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Abstract - This study introduces and describes a novel Intrusion Detection System (IDS) called MOVCIDS 

(MObile Visualization Connectionist IDS). This system applies neural projection architectures to detect anomalous 
situations taking place in a computer network. By its advanced visualization facilities, the proposed IDS allows 
providing an overview of the network traffic as well as identifying anomalous situations tackled by computer 
networks, responding to the challenges presented by volume, dynamics and diversity of the traffic, including novel 
(0-day) attacks. MOVCIDS provides a novel point of view in the field of IDSs by enabling the most interesting 
projections (based on the fourth order statistics; the kurtosis index) of a massive traffic dataset to be extracted. These 
projections are then depicted through a functional and mobile visualization interface, providing visual information of 
the internal structure of the traffic data. The interface makes MOVCIDS accessible from any mobile device to give 
more accessibility to network administrators, enabling continuous visualization, monitoring and supervision of 
computer networks. Additionally, a novel testing technique has been developed to evaluate MOVCIDS and other 
IDSs employing numerical datasets. To show the performance and validate the proposed IDS, it has been tested in 
different real domains containing several attacks and anomalous situations. In addition, the importance of the 
temporal dimension on intrusion detection, and the ability of this IDS to process it, are emphasized in this work. 
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1. INTRODUCTION 

An attack or intrusion to a network would end up affecting any of the three computer security 

principles: availability, integrity and confidentiality, exploiting for example the Denial of 

Service, Modification and Destruction vulnerabilities [1]. One of the most harmful points of 

attacks and intrusions, increasing the difficulty of protecting computer systems, is the ever-
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changing nature of attack technologies and strategies. 

For this reason among others, Intrusion Detection Systems (IDSs) have become a required 

asset in addition to the computer security infrastructure of most organizations. In the context of 

computer networks, an IDS can roughly be defined as a tool designed to detect suspicious 

patterns that may be related to a network or system attack. Intrusion Detection (ID) is then a field 

focused on the identification of attempted or ongoing attacks in a computer system (Host IDS - 

HIDS) or network (Network IDS - NIDS). The accurate detection of computer and network 

system intrusions in real-time has always been an interesting and intriguing problem for system 

administrators and information security researchers. It could mainly be attributed to the dynamic 

nature of systems and networks, the creativity of attackers, the wide range of computer hardware 

and operating systems and so on. Such complexity rises when dealing with distributed network-

based systems and insecure networks such as the Internet. 

This study introduces an NIDS characterized by the use of an unsupervised connectionist 

projection technique providing a novel approach based on the visual analysis of the internal 

structure of the flow of traffic data. Unsupervised learning meets the ID requirements as in a real-

life situation there is no target reference with which to compare the response of the network. 

Additionally, this soft-computing approach is quite useful for identifying unknown or not 

previously faced attacks, known as 0-day attacks, based on the well-know generalization 

capability of the Artificial Neural Networks (ANNs).  

It is important to note that the authors propose MOVCIDS (MObile Visualization 

Connectionist Intrusion Detection System) also as a complementary tool to other network 

security ones, this is, MOVCIDS can work in unison with other defence mechanisms (even if 

they are IDSs), to provide an intuitive depiction of both normal and anomalous traffic. 

The remaining five sections of this study are structured as follows: section 2 contains a brief 

state of the art of IDSs (mainly visualization-based). Section 3 describes the neural projections 

techniques applied in this work, while section 4 provides an overview of the proposed IDS, in 

which each step forming this system is described in detail. Some experimental results are 

presented and described in section 5; the proposed IDS is tested in some different ways in section 

6; authors discuss the considered main advantages of MOVCIDS in section 7 and finally, section 

8 puts forward a number of conclusions and pointers for future work. 
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2. PREVIOUS WORK 

ID has been approached from several different points of view up to now; many different 

intelligent and Soft Computing techniques (such as Genetic Programming [2, 3], Data Mining [4-

10], Expert Systems [11, 12], Fuzzy Logic [13, 14], or Neural Networks [15-20] among others) 

together with statistical [21] and signature verification [22] techniques have been applied mainly 

to perform a 2-class classification (normal/anomalous or intrusive/non-intrusive). Most of these 

systems can generate different alarms when an anomalous situation is detected, but they can not 

provide a general overview of what is happening inside a computer network. 

From an opposite point of view, a great variety of visualization-based approaches to ID have 

been proposed as well [23-34]. In this case, the ID task is enabled by providing a visual depiction 

of the network or the traffic. Thus, the identification of attacks must be performed through visual 

features because no alarms are triggered. Visualization tools rely on the human ability to 

recognize different features and detect anomalies through graphical devices [35]. One of the main 

advantages is that apart from enabling the anomalies detection, this approach could provide a 

general snapshot of network traffic. As this study focuses on visualization of network traffic data 

rather than network structure or topology, previous work only on network data visualization is 

considered. 

Network data are summarized in previous work by:  

 IP addresses: that is the case of the Galaxy View of NVisionIP [36]. In [37], Border 

Gateway Protocol data are visualized by a diagram based on IP addresses. A matrix 

based on IP addresses is proposed as well in [30] to detect the propagation of the 

Welchia and Sasser. D worms. The Time-based Network Traffic Visualizer [31] 

combines a matrix display of host IP address and packets timestamp. IP segments are 

used in NIVA [38] to locate and colour the data. 

 Port numbers: in [24] the main visualization proposed is based on port and time 

information. Stacked histograms of aggregate port activity are proposed in [25]. In the 

case of NVisionIP [36], the previously mentioned Galaxy View is completed by the 

Small Multiple View, that uses port numbers to visualize the data. By using port 

numbers and IP addresses, the system proposed in [25] is able to see the penetration 

and subsequent activity of the Sasser worm. 
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 Different measurements of network traffic: the Multi Router Traffic Grapher [26] 

shows the incoming/outgoing traffic in Bits per Second while IDGraphs [33] uses the 

number of unsuccessful connections [39].  

 Alarm data: generated by different IDSs, such as Snort [40] or StealthWatch IDS [41]. 

 Others: additional kinds of data can be also processed by different visualization tools, 

such as VIAssist [42] or IDtk [28] that are applied to raw TCP packet data or alerts 

generated by IDS tools. 

In contrast to other security tools, IDSs need to be monitored [43]. So, an IDS can be useless if 

nobody is looking at its outputs. In keeping with this idea, MOVCIDS goes beyond the state of 

the art in relation to previously mentioned visualization tools, combining features extracted from 

packet headers to depict each simple packet by using neural unsupervised methods based on 

Exploratory Projection Pursuit (EPP) [44] [45] . It provides the network administrator with a 

snapshot of network traffic, protocol interactions, and traffic volume generally in order to 

identify anomalous situations. To do so, an unsupervised neural model (see section 3) is applied. 

Most of the solutions described in this section use a glyph metaphor [28, 38, 46] to encode 

information by changing different features (colour, size, opacity, etc.) in addition to the spatial 

coordinates, while others use traditional representation techniques such as histograms [25, 47, 

48], histographs [39] or other graphs [29, 32]. The novel IDS proposed in this work employs the 

glyph metaphor as well, using different colours and shapes in addition to the spatial coordinates 

to offer information about the protocol each packet belongs to. 

The connectionist visualization approach is not a new one; [34] proposes a visualization based 

on the information stored in event logs. These events are considered as multidimensional vectors, 

and a 2D representation of them is obtained by the Self-Organizing Map (SOM) [49], where new 

(or anomalous) user activities are identified by visual comparison.  

From a purely projection of packets standpoint, Principal Component Analysis (PCA) [50], 

[51], has been also proposed as a visualization tool for analyzing network data [23, 27]. The 

PCA-based visualization provided in [23] does not enable to distinguish attacks from normal 

traffic. Furthermore, an explanation of the projection obtained by this technique is not yielded. In 

[27] PCA is proposed as a complementary tool to interpret the results obtained by a statistical 

analysis because the visualization does not allow the identification of attacks on its own. 
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Previous work on this projection approach also includes the application of a visualization tool for 

intrusion detection [52]. Although some attacks are visually identified in that work by combining 

visualization and fuzzy feature extraction, explanations about the projection technique and the 

identification process are not provided.  

The novel IDS presented in this study also employs scatterplot matrixes to visualize packet 

data and  provides a proper explanation of the results obtained by projection methods such as 

PCA (based on the second order statistic, i.e, the variance) and also going further, applying 

connectionist models based on higher order statistics such as the kurtosis (which is a measure of 

how pointed a distribution is). 

3. UNSUPERVISED CONNECTIONIST PROJECTION 

ARCHITECTURES 

The identification of patterns that exist across dimensional boundaries in high dimensional 

datasets is a fascinating task [44]. Such patterns may become visible if changes are made to the 

spatial coordinates. However, an a priori decision as to which parameters will reveal most 

patterns requires prior knowledge of unknown patterns. 

Projection methods project high-dimensional data points onto a lower dimensional space in 

order to identify "interesting" directions in terms of any specific index or projection. Such 

indexes or projections are, for example, based on the identification of directions that account for 

the largest variance of a dataset –as is the case of PCA [50, 51] - or the identification of higher 

order statistics such as the skew or kurtosis index -as is the case of Exploratory Projection Pursuit 

(EPP) [44]. Having identified the most interesting projections, the data are then projected onto a 

lower dimensional subspace plotted in 2D or 3D, which makes it possible to examine its 

structure with the naked eye. The remaining dimensions are discarded as they mainly relate to a 

very small percentage of the information or the dataset structure. In that way, the structure 

identified through a multivariable dataset may be visually analyzed with greater ease. In this 

work, we take advantage of this dimensionality reduction ability to perform a 2D visualization of 

the analyzed data (from a 5-dimensional space) through an unsupervised projection model. 

Scatterplot matrixes [53] based on projection techniques constitute a useful visualization tool 

to investigate the intrinsic structure of multidimensional data, enabling experts to see the 

relations between different components, factors or projections. 
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3.1. A Variance-based Visualization 
PCA is a standard statistical technique for compressing data; it can be shown to give the best 

linear compression of the data in terms of least mean square error. There are several ANNs or 

connectionist models which have been shown to perform PCA e.g. [54-56]. This technique 

describes the variation in a set of multivariate data in terms of a set of uncorrelated variables, in 

decreasing order of importance, each of which is a linear combination of the original variables. It 

should be noted that even if we are able to characterize the data with a few variables, it does not 

follow that an interpretation will ensue. 

3.2. Unsupervised Connectionist Visualization for MOVCIDS 
Exploratory Projection Pursuit (EPP) [44] is a more recent statistical method aimed at solving 

the difficult problem of identifying structure in high dimensional data. It does this by projecting 

the data onto a low dimensional subspace in which we search for data's structure by eye. 

However, not all projections will reveal this structure equally well. It therefore defines an index 

that measures how "interesting" a given projection is, and then represents the data in terms of 

projections maximizing that index. 

The first step for EPP is to define which indexes represent interesting directions. 

"Interestingness" is usually defined with respect to the fact that most projections of high-

dimensional data give almost Gaussian distributions [45]. Thus, in order to identify "interesting" 

features in data, it is appropriate to look for those directions onto which the data-projections are 

as far from the Gaussian as possible. 

Two simple measures of deviation from a Gaussian distribution are based on the higher order 

moments of the distribution. Skewness is based on the normalized third moment and measures 

the deviation of the distribution from bilateral symmetry. Kurtosis is based on the normalized 

fourth moment and measures the heaviness of the tails of a distribution. A bimodal distribution 

will often have a negative kurtosis and therefore negative kurtosis would signal that a particular 

distribution shows evidence of clustering. 

Because a Gaussian distribution with mean a and variance x is equally interesting than a 

Gaussian distribution with mean b and variance y - indeed this second order structure can obscure 

higher order and more interesting structure - then such information is removed from the data 



 7 

("sphering").  

Cooperative Maximum Likelihood Hebbian Learning (CMLHL) [57, 58] is based on 

Maximum Likelihood Hebbian Learning (MLHL) [57, 59], an EPP connectionist model. 

CMLHL includes lateral connections [58, 60] derived from the Rectified Gaussian Distribution 

(RGD) [61]. The RGD is a modification of the standard Gaussian distribution in which the 

variables are constrained to be non-negative, enabling the use of non-convex energy functions. 

The CMLHL architecture is depicted in Fig. 1, where lateral connections are highlighted. 
Fig.1 << File Fig.-01.pdf goes here>> 

Lateral connections used by CMLHL are based on the mode of the cooperative distribution that 

is closely spaced along a non-linear continuous manifold. Due to this, the resultant net can find 

the independent factors of a dataset in a way that captures some type of global ordering. 

Considering an N-dimensional input vector (x), an M-dimensional output vector (y) and with 

ijW  being the weight (linking input j  to output i ), CMLHL can be expressed as:  

Feed-forward step: 

ixWy
1j

jiji 


N

, . 
(1) 

Lateral activation passing: 

     Aybτ(t)yty ii 1 . (2) 

Feedback step: 





M

i
iijjj jyWxe

1
, . 

(3) 

Weight change: 

  p
jjiij eesignyW ||.. . (4) 

Where:   is the learning rate,   is the "strength" of the lateral connections, b  the bias 

parameter and p  is a parameter related to the energy function [57-59].  
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A is a symmetric matrix used to modify the response to the data whose effect is based on the 

relation between the distances among the output neurons. It is based on the Cooperative 

Distribution, but to speed learning up, it can be simplified to: 

  MjijiA ij /2cos),(   . (5) 

Where ij is the Kronecker delta. 

CMLHL has already proved to successfully perform data visualization. It was initially applied 

to the artificial vision field [58, 60] and then to some other problems [62-64]. 

3.3. Self-Organizing Map 
The Self-Organizing Map (SOM) [49] was developed as a visualization tool for representing 

high dimensional data on a low dimensional display. Although it is also based on the use of 

unsupervised learning, it is not a projection architecture but a topology preserving mapping 

model using competitive learning instead. A SOM, composed of a discrete array of L nodes 

arranged on an N-dimensional lattice, maps these nodes into a D-dimensional data space while 

preserving their ordering. The dimensionality of the lattice (N) is normally smaller than that of 

the data, in order to perform the dimensionality reduction. An example of a trained two-

dimensional lattice is shown in Fig. 2.a. Typically, the array of nodes is one or two-dimensional, 

with all nodes connected to the N inputs by an N-dimensional weight vector as can be seen in 

Fig. 2.b.  
<< File Fig.-02a.pdf goes here>> << File Fig.-02b.pdf goes here>> 

Fig. 2. 

The SOM can be viewed as a non-linear extension of PCA, where the map manifold is a 

globally non-linear representation of the training data [65]. The self-organization process is 

commonly implemented as an iterative on-line algorithm, although a batch version also exists. 

An input vector is presented to the network and a winning node, whose weight vector is the 

closest (in terms of Euclidean distance) to the input, is chosen. 

So the SOM is a vector quantizer (VQ), and data vectors are quantized to the reference vector 

in the map that is closest to the input vector. The weights of the winning node and the nodes 
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close to it are then updated to move closer to the input vector. When this algorithm is iterated 

sufficiently, the map self-organizes to produce a topology-preserving mapping of the lattice of 

weight vectors to the input space based on the statistics of the training data. This connectionist 

model is applied here for comparative purposes as it is one of the most widely used unsupervised 

neural models for visualizing structure in high-dimensional datasets and also applied in the field 

of IDSs [18]. 

3.4. Curvilinear Component Analysis 
Curvilinear Component Analysis (CCA) [66] is a nonlinear dimensionality reduction method. 

It was developed as an improvement on the SOM. It tries to circumvent the limitations inherent 

in some previous linear models such as PCA. 

The principle of CCA is a self-organized neural network performing two tasks: a vector 

quantization of the submanifold in the dataset (input space) and a nonlinear projection of these 

quantizing vectors toward an output space, providing a revealing view of the way in which the 

submanifold unfolds. It is shown in Fig. 3. 
Fig.3 << File Fig.-03.pdf goes here>> 

As regards its goal, the projection part of CCA is similar to other nonlinear mapping methods; 

in that it minimizes a cost function based on interpoint distances in both input and output spaces. 

Quantization and nonlinear mapping are separately performed by two layers of connections: 

firstly, the input vectors are forced to become prototypes of the distribution using a VQ. Then, 

the output layer builds a nonlinear mapping of the input vectors by considering Euclidean 

distances. 

4. A MOBILE VISUALIZATION IDS: MOVCIDS 

The novel IDS presented in this study is mainly based on the application of an unsupervised 

connectionist projection model and is designed to process the continuous data flow coming from 

a computer network. In order to do so, MOVCIDS (MObile Visualization Connectionist 

Intrusion Detection System) splits massive traffic data into segments and analyze them, thereby 

providing administrators with an intuitive snapshot to analyze the kinds of events taking place on 

the computer network. This visualization tool may be defined as an IDS taking full advantage of 

the previously described model called CMLHL (see section 3.2) and also of the mobile 
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technology, by the use of PDAs, blackberries, cell phones or mobile devices in general. 
Fig.4 << File Fig.-04.pdf goes here>> 

To detect anomalous situations, MOVCIDS performs the following steps (Fig. 4), as described 

in detail in the following sections: 

 1
st
 step.- Network Traffic Capture (section 4.1): packets travelling along the network 

are captured. 

 2
nd

 step.- Data Pre-processing (section 4.2): the captured data are selected and pre-

processed. Traffic is selected by taking into account the protocol at transportation level, 

and a set of features contained in the headers of the captured packets is selected from 

the raw network traffic. 

 3
rd

 step.- Segmentation (section 4.3): the data stream is divided into simple segments 

and accumulated ones (consisting of the addition of several consecutive simple 

segments). This allows the network administrator to perform a more local and detailed 

analysis on some suspicious situations, while preserving a general overview of the 

network traffic. 

 4
th

 step.- Data Analysis (section 4.4): CMLHL is applied to analyze the data. This 

connectionist model drives a compact projection, enabling the 2-D visualization of the 

5 packet features selected in the 2nd step. Some other unsupervised models (such as 

PCA and the SOM) have also been applied in this research for comparison purposes. 

 5
th

 step.- Visualization (section 4.5): the projections of simple and accumulated 

segments are presented to the network administrator for scrutiny and monitoring. One 

interesting feature of this IDS is the mobility; the visualization step may be performed 

on a device different from the one used for the previous four steps. To improve the 

accessibility of the system, the administrator may visualize the results on any kind of 

mobile device, enabling informed decisions to be taken anywhere and at any time. Low-

size static images are sent from the server to these mobile devices due to their today 

reduced capabilities. 

4.1. Network Traffic Capture Step 
The ID process starts when MOVCIDS captures packets travelling along the network by using 

sniffing techniques. That is, one of the network interfaces is set up in promiscuous mode, 
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gathering all the information travelling along the network. Every single packet is captured and its 

header information is stored. Some of the fields for the often used TCP/IP protocols and 

applications are: 

 TTL (Time to Live): timer used to track the lifetime of the packet. 

 TOS (Type of Service): parameters for the type of service requested. 

 Protocol: a code identifying the next encapsulated protocol. In the case of IP header, 

this field identifies the protocol over IP. 

 Source IP address: IP address from where the source host sent the packet. 

 Destination IP address: IP address to which the packet is sent. 

 Source port: port number from where the source host sent the packet. 

 Destination port: destination host port number to which the packet is sent. 

 Acknowledgment info (control bit and number): in the case of TCP, the reception of 

packets is acknowledged back to the sender. 

 Size: total packet size in bytes. 

 Timestamp: the time when the packet was sent. 

An alternative to packet sniffing could be Netflow records [67], that must be pre-processed in a 

different way. 

4.2. Data Pre-processing Step 
The captured data are selected and pre-processed, as only a reduced set of fields (features) 

contained in the headers of the captured packets is selected from the raw network traffic. 

IDSs have to deal with the practical problem of high volumes of quite diverse data. To 

overcome this problem, MOVCIDS splits the traffic into different groups, taking into account the 

protocol (either UDP, TCP, ICMP…) over IP. Among all the implemented network protocols, 

there are several of them that can be considered quite more dangerous (in terms of the network 

security), such as the Simple Network Management Protocol (SNMP) [68]. SNMP was identified 

as one of the top five most vulnerable services by CISCO [69], specially the two first versions of 

this protocol that are the most widely used at present time. An attack based on this protocol may 

severely compromise the security of the whole network [1]. SNMP attacks were also listed by the 

SANS (SysAdmin, Audit, Network, Security) Institute as one of the top 10 most critical internet 

security threats [70] [71]. 
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Most security tools focus their attention on attacks coming from the internet but attacks are just 

as likely to come from inside the network as from the outside. However, due to these reasons, the 

experimental setting of this study is focused on the identification of anomalous situations 

concerning SNMP. Hence, as SNMP is based on UDP, only UDP traffic has been considered in 

this work in order to be focused on some special cases.  

In the data pre-processing step, the system performs a data selection from the captured 

information. The following 5 variables of each packet are extracted: source port, destination port, 

size, timestamp and protocol (each packet is assigned the code of the protocol over TCP/UDP it 

belongs to) as described in Table 1.  

 

Variable Description Type (range) 

Source port Port number from where the source host sent 

the packet. 

Integer (from 0 to 65535) 

Destination port Destination host port number to which the 

packet is sent. 

Integer (from 0 to 65535) 

Size Total packet size (in bytes). Integer 

Timestamp The time when the packet was sent. 

Difference in relation to the first captured 

packet of the segment (in ms). 

Integer 

Protocol All the protocols deployed in the analyzed 

network have been codified. 

Integer 

Table 1. Selected packet variables. 

As it is shown in the experimental section (section 5), these 5 features allow the identification 

of the anomalous situations related to the SNMP. Furthermore, this minimal traffic measurement 

-characterizing network packets by a reduced set of packet header features- allows for high 

volume networks monitoring saving a lot of computational cost. 

4.3. Segmentation Step 
Fig. 5 << File Fig.-05.pdf goes here>> 

MOVCIDS splits the pre-processed data stream into: 

 Equal simple segments (Sx): each simple segment contains all the packets whose 
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timestamp is between the segment initial and final time limit (t0 and t1 for S1). As can 

be seen in Fig. 5, there is a slight time overlap between each pair of consecutive simple 

segments. Both the length (time duration) of the simple segments and the time overlap 

can be set up by the administrator. 

 Accumulated segments (Ax): each one of these segments contains several consecutive 

simple ones (Fig. 5). The length of accumulated segments is also configurable. 

One of the main reasons for such a partitioning is to present a long-term picture of the 

evolution of network traffic to the network administrator, allowing the visualization of attacks 

lasting longer than the length of a simple segment. Additionally, simple segments allow a near 

real-time processing of traffic. The longer a dataset is, the more distant from real-time the 

analysis will be, due to the capture delay. 

The main reason for overlapping simple segments is that anomalous situations could 

conceivably take place between simple segment Sx and Sx+1 (the next segment following Sx). In 

this case, it would be necessary to consider some packets twice in order to visualize the end of 

the anomalous situation and the evolution between simple segments. To prevent confusion of the 

analyst (for example, the same anomalous situation is visualized in two different simple 

segments), accumulated segments are visualized at the same time. This will lead the network 

administrator to realize that there is only one anomalous situation being visualized twice. 

Fig. 5 shows a sample segmentation by MOVCIDS. In this study the simple segment length is 

10 minutes and the overlapping time between consecutive simple segments is 2 minutes. Table 1 

describes the segments used in this work, generated through the above mentioned values. 

Dataset Number of  packets Initial time limit (ms) Final time limit (ms) 

S1 3,122 1 600,000 
S2 3,026 480,000 1,080,000 
S3 3,235 960,000 1,560,000 
S4 9,673 1,440,000 2,040,000 
S5 10,249 1,920,000 2,520,000 
S6 3,584 2,400,000 3,000,000 
S7 3,051 2,880,000 3,480,000 
S8 2,818 3,360,000 3,960,000 
…    
A2 5,553 1 1,080,000 
A3 8,219 1 1,560,000 
A4 17,262 1 2,040,000 
A5 20,410 1 2,520,000 
A6 23,352 1 3,000,000 
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A7 25,633 1 3,480,000 
A8 27,970 1 3,960,000 
…    
A13 49,647 1 6,360,000 

Table 1. Simple and accumulated segments description. 

4.4. Data Analysis Step 
Once simple and accumulated segments have been built, a connectionist model is applied to 

analyze them. The data analysis task is based on the use of CMLHL [57, 58] (see section 3.2) to 

drive a compact 2D or 3D visualization of the 5-dimensional packet data. As it is previously 

mentioned, CMLHL is able to provide a projection showing the internal structure of a dataset by 

considering the fourth order statistics (the kurtosis index). 

Projection models project data points onto lower dimensions identified as "interesting" 

directions in terms of any one specific index. Such indexes are, for example, based on the 

variance of a data set (such as PCA [50], [51]) or higher-order statistics such as skewedness or 

kurtosis, as in the case of Exploratory Projection Pursuit (EPP [44]). 

Kurtosis is based on the normalised fourth moment of the distribution and measures the 

heaviness of the tails of a distribution. A bimodal distribution will often have a negative kurtosis 

and therefore negative kurtosis can signal that a particular distribution shows evidence of 

clustering.  

The main advantage of models like MLHL [57, 59] and the related ones such as CMLHL [57, 

58] is that by maximizing the likelihood of the residual with respect to the actual distribution, the 

learning rule (Equation 4) is matched to the Probability Density Function (PDF) of the residual 

by applying different values of the "p" parameter specified in the learning rule [57, 59]. 

With the Maximum rule (Equation 4) [57, 59], the weights learn to remove the projections of 

the data which are furthest from that determined by the parameter p. Thus, to search for clusters 

in a data set (typified by a PDF with p > 2), it can be used Maximum Likelihood learning with p 

< 2 [57, 59], which would result in weights which are removing any projections which make 

these residuals unlikely. Therefore the clusters would be found by projecting onto these weights. 

Then, it is expected that for leptokurtotic residuals (more kurtotic than a Gaussian 

distribution), values of p < 2 would be appropriate, while for platykurtotic residuals (less kurtotic 

than a Gaussian), values of p > 2 would be appropriate. 
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4.5. Visualization Step 
The projection of each segment is presented to the network administrator. MOVCIDS is 

accessible from any mobile device to give more accessibility to network administrators, enabling 

permanent mobile visualization, monitoring and supervision of networks. 
Fig. 6 << File Fig.-06.pdf goes here>> 

Fig. 6 shows an example of the visualization provided by MOVCIDS on a mobile device. An 

emulator was used to test the visualization on a mobile platform. Further details concerning the 

MOVCIDS visualization are described in section 5. 

5. RESULTS AND DISCUSSION 

This section shows the empirical results obtained by MOVCIDS in facing both normal and 

anomalous traffic. As previously motivated, the experimental setting of this study is focused on 

the identification of anomalous situations concerning SNMP. As there is not any publicly 

available packet-level dataset containing such attacks, we decided to create our own dataset 

named GICAP-IDS dataset. The main experimental study of MOVCIDS makes use of this 

dataset. 

Among the SNMP anomalous situations we focused on, only port/network scans are contained 

in publicly available datasets, such as the DARPA dataset [72]. To check the ability of the 

proposed IDS in facing such attacks through a well known dataset, this section also includes 

some results in facing port scans contained in the DARPA dataset. Note that this is not a 

complete benchmark aimed at comparing the performance of MOVCIDS with some other 

previous IDSs as it can not be carried out in a fair way as visualisation features can not be 

compared to classification performance.  

5.1. GICAP-IDS dataset 
The main dataset used in these experiments (GICAP-IDS dataset) was generated ‘made-to-

measure’ in a small-size network. In addition to the SNMP packets ("normal" and "anomalous"), 

the datasets contain traffic related to other protocols, considered as "normal" traffic. As this 

network was isolated and protected from external attacks, "normal" traffic was known in advance 

and empirically tested. All the "normal" traffic in the different analyzed datasets was noticed to 

be depicted in the same way, i.e. parallel straight lines (see results in this section). Apart from 
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"normal" traffic, three different SNMP anomalous situations were generated by means of hacking 

tools in the network where traffic was collected. 

In this section, some snapshots are shown (Fig. 7). Each one of them depicts all the packets 

contained in the dataset whose projection is shown. MOVCIDS plots the packets in different 

colours and shapes taking into account the protocol information, leading to an intuitive 

visualization. In these snapshots, and in general for projection models, the axes forming the 

projections are combinations of the features contained in the original datasets, as shown in Fig. 

7.a. They X and Y axes of the projections are not associated to a unique original feature.  

MOVCIDS is focused on the identification of SNMP-related attacks. Thus, three main 

anomalous situations are distributed throughout the different segments in this study, namely: 

scans, SNMP community searches and MIB (Management Information Base) information 

transfers. These situations (described in the following paragraphs) can be very risky on their own 

and all together (a network scan followed by a SNMP community search and ending with an MIB 

information transfer) make an SNMP attack from scratch. That is, an intruder gets some of the 

SNMP managed information without having any previous knowledge about the network being 

attacked. 

SNMP was oriented to manage nodes in the Internet community [68]; it is used to control 

routers, bridges, and some other network elements, reading and writing a wide variety of 

information (such as operating system, version, routing tables, default TTL and so on) about 

these devices. All this information is stored in the MIB, so it can be defined in broad terms as the 

database used by SNMP to store information about the elements that it controls. 

The analyzed datasets contain examples of all the above described anomalous situations. Apart 

from that, information concerning "normal" traffic is included as well. 

In addition to purely SNMP anomalous situations (SNMP community searches and MIB 

transfers), MOVCIDS also helps network administrators in detecting network/port scans, that can 

be easily identified by some other security tools (by looking at source/destination IP addresses for 

example). The main reason is that all these anomalous situations make an SNMP attack from 

scratch. 

5.1.1. Scans 
A port scan may be defined as series of messages sent to different port numbers of a host to 
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gain information on its activity status. These messages could be sent by an external agent to find 

out more about the network services a host is providing. On the contrary, in a network scan the 

same port is the target for a number of hosts (usually all the hosts in an IP address range). A port 

scan provides information on where to probe for weaknesses, for which reason scanning 

generally precedes any further intrusive activity. A network scan is one of the most common used 

techniques to identify services that might be accessed without permission [25]. 

In this experimental study, the datasets contain network scans aimed at port numbers 1,434 

(registered port assigned to Microsoft-SQL-Monitor, the target of the W32.SQLExp.Worm) and 

65,788 (as an example of dynamic or private port). 

5.1.2. SNMP Community Search 
The unencrypted "community string" can be seen as the SNMP password for versions 1 and 2. 

An SNMP community search is characterized by the intruder sending SNMP queries to the same 

port number of different hosts trying to guess the SNMP community string by means of different 

strategies (brute force, dictionary, etc.) [71]. Once the community string has been obtained, all 

the information stored in the MIB is available for the intruder. 

5.1.3. MIB Information Transfer 
This situation is a transfer of some (or all the) information contained in the SNMP MIB, 

generally through the get (or get-bulk) command. This kind of transfer is potentially a dangerous 

situation. However, the "normal" behaviour of a network may include queries to the MIB. This is 

a situation in which visualization-based IDSs are especially useful; these situations are visualized 

in a "special" way by the IDS but it is the network administrator responsibility to decide whether 

it is a "normal" MIB transfer (known by him) or it is not. 

5.1.4. Results 
A traffic data capture was performed in a network and several segments were generated, as 

described in Table 1. Some experiments on each different dataset have been carried out. For the 

sake of brevity, this section shows a comparison of only some of the results obtained through 

these experiments. The traffic contained in these segments can be roughly described as: 

 S1: It only contains "normal" traffic. That is, no anomalous situations are included in 
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this segment to provide a visual sample of how "normal" traffic behaves. 

 S2: Apart from "normal" traffic, it contains two network scans (anomalous situations) 

aimed at port numbers 1,434 and 65,788 of all the machines in an IP address range. 

 S3: It contains "normal" traffic and SNMP community searches aimed at port numbers 

161, 1,161 and 2,161 of all the machines in an IP address range. Three different 

community names were used for each one of these port numbers. 

 S4: It contains "normal" traffic and an MIB information transfer generated by the get-

bulk SNMP command. 

 A2: As it is a compilation of the traffic contained in segments S1 and S2, this segment 

contains two network scans aimed at port numbers 1,434 and 65,788. 

 A3: In addition to the network scans contained in A2 (aimed at port numbers 1,434 and 

65,788), it also contains the SNMP community searches included in S3. 

 A13: This is the longest analyzed segment, containing examples of all the anomalous 

situations previously described: network scans (port numbers 1,434 and 65,788), 

SNMP community searches (port numbers 161, 1,161 and 2,161) with three different 

community names and two MIB information transfers. 

Fig. 7 shows some examples of how CMLHL performs when applied to simple segments of 10 

minutes (see Table 1). The CMLHL parameter values were optimized after a fine-tuning process 

following the criteria described in previous studies [57, 58, 60]. The values of the parameters 

used in each case are provided in the figure legends. 

Fig. 7.a shows the projection of a simple segment (S1) containing no anomalous situations. 

This is then, the way in which CMLHL depicts "normal" traffic, by means of packets evolving in 

parallel straight directions. Any sign of non-parallel evolution or high concentration of packets is 

viewed as an anomaly. It can be seen how in Fig. 7.a all the packets (related to "normal" traffic) 

evolve in "normal" parallel directions over time. After analyzing each packet that is depicted, it 
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was noticed that a certain ordering related to the input variables is preserved in this and other 

projections. The original dimensions of the dataset are preserved in some sense as indicated in 

Fig. 7.a. Additionally, Fig. 7.a allows us to identify a temporal disruption in a protocol traffic. As 

can be seen in this figure, the traffic related to a certain protocol (Group 1 in Fig. 7.a) is 

interrupted at a certain point. Thus, the network administrator should realize that this protocol 

stopped working for a while. This requires an in-depth investigation to ascertain the reasons for 

such an interruption, as it might not be related to an intrusion. 

Fig. 7.b (projection of S4 dataset) shows how the system identifies an anomalous situation 

related to an MIB information transfer. This situation (Groups 1 and 2 in Fig. 7.b) is identified as 

anomalous due to its high concentration of packets (in comparison to the "normal" traffic) and its 

evolution does not fit straight lines as "normal" traffic does. 
<< File Fig.-07a.pdf goes here>> << File Fig.-07b.pdf goes here>> 

<< File Fig.-07c.pdf goes here>> << File Fig.-07d.pdf goes here>> 

Fig. 7. 

 The following two snapshots within Fig. 7 show the projections of an 18 minute-long 

accumulated segment (A2 - Fig. 7.c) and then a 106 minute-long one (A13 - Fig. 7.d). As can be 

seen, the same network scans can be identified in both datasets in which they are contained 

(Groups 1 and 2 in Fig. 7.c, and Group 1 in Fig. 7.d). In addition to this network scan, A13 also 

includes three SNMP community searches (Groups 2, 3 and 4 in Fig. 7.d) and two MIB 

information transfers (Groups 5, 6, 7 and 8 in Fig. 7.d). 

As shown in the experiments (Fig. 7 a-d), MOVCIDS enables the network administrator to 

identify anomalous situations when packet traffic evolves in non-parallel directions to the 

"normal" one and when the density of packets is much higher than that of "normal" situations. 

Also empirically, we have noticed that an evolution in parallel lines means "normal" traffic data. 

5.1.5. The Importance of Time 
Showing the importance of the use of time information in neural projections is the aim of this 

section. In keeping with this idea, two different datasets are analyzed:  

 Dataset 1 contains an MIB information transfer as well as normal traffic. 

 Dataset 2 contains three network scans aimed at port numbers 161, 162 and 3750 as 

well as normal traffic. 
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To check the importance of time information, variations of each one of the datasets have been 

used. The difference between the variations is the inclusion or exclusion of time information. 

Two different figures are shown for each dataset: the ones on the left side (8.a and 8.c) 

including time information and the ones on the right side (8.b and 8.d) excluding time 

information as a variable. 
<< File Fig.-08a.pdf goes here>> << File Fig.-08b.pdf goes here>> 

<< File Fig.-08c.pdf goes here>> << File Fig.-08d.pdf goes here>> 

Fig. 8. 

After visually analyzing these results, it can be said that the inclusion of time information (Fig. 

8.a) allows the identification of the MIB transfer (Group 1) contained in dataset 1 in a clear way. 

As can be seen in the right-side figure (Fig. 8.b), the exclusion of time information concentrate 

the MIB transfer in a line (Group 1), what may hinder the network administrator in the 

identification of this anomalous situation. 

Fig. 8.c allows the identification of the three scans (Groups 3, 4 and 5) contained in dataset 2. 

Only one (Group 3) of the scans can be identified in Fig. 8.d. As in the previous case, time 

information allows the clear identification of the MIB transfer (Groups 1 and 2). 

It can be concluded that CMLHL is able to deal with time information. Using this information 

enables the identification of some anomalous situations that would be unidentifiable otherwise. 

5.2. DARPA Dataset 
This section describes the empirical verification of MOVCIDS involving a port scan attack in 

one of the standard corpora for evaluation of network intrusion detection: the MIT Lincoln 

Laboratory DARPA dataset [72]. 

The well-known DARPA intrusion detection dataset provided the testbed used in this 

experimental study as it is still the reference network traffic dataset. The DARPA corpus was 

assembled in 1998 and 1999 to provide a standard to evaluate IDSs, including a variety of known 

and new attacks buried in a large amount of normal traffic. The corpus was collected from a 

simulation network that was used to automatically generate realistic traffic, including attempted 

attacks. The DARPA corpus provides a widely-used benchmark for ID evaluation on network 

traffic at the packet level. Although some works have raised questions about the accuracy and 

reliability of this dataset [73, 74], the DARPA dataset still is the standard corpus for evaluation 
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of NIDSs. 

In the present study, only TCP traffic was selected from this dataset as most of the attacks (166 

out of 174) contained in the 1998 DARPA corpus are based on this protocol. TCP packets 

contained in a subset of this dataset are characterized by using the set of features that already 

proved to be effective for the GICAP-IDS dataset, namely: timestamp, source and destination 

ports, packet size and protocol. As such, TCP network traffic is mapped in a five-dimensional 

feature space. By summarizing packet information in this reduced set of features, the proposed 

framework is able to monitor high volume networks. On the other hand, as a result of using only 

packet header features, this framework is not able to identify attacks concerning the packet 

payload. 

5.2.1. Port Scans 
Among all the SNMP anomalous situations we focused on, only port/network scans are 

contained in the DARPA dataset. To check the ability of MOVCIDS in facing such attacks 

through a well known dataset, this section comprises an experimental validation on facing port 

scans contained in the DARPA dataset. 

Tests in this study involved a subset of the 1998 DARPA dataset. This subset contains 10 

minutes of the traffic (3,730 packets) captured on the Monday of the second week, including the 

portsweep attack generated on that day. In the DARPA documentation page [72], a portsweep 

attack is defined as a surveillance sweep through many ports to determine which services are 

supported on a single host. In this sample of portsweep attack, packets are sent from the host 

192.168.1.10 to the 100 first port numbers of the host 172.16.114.50. 

5.2.2. Results 
In the following figures, due to the high number of protocols in the DARPA dataset, all the 

packets except those related to the portsweep (in blue and red) are depicted as black dots. 
Fig. 9 << File Fig.-09.pdf goes here>> 

Fig. 9 shows that MOVCIDS manages to identify the anomalous situation contained in the 

analyzed dataset. The portsweep attack (Group 1) is identified due to its non-parallel evolution to 

the normal traffic. This shows how MOVCIDS is able to detect anomalous situations in a large 

dataset by splitting high-volume data streams into segments. 



 22 

6. TESTING MOVCIDS 

Testing an IDS is a common way to establish its effectiveness [75]. Up to the present, there 

have been no specific testing techniques for visualization based IDSs. Thus, to measure the 

performance of MOVCIDS, we propose a two-fold analysis: 

 A novel mutation-based technique (see section 6.1) has been designed and employed. 

This testing technique is inspired by previous ones [76, 77] but specialized on IDSs 

relying on numerical packet features. It is based on measuring the evaluated IDS results 

when confronting unknown anomalous situations, as the identification of 0-day 

(previously unseen) attacks is a key issue in ID. Some ID strategies (especially those 

based on attack signatures or patterns) can not easily deal with such attacks. 

 A fair comparison between visualization based ID and other ID techniques is not easy 

to be carried out. Thus, we have focused on the comparison between different 

projection techniques. As it is said in section 2, there have been different approaches to 

ID from a visualization point of view, but only few of them [23, 27, 52] perform a 

packet projection. Section 6.2 provides a comparison between some projection models 

facing packet visualization for intrusion detection. 

6.1. Mutation Testing Technique 
In general, a mutation can be defined as a random change. In keeping with this idea, the 

developed testing technique changes different features of the packets belonging to a known 

attack trying to generate previously unseen attacks. As it is explained in section 4, this numerical 

information to be mutated is extracted from the packet headers. The goal is to test the system in 

real-life situations that differ from those contained in the training dataset and which might be 

generated by a hacker. 

The modifications created by this testing technique lead to real situations by involving changes 

in aspects such as: attack length (amount of time that an attack lasts), packet density (number of 

packets per time unit), attack density (number of attacks per time unit) and time intervals 

between attacks. The mutations can also concern both source and destination ports, varying 

between the three different ranges of TCP/UDP port numbers: well known (from 0 to 1,023), 

registered (from 1,024 to 49,151) and dynamic and/or private (from 49,152 to 65,535).  

Some restrictions were imposed to these mutations in order to generate as realistic as possible 
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new attacks: time values must range from 1 to the length of the original segment while port 

numbers must range from 0 to 65,535. 

Each one of these modifications generates a new dataset. MOVCIDS was tested by analyzing 

several mutated datasets obtained by mutating the segments described in section 4.3. For the sake 

of simplicity, only the projections of two mutated datasets (Fig. 10) are shown in this section: 

 Fig. 10.a shows the projection of a mutated version of the A2 accumulated segment 

(A2’). In this case, the mutation implies changes on the destination port numbers of the 

network scans contained in the original dataset. The network scan, originally (in A2) 

aimed at port number 1,434, is now (in A2’) aimed at port number 23,745. In the 

second network scan, the original destination port number 65,788 is replaced by 45,232 

(in A2’). Additionally, the packet density of these scans has been lowered; each one of 

the original scans consists of 60 packets which were reduced to 40 packets in A2’. 

 Fig. 10.b shows the projection of another mutated version of the A2 accumulated 

segment (A2’’). In this case, only one network scan is kept (scan aimed at port number 

1,434 in A2 is removed) and the packet density of this scan decreased by enlarging the 

duration of the attack. In the original dataset (A2), the network scan lasted 61,858 ms, 

while in this mutated dataset (A2’’), it lasts 247,432 ms. This mutation matches the 

strategy of an attacker trying to slip by unnoticed. 

To check the ability of MOVCIDS in identifying 0-day attacks, these mutated segments (A2’ 

and A2’’) were projected through the weights previously calculated for the A2 segment. These 

projections will then reveal whether MOVCIDS is able to identify previously unseen attacks. As 

previously stated, the CMLHL-training parameter values for the A2 segment were: Number of 

iterations = 100,000, learning rate = 0.03, p parameter = 0.3, and   parameter = 0.12. 

 
<< File Fig.-10a.pdf goes here>> << File Fig.-10b.pdf goes here>> 

Fig. 10. 

 The network scans contained in both A2’ (Groups 1 and 2 in Fig. 10.a) and A2’’ (Group 1 in 

Fig. 10.b) segments are labelled anomalous due to its non-parallel evolution to normal traffic. In 

the case of the A2’’ segment, it is less easy to identify the network scan due to its lower density of 
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packets. It was expected, as higher density of packets is a sign of anomaly. 

The projections of the mutated datasets (Fig. 10) can be compared with the projection of the 

original A2 segment (Fig 7.c). By doing this, we can say that, due to the generalization capability 

of the neural model it is able to identify previously unseen network scans. Thus, we can conclude 

that the proposed mutation testing technique positively evaluates MOVCIDS. 

6.2. Comparison with Other Unsupervised Connectionist Models 
After applying mutant testing, it was decided to compare the CMLHL outcome with that 

obtained by other well-known statistical and connectionist models such as PCA, CCA and SOM. 

Several experiments were conducted to apply these models to the analyzed case studies but, for 

the sake of simplicity, only projections concerning one dataset (A2) are provided in this section. 

The computation of mutual distances when applying CCA, that is highly resource demanding, 

prevents from using a bigger dataset. For this dataset, only the best results (from a visualization 

point of view) obtained after tuning the models are shown in Fig. 11. 

For the SOM, the following options and parameters were tuned: grid size, batch/online 

training, initialization, number of iterations and distance criterion among others. The used 

parameter values were: linear initialization, batch training, hexagonal lattice, Gaussian 

neighbourhood function. The grid size was determined by means of a heuristic formula. 

In the case of CCA, some other parameters, such as alpha, lambda, number of epochs and 

distance criterion were tuned. The final selected parameter values were: standardized Euclidian 

distance, lambda = 168,850 (default value), alpha = 0.3 and 7 epochs. 
<< File Fig.-11a.pdf goes here>> << File Fig.-11b.pdf goes here>> 

<< File Fig.-11c.pdf goes here>> << File Fig.-11d.pdf goes here>> 

Fig. 11. 

 
To compare with CMLHL projection, see Fig. 7.c at section 5.2. 

The statistical technique known as PCA (see section 3.1) was applied to the A2 segment (Fig. 

11.a). This technique, already used in the field of IDSs [23], failed to detect the anomalous 

situations (network scans), although the two principal components amount to 99.99% of the 

data’s variance. None of the network scans (Groups 1 and 2 in Fig. 11.a) contained in A2 are 

identified as anomalous traffic because in this projection all the packets evolve in parallel lines 
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(which is associated to normal traffic in this work). 

Fig. 11.b shows the projection of A2 obtained by CCA (see section 3.4) using standardized 

Euclidean distance. The anomalies could be differentiated from normal traffic on the basis of 

parallel evolution as in the case of CMLHL. Network scans (Groups 1 and 2 in Fig. 11.b) are 

depicted in a non parallel way to normal traffic. The main difference between the CMLHL 

projection and the one obtained by CCA is that CMLHL provides a more clear non-parallelism. 

In the case of CCA, some of the groups containing normal traffic are depicted in a way similar to 

those containing the network scans. It is then less clear to identify the anomalous situations than 

in the CMLHL projection. 

Finally, the SOM mapping (see section 3.3) of the A2 segment is depicted in Fig. 11.c and 11.d. 

As the SOM can not properly deal with a linear growing variable as the timestamp, this 

information has been removed from the dataset. For visualization purposes, all the packets in the 

analyzed segment were labelled according to the following classes: C1 for normal traffic, C2 for 

the network scan aimed at port number 1,434, and C3 for the network scan aimed at port number 

65,788. Fig. 11.c depicts the labelled generated map in which the classes identified by each 

neuron are shown. The number of instances (packets) belonging to each one of the classes 

identified by the neurons are shown in parentheses. Fig. 11.d shows the associated U-matrix. 

It can be clearly seen that the SOM is able to cluster the analyzed segment. The group of 

neurons near the upper-left corner of the lattice (Group 1 in Fig. 11.d) gather all the packets 

labelled as C3, that is, all the packets belonging to the network scan aimed at port number 

65,788. No other class of traffic is identified by the neighbouring neurons. Other important group 

can be identified in the middle of the lattice (Group 2 in Fig. 11.d). This group gathers all the 

packets associated to the other anomalous situation (C2). Additionally, some packets associated 

to normal traffic are also identified by these neurons. That is, by using the SOM mapping, normal 

traffic could be identified as belonging to an anomalous situation (false positive). The rest of the 

normal traffic is identified by some other different neurons. The quality measures associated to 

this SOM mapping are: quantization error = 0.016 and topographic error = 0.073. 

We may also say that some projection models such as PCA, EPP, MLHL, CMLHL or CCA 

have one important advantage over other unsupervised neural models (such as the SOM) in that 

they use time as a key variable when analyzing the evolution of the packets in the traffic dataset. 
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This allows the depiction of packets in an intuitive way, what is pretty valuable in the field of 

visual inspection of network traffic for intrusion detection. 

7. INTERESTING FEATURES OF MOVCIDS 

In the field of Computer Network Security, traffic datasets normally have a categorical and/or 

textual nature and their conversion into a data type to which visualization techniques may be 

applied is not always obvious. A novel approach is followed by the presented IDS model, where 

each simple packet is visualized on its own. The model proposed in this paper offers a complete 

and intuitive visualization of network traffic by depicting each single packet and providing the 

network administrator with a snapshot of network traffic, protocol interactions, and traffic 

volume in order to identify anomalous situations. 

Knowledge discovery, pattern recognition, data mining and other such techniques, deal with 

the problem of extracting interesting classifications, clusters, associations and other patterns from 

data. The existence of laptops, palmtops, handhelds, embedded systems, and wearable computers 

is making ubiquitous access to a large quantity of distributed data a reality. Advanced analysis of 

distributed data for extracting useful knowledge is the next natural step in the increasingly 

interconnected world of ubiquitous and distributed computing. MOVCIDS has been designed to 

make it accessible from mobile devices enabling permanent mobile visualization, monitoring and 

supervision of computer networks. 

Usually, time information is not used in ANN-based IDSs. On the contrary, it can be employed 

as one of the inputs to the neural model embedded in MOVCIDS. Time information provides an 

idea of how the traffic data evolve. It helps to identify anomalous situations by taking into 

account such aspects as high packet density and temporal evolution in non parallel directions. 

The evolution of the packets over time can be appreciated in the obtained projections as indicated 

in Fig 7.a. In this case the time variable is evolving in a very similar direction than the Y-axis, 

showing the temporal evolution of the packets. It can be also noted that destination port, protocol 

and size variables are more related with the evolution along the X-axis. 

Despite of the fact that the projections obtained by CMLHL can not contain as much 

information as other graphs do, CMLHL projections are intuitive as they provide a general 

overview of traffic evolution. By using MOVCIDS, an inexperienced network administrator can 

identify anomalous situations just having a quick look at the CMLHL projections. One of the key 
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issues of such an advantage is the preservation of the temporal context of packets, as previously 

mentioned. 

Previous work has presented few techniques to test and evaluate NIDSs. In this study, a novel 

testing technique is proposed to validate visualization IDSs employing numerical datasets. 

Some existing IDSs need a "clean" (free of attacks) training dataset. This is not the case of 

MOVCIDS, which can be trained with a dataset containing known and/or new attacks (as 0-day 

attacks), due to its generalization capabilities as any connectionist model. 

8. CONCLUSIONS AND FUTURE WORK 

This research line has presented a novel connectionist projection IDS which offers to network 

administrators greater accessibility using any mobile device due to its visualization facilities. To 

deal with the problem of data volume, the network traffic data stream is pre-processed and split 

into simple and accumulated segments. The presented IDS is capable of identifying anomalous 

situations by means of temporal visualization of the system response. Using time information 

allows us to identify some anomalous situations that would be unidentifiable otherwise.  

Signature-based IDSs rely on models of known attacks. Thus, the effectiveness of these 

systems depends on the "goodness" of their models. This is to say, if a model of an attack does 

not cover all the possible modifications, the performance of the IDS will be greatly impaired. 

Some IDSs generate different alarms when an anomalous situation occurs, but they can not 

provide a general overview of what is happening inside a network. This limitation is overcome 

by visualization-based IDSs.  

This research constitutes one of the first attempts to identify anomalous situations through the 

visualization of packet data. That is, the analysis does not rely on summarized information (such 

as TCP connections). On the contrary, MOVCIDS analyses the data concerning each single 

packet. This idea has been probed to be effective by testing it through real traffic datasets. 

From the comparison of different statistical and unsupervised neural models, we can conclude 

that PCA is not able to identify any of the anomalous situations under study. On the contrary, 

CCA can identify these situations but in a less clear way than CMLHL. Furthermore, CCA is 

much more resource demanding than CMLHL as CCA needs to compute the pairwise distance 

matrix for the whole dataset. Although it is not a proper projection model, SOM was included in 

this comparative study. This model is able to roughly distinguish anomalies from normal traffic 
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but with a low level of accuracy. MOVCIDS helps network administrators to identify one of the 

most dangerous set of attacks coming from the inside of a network: those related to SNMP. 

Finally, we propose the use of MOVCIDS in combination with other security tools (specially 

other IDSs) to overcome their limitations (e.g: identification of 0-day attacks). 

Further work will focus on the application of different learning rules in the Analysis Step and 

the use of a high performance computing cluster to speed up the Analysis Step, and make it a 

proper commercial IDS tool. 
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CAPTIONS 
 

Fig. 1. CMLHL: lateral connections between neighbouring output neurons. 

a) A plot of the weights of a SOM with a two-

dimensional lattice trained on artificial data from a 

uniform square distribution. 

b) Input-output relation. 

Fig. 2. SOM architecture. 

 
Fig. 3. CCA mapping. 

Fig. 4.  MOVCIDS structure. A graphical representation. 

Fig. 5. Data stream segmentation. Each dataset is divided into several simple segments. 

(e.g. S1, S2 and so on) and accumulated ones (e.g. A2, A3, …). 

Fig. 6. MOVCIDS sample visualization. 
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a) CMLHL Projection of S1  

Number of iterations = 100 000, learning rate = 0.03, 

p parameter = 0.3, and    parameter = 0.12. 

b) CMLHL Projection of S4 

Number of iterations = 100 000, learning rate = 0.03, 

p parameter = 0.3, and    parameter = 0.12. 

c) CMLHL Projection of A2 

Number of iterations = 100 000, learning rate = 0.03, 

p parameter = 0.3, and    parameter = 0.12. 

d) CMLHL Projection of A13 

Number of iterations = 400 000, learning rate = 

0.036, p parameter = 0.4, and    parameter = 0.1. 

Fig. 7. Projections obtained by CMLHL. 

 
a) CMLHL projection of dataset 1 with time information. b) CMLHL projection of dataset 1 without time information. 

c) CMLHL projection of dataset 2 with time information. d) CMLHL projection of dataset 2 without time information. 

Fig. 8. Comparison of CMLHL projections regarding time information. 

 
Fig. 9. MOVCIDS visualization of a DARPA sample dataset. 

 
a) CMLHL Projection of A2’. b) CMLHL Projection of A2’’. 

Fig. 10. Projections of mutated segments obtained by CMLHL. 

 
a) PCA projection of A3. b) CCA projection of A3. 

c) SOM labelled map. d) associated U-matrix. 

Fig. 11. Comparison of A3 projections. 
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