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Abstract: The goal of this article is to assess the feasibility of estimating the state of 

various rotating components in agro-industrial machinery by employing just one vibration 

signal acquired from a single point on the machine chassis. To do so, a Support Vector 

Machine (SVM)-based system is employed. Experimental tests evaluated this system by 

acquiring vibration data from a single point of an agricultural harvester, while varying 

several of its working conditions. The whole process included two major steps. Initially, 

the vibration data were preprocessed through twelve feature extraction algorithms, after 

which the Exhaustive Search method selected the most suitable features. Secondly, the 

SVM-based system accuracy was evaluated by using Leave-One-Out cross-validation, with 

the selected features as the input data. The results of this study provide evidence that  

(i) accurate estimation of the status of various rotating components in agro-industrial 

machinery is possible by processing the vibration signal acquired from a single point on 

the machine structure; (ii) the vibration signal can be acquired with a uniaxial 

accelerometer, the orientation of which does not significantly affect the classification 
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accuracy; and, (iii) when using an SVM classifier, an 85% mean cross-validation accuracy 

can be reached, which only requires a maximum of seven features as its input, and no 

significant improvements are noted between the use of either nonlinear or linear kernels. 

Keywords: Support Vector Machine (SVM); predictive maintenance (PdM); agricultural 

machinery; condition monitoring; fault diagnosis; vibration analysis; feature extraction and 

selection; pattern recognition 

 

1. Introduction 

Agro-industrial machinery has a high initial investment and requires regular maintenance if further 

expensive repairs are to be avoided [1]. The need for machine maintenance programs and their 

appropriateness is a well-argued topic in the industry, which is reflected in the literature [2]. Early 

detection of a mechanical component that is malfunctioning will lead to its prompt replacement, 

thereby avoiding more costly repairs in the future. 

Nowadays, many predictive maintenance techniques are employed, in order to reduce hazards and 

subsequent failures of machinery [1–3]. According to Scheffer et al. [4], the main such techniques  

are vibration monitoring, acoustic emission, oil analysis, particle analysis, corrosion monitoring, 

thermography, and performance monitoring. 

Vibration analysis is a non-intrusive method that is widely employed in machinery status 

inspections, mainly on rotating equipment including engines, turbines, and compressors, among  

others [4–6]. In the case of machinery with no vibration isolation, the vibration signal propagates 

throughout the whole structure of the machine with moderate attenuation. The propagation of these 

vibrations makes it possible to monitor certain rotating components by placing an accelerometer at a 

different point on the machine structure [7]. However, the propagation of vibrations has a disadvantage, 

in so far that it transmits various vibration signals from various other machine components, in addition 

to the signal of interest, making it more difficult to identify the relevant signal [8]. 

Vibration signals from rotating components are usually analyzed in the frequency domain, because 

significant peaks in the signal spectrum appear at frequencies that are related to the rotation frequency 

of the component [4]. Various authors have performed this analysis using fast Fourier transform [9], 

short-time Fourier transform [10], the wavelet transform [11–15], the S-transform [16], and the  

Hilbert-Huang transform [17–20], among others. Due to the relationship between the rotation 

frequency of the machine component and the highest peaks in the spectrum signal, experts can 

estimate the status of machine components by looking for patterns in the spectrum signal. 

Nevertheless, doing so requires expert analysis of the vibration signal spectrum, which implies detailed 

knowledge of the machine, the way it functions and full information on the rotation speed of the 

component. Automated systems have been proposed to estimate the status of machine components 

using frequency analysis in the absence of expert analysis [19,21]. These systems incorporate 

knowledge of the machine component to extract characteristics from the spectrum signal and to 

estimate its status on the basis of these characteristics. 
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A Support Vector Machine (SVM) [22] is a supervised learning model widely used in the discipline 

of pattern recognition for classifying purposes. Due to its learning and generalization capabilities it is 

well suited for the implementation of estimation methods, which are widely required in automated 

diagnosis systems. According to the literature, many SVM-based applications have successfully been 

implemented [23], both for classification [24] and nonlinear regression [25]. Numerous improvements 

have been proposed over recent years that focus specifically on vibration monitoring in machinery 

fault diagnosis [26,27]. Widodo and Yang [28] offered a very thorough review of the latest major 

advances in the field of SVM-based vibration analysis for predictive maintenance. 

Although a good deal of research has previously examined SVMs in machinery predictive 

maintenance [21,28], to the best of our knowledge, automatic prediction of the state of various rotating 

components in an agro-industrial machine by employing only one vibration signal acquired from a 

single point on the machine chassis, has not been conducted in previous research. 

The purpose of this article is to present evidence to assess the feasibility of estimating the state of 

various rotating components in agro-industrial machinery by employing one vibration signal acquired 

from a single point on the machine chassis as the system input. The following five rotating component 

states in an agricultural harvester were selected to assess that estimation capability: (1) engine speed 

status (high speed/low speed); (2) threshing cylinder operating status (on/off); (3) threshing cylinder 

balance status (balanced/unbalanced); (4) straw chopper operating status (on/off); and (5) straw 

chopper balance status (balanced/unbalanced). 

2. Background 

This section comprises some fundamentals about vibration analysis in agro-industrial machinery, 

classification in supervised machine learning, feature extraction and selection, and SVM-based 

classification. 

2.1. Vibrations in Agro-Industrial Machinery 

Vibration can be defined as the repeated motion of a certain component back and forth from a given 

position. Accelerometers are sensors that measure proper acceleration. These devices are the most 

widely used for capturing vibration signals in rotating machinery applications. Typical accelerometers 

capture signals in frequency ranges from 1 Hz to 10 kHz [4]. 

The most common defects causing high vibration levels in machinery, in accordance with  

Scheffer et al. [4], are: unbalance of rotating parts, misalignment of couplings and bearings, bent 

shafts, worn or damaged gears and bearings, bad drive belts and chains, torque variations, 

electromagnetic forces, aerodynamic forces, hydraulic forces, looseness, rubbing, and resonance. 

When machinery rotating components operate at high speeds or under harsh operating conditions for a 

long time, some of these defects start to appear. 

Vibrations can reveal the presence of machinery defects. Usually, vibrations on rotating 

components appear at specific frequencies, which are characteristic of each specific component and 

also depend on the component rotation speed and other properties [19,21]. Traditionally, depending on 

the vibration amplitude at those specific frequencies, the severity of the defects can be assessed. 
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Therefore, plenty of information on the condition of a component, e.g., possible deterioration, can be 

detected by analyzing the vibration characteristics of isolated components [4]. 

In addition, the vibration signals of a specific machine component can be acquired from almost any 

point on the machine structure, even though the signals will be slightly attenuated, due to their 

propagation throughout the machine structure and the imperfect isolation of the main sources of 

vibration. Propagation complicates data processing and the extraction of useful information, because 

information from several machine components is mixed. It nevertheless greatly simplifies the data 

acquisition stage, as just a sensor may be installed at a single point on the machine. 

2.2. Classification in Supervised Machine Learning 

Machine learning, as a sub-field of artificial intelligence in computer science, deals with intelligent 

systems that can modify their behavior in accordance with the input data. Intelligent systems must 

have the capability of deducing the function that best fits the input data, in order to learn from the data. 

Machine learning can be divided into unsupervised and supervised learning, depending on the 

information that is available for the learning process. Unsupervised machine learning undertakes the 

inference process by using an unlabeled training set, i.e., without any information on the desired 

output, and it seeks to deduce relationships by looking for similarities in the dataset. Meanwhile, 

supervised machine learning assumes that a labeled training set, for which the desired output is 

completely known, is available. 

Classification, as a branch of supervised learning, is defined as the process of identifying the class 

to which a previously unseen observation belongs, based on previous knowledge given by a training 

dataset that contains instances the category membership of which is certain. Any algorithm which 

performs classification tasks, i.e., the mapping of input data to an assigned class, is called a classifier. 

Classifiers must be trained, based on previous knowledge, in order to function properly. The 

training process makes use of a sample of N observations, the corresponding classes of which are 

certain. This sample of N observations is typically divided into two subsamples: the training and the 

test datasets. Firstly, the training dataset is used in the process of computing a classifier that is  

well-adapted to these data. Then the test dataset is used to assess the generalization capability of the 

previously computed classifier. 

Both the misclassification rate and the success rate in the test dataset are commonly used as quality 

measurements to assess classifier performance. The misclassification rate is defined as the proportion 

of observations which are wrongly assigned to an incorrect class. It is expressed as follows: ܴܯ = ݏ݊݅ݐ݂ܽܿ݅݅ݏݏ݈ܽܥ	݂	ݎܾ݁݉ݑܰ	݈ܽݐܶݏ݊݅ݐ݂ܽܿ݅݅ݏݏ݈ܽܥ	ݐܿ݁ݎݎܿ݊ܫ	݂	ݎܾ݁݉ݑܰ  

Alternatively, the success rate (also called the hit rate) is defined as the proportion of observations 

that are properly assigned to the corresponding class and is calculated as follows: ܴܵ = ݏ݊݅ݐ݂ܽܿ݅݅ݏݏ݈ܽܥ	݂	ݎܾ݁݉ݑܰ	݈ܽݐܶݏ݊݅ݐ݂ܽܿ݅݅ݏݏ݈ܽܥ	ݐܿ݁ݎݎܥ	݂	ݎܾ݁݉ݑܰ = 1  ܴܯ−
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The k-fold cross-validation is an enhanced method of evaluating classifier performance, especially 

with small training and test datasets. In this method, the original sample of N observations is randomly 

partitioned into k subsamples of equal size. From those k subsamples, a single subsample is retained  

as the test dataset, and the remaining ݇ − 1 subsamples are used as the training dataset. The k-fold  

cross-validation repeats this training and test process k times, using each of the k subsamples only once 

as the test dataset. Cross-validation accuracy is calculated as the average of the success rate obtained 

for each of the k different test datasets. When k = N, k-fold cross-validation is also known as  

leave-one-out cross-validation. 

Many different classifiers have been proposed in the literature [29,30]. Some of the main ones 

include k-nearest neighbor classifier, Bayes classifier, logistic regression, Fisher’s linear discriminant, 

decision tree, Artificial Neural Networks (ANN), and Support Vector Machines (SVM). An SVM 

classifier is used in this article and hence SVM is described in greater detail in Section 2.4. 

2.3. Feature Extraction and Selection for Classification 

Machine learning systems, including classifiers, are typically required to process large volumes of 

information. The application of dimensionality reduction techniques to the input data prevents the 

classifier from processing too much data and improves its performance. Dimensionality reduction, 

within statistical machine learning field, is defined as the process of reducing the number of  

variables of a dataset while retaining most of its degrees of freedom, thereby simplifying the 

subsequent classification problem. Feature extraction and selection are methods to accomplish 

dimensionality reduction. 

Feature extraction [29] consists in reducing the dimensions of a ݀-dimensional input data vector  

by transforming it into a new ݉ -dimensional output data vector, where ݉ < ݀ . The resulting  ݉-dimensional vector, called feature vector, should retain from the original vector most of the useful 

information for the subsequent classification stage. This property is often referred as degrees of 

freedom preservation. Attending to their data type, features can be categorical, ordinal, integer-valued, 

or real-valued. A very wide variety of feature extraction algorithms have been proposed in the 

literature [31–34]. A taxonomy of these algorithms exists on the basis of their relationship to specific 

mathematical fields. The most popular such categories are nonlinear, statistical and transformed-domain 

based. Some of the nonlinear feature extraction algorithms are Correlation Dimension [35], Kolmogorov 

Complexity [36], Lempel-Ziv Complexity [31,37], Approximate Entropy [38], and Sample Entropy [39]. 

Classical time-domain based methods of statistical feature extraction include Mean Value, Standard 

Deviation, Skewness, Kurtosis, Average Power, and Shannon Entropy [40]. Some of the notable 

frequency domain feature extraction techniques are Spectral Entropy [32], Median Frequency [33,41], 

Bandwidth Containing 90% of the Signal Energy, and Relative Wavelet Packet Energy [34]. 

Feature selection [29] involves choosing, among an original set of features of size ݉, the subset of 

size ݊ that best represents the original set and that yields the smallest classification error. The feature 

selection process can be conducted, among other methods by means of Exhaustive Search or 

Sequential Forward/Backward Floating Search [29]. On the one hand, Exhaustive Search explores all 
the possible subsets, i.e., 2  if ݊ is a free parameter, or ൫൯ if ݊ is a preset constant. This method 

therefore guarantees the selection of the best subset, although its use of computational resources is 
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excessive. On the other hand, Sequential Forward/Backward Floating Search restricts the search to a 

smaller subtree by only allowing feature deletion and addition at each step. Consequently, this method 

presents a more affordable computational load, but it fails to guarantee optimal subset selection, even 

though it has been proven to yield suboptimal results that are almost optimal. 

The performance improvements offered by feature extraction and selection techniques are linked to: 

(i) dimension reduction that mitigates the ‘curse of dimensionality’ problem and therefore reduces the 

risk of over-fitting [29,42]; and (ii) simplification of the resulting classifier, which results in using less 

memory and fewer computational resources [29]. 

2.4. Support Vector Machines for Classification 

Support Vector Machines (SVM) is a statistical supervised machine learning technique, used both 

for classification and for regression purposes. Originally proposed by Vapnik and Cortes [22,43],  

in 1995, although its principles and derivation differ from those of Artificial Neural Networks (ANN), 

some authors sometimes consider SVMs as a special kind of ANN [44]. However, many authors refuse 

to do so, due to essential differences between SVM and ANN techniques [45]. While SVM mechanisms 

are mainly based on a rigorous geometrical and statistical approach, ANNs try to emulate the behavior 

of the human brain and its neural system. 

The original SVM proposal was aimed at both the binary classification problem, considering only 

two possible classification classes, and the multiclass classification problem, which considers more 

than two classification classes. 

Binary linear SVM classification performs the calculation of the optimal hyperplane decision 

boundary, separating one class from the other, on the basis of a training dataset. Optimality can be 

understood, depending on whether perfect classification of the training dataset is feasible and desired, 

in two separate ways: 

• If perfect separability of training dataset classes can be achieved, a Hard Margin optimality 

can be used. In this case, the hyperplane decision boundary is chosen to maximize the 

distance from the hyperplane to the nearest training data point. 

• If perfect classification is not desired or if it is impossible, a Soft Margin optimality is  

used. In this case, the hyperplane selection is a customizable tradeoff between minimizing  

the misclassification rate and maximizing the distance to the nearest properly classified  

training point. 

The decision boundary hyperplane in SVM classification is calculated by employing the training 

dataset. This decision boundary is completely determined by the so-called Support Vectors, a subset of 

training input vectors which by themselves alone lead to the same decision boundary. After this 

hyperplane is determined, the SVM classifier is ready to be used with a different dataset from the one 

used in the training stage. The assigned class, labeled either +1 or −1, depends on the side of the decision 

boundary on which the input vector falls. Figure 1 represents a graphical example of linear SVM-based 

classification, both in the case of linearly separable classes and non-linearly separable classes. 

SVM multiclass classification usually tackles the classification and computation of the decision 

boundary by reducing the problem to a set of binary classification problems. The main such approaches are 
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pairwise and one-versus-all classification methods [46]. Compact multiclass reformulations of the 

binary classification problem have also been proposed [46]. 

Figure 1. Representation of a Support Vector Machine (SVM)) classifier corresponding to 

(a) a linearly separable pattern, where the hyperplane totally separates green circles from 

red squares; and (b) a non-linearly separable pattern, where no hyperplane separates all the 

green circles from the red squares. 

 

(a) (b) 

To be mathematically rigorous, the most general SVM linear binary classification problem can be 

stated as follows: 

“Given a training dataset, ሼ࢞, ݀ሽୀଵே , the goal is to compute the optimal weight vector ࢝, bias ܾ, 

and slack variables ࣈ, such that satisfy the following constraints: ݀(்࢞࢝ + ܾ) ≥ 1 − ,ߦ ∀݅ = 1, 2, … ߦ ܰ, ≥ 0, ∀݅ = 1, 2, … , ܰ 

and such that the following cost function is minimized: 

Φ(࢝, (ࣈ = 	்࢝࢝12 + ேߦܥ
ୀଵ  

where, ࢞ ∈ ℝబ denotes the i-th input vector, ݀ ∈ ሼ‒ 1, 1ሽ denotes the class corresponding to the i-th 

input vector, ࣈ = ሼߦሽୀଵே  represents the slack variables, and the constant C is a user-specified 

parameter that determines the tradeoff between misclassification and maximum inter-class margin.” 

In practice, most classification problems cannot be solved by using a simple hyperplane as the 

decision boundary. In such cases a more complex and elaborate decision boundary is required. SVM 

achieves this goal by increasing the dimensionality of the input space, of dimension ݉, by applying a 
nonlinear transformation, denoted by ࣐(·), into a feature space of dimension ݉ > ݉ (Figure 2). This 

transformation, ࣐(·) , serves to reduce the misclassification probability in the transformed feature 

space. The most typical transformation functions, as in the case of ANNs, are radial basis functions,  

higher-order polynomials, and sigmoids. Figure 2 represents a graphical example of an SVM  

nonlinear classification. 
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Figure 2. Representation of a Support Vector Machine classifier with a nonlinear kernel. 

Function ࣐(·) is the nonlinear transformation mapping vectors from (a) the input space to 

(b) the feature space. 

(a) (b) 

The boundary in the nonlinear classification problem is still a hyperplane, not in the original input 

space but in the feature space, and can be expressed as the points (࢞)࣐ that satisfy that: (࢞)்࣐࢝ + ܾ = 0 (1)

where, ࢞ ∈ ℝబ and (࢞)࣐ ∈ ℝ. 

Following the application of the Lagrange multipliers method, it has been shown that the optimal 

weight vector can be expressed as [44]: 

࢝ =ߙ݀ே
ୀଵ (2) (࢞)࣐

where, ߙ stands for the Lagrange multiplier coefficients. 

Therefore, the optimal decision boundary can be rewritten as: 

ߙ݀ே
ୀଵ (࢞)்࣐(࢞)࣐ + ܾ = 0 (3)

Renaming ݑ = ݀ߙ  and ࢞)ܭ, (࢞ = (࢞)்࣐(࢞)࣐ = (࢞)்࣐(࢞)࣐ = ,࢞)ܭ ,(࢞  the decision 

function, ݕ, can be expressed as: 

ݕ =ݑே
ୀଵ ,࢞)ܭ (࢞ + ܾ (4)

In case of linear classifiers, ࢞)ܭ, ,࢞)ܭ ,In case of nonlinear classifiers .࢞ with the Support Vector ࢞ is the conventional Euclidean inner product of the input vector (࢞  is the conventional Euclidean (࢞

inner product of the nonlinear transformation (࢞)࣐  of the input vector ࢞  with the nonlinear 

transformation (࢞)࣐ of the Support Vector ࢞. 
The decision function in Equation (4) results in the architecture depicted in Figure 3, once the 

proper weights and Support Vectors have been computed in the training stage. Only the Support 

Vectors have to be considered, as they are the only vectors that generate non-zero ߙ coefficients [44]. 

x

x
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1

φ x( )
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Classification is therefore performed by identifying the sign of the output value, ݕ, in Equation (4). 

If (ݕ)݊݃݅ݏ 	= 	+1, then this input is labeled as class +1 and if otherwise as class −1. 

Figure 3. Architecture of a Support Vector Machine classifier. Inner product kernels,  ܭ(·,·), denote the ݉-dimensional kernel inner product of the input vector with each of the ௦ܰ Support Vectors. 

 

The most well-known and widely used nonlinear kernels are radial basis functions (RBF), sigmoids, 

and polynomials. The RBF kernel can be expressed as ࢞)ܭ, (࢟ = ࢞‖	γ−)ݔ݁ −   ଶ), where γ is a‖࢟

user-defined parameter; the sigmoidal kernel can be expressed as ࢞)ܭ, (࢟ = 	࢟܂࢞	ߛ)ℎ݊ܽݐ + ܿ), where γ > 0 and ܿ < 0 are user-defined parameters; and, the ݀-order polynomial kernel can be expressed as ࢞)ܭ, (࢟ = (γ	࢟܂࢞	 + ܿ)ௗ , where γ  and ܿ  are user-defined parameters and where ݀  denotes the 

polynomial degree. Other kernels may also be found, in addition to those listed above. 

The underlying SVM training process undertakes the problem of minimizing a quadratic functional 

subject to linear constraints. This problem, known as Quadratic Programming, has a closed solution. 

Although the solution can be analytically computed by applying the Lagrange multipliers method, 

other computational methods are typically used, especially when the dimensionality of the problem 

becomes high. Some of these methods include, among others, Interior Point methods [47],  

the Sequential Minimal Optimization (SMO) algorithm [48,49], Incremental methods [50], and the 

Kernel-Adatron (KA) algorithm [51]. More information about the SVM training process has been 

gathered by Campbell and Ying [52]. 

Those readers eager to discover the rigorous mathematical statement and solution of the problem 

underlying Support Vector Machines are encouraged to read the comprehensive introduction to SVM 

provided by Haykin [44] or the in-depth work by Steinwart and Christmann [53]. 

3. Materials and Methods 

The main processing stages performed in this study can be conceptualized as follows: (i) the data 

acquisition stage (Section 3.1); (ii) the preprocessing stage (Section 3.2); (iii) the feature extraction and 

selection stage (Section 3.3); (iv) the SVM-based classification stage (Section 3.4); and (v) the 

evaluation stage (Section 3.5). Figure 4 summarizes the main processing stages and contains a high-level 

description of the methods, which are explained in greater detail in the remainder of this section. 
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Figure 4. Overall block diagram summarizing the main processing stages. 

 

3.1. Data Acquisition Stage 

Vibration data were experimentally obtained from an eleven-year-old New Holland TC56 harvester 

that had clocked 3800 working hours. Vibration signals were acquired from a stationary harvester 

operating in threshing mode. A Kistler 8690C50 triaxial accelerometer was used to measure the 

vibration signals on transverse, longitudinal and vertical axes (Figure 5). After several trial and error 

tests, the accelerometer sensor was placed on the left hand side of the harvester chassis, neither very 

close nor very far away from the rotating components under analysis (Figure 5). The sensor was 

positioned by using an adhesive mounting following the guidelines in Scheffer et al. [4]. This 

mounting method was selected because the frequency analysis in this article was bandlimited below 

200 Hz and it permits accurate measurements within this frequency range [4]. Vibration signals were 

acquired using the NI Sound and Vibration Assistant software and a National Instruments (NI) data 

acquisition (DAQ) system. The data acquisition system was composed of an NI 9234 data acquisition 

module for analog input signals and an NI compact DAQ chassis NI cDAQ-9172, to connect the DAQ 

module to a laptop. 

Figure 5. (a) Harvester schematic in which the red symbol represents the precise location 

of the accelerometer sensor on the chassis, the yellow cross represents the location of the 

engine, the blue cross represents the location of the threshing cylinder, and the orange 

cross represents the location of the straw chopper; (b) The coordinate axes of the 

accelerometer in this study were as follows: the x axis was transverse to the front direction 

of the harvester, the y axis pointed to the reverse direction of the harvester, and the z axis 

was upward vertical with respect to the ground; (c) The experimental setup for data 

acquisition and a close up of the position of the Kistler 8690C50 triaxial accelerometer. 
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A total of 18 different data acquisition processes were performed to acquire data on all the 

combinations of the following harvester working conditions: (i) engine speed status (high speed/low 

speed); (ii) threshing cylinder operating status (on/off); (iii) threshing cylinder balance status 

(balanced/unbalanced) in the on operating status; (iv) straw chopper operating status (on/off); and  

(v) straw chopper balance status (balanced/unbalanced) in the on operating status. The straw chopper 

was unbalanced on purpose by the breakage of a blade. The unbalance was provoked in this way, 

because blade breakage against stones is a frequent cause of unbalances. The threshing cylinder was 

unbalanced by adding an eccentric weight to it. The unbalance was provoked in this way, because the 

threshing cylinder can typically become unbalanced when its bars suffer from non-uniform wear, due 

to usage and an eccentric weight simulates the same effect. 

Sixty-second long epochs or frames of machine operation were recorded for each of the 18 

acquisition processes, using a sampling frequency of 1706.48 Hz, which generated a total of 99,120 

samples per epoch. 

3.2. Preprocessing Stage 

The acquired acceleration time-series data were first preprocessed in order to adapt them to the 

subsequent feature extraction stage. The entire preprocessing stage was divided into the following  

three sub-stages (Figure 6): (i) a low-pass filtering sub-stage; (ii) a downsampling sub-stage; and  

(iii) a splitting sub-stage. 

Figure 6. Block diagram representing the three preprocessing sub-stages. 

 

In the first sub-stage, low-pass filtering took place. A digital IIR elliptic low-pass filter, with a 

cutoff frequency of 200 Hz, was applied to the input signal. The vibration frequencies of interest, 

which are the main harmonics of the components rotation speeds, are located within the range from 0 

to 200 Hz. This filtering was performed in order to remove noise and unwanted interferences to 

achieve a better performance. 

Next, after filtering, the downsampling sub-stage took place. The input signal was decimated, in 
order to reduce the sampling frequency by a factor of ܰ௦, where ܰ௦ ∈ ℕ is the decimation ratio. In 

this article, a value of ܰ௦ = 4  was chosen, taking into account the frequency range of interest. 

Therefore, the effective sampling frequency was reduced after downsampling from 1706.5 Hz, the one 

originally employed in the acquisition stage, to 426.625 Hz. 

Finally, the splitting sub-stage was conducted. The downsampled signal, coming from the second 

sub-stage, was then split into six epochs of about ten seconds, which was the frame size considered 

sufficient for keeping meaningful information on the vibration signal for the posterior feature 
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extraction steps and for ensuring good frequency resolution in the subsequent FFT analysis. In this 

way, a total of 4130 samples per epoch were obtained. 

All these preprocessing tasks were performed with MATLAB® program. 

3.3. Feature Extraction and Selection Stage 

This stage involves the dimensionality reduction of the input data-series coming from the previous 

stage. It is divided into two sub-stages: feature extraction and feature selection. 

Firstly, the preprocessed data from the previous stage were brought in the feature extraction  

sub-stage, in order to achieve a simpler classifier. Then, the input signal for this stage, denoted as ݔ[݊], 
where ݊ = 1, 2, . . . , ܰ = 4130, was used to extract the following features: 

(1) Average Power (ܲ ), defined as തܲ = ଵே∑ ଶேୀଵ[݊]ݔ . This feature quantifies the overall 

vibration intensity. 

(2) Sample Entropy (SampEn), computed using the definition provided by Richman et al. [39]. 

This feature is a measurement of signal regularity that assigns higher values to more random 

data; for instance when multiple vibration sources are superposed. 

(3) Spectral Entropy (SpecEn), computed in the same way as by Hornero et al. [33]. This feature 

was employed because of its capability to quantify the flatness of the spectrum. The more 

frequency peaks the signal has, the greater this feature becomes. 

(4) Mean Value (̅ݔ), calculated as ̅ݔ = ଵே ∑ ேୀଵ[݊]ݔ . It reflects the amplitude of low frequency 

background vibrations. 

(5) Median frequency (MF), computed as the frequency which divides the power spectrum into 

two halves, each of which contains the same energy. It was calculated in the same way as by 

Hornero et al. [33]. 

(6) Standard Deviation ( ߪ ), calculated by using the mean value ̅ݔ  that has previously  

been defined, as the square root of the unbiased estimator of the variance, i.e.,  ߪ = ට ଵேିଵ∑ [݊]ݔ) − ଶேୀଵ(ݔ̅ . This feature provides information on the width of the amplitude 

histogram distribution, supplying additional information on the shape of the vibration signal. 

(7) Skewness ( ݏ ), calculated as the unbiased estimator ݏ = ඥே(ேିଵ)ேିଶ భಿ ∑ (௫[]ି௫̅)యಿసభቆටభಿ ∑ (௫[]ି௫̅)మಿసభ ቇయ. 
Skewness, which is a measure of histogram distribution asymmetry around its mean, can 

reflect vibration asymmetries due to mechanical faults. 

(8) Kurtosis ( ݇ ), calculated as the unbiased estimator ݇ = ேିଵ(ேିଶ)(ேିଷ) ൫(ܰ + 1)݇ଵ −3(ܰ − 1)൯ + 3, where ݇ଵ = భಿ ∑ (௫[]ି௫̅)రಿసభቀభಿ ∑ (௫[]ି௫̅)మಿసభ ቁమ. This feature reflects the peakedness of the 

histogram, giving information on the distribution of the vibrations amplitude. 

(9) Central Tendency Measurement (CTM). In the first place, the first-order differences scatter 

plot is constructed, representing ݔ[݊ + 1] − ݊]ݔ on the X axis against [݊]ݔ + 2] − ݊]ݔ + 1] 
on the Y axis. The proportion of points lying inside a circle of a certain fixed radius is then 

returned as a measurement of signal regularity. A radius of 0.05 g was selected in this study, 
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which is an appropriate one for distinguishing the related classification classes. This feature 

offers a measurement of the randomness of the vibration signal, where a low value of this 

feature implies sharp changes in the vibration signal. Sharp changes in vibration signals may 

be caused both by high frequency vibrations or sudden transitions due to mechanical faults. 

(10) Correlation coefficient (r) from the first-order differences scatter plot. As with the previous 

feature, the first-order differences scatter plot is constructed first, obtaining both ܺ[݊] and ܻ[݊]  vectors. Then the Pearson's linear correlation coefficient between both vectors is 

computed as: ݎ = ∑ ([]ିത)([]ିത)ಿషమసభට∑ ([]ିത)మಿషమసభ ට∑ ([]ିത)మಿషమసభ , where തܺ and തܻ are the mean values of ܺ[݊] 
and ܻ[݊], respectively. This feature offers a measurement of the unpredictability of the signal 

from the previous data; the higher the measure of |ݎ| the more predictable the signal is. 

(11) Lempel-Ziv Complexity (LZC), computed as by Hornero et al. [33]. This feature offers a 

notion of complexity in a statistical sense. It characterizes the average information quantity 

within a signal and can therefore reflect the superposition of several vibration sources. 

(12) Crest Factor (C), calculated as ܥ = ୫ୟ୶ |௫[]|ටభಿ ∑ ௫[]మ , where ܰ is the number of samples of the  

time-series ݔ[݊]. This feature reflects the spikiness of the signal with respect to its RMS 

value and is therefore useful to assess the presence of mechanical faults. 

All of the above algorithms were selected on the basis of the previous literature on vibration  

analysis [21,54–56] and by extrapolating ideas from studies in other fields [33,37,39]. 

Secondly, after having extracted these features from the preprocessed data-series, the most suitable 

features from among them all were selected in the feature selection sub-stage. The feature selection 

process was undertaken by using the Exhaustive Search method, which explores all of the possible 

feature subsets. With each of the explored subsets, linear SVM leave-one-out cross-validation was 

performed to assess the goodness of this subset. The feature subset with highest cross-validation 

accuracy was selected. The value of parameter ܥ, involved in the SVM classification problem, was 

prefixed at 1 in all cases. Cross-validation accuracy was calculated for each classifier undertaking each 

of the five classification problems, corresponding to the five rotating component states of the 

agricultural harvester under consideration: (1) engine speed status (high speed/low speed); (2) threshing 

cylinder operating status (on/off); (3) threshing cylinder balance status (balanced/unbalanced);  

(4) straw chopper operating status (on/off), and (5) straw chopper balance status (balanced/unbalanced). 

The choice of the Exhaustive Search method was possible due to the relatively small number of 

twelve features that were involved, as mentioned above. If more features were to be explored, it would 

be advisable to use Sequential Forward/Backward Floating Search for computational efficiency [29]. 

All the tasks of this stage were performed in the MATLAB® programming environment using the 

LIBSVM library [57,58]. 

3.4. SVM-Based Classification Stage 

The classification stage took place once the previous processing stages had been performed.  

Among the huge variety of classifiers available, SVM classification was selected in this work because 
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of its: (i) great generalization ability; (ii) low overtraining risk due to small datasets; and (iii) low 

computational load. 

A different SVM-based classifier was employed for each of the five related classification problems, 

corresponding to the following five rotating component states of the agricultural harvester: (1) engine 

speed status (high speed/low speed); (2) threshing cylinder operating status (on/off); (3) threshing 

cylinder balance status (balanced/unbalanced); (4) straw chopper operating status (on/off); and  

(5) straw chopper balance status (balanced/unbalanced). The input of each classifier was the subset of 

features that led to maximum cross-validation accuracy (Section 3.3). If more than one subset led to 

the maximum value, only one of them was selected for the sake of simplicity. Each classifier provided 

one of the two classes associated with the input feature vector as its output. 

For each of the five classifiers, the linear kernel and the radial basis function (RBF), the sigmoidal, 

and the third-order polynomial nonlinear kernels were employed, providing a comparison between 

their accuracy. These SVM kernels were selected, because they are the most typical and widely used. 

The ܥ parameter, involved in the SVM classification formulation, and the γ and ܿ parameters, involved 

in the kernel, were optimized by conducting an exponential grid-search on these parameters [59]. The 

parameters that led to the highest cross-validation accuracy were selected. 

The LIBSVM toolbox [57,58], running in the MATLAB® programming environment, was once again 

employed for classification tasks. 

3.5. Classifier Performance Evaluation Stage 

The leave-one-out cross-validation accuracy (Section 2.2), for each of the five individual 

classification problems under consideration, was computed to assess the goodness of the proposed 

classifying system. These five cross-validation accuracies, as well as the overall mean cross-validation 

accuracy, were used as a measurement of the accuracy of the SVM-based estimation method for each 

of the five aforementioned harvester states. 

4. Results 

The experimental results of the feature selection and classifier performance evaluation stages are 

presented in this section. 

4.1. Feature Selection 

The selection of the best features, following the methods explained in Section 3.3, led to the  

best cross-validation accuracies and best particular chosen features shown in Table 1. It can be 

appreciated that, in all cases, the required number of features is lower than or equal to seven and  

that the mean cross-validation accuracy is above 85%, for all the three axes of the accelerometer.  

The best cross-validation accuracies and the number of features needed to achieve these are depicted  

in Figure 7. 
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Table 1. Feature selection results for each of the three axes acquired by the triaxial 

accelerometer. The first row (number of features) shows the optimal number required to 

achieve the best cross-validation accuracy. The second row (best feature subset) shows all 

of the concrete feature subsets, giving the highest cross-validation accuracy as a list of 

numbers the legend of which corresponds to the list provided in Section 3.3. The subset 

employed for the subsequent classifier performance evaluation stage appears in bold.  

Each column corresponds to each of the rotating component classification problem  

under consideration. 

 

Classification Problem 

Engine Speed 
Threshing 
Cylinder 

Operation 

Threshing Cylinder 
Balance 

Straw 
Chopper 

Operation 

Straw 
Chopper 
Balance 

Transverse X 
axis of the 

accelerometer 

Number of features 1 2 5 2 1 
Best feature 

subset(s) 
{9} {10,11} {4,6,7,9,11} {2,8};{2,5} 5 

Cross-validation 
accuracy 

100% 97.87% 68.29% 80.85% 80% 

Mean CVA 85.40% 

Longitudinal 
Y axis of the 

accelerometer 

Number of features 3 1 7 2 5 

Best feature 
subset(s) 

{6,7,10}; 
{5,7,9}; 

{5,6,10};  
{1,6,10} 

{5} 

{1,2,7,8,9,11,12}; 
{1,2, 4,7,8,11,12}; 
{1,2,4,6,7,11,12}; 
{1,2,3,5,7,8,11} 

{4,11} {1,3,5,7,12}

Cross-validation 
accuracy 

100% 97.87% 87.49% 91.49% 90% 

Mean CVA 93.37% 

Vertical Z axis 
of the 

accelerometer 

Number of features 1 2 6 6 4 
Best feature 

subset(s) 
{9} {2,11};{2,3} {2,3,5,6,8,11} {1,4,5,7,8,10} {1,2,7,10} 

Cross-validation 
accuracy 

100% 100% 65.85% 82.98% 100% 

Mean CVA 89.77% 

Figure 7. Number of features and cross-validation accuracy for each of the working 

conditions under consideration—(ES) engine speed, (TO) threshing cylinder operation, 

(TB) threshing cylinder balance, (SCO) straw chopper operation, and (SCB) straw chopper 

balance—using the accelerometer channel corresponding to (a) the transverse X axis;  

(b) the longitudinal Y axis; and (c) the vertical Z axis. 

 
(a) (b) (c) 
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4.2. SVM Classifier Performance Evaluation 

The results of the linear and nonlinear SVM classifier optimization, showing the best cross-validation 

accuracies and the related optimal parameters, are shown in Table 2. The previously selected features, 

highlighted in bold in Table 1, were used as input to the SVM classifier. Note that the nonlinear 

kernels did not outperform the linear kernel in most cases. Even in those cases where the accuracy was 

improved, only slight differences never over 10% were observed. It therefore appears that the use of 

linear SVM classification is sufficient to solve the problem. A comparison of kernel cross-validation 

accuracy is also provided in Figure 8. 

Table 2. Performance results for each of the three axes acquired by the triaxial 

accelerometer, comparing the different SVM kernels, and showing both the optimized 

parameters (C, γ, c0) and the best cross-validation accuracy (CVA). The best result for each 

classification problem appears in bold. 

 
Classification Problem 

Engine 
Speed 

Threshing  
Cylinder Operation 

Threshing  
Cylinder Balance 

Straw Chopper 
Operation 

Straw Chopper 
Balance 

Transverse  
X axis of the 

accelerometer 

Linear kernel
CVA 100% 97.87% 75.61% 80.85% 90.00% 

C 1 1 6 1 1.2 

Third-order 
polynomial 

kernel 

CVA 100% 97.87% 82.93% 82.98% 90.00% 
C 0.03 32768 8192 2048 0.03 
γ 8 0.125 0.125 32 8 
c0 0.03 0.03 0.5 0.5 0.03 

RBF kernel 
CVA 100% 97.87% 80.49% 85.10% 90.00% 

C 0.125 512 32 32 0.5 
γ 2 0.125 2 8 2 

Sigmoidal 
kernel 

CVA 100% 97.87% 80.49% 82.98% 90.00% 
C 2 2048 2048 8 2 
γ 0.5 0.125 0.125 8 2 
c0 0.03 0.03 0.03 0.5 0.03 

Longitudinal  
Y axis of the 

accelerometer 

Linear kernel
CVA 100% 97.87% 87.49% 91.49% 90.00% 

C 1 1 1 1 1 

Third-order 
polynomial 

kernel 

CVA 100% 97.87% 80.49% 91.49% 90.00% 
C 8192 0.03 8192 0.03 2048 
γ 0.125 8 0.002 8 0.125 
c0 0.03 0.03 8 0.03 0.03 

RBF kernel 
CVA 100% 97.87% 78.05% 91.49% 90.00% 

C 0.5 0.5 2 2 2 
γ 8 8 0.5 2 2 

Sigmoidal 
kernel 

CVA 100% 97.87% 78.05% 93.62% 90.00% 
C 2 32 512 8192 8 
γ 0.5 0.125 0.008 0.125 0.5 
c0 0.03 0.03 0.03 0.125 0.03 

Vertical Z axis 
of the 

accelerometer 

Linear kernel
CVA 100% 100% 65.85% 85.10% 100% 

C 1 1 1 430 1 

Third-order 
polynomial 

kernel 

CVA 100% 100% 63.41% 89.36% 100% 
C 8192 512 2048 8192 0.03 
γ 0.125 0.5 0.125 0.03 8 
c0 0.03 0.03 0.5 2 0.03 

RBF kernel 
CVA 100% 100% 68.29% 87.23% 100% 

C 0.125 32 2 8192 2 
γ 2 0.5 32 0.03 0.5 

Sigmoidal 
kernel 

CVA 100% 100% 63.41% 82.97% 100% 
C 2 128 512 32 8 
γ 0.5 0.125 0.5 0.125 0.5 
c0 0.03 0.03 0.125 0.03 0.03 
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Figure 8. Cross-validation accuracy for each kernel under the following working 

conditions—(ES) engine speed, (TO) threshing cylinder operation, (TB) threshing cylinder 

balance, (SCO) straw chopper operation, and (SCB) straw chopper balance—using the 

accelerometer channel corresponding to (a) the transverse X axis; (b) the longitudinal  

Y axis; and (c) the vertical Z axis. 

 

5. Discussion 

This article investigates a method of estimating the status of various rotating components in  

agro-industrial machinery by processing vibration signals acquired from a single point of the machine 

structure. It offers three major findings. 

The first finding of this article is that it is possible to accurately estimate the status of some rotating 

components in agro-industrial machinery by processing the vibration signal acquired from a single 

point on the machine. Moreover, the accelerometer sensor does not need to be placed very close to the 

rotating components, which makes the acquisition stage simple and non-intrusive. The results 

presented above reveal the potential of this method to estimate the status of distant components by 

processing vibration signals from a unique sensor located at a fixed position, midway along the 

harvester chassis (Figure 5), because a mean cross-validation accuracy higher than 85% was obtained. 

Previous work in the scientific literature has only analyzed isolated mechanical components, using one 

accelerometer for each isolated component [19,21,56]. It is worth noting that, to the best of our 

knowledge, no previous articles have approached the problem of estimating the status of various 

mechanical components from a unique vibration signal. 

The second finding of this article is that the vibration signal can be acquired with a uniaxial 

accelerometer, the orientation of which has no significant effect on classification accuracy. The 

comparison of the results of cross-validation accuracy along the three accelerometer axes (Table 2) 

supports this conclusion. The higher differences observable in Table 2 for the threshing cylinder 

balance status shows differences of around 20%. However, almost no differences in accuracy were 

appreciated for the rest of the states, which were lower than 10% in all cases. Although vibrations are 

usually generated in a specific direction, the results obtained here suggest that the machine structure 

spreads them along all of the axes, making the use of an arbitrary axis for their detection possible. 

The third finding of this article is that, when using an SVM classifier, an 85% mean cross-validation 

accuracy can be reached, which only requires a maximum of seven features as its input, with no 
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significant noticeable improvements from using nonlinear rather than linear kernels. Reviewing the 

results, a mean cross-validation accuracy greater than 85% was achieved, irrespective of the selected 

accelerometer axis. Analyzing the individual cross-validation accuracy obtained for each rotating 

component, the suitability of the SVM classifier for estimating each separate machinery status is 

evident. On the one hand, the rotating component status with the best cross-validation accuracy was 

the engine speed, with a cross-validation accuracy of 100% in all cases (Table 2). On the other hand, 

the worst cross-validation accuracy was obtained for threshing cylinder balance status, for which the  

cross-validation accuracy was between 63.41% and 87.49% (Table 2). A visual analysis of the 

vibration signal spectrum, revealed differences when the engine speed varied between high and low 

speed, while there were no visible changes in the signal spectrum when the threshing cylinder was 

either balanced or unbalanced. These results show that the proposed SVM classifier is able to classify 

the status of rotating machinery to a high degree of accuracy when the difference between the 

spectrum signals is noticeable, such as in the case of the engine speed status. They also show that it can 

obtain an acceptable cross-validation accuracy for rotating components when there is no visible 

difference between the spectrum signals, such as the threshing cylinder balance status. Comparing the 

fault detection accuracy in the present article against the results of Samanta et al. [56], who proposed 

an ANN-based classifier for the fault diagnostics of roller bearings based on data from several 

vibration signals and extracting only five time-domain features, this study has reported poorer results. 

Nevertheless, these differences can be justified by taking into account that in Samanta’s article five 

vibration signals from different locations of a unique component were processed and because they 

were clean, as they came from the isolated mechanical component under analysis. Nevertheless, only 

one accelerometer sensor is employed in the present article to detect five states of three different 

rotating components and, furthermore, the vibration signal that is processed contains the superposed 

signals coming from the three components under analysis as well as from the other components of the 

machine. As can easily be understood, the present article approaches a much harder problem. 

The major strength of the system proposed in this article is the simplicity of the data acquisition 

stage, employing only one sensor located at a single point on the machine for measuring the vibration 

signals. It is worth highlighting an article from Sugumaran et al. [21], who proposed an SVM-based 

classifier for the fault diagnostics of a unique roller bearing employing only one vibration signal. Our 

study, even though similar to Sugumaran’s, is wider in the sense of trying to assess several machinery 

rotating components at once instead of just one. Furthermore, the present article contemplates the 

detection of further machine states and not only fault diagnostics. 

Another strength of this article is that the proposed estimation method only needs seven features,  

at most, as the classifier input, yielding a simple SVM classifier with a low associated computational 

load. Moreover, the results showed no great differences in relation to the SVM kernel that was  

employed, which highlights that a simpler linear SVM classifier is sufficient to achieve good 

classification accuracy. 

Nevertheless, there is a limitation to this work, which should be taken into account before 

implementing the proposed estimation method. This limitation is related to the data acquisition process 

performed in this article to validate the proposed SVM-based system. The vibration signals were 

acquired with the harvester wheels stopped to facilitate the acquisition procedure. If the proposed 

estimation method were to be used when the monitored machine is in motion, low-frequency 



Sensors 2014, 14 20731 

 

 

interference signals could appear. However, these signals are not expected to cause problems, because 

the frequencies of interest in the rotating components of these machines will almost certainly be much 

higher than the interference frequencies. 

The main application fields of the proposed SVM-based system are machinery monitoring and 

predictive maintenance. In relation to machinery monitoring, this system could be used for detecting 

the operating status of particular mechanical components, simplifying the wiring and reducing the 

number of sensors that are required. In relation to predictive maintenance, the results suggest that 

further progress may lead to fast and low-cost machinery inspections, thereby avoiding many mechanical 

faults and replacing expensive, time-consuming inspections that are frequently required nowadays. 

A mixture of both conventional vibration signal analysis features, such as frequency- 

domain [4,6,19,21,27,34] and time-domain [54–56] based features, and other unconventional features, 

such as nonlinear features [33,37,39], has been used in this article. The good classification accuracy 

levels, obtained for example with the Central Tendency Measurement feature when estimating the 

engine speed status (Table 1), highlights the usefulness of these unconventional features in the analysis 

of vibration signals for predictive maintenance. Nevertheless, regarding the straw chopper unbalance 

detection, the nonlinear features seem to be of little use. A future line for further research is opened by 

employing other unconventional features in vibration analysis for predictive maintenance. 

Furthermore, this article opens a new future line of research by extending the system that is 

proposed in this paper to the use of more than one accelerometer located at different points on the 

machine. It is expected that the processing of all those signals together could enable the estimation of 

an even higher number of machine states and could also improve the accuracy of the estimation. 

6. Conclusions 

The results obtained in this study have provided evidence that (i) accurate estimation of the status of 

various rotating components in agro-industrial machinery is possible by processing the vibration signal 

acquired from a single point on the machine structure; (ii) the vibration signal can be acquired with a 

uniaxial accelerometer, the orientation of which does not significantly affect the classification 

accuracy; and, (iii) when using an SVM classifier, an 85% mean cross-validation accuracy can be 

reached, which only requires a maximum of seven features as its input, and no significant 

improvements are noted between the use of either nonlinear or linear kernels. Follow up research may 

lead to a simplification of the wiring and a reduction in the number of sensors required in machinery 

monitoring, as well as to fast and low cost machinery inspections in predictive maintenance. 
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