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Abstract In this work, several of the most popular and state-of-the-art 
classification methods are compared as pattern recognition tools for classification 
of resistance spot welding joints. Instead of using the result of a non-destructive 
testing technique as input variables, classifiers are trained directly with the 
relevant welding parameters, i.e. welding current, welding time and the type of 
electrode (electrode material and treatment). The algorithms are compared in 
terms of accuracy and area under the receiver operating characteristic (ROC) 
curve metrics, using nested cross-validation. Results show that although there is 
not a dominant classifier for every specificity/sensitivity requirement, support 
vector machines using radial kernel, boosting and random forest techniques 
obtain the best performance overall. 
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1 Introduction  

Resistance spot welding (RSW) is a simple and cost-effective manufacturing 
process1 which is extensively used for joining sheet steel in the automobile 
industry due to its high speed and adaptability for automation.2 

The number of RSW joints per vehicle is very high (usually varying between 3000 
and 7000)3 and the tendency in the highly competitive automobile industry is to 
reduce it as much as possible. Thus, the development of decision support tools 
that can assist in a fast, flexible and efficient procedure to classify RSW joints 
according to their quality level can be of great interest.4,5 More specifically, the 
aim of the present work is to identify, among several options, the method that 
gives the best results in predicting the quality level of RSW joints directly from 
welding parameters,6,7 such as welding time, welding current, electrode material 
and treatment applied to electrode material.8 Such a prediction tool could be used 
to identify optimal values of the welding parameters and, consequently, to reduce 
the workload and the cost of post-production quality controls significantly. 

In this work classifiers are compared from different perspectives. Initially, a single 
measure of accuracy (i.e. the classification rate) is calculated for every classifier. 
However, there are two types of errors that a predictive tool can produce: false 
positives (type I errors) and false negatives (type II errors). Thus, as pointed out 
by Bradley,9 misclassification rate –which confounds both types of errors– is not 
necessarily the objective function to minimize, but rather misclassification cost, 
which gives a different weight to the different types of errors. In the automobile 
industry, a satisfactory RSW joint wrongly classified as deficient will make 
monetary costs increase, but a deficient joint wrongly classified as acceptable will 
compromise safety. Consequently, classifiers in this paper have been analysed 
taking both types of errors into account, by using the Receiver Operating 
Characteristic (ROC) curve together with the Area Under the Curve (AUC) 
measure. This approach gives a general perspective of the performance of the 
classifier for the complete range of operational points or decision thresholds 
taking into account the trade-off between the two types of errors. Additional 
comparisons are also offered for fixed values of specificity and sensitivity. The 
analysis is completed using statistical tests (ANOVA, Duncan's new multiple 
range test and Waller-Duncan’s) to compute the significance of the results.  

 

2 Experimental methods 

2.1 Materials and equipment 

The material welded by the RSW process is sheet steel, whose chemical 
composition is shown in Table 1. The thickness of the sheet steel is 1 mm. 
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Table 1. Chemical composition of the sheet steel (wt. %). 

C Mn Si P S Al 

0.05 0.26 0.02 0.012 0.011 0.033 

 

 

The steel sheets are welded in a single-phase alternating current (AC) 50 Hz 
equipment by using water-cooled truncated cone electrodes with 5 mm face 
diameter.  

 

2.2 Welding conditions 

A total of 330 joints are obtained by the RSW process. Among the different RSW 
parameters,5,10 welding time, welding current, electrode force, electrode material 
and treatment applied to electrode material were considered. The values 
recommend by McCauley et al.11 are taken as reference for the first three 
parameters (see Table 2); electrode force is kept constant for all RSW joints; 
whilst welding time and welding current take different values avoiding 
disturbances such as expulsion5,12. The different electrode materials and 
treatments are also shown in Table 2.  

 

Table 2. RSW parameters. 

Welding 
time 

(s) 

Welding 
current 

(kA RMS) 

Electrode 
force 

(N) 

Electrode 
material 

(RWMA Group 
A(a)) 

Treatment(d) 

(Applied to electrode 
material) 

0.08 

0.10 

0.12 

0.14 

0.16 

0.20 

0.24 

0.28 

0.32 

4 

5 

6 

7 

8 

980.7 
Class 2(b) 

Class 3(c) 

O61(e) 

TH02(f) 

TF00(g) 
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0.36 

0.4 
(a) Copper-base alloy.11 
(b) Chromium-copper alloy.11 
(c) Beryllium-cobalt-copper alloy.11 
(d) Temper designations according to ASTM B 601-02.13 
(e) Annealed (at 1010C for class 2 material and at 925C for class 3 material; 

slow furnace cooling).14,15 
(f) Solution heat treated (at 1010C for class 2 material and at 925C for class 

3 material; rapid water cooling), cold worked to ½ hard and precipitation 

hardened (at 465C for 4.5h for class 2 material and at 450C for 4h for class 
3 material).14,15 

(g) Solution heat treated (at 1010C for class 2 material and at 925C for class 

3 material; rapid water cooling) and precipitation hardened (at 465C for 4.5h 

for class 2 material and at 450C for 4h for class 3 material).14,15 

 

Out of the five RSW parameters that are controlled, the electrode force is not 
regarded as a predictive parameter because its value is kept constant for all RSW 
joints. Hence, each of the considered classifiers predicts the quality level of RSW 
joints from four RSW parameters: (i) welding time; (ii) welding current; (iii) 
electrode material; and (iv) treatment applied to electrode material. 

 

2.3 Quality levels 

The training of the predictive tools employs the 330 joints obtained by RSW 
process .For each of the RSW joints, the values of the four predictive parameters, 
which are shown in Table 2, and the quality level, assigned to the RSW joint by 
a human operator, are used. The quality level may be: (i) “acceptable”; or (ii) 
“unacceptable”.  

The quality level is assessed by ultrasonic testing, except for the cases in which 
electrode-sheet sticking occurs (in 40 out of the 330 total RSW joints); in these 
cases the RSW joints are directly considered as “unacceptable” (Figure 1).  
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Figure 1. Assessment of the quality level of the RSW joints by a human operator. 

Since the weld nugget size is the most important parameter among those that 
determine the mechanical behaviour of the RSW joint,16,17 the quality level 
assessed by ultrasonic testing must be determined by the size of the weld 
nugget.18 The nugget is formed from the solidification of the molten metal and has 
a cast microstructure with coarse and columnar grains.4,19 

The human operator uses the ultrasonic testing to classify the 330 RSW joints 
into four categories (Figure 1) according to the effect of the weld nugget on the 
ultrasonic beam:4,19 (i) good weld (acceptable quality level): 123/330; (ii) 
undersize weld (unacceptable quality level): 86/330; (iii) stick weld (unacceptable 
quality level): 13/330; (iv) no weld (unacceptable quality level): 68/330. 

 

2. 4 Computational Experiments 

When a classifier is trained with a given data set, it often overfits the data, 
especially when using highly flexible models. This means that the classifier learns 
peculiarities of the training dataset which are not useful (and may even be 
detrimental) to predict in a general setting (i.e. when applied to another data set).  



6 

A sophisticated family of strategies to conduct model assessment (the evaluation 
of a model’s performance) and model selection (selecting the model with the 
appropriate balance between flexibility and generalization ability) is cross-
validation (CV). The k-fold cross-validation option involves randomly partitioning 
the original data set into k subsets of approximately equal size, called folds, and 
use k-1 of these subsets as training set and the remaining subset as independent 
test set. This process is then rotated k times and the results are averaged over 
the rounds.20,21 This approach is useful because it allows estimating the test error 
of the classifiers, computing additional measures about the dispersion of the 
performance and reducing the influence of a particular training/test division in the 
results. In practice, values of k=5 and k=10 have been shown to provide an 
adequate bias-variance trade-off without requiring excessive computational 
power.21 

It is important to notice that even though CV can be used for model selection and 
model assessment, some caveats must be considered.22 Several studies23,24 
have recently warned against using the error obtained in the selection phase as 
an estimate of the test error of the selected model (i.e. the error that the model 
will have on new data). Using several parametric configurations of a classifier and 
computing the error using CV is adequate to select the right parameters to use, 
but this error might be too optimistic if reported as an estimate of the performance 
of the selected model. The estimated errors of the different classifiers analysed 
in this work have been obtained using a CV scheme suggested as an unbiased 
estimate of the true performance error of the method. This approach is called 
nested cross-validation23,24, although is also known with other names.22 

Nested CV uses two nested loops: the inner loop is used as model selection in 
which the parameters are estimated and tested without using all the available 
data; the outer loop employs the data that has not been used in the inner loop to 
compute an unbiased estimate of the performance of the model selected in the 
inner loop. Specifically, the inner loop uses as data the k-1 folds used as training 
in the outer loop. This data is in turn used in a k-fold analysis for every 
combination of parameters. For each fold in the outer loop, the model is trained 
with the combination of parameters with lower error in the inner fold.  

In order to compare different classifiers, a performance evaluation metric is 
required. The most common measure used to assess the performance of a 
classifier is the percentage of correctly classified data, aka maximum 
classification rate or accuracy.25 This metric is the proportion of correctly 
classified data instances in the test sets. Although informative, accuracy is not 
always the most appropriate measure for comparing classifiers. Among several 
problems,9,25,26 perhaps the most relevant in the context at hand is the implicit 
assumption of equal misclassification costs for false positives and false 
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negatives. When this is not appropriate, the objective function should be a 
misclassification cost which weighs false positives and false negatives differently.  

In this work unacceptable RSW joints are considered positive cases and 
acceptable joints are considered negative cases. A true positive is an 
unacceptable joint predicted by the classifier as unacceptable, a true negative is 
an acceptable joint predicted as acceptable, a false negative is an unacceptable 
joint predicted as acceptable and a false positive is an acceptable joint predicted 
as unacceptable. Thus, a high rate of false negative joints can lead to safety 
problems while a high rate of false positives can increase the monetary costs of 
manufacturing and production unnecessarily.  

Misclassification costs are often unknown or difficult to estimate, since they 
depend on the specific industrial objective and are often subject to change. 
Consequently, comparison among classifiers taking into account both types of 
errors is decomposed in two complementary performance measures, i.e. 
sensitivity (the proportion of positive samples which the classifier has correctly 
identified, eq. (1) and specificity (the fraction of negatives which the classifier has 
correctly identified, eq. (2), formally defined as: 

 
(1) 

 
(2) 

Implicitly or explicitly, most classifiers contain a discrimination threshold (e.g. the 
minimum probability required to classify a sample as positive) that allows them to 
glide up and down the sensitivity-specificity trade-off. A common approach to 
assess binary classifiers accounting for this degree of freedom is the Receiver 
Operating Characteristic (ROC) curve.27 The ROC curve of a classifier shows its 
true positive rate (or sensitivity) against its false positive rate (i.e. the fraction of 
misclassified negatives, aka fall-out, equal to (1 - specificity)) for different 
threshold values. The range of possible threshold values is chosen to include 
both the extreme classifier that classifies all data as negatives (false positive rate 
= 0, but true positive rate = 0) and the extreme classifier that classifies all data as 
positives (true positive rate = 1, but false positive rate = 1). The information 
contained in the ROC curve is often reduced to one single number by computing 
the Area Under the (ROC) Curve (AUC). The ideal classifier would have a true 
positive rate equal to one and a false positive rate equal to zero, so the larger the 
AUC, the better the classifier. An advantage of ROC curves is that they are 
insensitive to changes in class distribution; hence, this metric has no class 
skew.27  
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2. 5 Classification Techniques 

In this work we have compared the performance of seven classifiers, shown in 
Table 3 together with the R packages used in the computational experiments. A 
detailed description of the classification techniques and the parameters used can 
be found in Supplementary Material 1. 

Table 3. Classification Algorithms and R packages used. 

Classification Algorithm Implementation details and R package 

Tree CART trees, “rpart” R package28 

Pruned Tree CART trees, “rpart” R package28 

Boosting “gbm” R package29 

Neural Network Resilient backpropagation with weight 
backtracking30 , “neuralnet” R package31 

Random Forest “randomForest” R package32 

SVM radial “e1071” R package33 

SVM linear “e1071” R package33 

Logistic Regression “glm” R package 

Quadratic Discriminant 
Analysis (QDA) 

qda() function, “MASS” R package34 

 

3 Results and discussion 

The predictive power of the classifiers has been compared from different 
perspectives. Nested 10-fold cross-validation has been used to compare the 
accuracy of the different methods. Table 4 shows the average maximum 
classification rate of each classifier with its standard error.  

Analysis of Variance (ANOVA) is used to test the differences in classifier 
performance. Note that although the accuracy results depicted in Table 4 seem 
to show differences between classifier performances, these ones could be due to 
randomness in the training and cross-validation data sets. Table 5 shows the 
ANOVA results, and confirms the statistical difference between classifiers. 

In order to figure out which classifiers are significantly different from each other, 
Duncan’s multiple range test,35 popular in Machine Learning,9 is applied. Apart 
from using a popular stepwise test such as Duncan’s multiple range, we have 
complemented the comparison using a test that follows a different approach 
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(Bayesian) to determine the significance of the differences: the Waller-Duncan k-
ratio test.36 This method has good properties from both the Bayesian and 
frequentist points of view.37 Table 4 shows the classifier performance accuracy 
sorted in descending order, and grouped into subsets in which performance 
differences are not significant. Results obtained using Waller-Duncan k-ratio test 
show that the accuracy obtained in previous research using ANN8,19 is 
outperformed by Random Forests. However, results from Duncan’s multiple 
range test are not discriminating enough, and the most significant conclusion is 
that Support Vector Machines using linear kernels exhibit the worst performance.  
Clearer differences among classifiers are found using AUC performance (Table 
8). 

 

Table 4. Duncan’s multiple range test and Waller-Duncan’s multiple range test 
for accuracy (alpha: 0.05). Classifiers with one or more letters in common are not 
significantly different.  

Classifier Accuracy SE 
Duncan 
Subgroup

Waller-Duncan 
Subgroup 

 RF         0.9576 0.0103 a  a 

 SVMr       0.9394 0.009035 ab  ab 

 Boosting   0.9273 0.01979 ab  abc 

 Logistic   0.9121 0.01313 ab  bc 

 ANN         0.9121 0.01657 ab  bc 

 PTrees     0.903 0.01906 b  bc 

 Trees      0.8939 0.01982 b  c 

 QDA        0.8455 0.01717 c d 

 SVMl       0.797 0.02023 d  e 

 

Table 5. ANOVA of accuracy classifier performance 

 Df Sum Sq Mean Sq F value Pr(>F) 

classifier 8 0.195 0.02441 8.83 1.3e-08 *** 

Residuals 81 0.224 0.00276   

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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As previously discussed, accuracy is not an appropriate performance measure 
when the cost of a prediction failure –false negative or false positive– is not 
equivalent. Consequently the analysis has been complemented comparing the 
techniques in a wider range of situations using ROC curves and AUC 
performance. Calculations have been performed with the R package “ROCR”, 
from Sing et al.38 using again a nested 10-fold cross-validation for each classifier. 
Figure 2 shows the mean ROC curve obtained averaging the 10 folds. Curves 
intersect, indicating the absence of a dominant classifier for every situation. For 
instance, Figure 3 shows that the sensitivity of a gradient tree boosting classifier 
for a fixed specificity of 75% is similar to a neural network classifier, but is higher 
when the specificity is fixed to 90% (numeric results can be found in Table 6). 

 

Figure 2. ROC curve for each tested classifier. Dotted diagonal represents 
random guessing. 
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Figure 3. Enlargement of the plot in Figure 2 to show ROC curve for each tested 
classifier and sensitivity when a specificity of 75% or a specificity of 90% is 
required. 

 

 summarizes the average AUC, standard error and the sensitivity performance of 
the classifiers when a level of specificity is fixed.  

 

Table 6. Average AUC, standard error and the sensitivity performance of the 
classifiers when the level of specificity is fixed to 75% or 90%. 

 Area Under ROC Curve Sensitivity  

Technique 
Average 
AUC 

Standard 
Error 

Specificity 

of 75% 

Specificity 

of 90% 

Tree 0.9563 0.01274 0.9596 0.8745 

Pruned Tree 0.9174 0.01888 0.9212 0.7757 

Boosting 0.9805 0.0094 0.9816 0.9322 

Neural Network 0.9448 0.01678 0.9706 0.9322 

Random Forest 0.9831 0.00631 0.9953 0.9788 

SVM radial 0.9899 0.00352 0.9898 0.9651 

SVM linear 0.8773 0.01698 0.8361 0.6686 
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Logistic 
Regression 

0.9735 0.00867 0.9706 0.9157 

QDA 0.9396 0.01217 0.9212 0.8168 
 

Again, results of classifiers using AUC performance are different. An ANOVA  
analysis has been conducted to test differences in performance (Table 7). 
Differences are again significant. 

Table 7. ANOVA of AUC classifier performance 

 Df Sum Sq Mean Sq F value Pr(>F) 

classifier 8 0.107 0.01333 8.26 4.1e-08 *** 

Residuals 81 0.131 0.00161   

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Support Vector Machines using radial kernel, Random Forests and Boosting 
obtain again the best overall results (Table 8). Waller-Duncan k-ratio test shows 
that the differences with ANN or QDA are statistically significant, however the 
differences obtained with Logistic regression or Trees are not enough to be 
considered significant with any of the used tests.   

Table 8. Duncan’s multiple range test and Waller-Duncan’s multiple range test 
for AUC (alpha: 0.05). Classifiers with one or more letters in common are not 
significantly different.  

Classifier AUC SE 
Duncan 
Subgroup

Waller-Duncan 
Subgroup 

 SVMr      0.9899 0.00352 a a 

 RF      0.9831 0.00631 a a 

 Boosting  0.9805 0.0094 a a 

 Logistic  0.9735 0.00867 ab ab 

 Trees     0.9563 0.01274 ab abc 

ANN        0.9448 0.01678 ab bcd 

QDA       0.9396 0.01217 ab cd 

 PTrees    0.9174 0.01888 bc d 

 SVMl      0.8773 0.01698 c e 
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In order to better interpret the effect of the different welding variables in the quality 
of the RSW joints, the different decision boundaries proposed by the best 
classifiers –boosting, random forests, and SVM radial– are compared in Figure 
4. An analysis quantifying the relative effect of each one of the variables 

considered for classification can be found in supplementary material 2, and a 
multiclass analysis estimating the types of errors depending on the region can be 
found in supplementary material 3. 

 

Figure 4. Decision boundaries computed by Boosting, Random Forest and SVM 
radial algorithms. “A” represents acceptable region, and “U” represents 
unacceptable region. Welding current, welding time and electrode effects are 
considered.  

Class 2 electrode is less sensitive to treatment effects and offers better results 
than class 3 electrode since it has higher thermal and electrical conductivities.11 
On the other hand, class 3 electrode offers better mechanical properties11 that 
prevent the electrode tip deformation (associated with the increase of the 
electrode contact face and the consequent current density decrease), which 
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occurs after a prolonged and continuous use. Nevertheless, this better behaviour 
of class 3 is not shown in results because, in this work, the electrodes are subject 
to less demanding conditions than those used in automotive industry when high 
productivity is sought. 

In RSW processes, electrodes must have a good combination of: (i) sufficiently 
high thermal and electrical conductivities (to prevent electrode-sheet sticking); 
and (ii) adequate strength (to avoid deformation at high pressures and 
temperatures).11 TF00 temper can achieve this good combination of physical and 
mechanical properties because the formation and growth of the strengthening 
precipitates also reduce the contents of solute atom in matrix and, hence, the 
electrical conductivity increases.39,40 This effect is accentuated in TH02 temper 
where the cold work prior to precipitation hardening gives rise to dislocations that 
provide additional nucleation sites at which heterogeneous nucleation can occur. 
The consequent increase of the density of precipitates for a given time of 
aging,41,42 not only enhances the strengthening but also increase the electrical 
conductivity. O61 temper, although leads to low mechanical properties, offers 
good results because, in the present work, the electrodes are not subject to 
demanding conditions that may cause the electrode tip deformation and the 
consequent current density decrease. 

4 Conclusions 

In this work some of the most relevant and popular pattern recognition techniques 
have been compared for classification of RSW joints using the welding 
parameters as inputs. The major conclusions are: 

(1) The analysis confirms that knowing the welding time, the welding current 
and the type of electrode (electrode material and treatment) is sufficient to 
obtain classification rates almost comparable with those obtained using 
non-destructive testing. Additional causes of disturbance can appear 
during and after the welding process (e.g. electrode degradation, 
expulsion, current shunting, greasy surface…) but the use of a direct 
controlling process can reduce significantly the workload of a subsequent 
quality control. The proposed methodology could be used to implement an 
anomaly detection algorithm that can warn in real time about potentially 
detrimental drifts in the welding process. Thus, problematic welding 
parametric regions could be detected before unacceptable RSW joints 
appear as a consequence of the direct setup.  

(2) According to Waller-Duncan k-ratio test, random forests significantly 
improve the classification performance (accuracy) obtained by previous 
research.8 These results suggest their use as effective decision support 
tools to assist directly in quality control of the RSW process, reducing post-
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welding testing. The differences among random forests, support vector 
machines using radial kernel and boosting are not found significant. 

(3) Results show that for this problem there is not a dominant classifier for 
every possible pair specificity/sensitivity. An algorithm can perform better 
than others depending on the industrial context that determines the 
different cost of a prediction error. Notwithstanding, in an aggregated way, 
the analysis of the AUC performance measure shows that support vector 
machines using radial kernel, boosting, random forest and logistic 
regression using cubic terms or even decision trees are better candidates. 
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