒔𝑵𝑻) > 𝜋�𝑠𝑁𝑇(𝒔𝑵𝑻), i.e. 𝑠𝐶𝑡ℎ𝑒𝑛𝐷 ∈ 𝑆𝐵(𝒔𝑵𝑻). 

Proof of 4.3. 
What we prove here is an intermediate result which shows that the same procedure used by 
van Veelen & García (2010; Theorem 8, p. 12, and appendix B1, p. 29) to construct off-
the-equilibrium-paths mutants, mixed neutral mutants and better performers can be used in 
the context of the VSRPD. This result is: 

If the average payoff in a Nash distribution 𝒙 ∈ 𝒫(𝑺) is 𝜋�𝒙(𝒙) > 𝑃, at least some of the 
partnerships made up of the (pure) strategies in the support of 𝒙 are never voluntarily 
broken, and among the paths of infinite outcomes generated by these partnerships, there 
are some in which the action C is played indefinitely often.  

We will first show that some partnerships between strategies in the support of 𝒙 must never 
be voluntarily broken. Suppose to the contrary that partnerships between strategies 
𝑠𝑖, 𝑠𝑗 ∈ 𝑠𝑢𝑝𝑝(𝒙) are voluntarily broken at period τij of their �𝑠𝑖, 𝑠𝑗� partnership. Let τMax be 
the maximum of all τij. Note that it is not possible that any strategy 𝑠𝑘 ∈ 𝑠𝑢𝑝𝑝(𝒙) that in 
some partnership gets to play in period τMax plays C on that period, as the alternative 
strategy that plays like 𝑠𝑘 but at t = τMax plays D and leaves would obtain a higher payoff, 
which is not possible in a Nash distribution. But it is not possible either that all strategies 
that in some partnership get to play in period τMax play D on that period, because they 
would all obtain the payoff P at t = τMax, and, considering that 𝜋�𝑥(𝒙) > P, the alternative 
strategy that plays like any of them but leaves at t = τMax – 1 would obtain a higher payoff, 
which is not possible in a Nash distribution. Thus, at least some of the partnerships made 
up of the strategies in the support of 𝒙 are never voluntarily broken.  

Let us now show that among the partnerships {𝑠𝑙, 𝑠𝑚} that are never voluntarily broken, the 
action C must be played indefinitely often. Suppose to the contrary that there is some t = τ’ 
beyond which C is never played in any such partnerships. Then there is a t = τ’’ > τMax 
beyond which C is never played in any of those forever-lasting partnerships, and there are 
alternative strategies to 𝑠𝑙 which behave like 𝑠𝑙 in every partnership in every period t <= 
τ’’and which leave at t = τ’’. Considering that 𝜋�𝑥(𝒙) > P, these alternative strategies would 
obtain a greater payoff than 𝑠𝑙, which is not possible in a Nash distribution. 

■ 
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Appendix B. Mean dynamics equations with delayed re-
matching and outside payoff 

It could be argued that the establishment of cooperation based on conditional dissociation 
would not be sustained if there was a cost associated with breaking up a relationship, as 
this cost could harm dissociative strategies. For instance, individuals may not be able to 
find a new partner immediately after splitting-up, but may spend some periods searching, 
during which they could receive some low outside payoff.  
As we will see next –and has also been shown for some related models (Izquierdo et al., 
2010)– this kind of symmetric cost for the separated partners not only may not harm 
cooperation, but it can even promote it. Our distilled conditional dissociation model 
provides a clear explanation for this effect: the cost of a broken relationship bears mainly 
upon those individuals who separate more often, and in a cooperative equilibrium such as 
the one we have previously identified, the proportion of separations is much greater among 
individuals who defect (who are quickly abandoned) than among individuals who 
cooperate (many of whom, being paired with another cooperator, remain together).  

To illustrate this effect, consider the following extension of the conditional dissociation 
model: First, at the beginning of every time-step, every single (unmatched) player is 
selected to be matched with probability r.17 Second, in every period, single players receive 
an outside payoff 𝜋0. 

This process can also be characterized as a Markov Chain. As before, let  𝑝𝑠,𝑠′ denote the 
number of 𝑠-strategists paired with 𝑠′-strategists as a proportion of the whole population, 
just after the matching stage. Let r be the probability with which each individual who is 
single is selected for re-matching, let 𝜋0 be the outside payoff and let 𝑞𝑠 be the number of 
unmatched 𝑠-strategists as a proportion of the whole population, just after the matching 
stage. Then, ∑ (𝑝𝑠 + 𝑞𝑠)𝑠∈𝚲 = 1. 

Following the same derivation process as before, the mean dynamics equations for the 
considered state variables in large populations are:  

𝑑𝑝𝑠,𝑠′

𝑑𝑡
= ϕ𝑠,𝑠′𝛿

2𝑝𝑠,𝑠′ + 𝑟 · 𝑦𝑠(𝑡)
𝑦𝑠′
𝑦
− 𝑝𝑠,𝑠′ 

 𝑑𝑞𝑠
𝑑𝑡

= (1 − 𝑟)𝑦𝑠 − 𝑞𝑠 
Where:  

𝑦𝑠 = 𝛿 · 𝑞𝑠 + (1 − 𝛿) �(1 − 𝜇)
(𝑞𝑠 + 𝑝𝑠)𝜋𝑠���

𝜋�
+ 𝜇 𝑚𝑠� + 𝛿2� �1 − ϕ𝑠,𝑖� 𝑝𝑠,𝑖

𝑖∈Λ
+ 𝛿(1 − 𝛿)𝑝𝑠 

𝑦 = � 𝑦𝑠
𝑠∈Λ

 

𝜋𝑠��� =
1

(𝑞𝑠 + 𝑝𝑠) �𝜋0 · 𝑞𝑠 + � 𝑝𝑠,𝑠′𝜋(𝑠, 𝑠′)
𝑠′∈𝚲

� 

𝜋� = � (𝑞𝑠 + 𝑝𝑠) · 𝜋𝑠���
𝑠∈𝚲

 

 

 

17 If the number of players selected for matching is odd, one of those selected players goes back to the pool of 
singles. 
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The qualitative behavior of this system is similar to the behavior of the system without 
costs of leaving. The reader can check this assertion by using the applet provided in the 
supplementary material. Also, as we did before, we can define a non-cooperative regime 
and –for sufficiently long expected life– a cooperative regime which condense the 
dynamics of the process. As an illustrative case, Fig. B.1 presents the fraction of 
individuals involved in each kind of interaction at the critical point that characterizes the 
cooperative regime, for the parameterization [T = 4, R = 3, P = 1, S = 0] with 𝜋0 = 1, r = 
0.5, µ = 0.01, ms = 1/8 and population size N = 400. Comparing these results with those 
obtained when r = 1, i.e. for immediate re-matching (Fig. 8 and Fig. 9), it can be seen that 
the effect of introducing costs of leaving is a decrease on the minimum lifetime required 
for this cooperative critical point to appear and –for any given expected life f– a higher 
fraction of cooperative outcomes among the interacting population in the cooperative 
critical point. 

 

 
Fig. B.1. Fraction of individuals involved in each kind of interaction (CC, DD, CD/DC or no play) at the 
critical point that characterizes the cooperative regime. Parameters: r = 0.5, 𝜋0=1, T = 4, R = 3, P = 1, S = 0, 
µ = 0.01, ms = 1/8.  
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