#### Elsevier Editorial System(tm) for Analytica Chimica Acta Manuscript Draft

Manuscript Number: ACA-12-1367R1

Title: On the construction of experimental designs for a given task by jointly optimizing several quality criteria: Pareto-optimal experimental designs

Article Type: Full Length Article

Section/Category: CHEMOMETRICS

Keywords: Experimental design; design optimality; multicriteria optimization; Pareto-optimal front; Evolutionary algorithms

Corresponding Author: Dr. M.C. Ortiz,

Corresponding Author's Institution: University of Burgos, Faculty of Sciences

First Author: M. Sagrario Sánchez, Dra

Order of Authors: M. Sagrario Sánchez, Dra; Luis A. Sarabia, Dr; M.C. Ortiz

\*Graphical Abstract (for review)



A methodological approach to compute Pareto-optimal experimental designs

Pareto-optimal designs are a useful tool in Q&D (Quality by Design)

A family of optimal designs is computed by jointly handling several quality criteria

Ad hoc experimental designs are computed for a given number of experiments, domain, and model

Using genetic algorithms allows the search in both discrete and continuous spaces

An algorithmic approach is presented that allows the computation of the Pareto-optimal front for any criteria that a user may define to qualify an experimental design, indented to solve a specific problem. Complementary to similar approaches to the problem, the methodology presented here is more general because the search of the design can be made in both continuous and discrete spaces and there is not theoretical limit to the number of criteria under consideration. So, the user may reduce the cost without loosing quality of the design.

3

9 10

# On the construction of experimental designs for a given task by jointly optimizing several quality criteria: Pareto-optimal experimental designs

M.S. Sánchez<sup>1</sup>, L.A. Sarabia<sup>1</sup>, M.C. Ortiz<sup>21</sup>

<sup>1</sup>Department of Mathematics and Computation, <sup>2</sup>Department of Chemistry Faculty of Sciences, University of Burgos, Pza. Misael Bañuelos s/n, Burgos, Spain.

### 11 Abstract

12 Experimental designs for a given task should be selected on the base of the problem being

13 solved and of some criteria that measure their quality. There are several such criteria because

14 there are several aspects to be taken into account when making a choice. The most used

15 criteria are probably the so-called alphabetical optimality criteria (for example, the A-, E-,

16 and D-criteria related to the joint estimation of the coefficients, or the I- and G-criteria related

17 to the prediction variance). Selecting a proper design to solve a problem implies finding a

18 balance among these several criteria that measure the performance of the design in different

19 aspects. Technically this is a problem of multi-criteria optimization, which can be tackled

20 from different views.

21

22 The approach presented here addresses the problem in its real vector nature, so that *ad-hoc* 

23 experimental designs are generated with an algorithm based on evolutionary algorithms to

24 find the Pareto-optimal front. There is not theoretical limit to the number of criteria that can

25 be studied and, contrary to other approaches, no just one experimental design is computed but

a set of experimental designs all of them with the property of being Pareto-optimal in the

27 criteria needed by the user. Besides, the use of an evolutionary algorithm makes it possible to

28 search in both continuous and discrete domains and avoids the need of having a set of

29 candidate points, usual in exchange algorithms.

30

# 31 Keywords

32 Experimental design, design optimality, multicriteria optimization, Pareto-optimal front,

33 evolutionary algorithms.

34

35

# 36 **1. Introduction**

37

38 It is known that the quality of the information extracted from an experiment depends upon the39 experimental conditions more than upon the response obtained from the experiment itself.

40 Experimental design or design of experiments (DOE) is a methodology intended to obtain the

41 best possible information from experiments. The relevance of the DOE is well known, even

42 the American FDA's (Food and Drug Administration) Process Analytical Technology (PAT)

<sup>&</sup>lt;sup>1</sup> Corresponding author, E-mail: mcortiz@ubu.es; Fax number: +34947258831

- [1] puts statistical DOE and response surface methodologies (RSM) in the first place among
  multivariate mathematical approaches which should be used for PAT benefit.
- 45
- 46 There are several well known 'standard' experimental designs that are the best possible choice
- 47 depending on the kind of problem to be solved and on the experimental domain under study.
- 48 For example, factorial designs in cubic domains when the interest is mainly in the relevance
- 49 of the factors, their possible interactions and how they affect the response; or central
- 50 composite designs for spherical domains when the focus is prediction in the experimental
- 51 domain, mainly for optimization.
- 52
- 53 Nevertheless, sometimes the standard designs are not affordable. To take an obvious
- 54 example, when increasing the number of factors, the number of experiments in a factorial
- 55 design increases geometrically. In such cases, designs with less number of experiments are
- 56 needed and criteria to select among them. The main idea when selecting a proper design for a
- 57 given task is to reduce the experimental effort (and not less relevant, the economical cost)
- 58 without loosing quality on the information extracted.
- 59
- 60 Several criteria can be used to measure the quality of a design, each one representing
- 61 different aspects of performance. For example, the D-criterion is related to the volume of the
- 62 joint confidence region of the estimated coefficients. Very close to it, the A- and E-criteria
- 63 relate to the 'sphericity' of the same region. The G- and I-criteria, on its part, focus on the
- 64 variance of the predicted response in the experimental domain. Orthogonality, uniform
- 65 variance, or protection against misspecification of model, are also of interest when
- 66 establishing the quality of a design.
- 67
- 68 Some of these criteria are complementary in some sense but other can be competing criteria
- 69 that should be balanced to obtain a good design for a specific situation. The choice of the
- 70 design can be made sequentially, by prioritizing the criteria and deciding accordingly (in such
- 71 a case the D-criterion is usually considered the primary criterion; they are the D-optimal
- 72 designs). However, sometimes it would be useful achieving a compromise among several
- 73 criteria to adapt the design to the specific scientific context of each problem.
- 74

75 This balance among several criteria can be accomplished either by weighting different criteria

- 76 into a single objective function (e.g., a desirability function) which should be optimized, or
- computing the Pareto-optimal front defined by the competing criteria. The Pareto-optimal
- 78 front contains the designs that are the best for a specific criterion while maintaining the others
- in their best allowable values, so that it permits identification of the trade-offs among criteria.
- 80 Besides, the Pareto-optimal front gives a more complete picture of multi-objective problems
- 81 than using weighting strategies [2].
- 82
- 83 The last approach is the one presented here, using an evolutionary algorithm to compute the
- 84 Pareto-optimal front. In that way, for a specific problem, the study of the designs in the front
- 85 allows wiser decisions among different possible designs (all of them with the property of

| 86<br>87 | being Pareto-optimal). It is also an answer to the increasing demand of specific experimental designs, for example, the manufacturing though Quality by Design principles requires a                 |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 88       | design space [3] as opposed to classical nominal operating ranges. Therefore, the need of <i>ad</i>                                                                                                  |
| 80       | hoc ('fit for purpose') experimental designs with increasing number of factors is rising                                                                                                             |
| 00       | rapidly                                                                                                                                                                                              |
| 90<br>91 | Taplury.                                                                                                                                                                                             |
| 92       | Lu et al. [4] report the estimation of the Pareto frontier for competing criteria in discrete                                                                                                        |
| 93       | spaces (vertices of hypercubes) although with a modification of an exchange algorithm.                                                                                                               |
| 94       | Genetic algorithms are used in [5] to construct D-optimal designs, and in [6,7] for                                                                                                                  |
| 95       | supersaturated experimental designs. A- and D-optimal designs are computed in [8] with                                                                                                               |
| 96       | semi-definite programming. Park et al. [9] evaluate design performance in second order                                                                                                               |
| 97       | response surface problems and explore some trade-offs by using graphical methods. Also                                                                                                               |
| 98       | graphical methods are reported in [10] to asses sensitivity of response surface designs to                                                                                                           |
| 99       | model misspecification.                                                                                                                                                                              |
| 100      |                                                                                                                                                                                                      |
| 101      | Comparing to these approaches, specially [4], the use of a genetic algorithm makes it possible                                                                                                       |
| 102      | to perform the search of the experimental points (the design) in both discrete and continuous                                                                                                        |
| 103      | spaces, that is, it can be used for selecting optimal designs for first order models usual in                                                                                                        |
| 104      | screening designs (which is the most common situation) but also in the context of RSM when                                                                                                           |
| 105      | second order models are more usual and the interest is also in the prediction variance.                                                                                                              |
| 106      |                                                                                                                                                                                                      |
| 107      |                                                                                                                                                                                                      |
| 108      | 2. Background                                                                                                                                                                                        |
| 109      |                                                                                                                                                                                                      |
| 110      | 2.1 Some quality criteria in experimental design                                                                                                                                                     |
| 111      | The DOE methodology often involves the (least squares) fitting of a multilinear regression                                                                                                           |
| 112      | model of the form                                                                                                                                                                                    |
| 114      |                                                                                                                                                                                                      |
| 115      | $\mathbf{v} = \boldsymbol{\beta} + \boldsymbol{\beta} \mathbf{x} + \boldsymbol{\beta} \mathbf{x} + \boldsymbol{\beta} \mathbf{x} + \boldsymbol{\beta} \mathbf{x} + \boldsymbol{\varepsilon} \tag{1}$ |
| 116      | $y = p_0 + p_1 x_1 + p_2 x_2 + \dots + p_{p-1} x_{p-1} + 0 $ (1)                                                                                                                                     |
| 110      | where y is the response (measured veriable) $x_i (i = 1, 2, \dots, k_i < n_{i-1})$ are the experimental                                                                                              |
| 117      | where y is the response (measured variable), $x_i$ (1 – 1, 2,, $k, k \le p - 1$ ) are the experimental                                                                                               |
| 110      | factors (or their combinations) written in coded form and $\varepsilon$ is a random variable which is                                                                                                |
| 119      | supposed to follow a normal distribution with mean 0 and standard deviation $\sigma$ . It is usual to                                                                                                |
| 120      | write the model in eq. (1) in matrix form as                                                                                                                                                         |
| 121      | $\mathbf{V} = \mathbf{V}0 + \mathbf{c} \tag{2}$                                                                                                                                                      |
| 122      | $\mathbf{Y} = \mathbf{A}\mathbf{p} + \mathbf{\varepsilon} \tag{2}$                                                                                                                                   |
| 123      | where motion $\mathbf{V}$ called the model contains the information $\mathbf{I}$ and $\mathbf{I}$                                                                                                    |
| 124      | where matrix <b>A</b> , called the model matrix, contains the information about the experiments to                                                                                                   |
| 125      | be done (the design) and the model to be fitted.                                                                                                                                                     |
| 120      |                                                                                                                                                                                                      |
| 127      | The least squares estimator of $\boldsymbol{\beta} = (\beta_0, \beta_1,, \beta_{p-1})$ is                                                                                                            |
|          |                                                                                                                                                                                                      |

$$\mathbf{b} = \left(\mathbf{X}^{\mathsf{t}}\mathbf{X}\right)^{-1}\mathbf{X}^{\mathsf{t}}\mathbf{y} \tag{3}$$

129 130

131 And the variance-covariance matrix of the estimates is

132

$$Cov(\mathbf{b}) = (\mathbf{X}^{\mathsf{t}}\mathbf{X})^{\mathsf{-1}}\sigma^{2}$$
(4)

133 134

135 This is why matrix  $(\mathbf{X}^{t}\mathbf{X})^{-1}$  is called the 'dispersion matrix'. Also these expressions (and 136 other like eq. (5) and (7)) highlight the importance of the dispersion matrix. The methodology 137 of the experimental design includes the construction of experimental matrices so that the 138 dispersion matrix is well enough. In that sense, different measures can be used to characterize 139 the estimation and prediction capability of a design. Detailed expressions and discussions can 140 be consulted in [11, 12].

141

Focusing on the precision of the estimated coefficients, and provided that the error variance  $\sigma^2$  in eq. (4) is constant, the elements of the main diagonal of the dispersion matrix determine the quality (in terms of precision) of the estimated coefficients, and the remaining elements of the matrix are the covariances between each pair of coefficients. The closer to zero the elements of this matrix, the more precise and less correlated the estimates are.

147

148Therefore, two different designs can be compared regarding their precision in the estimation149of the individual coefficients  $b_i$ . To avoid dependence on the size of the experimental domain,150a standardized value for the precision of each coefficient is used, the so-called Variance

151 Inflation Factors (VIFs), which all have a minimum value of 1. Therefore, the best allowable

152 precision for a coefficient is achieved when its corresponding VIF is equal to one.

153

154 When the estimates are jointly considered, the  $(1 - \alpha) \ge 100$  % joint confidence ellipsoid for 155 the coefficients is determined by the set of vectors  $\boldsymbol{\beta}$  such that

- 156
- 157

 $\left(\boldsymbol{\beta} - \mathbf{b}\right)^{t} \mathbf{X}^{t} \mathbf{X} \left(\boldsymbol{\beta} - \mathbf{b}\right) \leq p \hat{\sigma}^{2} F_{\alpha, p, N-p}$ (5)

158

159 where *p* is the number of estimated coefficients, *N* the number of experiments in the design, 160  $\hat{\sigma}^2$  is the variance of the residuals (estimate of  $\sigma^2$ ) and  $F_{\alpha; p, N-p}$  is the corresponding upper 161 percentage point of an F distribution with *p* and *N* - *p* degrees of freedom. 162

163 Again it is clear that the region in eq. (5) is defined by matrix  $\mathbf{X}^{t}\mathbf{X}$  (the information matrix),

164 so it only depends on the design and the model. When the estimates are jointly considered,

165 the interest is on the 'smallest' joint confidence region. The D-criterion takes account of the

166 behavior of the volume of this region. It is usually computed as

168 
$$D = \frac{\left|\mathbf{X}^{t}\mathbf{X}\right|}{N^{p}}$$
(6)

170 where the vertical lines denote the determinant of the matrix.

171

172 A design is said to be D-optimal when it achieves the maximum value of D in eq. (6), which

173 means the minimum volume of the joint confidence region, so the most precise joint

174 estimation of the coefficients.

175

179

The A and E criteria are related to the shape of the confidence region (the more spherical the
region, the less correlated the estimates). Some more details about these criteria, properties
and some modifications can be consulted in [5, 13].

180 When predicting in a domain is of interest, the variance of the prediction should also be taken181 into account through the Prediction Variance. Precisely the variance of the response predicted

182 for a given point **x** in the experimental domain, is given by

183 184

$$\operatorname{Var}(\hat{y}(\mathbf{x})) = \mathbf{x}_{(m)}^{t} (\mathbf{X}^{t} \mathbf{X})^{-1} \mathbf{x}_{(m)} \sigma^{2} = d(\mathbf{x}) \sigma^{2}$$
(7)

185

186 where  $\mathbf{x}_{(m)}$  is the point  $\mathbf{x}$  expanded to model form,  $\sigma^2$  is the experimental variance, which acts 187 as a constant in eq. (7), so the factor to be decreased is the one denoted by  $d(\mathbf{x})$ , the variance 188 function. Again, to compare designs with different size, *N*, the scaled prediction variance 189 (SPV) is used, which is  $Nd(\mathbf{x})$ . Desirable designs are those with the smallest SPV over the 190 design space [9, 11]. In that sense, the G-criterion measures the maximum of the variance 191 function,  $d_{max}$ , over the experimental domain:

- 192
- 193

$$G = N d_{\max} = N \max_{\mathbf{x}} \left\{ d\left(\mathbf{x}\right) \right\}$$
(8)

194

195 A design is said to be G-optimal when it achieves the minimum value of G in eq. (8). The Q-196 criterion (also known [9,14] as IV-, V- and I-criterion) uses the average value of  $Nd(\mathbf{x})$ 197 obtained by integrating it over the domain, although Borkowski [15] advised about the 198 different values under the name Average Prediction Variance. 199 200 Standard experimental designs for screening or to study the effect of factors are optimal in 201 one or more of these criteria. For example, it has been proven that two-level full factorial 202 designs, or fractional factorial designs (of at least resolution III) with a first order model are 203 D-, G- and I-optimal. They have VIF = 1 for all the coefficients, the dispersion matrix is a 204 diagonal matrix (i.e, the design is orthogonal) with the same value along the diagonal, 1/N,

205 which is the minimum possible. Therefore, the joint confidence region is perfectly spherical

- and with the minimum volume.
- 207

| 208<br>209 | The variance function is always the product of $1/N$ by a sum of squares (or products of squares) so that the maximum is always $p/N$ taken at the vertices of the cube (thus always it is |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 210        | less than 1) Nevertheless for second-order models, this is no longer true even for standard                                                                                                |
| 211        | designs: central composite designs (CCD) and Box-Behnken designs (BBD) have small D-                                                                                                       |
| 212        | and G- values, but they are not D- or G-optimal [14].                                                                                                                                      |
| 213        |                                                                                                                                                                                            |
| 214        | Along this work we will focus on the D-criterion and the VIFs (related to the variance of the                                                                                              |
| 215        | estimates, jointly or individually respectively), and the G-criterion that is related to the                                                                                               |
| 216        | prediction variance.                                                                                                                                                                       |
| 217        |                                                                                                                                                                                            |
| 218        |                                                                                                                                                                                            |
| 219        | 2.2 Evolutionary algorithms for computing the Pareto-optimal front                                                                                                                         |
| 220        |                                                                                                                                                                                            |
| 221        | Finding an experimental design that balances different competing criteria is a problem of                                                                                                  |
| 222        | multi-objective optimization. In the present paper, the problem is tackled by looking for the                                                                                              |
| 223        | Pareto-optimal front in the competing criteria.                                                                                                                                            |
| 224        |                                                                                                                                                                                            |
| 225        | To introduce the concept of Pareto-optimality in the case at hand, let $\xi_1$ and $\xi_2$ be two                                                                                          |
| 226        | experimental designs, that is, two design matrices of dimension $N \times k$ (number of experiments                                                                                        |
| 227        | by number of factors); and let <b>F</b> denote the vector function of criteria, i.e, for $C \ge 2$                                                                                         |
| 228        | criteria, $\mathbf{F}(\xi_i) = (F_1(\xi_i), F_2(\xi_i),, F_C(\xi_i))$ contains the values of the criteria for the                                                                          |
| 229        | corresponding design. Finally, without loss of generality, let us suppose that all the criteria                                                                                            |
| 230        | should be minimized.                                                                                                                                                                       |
| 231        |                                                                                                                                                                                            |
| 232        | Then, a solution (a design) $\xi_1$ is said to dominate another design $\xi_2$ if $F_j$ ( $\xi_1$ ) $\leq F_j$ ( $\xi_2$ ) for all                                                         |
| 233        | the criteria (j = 1,, C), and there is at least one criterion in which design $\xi_1$ is strictly better,                                                                                  |
| 234        | that is, there exist i such that $F_i(\xi_1) < F_i(\xi_2)$ . A solution is said to be non-dominated with                                                                                   |
| 235        | respect to a set of solutions when there is no other that dominates it. Consequently, the non-                                                                                             |
| 236        | dominated solutions are those designs which are not worse than the rest in all the criteria and                                                                                            |
| 237        | are at least the best in one of them. The set of the non-dominated solutions of the entire                                                                                                 |
| 238        | (criteria) space is the Pareto-optimal front so that, inside it, no design can improve one                                                                                                 |
| 239        | criterion without worsening another. In that way, the Pareto-optimal front provides a clear                                                                                                |
| 240        | idea about the trade-off among criteria, that is, how much I should raise one of the criteria to                                                                                           |
| 241        | get a decrease in another (and in how much).                                                                                                                                               |
| 242        |                                                                                                                                                                                            |
| 243        | To compute the Pareto-optimal front for a given problem, an evolutionary algorithm is used.                                                                                                |
| 244        | First, the problem should be fully defined in terms of the number of factors $(k)$ , domain,                                                                                               |
| 245        | model to be fit (that determines the number of coefficients, $p$ ) and number of experiments ( $N$ ,                                                                                       |
| 246        | $N \ge p$ ) to do so, and also the criteria to be taken into account.                                                                                                                      |
| 247        |                                                                                                                                                                                            |

- Each individual in the population is an experimental design ( $N \times k$  design matrix), codified
- 249 according to the search space and such that  $|\mathbf{X}^t \mathbf{X}| \ge 0.01$ . Every design is evaluated in terms
- 250 of the criteria, so that the fitness associated to each individual is a vector.
- 251

252 For the implementation of the algorithm, the design matrices are unfolded and handled as

253 vectors in the N x k space so that no distinction is made among different experiments.

- 254 Precisely, *P* (population size) individuals are generated at random inside the search space all
- of them representing experimental designs such that  $|X^{t}X| \ge 0.01$ .
- 256
- In each generation, by uniform selection, pairs of individuals are selected and double point
   cross-over is applied with the crossing positions randomly chosen also with a uniform
- distribution. Then, off-springs are mutated with a given probability (selected by the user) so
- 260 that new designs are generated and evaluated (provided that they have  $|\mathbf{X}^{\mathsf{t}}\mathbf{X}| \ge 0.01$ ). The
- 261 procedure is repeated until *P* new off-springs are generated.
- 262

After that, the populations of parents and off-springs are merged together and 'sorted' according to levels of dominance. The non-dominated solutions (level 1) in the enlarged population are selected to survive for next generation, then the non-dominated solutions (level 2) that appear when removing those of level 1, and so on until enough individuals were selected to survive. It may happen than inside a level there are more individuals than needed to complete population. In that case, only the most dispersal inside the level are chosen,

- according to the crowding distance [2, 16].
- 270
- The algorithm stops when the population has evolved for a predefined number of generations.
- 273

275

### 274 **3. Results and discussion**

The applicability and interpretability of the proposed approach is shown by its application to some specific situations.

278

# 279 **3.1 Study of factors (or screening designs)**

280

281 In [17] eighteen experiments were done to study the effect of six factors (k = 6) and the 282 interaction between two of them. The goal was to determine sulfathiazole in milk (substance 283 that has a maximum residue limit established by the European Union) by using molecular 284 fluorescence spectroscopy. Before proposing an analytical procedure the effect on the 285 recovery (%) of i) type of milk (UHT or pasteurized), ii) volume of TCA:milk (v/v), iii) 286 centrifugation speed (rpm), iv) centrifugation temperature (°C), v) derivatization time (min), 287 and vi) volume of fluorescamine, were studied along with the possible interaction between 288 the derivatization time and the volume of fluorescamine (it is possible that a greater volume 289 of fluorescamine needs less reaction time and vice versa).

| 291                    | The factors are at two levels so the domain is a discrete domain that contains the vertices of                                            |
|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| 292                    | the hypercube (the $2^6 = 64$ experiments of the full factorial design). The model to be fitted is                                        |
| 293                    | (p = 8):                                                                                                                                  |
| 294                    |                                                                                                                                           |
| 295<br>296             | $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_4 + \beta_5 x_5 + \beta_6 x_6 + \beta_{56} x_5 x_6 + \varepsilon $ (9) |
| 290<br>297             | and the interest is on the estimation of the coefficients, so eight criteria were considered: the                                         |
| 298<br>299             | seven VIFs (that should be minimized) and the D-value (that should be maximized).                                                         |
| 300                    | Running the algorithm for 100 generations with 100 designs (with coordinates $-1$ or $+1$ ) and                                           |
| 301                    | probability of mutation of 0.1, the whole final population constitutes the estimation of the                                              |
| 302<br>303             | Pareto-optimal front for these eight criteria.                                                                                            |
| 304                    | To study the resulting Pareto-optimal front (8-dimensional) a parallel coordinates plot has                                               |
| 305                    | been used. The parallel coordinates plot [18] is a graphical visualization of points in                                                   |
| 306                    | multidimensional spaces (usually more than three) which has proven to be useful in multi-                                                 |
| 307                    | response optimization [19]. It consists of as many parallel lines as coordinates of the point to                                          |
| 308                    | be represented (8 in this case). The height in each line is the numerical value of the                                                    |
| 309                    | coordinate itself and all of them are joined together by broken lines.                                                                    |
| 310                    |                                                                                                                                           |
| 311                    | For the purposes here, the corresponding values of the criteria were range-scaled in order to                                             |
| 312                    | improve the visualization and this is why maximum and minimum values were written at the                                                  |
| 313                    | top and bottom, respectively, of each coordinate                                                                                          |
| 314                    | top and bottom, respectively, of each coordinate.                                                                                         |
| 315                    | Fig. 1 shows the resulting graph, i.e. the parallel coordinates plot of the scaled Pareto-optimal                                         |
| 316                    | front which is linked to the 100 experimental designs in the final population. In fig. 1, the                                             |
| 317                    | first coordinate is used for D (the larger the better) and the rest for the VIFs of the                                                   |
| 318                    | coefficients in the same order as they appear in the model (recall that the best possible value                                           |
| 319                    | for all of them is one)                                                                                                                   |
| 320                    |                                                                                                                                           |
| 321                    | Here fig 1                                                                                                                                |
| 321                    | field fig. 1                                                                                                                              |
| 322                    | The values of the determinant of the corresponding matrix (D in eq. (6)) range from $0.03$ to                                             |
| 323                    | 0.68 in the front. The VIEs on their part range from 1 to some large values greater than $4$                                              |
| 32 <del>4</del><br>325 | (sometimes more than six) for at least one of the coefficients. Furthermore, the lines in the                                             |
| 325                    | (sometimes more than six) for at least one of the coefficients. Furthermore, the miles in the                                             |
| 227                    | piot crossing each others, above an for the virs, indicate a conneting behaviour among                                                    |
| 220                    |                                                                                                                                           |
| 328                    | Anymovy the first visual improving is that there is more density of lines at the better of the                                            |
| 329                    | Anyway, the first visual impression is that there is more density of lines at the bottom of the                                           |
| 330                    | ingure (good values for the virs) although it is not clear that they are linked with the highest                                          |
| 331                    | values of D. Nevertheless, it is true that the designs which achieve the worst values of at least                                         |
| 332                    | one of the virs are linked to low values of D.                                                                                            |

| 333 |                                                                                                                          |
|-----|--------------------------------------------------------------------------------------------------------------------------|
| 334 | To better see this effect and to show some of the possibilities of having the whole family of                            |
| 335 | optimal designs and how to move inside it, let us suppose that values of VIF less than 3 are                             |
| 336 | desired for all the coefficients. Consequently, the designs with at least one VIF greater than 3                         |
| 337 | are discarded, and the re-scaled parallel coordinates plot of the remaining 64 designs is in fig.                        |
| 338 | 2, all of them with acceptable values, though different, for all the criteria.                                           |
| 339 |                                                                                                                          |
| 340 | Here fig. 2                                                                                                              |
| 341 |                                                                                                                          |
| 342 | To give an idea about the differences among the designs in fig. 2 from a practical point of                              |
| 343 | view, the semi-length (radius) of the confidence intervals for the coefficients is computed                              |
| 344 | with the designs in fig. 2. Although it is not really necessary to make comparisons, in the                              |
| 345 | original paper [17] the standard deviation of the recovery was estimated to be $\hat{\sigma} = 9.43\%$ .                 |
| 346 | Using this value, the critical value (95% confidence) of the Student <i>t</i> and the elements of the                    |
| 347 | main diagonal of the dispersion matrix of the corresponding design, the minimum expected                                 |
| 348 | radius for any coefficient is 5 in at least one of the designs, but the maximum can be                                   |
| 349 | (depending on the design chosen) 5.3 for $b_1$ , 9.0 for $b_2$ , 5.4 for $b_3$ , 9.4 for $b_4$ , 5.2 for $b_5$ , 5.7 for |
| 350 | $b_6$ or 5.7 for $b_{56}$ . That means that, in this case, the precision of the estimates of $b_2$ and $b_4$ may         |
| 351 | be very different, the same coefficient can be estimated plus or minus 5, or plus or minus 9.                            |
| 352 | Again to put the numbers in context, the effect of the temperature (4 <sup>th</sup> factor) was estimated                |
| 353 | to be $b_4 = 5.11$ so that its precision is really relevant to decide about the significance of the                      |
| 354 | factor.                                                                                                                  |
| 355 |                                                                                                                          |
| 356 | Additionally, in fig. 2, the values of the criteria for the best design in each criterion have been                      |
| 357 | marked by using thicker lines. The corresponding numerical values are written in table 1, i.e,                           |
| 358 | only the values of the criteria for the eight- <u>'best'</u> design in the extremes of the Pareto-optimal                |
| 359 | front are written.                                                                                                       |
| 360 |                                                                                                                          |
| 361 | Here table 1                                                                                                             |
| 362 |                                                                                                                          |
| 363 | Fig. 1 and (more clearly) fig. 2 show that the D-optimal design (thicker blue line starting at                           |
| 364 | the top of the first coordinate in fig. 2) has small values of VIF for all the coefficients                              |
| 365 | although none of them is 1. They also show that there are designs with $VIF = 1$ (highlighted                            |
| 366 | by continuous thicker lines in fig. 2) but not for all the coefficients simultaneously (in fact,                         |
| 367 | for no more than one coefficient at a time, table 1). Again, it is clear that the criteria are                           |
| 368 | competing criteria.                                                                                                      |
| 369 |                                                                                                                          |
| 370 | The first design, number 1 in table 1, is the D-optimal one, with determinant equal to 0.68,                             |
| 371 | value that coincides with the corresponding one in the D-optimal design used by the authors                              |
| 372 | in [17] that was computed with an exchange algorithm as implemented in NemrodW [20]. It                                  |
| 373 | is worth noting that if the interest is only in the D-optimal design there is not advantage in                           |
| 374 | using the procedure proposed here as against an exchange algorithm. What the multiobjective                              |

- approach adds is the availability of some other designs that behave differently in the
- estimation of the individual coefficients.

In that sense, the second design in table 1 achieves VIF = 1 for  $b_1$  at the cost of the volume of the joint confidence region (the D value decreases until 0.44) and the VIFs of the rest of coefficients that remain greater than 1.2 (except for  $b_4$ ) reaching 1.7 for  $b_2$ . The best estimation for the latter coefficient is achieved in design 3, but this time a larger loss in D should be 'paid' and, overall, larger VIFs for the rest of the coefficients, although more similar (among them). Again, D decreases to achieve  $VIF(b_3) = 1$  in design 4 with the VIF of  $b_4$  raising to 1.94. To maintain  $b_4$  in its best allowable precision, design 5 in table 1, the VIF of  $b_1$  and  $b_3$  are around their worst values (inside table 1), and if, say, it is the interaction that needs to be the most precise, then some precision has to be lost above all in the estimation of  $b_4$ ,  $b_3$  and  $b_2$ , with intermediate values for D. Table 1 and figures 1 and 2 only show values of the criteria. Each point in this criteria space indeed corresponds to an experimental design. As an example, table 2 shows the experimental designs whose values are in table 1. The levels (- and +) can be of course reversed without altering the characteristics of the design. However, care must be taken if only some factors are reversed because of the interactions chosen in the model. Here table 2 Attention must be paid when looking at table 2 to find out the differences among designs, differences that appear clear in the Pareto-optimal front depicted in figures 1 and 2. In any case, these values are deeply related to the design matrix and the model, and thus the structure of the corresponding information matrix X<sup>t</sup>X. Just as an example, the information matrix of design 1 (the D-optimal design) is 

18 2 0 0 -2(10)0 0 

whereas for design 8 (the most precise estimation of the coefficient of the interaction considered in the model) is

$$\begin{pmatrix}
18 & 0 & 4 & 0 & 0 & 0 & 0 & 2 \\
18 & -2 & -6 & -2 & 2 & 2 & 0 \\
18 & 6 & -6 & -2 & 2 & 0 \\
18 & 6 & 2 & 2 & 0 \\
18 & 6 & -2 & 0 \\
18 & 6 & -2 & 0 \\
18 & 2 & 0 \\
18 & 0 \\
18 & 0 \\
18 \\
18
\end{pmatrix}$$

(11)

409

408

Only the upper triangular part of the matrices has been written because they are symmetric
matrices. Anyway, matrices in eq. (10) and (11) are rather different (notice the last column in
eq. (11) which is almost null), much more different than they can appear in their design
matrices in table 2.

414

415 Finally, returning to the discussion about the values of the criteria in the Pareto-optimal front,

416 the results also suggest that the *D* value is not sensitive to changes in the VIFs, except that 417 large values appear. Comparing to fig. 1, in fig. 2 the worst D-value is 0.09 instead of 0.03

418 while the VIF values are varying in a narrower range, from 1 to almost 3 (the worst values for

419 VIF are half of the ones in figure 1 and this hardly improves the worst values of D). This

420 effect is even more noticeable when looking, for instance, to the values in the front for the

421 design with  $VIF(b_3) = 1$  (design number 4 in table 1) and the one marked with a dashed line

422 in fig. 2, they both have the same D-value and their VIFs are different, specially for  $b_1$ ,  $b_6$  and 423  $b_{56}$ .

424

425 Similar analyses can be made with the rest of solutions in fig. 2 where there are 64 different 426 possibilities to choose among them with the advantage of knowing exactly the extent of the 427 conflicts that appear, which allows wiser decisions. In any case, usual practitioners of 428 experimental design would accept any of them for the study at hand, particularly any of the 429 eight designs in table 1.

430

#### 431 **3.2 Second-order models (response surface designs)**

432

In the aim of some computations about D-optimal designs made by M.J. Box and Draper as reported by Atkinson and Donev [11], second order models for two factors (k = 2) varying in the square [-1, 1] x [-1, 1] are to be fitted, by using 6, 7, 8 or 9 experimental points (N). The selection of a two-dimensional experimental domain is also deliberated to depict the designs.

For all *N*, the model is defined in the following equation (12), it has p = 6 coefficients and the search space is continuous (any point inside the square).

440

441 
$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_{11} x_1^2 + \beta_{22} x_2^2 + \beta_{12} x_1 x_2 + \varepsilon$$
 (12)

- 443 In this case, concern focuses on the estimation of coefficients, and in the prediction variance.
- 444 This is quantified by using two criteria, namely D- and G-criteria, equations (6) and (8)
- 445 respectively. The value of D should be maximized, and the one of G should be minimized.
- 446
- 447 Several trials show that the Pareto-optimal front is very well populated in all the cases, and
- 448 always the design in the Pareto-optimal front with the largest D value, the estimation of the
- 449 D-optimal design for each *N*, coincides (except for rotations and symmetries) with the
- 450 corresponding D-optimal design referred to in [11].
- 451

The results discussed in the following were obtained with 200 designs as population size, 0.1 of probability of mutation, and evolving for 1000 generations. Although the variance function is a quartic polynomial in the factors  $x_1$  and  $x_2$  for any design with *N* points chosen in the square, the computation of  $d_{\text{max}}$  is not straightforward, so it is estimated as the largest value in a uniform grid in the square.

457

458 This time there are two criteria so that the Pareto-optimal front can be plotted in the two-

dimensional criteria space. This is Fig. 3 that depicts all the estimated Pareto-optimal fronts. Except for N = 9 that there is no conflict between criteria (in that case, the Pareto-optimal front reduces to a single solution which is the best in the two criteria), the rest of the fronts show the conflict: the increase of D implies an increase in G and vice versa, if G needs to be decreased it is at the cost of D. Nevertheless, the trade-offs between criteria that can be obtained are different depending on *N*.

465

Overall, the addition of experiments moves the fronts to the right (better D-values) and down
(better G-values). In particular, doing 7 experiments, green asterisks in figure 3, instead of 6,
blue crosses on the left of figure 3, clearly improves the D-criterion in all the designs but not
so much the G-criterion; while adding another experiment, red pluses on the right of fig. 3,
does not have such remarkable effect on D but the G values are clearly better in almost half
of the designs with 8 experiments. Comparing the designs with 6 experiments to the designs
with 8, both D and G are clearly improved.

- 473
- 474 475

#### Here fig. 3

Figure 3 can be misleading because of the definition of *G* in eq. (8). Most of the practitioners look directly for the value of  $d_{\text{max}}$  for evaluation of the prediction variance. None of the designs with N = 6 experiments reaches  $d_{\text{max}} < 1$  and neither do the designs with N = 7. It is necessary to do at least N = 8 experiments to maintain the variance function below 1 in the whole domain and only for the designs whose G values in the Pareto-optimal front in fig. 3 are below 8 in the ordinate axis. The Pareto-optimality (the non-dominance) implies that, for these cases, G values less than 8 can be obtained but for values of D no greater than 8.9  $10^{-3}$ .

484 There are two factors, so the designs can be plotted in the two-dimensional experimental
485 domain. Figure 4 shows all the experimental points whose Pareto-optimal front is in fig. 3;

| 486  | fig. 4a) is for the designs with $N = 6$ , fig. 4b) for $N = 7$ , fig. 4c) when $N = 8$ , and finally fig.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 487  | 4d) contains a single design, the corresponding to $N = 9$ , which is the standard central                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 488  | composite design in the cubic domain or the $3^2$ factorial design with levels -1, 0, 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 489  | Additionally, the two extremes of each Pareto-optimal front (the best design according to the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 490  | D criterion and the best design with the G-criterion) are marked with different symbols,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 491  | squares for the D-optimal and circles for the G-optimal. Also, they have been detailed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 492  | numerically in table 3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 493  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 494  | Here fig. 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 495  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 496  | Apart from the two mentioned designs, figure 4 does not allow the distinction among the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 497  | different 'intermediate' designs but shows a systematic structure in the selection of points:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 498  | covering the sides (specially the vertices), the centre and, when there are enough                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 499  | experiments, the 'principal axes' of the domain ending in the standard structure for $N = 9$ . It                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 500  | is noteworthy that rotations of these designs are equally qualified but different rotations do                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 501  | not appear often in the population. This is probably because the individuals are obtained                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 502  | mostly by cross-over of existing designs and because the algorithm evolves searching for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 503  | improved, dispersal, non-dominated values for the criteria.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 504  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 505  | Here table 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 506  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 507  | Moreover, this is not so clear in figure 4 but for $N = 6$ the 200 designs contain the two                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 508  | vertices of the square corresponding to $x_1 = 1$ (a single point is seen in fig. 4a) in these                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 509  | positions). Starting from the D-optimal design, the squares in fig. 4a), with coordinates in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 510  | the first block of table 3, it contains three of the vertices of the domain, two points to the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 511  | right (-0.57, 1) and bottom (-1, 0.26) of the fourth vertex and a near central point. As we                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 512  | change the design to obtain better values of G (and consequently worse values of D), that                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 513  | is, when moving in the fronts in fig. 3 from top to bottom, without considering the two                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 514  | vertices that are in all the designs, the other four points move themselves around, near the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 515  | centre or following the corresponding side of the square, $x_2 = 1$ with $x_1$ moving from -0.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 516  | to -0.65 and $x_1 = -1$ with $x_2$ slightly varying around 0.26, being the most distinctive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 517  | characteristic the point that moves horizontally away from the vertex (-1,-1) to (-0.78, -1).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 518  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 519  | For $N = 7$ , fig. 4b), all the designs contain the opposite vertices (1, -1) and (-1, 1). In fact,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 520  | the D-optimal design and those 'near' it have the four vertices of the square, also a point                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 521  | near the centre and two points in the middle of two of the sides of the square, precisely                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 522  | (0.08, -1) and $(1, -0.09)$ for the D-optimal design in the second block of table 3. Then, as D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 523  | decreases, the central point moves up and left, the points in the middle of the sides move                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 524  | slightly around their positions and the two other opposite vertices move themselves along                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 525  | the side up and left to achieve $(-1, -0.89)$ and $(0.89, 1)$ in the G-optimal design                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 526  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 527  | For $N = 8$ , fig. 4c), all 200 designs contain the four vertices. The D-optimal design third                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 528  | block in table 3, contains also three points in the middle of three of the sides of the square                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0 20 | sector in the sector of the se |

| 529<br>530                                                                               | and<br>impi                  | an almost central point (nearer to the side without point in its middle, (0.22, 0)). When roving G, these four points move themselves to the middle of the upper and bottom                                                                                                                      |
|------------------------------------------------------------------------------------------|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 531                                                                                      | side                         | $(x_1 \approx 0, \text{ with } x_2 = \pm 1)$ and (last block in table 3) from (-1, 0) to (-0.78, 0) and from                                                                                                                                                                                     |
| 532                                                                                      | (0.22                        | 2,0) to (0.88, 0), i.e, around $x_1 = \pm 0.8$ with $x_2 = 0$ .                                                                                                                                                                                                                                  |
| <ul> <li>533</li> <li>534</li> <li>535</li> <li>536</li> <li>537</li> </ul>              | Thes<br>the f                | se arrangements find a no-conflicting situation when there are $N = 9$ points, fig. 4d),<br>Four vertices, the centre and the four axial points in the sides of the square.                                                                                                                      |
| 538<br>539<br>540<br>541                                                                 | 4. C<br>The<br>expe<br>the u | onclusions<br>proposed algorithmic approach makes it possible to address the computation of <i>ad hoc</i><br>erimental designs with the property of being optimal in one or several criteria stated by<br>user.                                                                                  |
| <ul> <li>542</li> <li>543</li> <li>544</li> <li>545</li> <li>546</li> <li>547</li> </ul> | For a the a appl algo        | some well-known and usual properties in discrete spaces (e.g. D-, A-, or E-criteria),<br>approach here is an alternative to the usual exchange algorithms. Besides, it is also<br>icable when the search space is a continuous space, situation in which exchange<br>rithms are no longer valid. |
| 549<br>550<br>551<br>552<br>553                                                          | Ack<br>Fina<br>Ecor          | nowledgements<br>ncial support is acknowledged under projects CTQ2011-26022 (Spanish Ministerio de<br>nomía y Competitividad) and BU108A11-2 (Junta de Castilla y León).                                                                                                                         |
| 554                                                                                      | Refe                         | erences                                                                                                                                                                                                                                                                                          |
|                                                                                          | [1]                          | US Department of Health and Human services: food and drug administration, guidance:<br>PAT-A Framework for innovative pharmaceutical development, manufacturing and<br>quality assurance, 2004                                                                                                   |
|                                                                                          | [2]                          | K. Deb, Multiobjective optimization using evolutionary algorithms, Wiley, Chichester, 2001                                                                                                                                                                                                       |
|                                                                                          | [3]                          | International conference on harmonisation, ICH (R2) Q8: Pharmaceutical development: Step 4, 2009.                                                                                                                                                                                                |
|                                                                                          | [4]                          | L. Lu, C.M. Anderson-Cook, T.J. Robinson, Technometrics 53 (2011) 353-365.                                                                                                                                                                                                                       |
|                                                                                          | [5]                          | A. Heredia-Langer, W.M. Carlyle, D.C. Montgomery, C.M. Borror, G.C. Runger, J. Qual. Technol. 35 (2003) 28-46.                                                                                                                                                                                   |
|                                                                                          | [6]                          | R. Cela, E. Martínez, A.M. Carro, Chemometr. Intell. Lab. 52 (2000) 167-182.                                                                                                                                                                                                                     |
|                                                                                          | [7]                          | R. Cela, E. Martínez, A.M. Carro, Chemometr. Intell. Lab. 57 (2001) 75-92.                                                                                                                                                                                                                       |
|                                                                                          | [8]                          | A. Babapour Atashgah, A. Seifi, Optim. Eng. 10 (2009) 75-90.                                                                                                                                                                                                                                     |
|                                                                                          |                              |                                                                                                                                                                                                                                                                                                  |

- [9] Y.J. Park, D.E. Richardson, D.C. Montgomery, A. Ozol-Godfrey, C.M. Borror, C.M. Anderson-Cook, J. Qual. Technol. 37 (2005) 253-266.
- [10] C. M. Anderson-Cook, C. M. Borror and B. Jones, Technometrics 51 (2009) 75-87.
- [11] A.C. Atkinson, A.N. Donev, Optimum experimental designs, Oxford University Press, New York, 1992.
- [12] L.A. Sarabia and M.C. Ortiz, Response Surface Methodology. In: Brown S, Tauler R, Walczak R (eds.) Comprehensive Chemometrics, volume 1, Elsevier, Oxford, 2009, pp. 345-390.
- [13] G. Box and friends, Improving almost anything. Ideas and essays, Wiley, Hoboken (NY), 2006.
- [14] C.A. Anderson-Cook, C.B. Borror, D.C. Montgomery, J. Stat. Plan. Infer. 139 (2009) 629-641.
- [15] J.J. Borkowski, J. Qual. Technol. 35 (2003) 70-77.
- [16] M.C. Ortiz, L. Sarabia, A. Herrero, M.S. Sánchez, Chemometr. Intell. Lab. 83 (2006) 157-168.
- [17] R. Morales, M.C. Ortiz, L.A. Sarabia, M.S. Sánchez, Anal. Chim. Acta 707 (2011) 38-46.
- [18] A. Inselberg, Parallel coordinates: visual multidimensional geometry and its applications, Springer, New York, 2008.
- [19] M.C. Ortiz, L.A. Sarabia, M.S. Sánchez, D. Arroyo, Anal. Chim. Acta 687 (2011) 129-136.
- [20] D. Mathieu, J. Nony, R. Phan-Tan-Luu, NemrodW, version 2000-D, LPRAI, Marseille, France.

#### **Figure captions**

Figure 1. Scaled parallel coordinates plot of the Pareto-optimal front in the eight criteria

Figure 2. Scaled parallel coordinates plot of the reduced Pareto-optimal front. The thicker lines mark the best values for at least one of the criteria.

Figure 3. Pareto-optimal fronts in the criteria space for N = 6 (blue crosses, x), 7 (green asterisks, \*), 8 (red pluses, +) and 9 (cyan star)

Figure 4. Experimental points for the designs in the Pareto-optimal front for a) N = 6, b) N = 7, c) N = 8, and d) N = 9. The D-optimal design is marked with squares and the G-optimal design with circles.

| Number | D    | $VIF(b_1)$  | $VIF(b_2)$  | $VIF(b_3)$ | $VIF(b_4)$  | $VIF(b_5)$ | $VIF(b_6)$  | $VIF(b_{56})$ |
|--------|------|-------------|-------------|------------|-------------|------------|-------------|---------------|
| 1      | 0.68 | 1.12        | 1.18        | 1.08       | 1.08        | 1.06       | 1.11        | 1.05          |
| 2      | 0.44 | <u>1.00</u> | 1.70        | 1.57       | 1.09        | 1.21       | 1.22        | 1.25          |
| 3      | 0.39 | 1.44        | <u>1.00</u> | 1.38       | 1.35        | 1.25       | 1.20        | 1.48          |
| 4      | 0.29 | 1.39        | 1.27        | 1.00       | 1.94        | 1.10       | 1.69        | 1.44          |
| 5      | 0.28 | 1.54        | 1.33        | 1.74       | <u>1.00</u> | 1.08       | 1.18        | 1.44          |
| 6      | 0.30 | 1.38        | 1.13        | 1.77       | 1.50        | 1.00       | 1.43        | 1.28          |
| 7      | 0.47 | 1.27        | 1.11        | 1.29       | 1.33        | 1.13       | <u>1.00</u> | 1.55          |
| 8      | 0.38 | 1.18        | 1.54        | 1.71       | 1.71        | 1.18       | 1.09        | 1.00          |

Table 1. Values of the eight criteria for the experimental designs which are the best in each one. The best possible values are underlined.

|                                                                                                                                   | design 1                           |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                           |                                                                      |                                                                               |                                                                                      |                                                     | desi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | gn 2                                                                                 |                                                             |                                                                    |                                                                       |                                                                | desi                                                                                              | gn 3                                                                                           |                                                             |                                                                               |                                   |                                                                     | desi                                                                                                               | gn 4                                                                |                                                                                      |                                                                    |
|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| #                                                                                                                                 | $x_1$                              | $x_2$                                                     | <i>x</i> <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $x_4$                                     | <i>x</i> <sub>5</sub>                                                | $x_6$                                                                         | $x_1$                                                                                | $x_2$                                               | <i>x</i> <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $x_4$                                                                                | <i>x</i> <sub>5</sub>                                       | $x_6$                                                              | <i>x</i> <sub>1</sub>                                                 | <i>x</i> <sub>2</sub>                                          | <i>x</i> <sub>3</sub>                                                                             | $x_4$                                                                                          | <i>x</i> <sub>5</sub>                                       | $x_6$                                                                         | <i>x</i> <sub>1</sub>             | $x_2$                                                               | <i>x</i> <sub>3</sub>                                                                                              | $x_4$                                                               | <i>x</i> <sub>5</sub>                                                                | $x_6$                                                              |
| 1                                                                                                                                 | -                                  | -                                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                         | -                                                                    | +                                                                             | -                                                                                    | -                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                                                    | -                                                           | +                                                                  | -                                                                     | -                                                              | -                                                                                                 | -                                                                                              | -                                                           | -                                                                             | -                                 | -                                                                   | -                                                                                                                  | -                                                                   | +                                                                                    | -                                                                  |
| 2                                                                                                                                 | -                                  | -                                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                         | +                                                                    | -                                                                             | -                                                                                    | -                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | +                                                                                    | -                                                           | -                                                                  | -                                                                     | -                                                              | -                                                                                                 | -                                                                                              | +                                                           | +                                                                             | -                                 | -                                                                   | -                                                                                                                  | +                                                                   | -                                                                                    | +                                                                  |
| 3                                                                                                                                 | -                                  | -                                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | +                                         | +                                                                    | -                                                                             | -                                                                                    | -                                                   | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | +                                                                                    | -                                                           | +                                                                  | -                                                                     | -                                                              | +                                                                                                 | +                                                                                              | -                                                           | -                                                                             | -                                 | -                                                                   | -                                                                                                                  | +                                                                   | +                                                                                    | -                                                                  |
| 4                                                                                                                                 | -                                  | -                                                         | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                         | +                                                                    | +                                                                             | -                                                                                    | -                                                   | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | +                                                                                    | +                                                           | -                                                                  | -                                                                     | -                                                              | +                                                                                                 | +                                                                                              | +                                                           | +                                                                             | -                                 | -                                                                   | +                                                                                                                  | -                                                                   | -                                                                                    | -                                                                  |
| 5                                                                                                                                 | -                                  | -                                                         | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | +                                         | +                                                                    | +                                                                             | -                                                                                    | +                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                                                    | -                                                           | -                                                                  | -                                                                     | +                                                              | -                                                                                                 | -                                                                                              | -                                                           | -                                                                             | -                                 | +                                                                   | -                                                                                                                  | -                                                                   | -                                                                                    | +                                                                  |
| 6<br>7                                                                                                                            | -                                  | +                                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                         | -                                                                    | +                                                                             | -                                                                                    | +                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                                                    | -                                                           | -                                                                  | -                                                                     | +                                                              | -                                                                                                 | -                                                                                              | +                                                           | -                                                                             | -                                 | +                                                                   | -                                                                                                                  | -                                                                   | +                                                                                    | -                                                                  |
| /<br>Q                                                                                                                            | -                                  | +                                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | +                                         | +                                                                    | +                                                                             | -                                                                                    | +                                                   | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                                                    | +                                                           | -                                                                  | -                                                                     | +                                                              | -                                                                                                 | +                                                                                              | +                                                           | +                                                                             | -                                 | +                                                                   | +                                                                                                                  | -                                                                   | -                                                                                    | -                                                                  |
| 0<br>0                                                                                                                            | -                                  | +                                                         | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -<br>                                     | -                                                                    | -                                                                             | -                                                                                    | +                                                   | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | +                                                                                    | +                                                           | +                                                                  | -                                                                     | +                                                              | +                                                                                                 | -                                                                                              | +                                                           | -                                                                             | _                                 | +                                                                   | +                                                                                                                  | -                                                                   | +                                                                                    | -<br>⊥                                                             |
| 10                                                                                                                                | _                                  | -<br>-                                                    | -<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -<br>-                                    | _                                                                    | -<br>+                                                                        | -                                                                                    | т<br>_                                              | т<br>_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | т<br>-                                                                               | +<br>+                                                      | т<br>_                                                             | +<br>+                                                                | _                                                              | -                                                                                                 | _                                                                                              | -                                                           | -                                                                             |                                   | -<br>-                                                              | -<br>-                                                                                                             | -<br>+                                                              | т<br>_                                                                               | ⊤<br>⊥                                                             |
| 11                                                                                                                                | +                                  | -                                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ,<br>+                                    | _                                                                    | _                                                                             | -<br>+                                                                               | _                                                   | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | +                                                                                    | +                                                           | _                                                                  | +                                                                     | _                                                              | _                                                                                                 | +                                                                                              | -                                                           | +                                                                             | +                                 | -                                                                   | +                                                                                                                  | -                                                                   | +                                                                                    | -                                                                  |
| 12                                                                                                                                | +                                  | -                                                         | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | +                                         | +                                                                    | +                                                                             | +                                                                                    | -                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | +                                                                                    | +                                                           | +                                                                  | +                                                                     | -                                                              | +                                                                                                 | -                                                                                              | _                                                           | +                                                                             | +                                 | -                                                                   | +                                                                                                                  | +                                                                   | -                                                                                    | +                                                                  |
| 13                                                                                                                                | +                                  | -                                                         | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | +                                         | _                                                                    | +                                                                             | +                                                                                    | -                                                   | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _                                                                                    | +                                                           | +                                                                  | +                                                                     | -                                                              | +                                                                                                 | +                                                                                              | +                                                           | _                                                                             | +                                 | +                                                                   | -                                                                                                                  | _                                                                   | -                                                                                    | _                                                                  |
| 14                                                                                                                                | +                                  | +                                                         | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                         | _                                                                    | _                                                                             | +                                                                                    | +                                                   | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | +                                                                                    | -                                                           | -                                                                  | +                                                                     | +                                                              | -                                                                                                 | -                                                                                              | -                                                           | -                                                                             | +                                 | +                                                                   | -                                                                                                                  | -                                                                   | _                                                                                    | -                                                                  |
| 15                                                                                                                                | +                                  | +                                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                         | +                                                                    | +                                                                             | +                                                                                    | +                                                   | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                                                    | -                                                           | -                                                                  | +                                                                     | +                                                              | -                                                                                                 | +                                                                                              | -                                                           | -                                                                             | +                                 | +                                                                   | -                                                                                                                  | +                                                                   | +                                                                                    | +                                                                  |
| 16                                                                                                                                | +                                  | +                                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | +                                         | -                                                                    | -                                                                             | +                                                                                    | +                                                   | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                                                    | -                                                           | +                                                                  | +                                                                     | +                                                              | +                                                                                                 | -                                                                                              | -                                                           | +                                                                             | +                                 | +                                                                   | -                                                                                                                  | +                                                                   | +                                                                                    | +                                                                  |
| 17                                                                                                                                | +                                  | +                                                         | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                         | +                                                                    | -                                                                             | +                                                                                    | +                                                   | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | +                                                                                    | -                                                           | -                                                                  | +                                                                     | +                                                              | +                                                                                                 | +                                                                                              | -                                                           | +                                                                             | +                                 | +                                                                   | +                                                                                                                  | +                                                                   | +                                                                                    | -                                                                  |
| 18                                                                                                                                | +                                  | +                                                         | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | +                                         | +                                                                    | -                                                                             | +                                                                                    | +                                                   | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | +                                                                                    | -                                                           | +                                                                  | +                                                                     | +                                                              | +                                                                                                 | +                                                                                              | +                                                           | +                                                                             | +                                 | +                                                                   | +                                                                                                                  | +                                                                   | +                                                                                    | +                                                                  |
|                                                                                                                                   |                                    |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                           |                                                                      |                                                                               |                                                                                      |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                      |                                                             |                                                                    |                                                                       |                                                                |                                                                                                   |                                                                                                |                                                             |                                                                               |                                   |                                                                     |                                                                                                                    |                                                                     |                                                                                      |                                                                    |
|                                                                                                                                   |                                    |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                           |                                                                      |                                                                               |                                                                                      |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                      |                                                             |                                                                    |                                                                       |                                                                |                                                                                                   |                                                                                                |                                                             |                                                                               |                                   |                                                                     |                                                                                                                    |                                                                     |                                                                                      |                                                                    |
|                                                                                                                                   |                                    |                                                           | desi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | gn 5                                      |                                                                      |                                                                               |                                                                                      |                                                     | desi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | gn 6                                                                                 |                                                             |                                                                    |                                                                       |                                                                | desi                                                                                              | gn 7                                                                                           |                                                             |                                                                               |                                   |                                                                     | desi                                                                                                               | gn 8                                                                |                                                                                      |                                                                    |
| #                                                                                                                                 | <i>x</i> <sub>1</sub>              | <i>x</i> <sub>2</sub>                                     | $\frac{\text{desi}}{x_3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | gn 5                                      | <i>x</i> <sub>5</sub>                                                | <i>x</i> <sub>6</sub>                                                         | <i>x</i> <sub>1</sub>                                                                | <i>x</i> <sub>2</sub>                               | desi $x_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | gn 6                                                                                 | <i>x</i> <sub>5</sub>                                       | <i>x</i> <sub>6</sub>                                              | <i>x</i> <sub>1</sub>                                                 | <i>x</i> <sub>2</sub>                                          | desi $x_3$                                                                                        | gn 7<br>$x_4$                                                                                  | <i>x</i> <sub>5</sub>                                       | <i>x</i> <sub>6</sub>                                                         | <i>x</i> <sub>1</sub>             | <i>x</i> <sub>2</sub>                                               | desi $x_3$                                                                                                         | gn 8                                                                | <i>x</i> <sub>5</sub>                                                                | <i>x</i> <sub>6</sub>                                              |
| #                                                                                                                                 | <i>x</i> <sub>1</sub>              | <i>x</i> <sub>2</sub>                                     | $\frac{\text{desi}}{x_3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\frac{\text{gn } 5}{x_4}$                | <i>x</i> <sub>5</sub>                                                | <i>x</i> <sub>6</sub>                                                         | <i>x</i> <sub>1</sub>                                                                | <i>x</i> <sub>2</sub>                               | $\frac{\text{desi}}{x_3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | gn 6<br>$x_4$                                                                        | x <sub>5</sub>                                              | <i>x</i> <sub>6</sub>                                              | <i>x</i> <sub>1</sub>                                                 | <i>x</i> <sub>2</sub>                                          | desi $\frac{x_3}{-}$                                                                              | $\frac{\text{gn }7}{x_4}$                                                                      | <i>x</i> <sub>5</sub> +                                     | <i>x</i> <sub>6</sub>                                                         | <i>x</i> <sub>1</sub>             | <i>x</i> <sub>2</sub>                                               | $\frac{\text{desi}}{x_3}$                                                                                          | $\frac{\text{gn 8}}{x_4}$                                           | <i>x</i> <sub>5</sub>                                                                | <i>x</i> <sub>6</sub> +                                            |
| #<br>1<br>2                                                                                                                       | <i>x</i> <sub>1</sub>              | <i>x</i> <sub>2</sub>                                     | $\frac{\text{desi}}{x_3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\frac{\text{gn 5}}{x_4}$                 | <i>x</i> <sub>5</sub><br>+                                           | <i>x</i> <sub>6</sub><br>+                                                    | <i>x</i> <sub>1</sub>                                                                | <i>x</i> <sub>2</sub>                               | $\frac{\text{desi}}{x_3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | gn 6<br>$x_4$                                                                        | x <sub>5</sub>                                              | <i>x</i> <sub>6</sub><br>+                                         | <i>x</i> <sub>1</sub>                                                 | <i>x</i> <sub>2</sub>                                          | $\frac{\text{desi}}{x_3}$                                                                         | $\frac{\text{gn 7}}{x_4}$                                                                      | <u>x</u> 5<br>+                                             | <i>x</i> <sub>6</sub><br>+                                                    | <i>x</i> <sub>1</sub>             | <i>x</i> <sub>2</sub>                                               | $\frac{\text{desi}}{x_3}$                                                                                          | $\frac{\text{gn 8}}{x_4}$                                           | <i>x</i> <sub>5</sub>                                                                | <i>x</i> <sub>6</sub> + -                                          |
| #<br>1<br>2<br>3                                                                                                                  | <u>x</u> <sub>1</sub>              | <i>x</i> <sub>2</sub>                                     | $\frac{\text{desi}}{x_3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\frac{\text{gn 5}}{x_4}$                 | <i>x</i> <sub>5</sub><br>+<br>+                                      | <i>x</i> <sub>6</sub><br>+<br>+                                               | <i>x</i> <sub>1</sub>                                                                | <i>x</i> <sub>2</sub>                               | $\frac{\text{desi}}{x_3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\frac{\text{gn } 6}{x_4}$                                                           | x <sub>5</sub>                                              | <i>x</i> <sub>6</sub> - + + +                                      | <i>x</i> <sub>1</sub>                                                 | <u>x</u> <sub>2</sub>                                          | $\frac{\text{desi}}{x_3}$                                                                         | $\frac{\operatorname{gn} 7}{x_4}$                                                              | x <sub>5</sub> + - + +                                      | <i>x</i> <sub>6</sub><br>+<br>-                                               | <i>x</i> <sub>1</sub>             | <u>x</u> <sub>2</sub>                                               | $\frac{\text{desi}}{x_3}$                                                                                          | gn 8<br>$x_4$<br>-<br>+<br>+                                        | x <sub>5</sub>                                                                       | <i>x</i> <sub>6</sub> + - +                                        |
| #<br>1<br>2<br>3<br>4                                                                                                             | <u>x1</u>                          | x <sub>2</sub>                                            | $\frac{\text{desi}}{x_3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\frac{\text{gn 5}}{x_4}$                 | x <sub>5</sub><br>+<br>+                                             | <i>x</i> <sub>6</sub> - + +                                                   | <i>x</i> <sub>1</sub>                                                                | <u>x</u> 2                                          | $\frac{\text{desi}}{x_3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\frac{\operatorname{gn} 6}{x_4}$                                                    | x <sub>5</sub>                                              | <i>x</i> <sub>6</sub><br>+<br>+<br>+                               | <i>x</i> <sub>1</sub>                                                 | <u>x</u> <sub>2</sub><br>-<br>-<br>+                           | $\frac{\text{desi}}{x_3}$                                                                         | $\frac{\text{gn 7}}{x_4}$                                                                      | x <sub>5</sub> + - +                                        | <i>x</i> <sub>6</sub> - +                                                     | <i>x</i> <sub>1</sub>             | x <sub>2</sub>                                                      | $\frac{\text{desi}}{x_3}$                                                                                          | $\frac{\operatorname{gn} 8}{x_4}$                                   | x <sub>5</sub>                                                                       | <i>x</i> <sub>6</sub> + - +                                        |
| #<br>1<br>2<br>3<br>4<br>5                                                                                                        | <u>x1</u>                          | <u>x</u> 2                                                | $\frac{\text{desi}}{x_3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\frac{\operatorname{gn} 5}{x_4}$         | x5<br>+<br>+                                                         | <i>x</i> <sub>6</sub><br>+<br>+<br>+                                          | <i>x</i> <sub>1</sub>                                                                | <u>x</u> <sub>2</sub>                               | $\frac{\text{desi}}{x_3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\frac{\operatorname{gn} 6}{x_4}$                                                    | x5<br>+<br>+<br>+<br>+                                      | <i>x</i> <sub>6</sub> - + + + + + + + + + + + + + + + + + +        | <i>x</i> <sub>1</sub>                                                 | x <sub>2</sub>                                                 | $\frac{\text{desi}}{x_3}$                                                                         | $\frac{\text{gn 7}}{x_4}$                                                                      | x <sub>5</sub> + - +                                        | <i>x</i> <sub>6</sub><br>+<br>-<br>+                                          | <i>x</i> <sub>1</sub>             | <u>x</u> 2<br>-<br>+<br>+                                           | $\frac{\text{desi}}{x_3}$                                                                                          | $\frac{\text{gn 8}}{x_4}$                                           | x <sub>5</sub>                                                                       | <i>x</i> <sub>6</sub> + - + + +                                    |
| #<br>1<br>2<br>3<br>4<br>5<br>6<br>7                                                                                              | <u>x1</u>                          | <u>x</u> <sub>2</sub>                                     | $\frac{\text{desi}}{x_3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\frac{\operatorname{gn} 5}{x_4}$ + + + + | x <sub>5</sub><br>+<br>+<br>-<br>+                                   | <i>x</i> <sub>6</sub> + + + - + - + - + - + - + - + - + - +                   | x <sub>1</sub>                                                                       | <u>x</u> <sub>2</sub><br>-<br>-<br>+                | $\frac{\text{desi}}{x_3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\frac{\operatorname{gn} 6}{x_4}$                                                    | x5<br>+<br>+<br>+<br>+                                      | <i>x</i> <sub>6</sub> - + + + + + + + + + + + + + + + + + +        | <i>x</i> <sub>1</sub>                                                 | x <sub>2</sub>                                                 | $\frac{\text{desi}}{x_3}$                                                                         | $\frac{\text{gn 7}}{x_4}$                                                                      | x <sub>5</sub> + - + - + + + + + + + + + + + + + + +        | <u>x</u> <sub>6</sub><br>+<br>-<br>+                                          | x <sub>1</sub>                    | x <sub>2</sub><br>-<br>+<br>+<br>+                                  | $\frac{\text{desi}}{x_3}$ + + + - +                                                                                | gn 8<br>$x_4$<br>-<br>+<br>+<br>-<br>-<br>-                         | x5<br>-<br>+<br>-<br>+                                                               | <u>x</u> <sub>6</sub><br>+<br>-<br>+<br>-<br>+<br>-                |
| #<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8                                                                                         | <u>x1</u>                          | x <sub>2</sub>                                            | $\frac{\text{desi}}{x_3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | gn 5<br>$x_4$<br>-<br>+<br>+<br>+<br>-    | x <sub>5</sub><br>+<br>+<br>-<br>+                                   | <i>x</i> <sub>6</sub><br>+<br>+<br>+<br>+<br>+                                | x <sub>1</sub>                                                                       | x <sub>2</sub>                                      | $\frac{\text{desi}}{x_3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | gn 6<br>$x_4$<br>-<br>-<br>+<br>+<br>+<br>+<br>+                                     | x <sub>5</sub>                                              | <i>x</i> <sub>6</sub> - + + + + + + +                              | x <sub>1</sub>                                                        | x <sub>2</sub>                                                 | $\frac{\text{desi}}{x_3}$                                                                         | $gn 7 / x_4$                                                                                   | x <sub>5</sub> + - + - + + + + + + + + + + + + + + +        | x <sub>6</sub><br>+<br>-<br>+<br>+<br>+<br>+                                  | x <sub>1</sub>                    | x <sub>2</sub>                                                      | $\frac{\text{desi}}{x_3}$ - + + + - + + + + + + + + + + + + + +                                                    | $gn 8 / x_4$<br>- + + + + + + + + + + + + + + + +                   | x <sub>5</sub>                                                                       | <u>x</u> <sub>6</sub><br>+<br>+<br>+<br>-<br>-                     |
| #<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9                                                                                    | <u>x1</u>                          | x <sub>2</sub>                                            | $\frac{\text{desi}}{x_3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\frac{\text{gn 5}}{x_4}$                 | x <sub>5</sub><br>+<br>+<br>-<br>+<br>-                              | <i>x</i> <sub>6</sub><br>+<br>+<br>+<br>+<br>+<br>+<br>+                      | <u>x</u> <sub>1</sub><br>-<br>-<br>-<br>-                                            | <u>x</u> <sub>2</sub><br>-<br>-<br>+<br>+<br>+<br>+ | $\frac{\text{desi}}{x_3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $gn 6 / x_4$                                                                         | x5<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+                  | <i>x</i> <sub>6</sub><br>+<br>+<br>+<br>+<br>-                     | <i>x</i> <sub>1</sub>                                                 | x <sub>2</sub>                                                 | $\frac{\text{desi}}{x_3}$                                                                         | $gn 7 / x_4$<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+                                           | x <sub>5</sub><br>+<br>+<br>+<br>+<br>+<br>+<br>+           | <i>x</i> <sub>6</sub> + + + + + + + + + + + + + + + + + + +                   | x <sub>1</sub>                    | <u>x</u> <sub>2</sub><br>-<br>+<br>+<br>+<br>+<br>+<br>+            | $\frac{\text{desi}}{x_3}$                                                                                          | $gn 8 / x_4$<br>+ + + + + + + + + + + + + + + + +                   | <u>x</u> 5<br>+<br>+<br>+<br>+<br>+<br>+                                             | <i>x</i> <sub>6</sub> + - + - + - + - + + - + + + - + + + +        |
| #<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9                                                                                    | <u>x</u> <sub>1</sub>              | x <sub>2</sub>                                            | $\frac{\text{desi}}{x_3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\frac{\text{gn 5}}{x_4}$                 | x5<br>+<br>+<br>-<br>-                                               | <i>x</i> <sub>6</sub> + + + + + + + + + + + + + + + + + + +                   | x <sub>1</sub>                                                                       | x <sub>2</sub>                                      | $\frac{\text{desi}}{x_3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\frac{\operatorname{gn} 6}{x_4}$                                                    | x <sub>5</sub><br>+ + + + + + + + + + + + + + + + + + +     | <i>x</i> <sub>6</sub> + + + + + + +                                | <i>x</i> <sub>1</sub>                                                 | x <sub>2</sub>                                                 | $\frac{\text{desi}}{x_3}$                                                                         | gn 7<br>$x_4$<br>-<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>-<br>+<br>+                 | x <sub>5</sub><br>+<br>+<br>+<br>+<br>+<br>+                | <i>x</i> <sub>6</sub><br>+<br>-<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+       | x <sub>1</sub>                    | x <sub>2</sub>                                                      | $\frac{\text{desi}}{x_3}$ $+$ $+$ $+$ $+$ $+$ $+$ $+$                                                              | $gn 8 / x_4$<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+      | x <sub>5</sub>                                                                       | <u>x</u> <sub>6</sub><br>+<br>+<br>+<br>-<br>+<br>+                |
| #<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11                                                                        | x <sub>1</sub>                     | x <sub>2</sub>                                            | $\frac{\text{desi}}{x_3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\frac{\text{gn 5}}{x_4}$                 | <u>x5</u><br>+ +<br>+ -<br>-<br>-<br>-                               | <i>x</i> <sub>6</sub> + + + + + + + + + + + + + + + + + + +                   | $x_1$ + + +                                                                          | <u>x</u> 2<br>-<br>-<br>+<br>+<br>+<br>+            | $\frac{\text{desi}}{x_3}$ + + + + - + + + + + + + + + +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | gn 6<br>$x_4$<br>-<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+            | x <sub>5</sub><br>+ + + + + + + + + + + + + + + + + + +     | <i>x</i> <sub>6</sub><br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+ | $x_1$ + + +                                                           | x <sub>2</sub>                                                 | $\frac{\text{desi}}{x_3}$ - + - + + + + + + + + + + + + + + + +                                   | $\frac{\text{gn 7}}{x_4}$ - + + + + + + + - + + - + + + +                                      | <u>x</u> 5<br>+<br>+<br>-<br>+<br>+<br>-<br>-               | <i>x</i> <sub>6</sub> + + + + + + + + + + + + + + + + + + +                   | $x_1$                             | x <sub>2</sub>                                                      | $\frac{\text{desi}}{x_3}$ - + + + + + + + + + + + + + + + + + +                                                    | $gn 8 / x_4$<br>+<br>+<br>-<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+ | <u>x</u> 5<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+                                   | <u>x</u> <sub>6</sub><br>+<br>+<br>+<br>+<br>-<br>+<br>+<br>-<br>- |
| #<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12                                                                  | x <sub>1</sub>                     | <u>x</u> <sub>2</sub><br>-<br>-<br>-<br>+<br>+<br>+       | $\frac{\text{desi}}{x_3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\frac{\text{gn 5}}{x_4}$                 | x <sub>5</sub><br>+<br>+<br>+<br>-<br>-<br>-<br>+                    | <i>x</i> <sub>6</sub> + + + + + + + + + + + + + + + + + + +                   | x <sub>1</sub>                                                                       | x <sub>2</sub>                                      | $\frac{\text{desi}}{x_3} - \frac{1}{x_3} + \frac{1}{x_3} $ | $\frac{\text{gn 6}}{x_4}$                                                            | x <sub>5</sub><br>+ + + + + + + + + + + + + + + + + + +     | <i>x</i> <sub>6</sub> - + + + + + + + + + + + + + + + + + +        | x <sub>1</sub><br>-<br>-<br>-<br>-<br>+<br>+<br>+<br>+                | <i>x</i> <sub>2</sub>                                          | <u>desi</u><br>x <sub>3</sub><br>+<br>+<br>-<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+              | <u>gn 7</u><br><u>x4</u><br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+                          | <i>x</i> <sub>5</sub> + + + + + + + +                       | <i>x</i> <sub>6</sub> + + - + + + + + +                                       | x <sub>1</sub>                    | x <sub>2</sub>                                                      | <u>desi</u><br>x <sub>3</sub><br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>-                                    | $gn 8 / x_4$<br>- + + + + + + + + + + + + + + + + +                 | x <sub>5</sub><br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+                | <u>x6</u><br>+<br>+<br>+<br>-<br>+<br>+<br>-                       |
| #<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13                                                            | $x_1$                              | x <sub>2</sub>                                            | $\frac{\text{desi}}{x_3} - \frac{1}{x_3} - \frac{1}{x_3} + \frac{1}{x_3} $                                                                                                                                         | $\frac{\text{gn 5}}{x_4}$                 | x <sub>5</sub><br>+ +<br><br><br>+ +<br>+ +                          | <i>x</i> <sub>6</sub><br>+ +<br>+ +<br>+ +<br>+ +<br>+ +<br>                  | x <sub>1</sub>                                                                       | x <sub>2</sub>                                      | $\frac{\text{desi}}{x_3} - \frac{1}{x_3} + \frac{1}{x_3} $ | $\frac{\operatorname{gn} 6}{x_4}$                                                    | x5<br>+ + +<br>+ + +<br>+ + +<br>+ + + +<br>+ + +           | <i>x</i> <sub>6</sub> + + + + + + + + + + + + + + + + + + +        | x <sub>1</sub>                                                        | x <sub>2</sub>                                                 | $\frac{\text{desi}}{x_3} + + + + + + + + + + + + + + + + + + +$                                   | <u>gn 7</u><br><u>x4</u><br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+                | <i>x</i> <sub>5</sub> + + + + + + + + + + + + + + + + + + + | <i>x</i> <sub>6</sub> + + + + + + + + + + + + + + + + + + +                   | x <sub>1</sub>                    | <i>x</i> <sub>2</sub>                                               | <u>desi</u><br>x <sub>3</sub><br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>-<br>-                                    | $   \frac{\text{gn 8}}{x_4} $ - + + + + + + + + + + + + + + + +     | x <sub>5</sub><br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+ | <u>x6</u><br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+   |
| #<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14                                                      | $x_1$ + + + + + + + + + +          | x <sub>2</sub>                                            | $\frac{\text{desi}}{x_3} = $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\frac{\text{gn 5}}{x_4}$                 | <i>x</i> <sub>5</sub> - + + + + + +                                  | <i>x</i> <sub>6</sub><br>+ +<br>+ +<br>+ +<br>+ +<br>+ +<br>+ +<br>+ +<br>+ + | x <sub>1</sub>                                                                       | x <sub>2</sub>                                      | $\frac{\text{desi}}{x_3} = - + + + + + + + + + + + + + + + + + +$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <u>gn 6</u><br><u>x4</u><br>-<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+ | x5<br>+ + + + + + + + + + + + + + + + + + +                 | <u>x</u> <sub>6</sub><br>+ + + + + + + + + + + + + + + + + + +     | x <sub>1</sub>                                                        | <u>x</u> <sub>2</sub><br>+ + + + + + + + + + + + + + + + + + + | desi<br>x <sub>3</sub><br>-<br>+<br>+<br>-<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+ | <u>gn 7</u><br><u>x4</u><br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+           | <i>x</i> <sub>5</sub> + + + + + + + + + + + + + + + + + + + | <i>x</i> <sub>6</sub> + + + + + + + + + + + + + + + + + + + + + + + + + + + + | x <sub>1</sub><br>+ + + + + + + + | x <sub>2</sub>                                                      | $\frac{\text{desi}}{x_3} + + + + + + + + + + + + + + + + + + +$                                                    | $gn 8 / x_4$<br>+ + + + + + + + + + + + + + + + +                   | x <sub>5</sub>                                                                       | <i>x</i> <sub>6</sub> + + + + + + + + + + + + + + + + + + +        |
| $\begin{array}{c} \# \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \end{array}$                | x <sub>1</sub> + + + + + + + + + + | x2<br>-<br>-<br>-<br>+<br>+<br>+<br>-<br>-<br>-<br>+<br>+ | $\frac{\text{desi}}{x_3} = $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\frac{\text{gn 5}}{x_4}$                 | x <sub>5</sub><br>+<br>+<br>+<br>-<br>-<br>-<br>+<br>+<br>+<br>-     | <i>x</i> <sub>6</sub> + + + + + + + + + + + + + + + + + + +                   | x <sub>1</sub> + + + + + + + + + +                                                   | x <sub>2</sub>                                      | $\frac{\text{desi}}{x_3} - \frac{1}{x_3} + \frac{1}{x_3} $ | $   \frac{\operatorname{gn} 6}{x_4} $ + + + + + + +                                  | <u>x5</u><br>+ + + + + + + + + + + + + + + + + + +          | <i>x</i> <sub>6</sub> + + + + + + + + + + + + + + + + + + +        | x <sub>1</sub><br>-<br>-<br>-<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+ | <i>x</i> <sub>2</sub> + + + + + + + + + + + + + + + + +        | <u>desi</u><br>x <sub>3</sub><br>+<br>+<br>-<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>-         | <u>gn 7</u><br><u>x4</u><br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>-<br>-<br>+<br>+      | x <sub>5</sub> + + + + + + + + + + + + + + + + + + +        | <i>x</i> <sub>6</sub> + + + + + + + + + + + + + + + + + + +                   | x <sub>1</sub> + + + + + + + + +  | x2<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+ | <u>desi</u><br>x <sub>3</sub><br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>-<br>-<br>-<br>-                          | $   \frac{\text{gn 8}}{x_4} $ - + + + + + + + +                     | x <sub>5</sub><br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+           | <i>x</i> <sub>6</sub> + + + + + + + + + + + + + + + + + + +        |
| $\begin{array}{c} \# \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \end{array}$          | $x_1$ + + + + + + + + +            | x <sub>2</sub>                                            | $\frac{\text{desi}}{x_3} - \frac{1}{x_3} - \frac{1}{x_3} - \frac{1}{x_3} + \frac{1}{x_3} $                                                                                                                                         | $\frac{\text{gn 5}}{x_4}$                 | x <sub>5</sub><br>+ +<br>+ -<br><br>+ +<br>+ +<br><br><br>+ +<br>+ - | <i>x</i> <sub>6</sub> - + + + - + + + + + + + + + + + + + +                   | x <sub>1</sub><br>-<br>-<br>-<br>-<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+ | x <sub>2</sub>                                      | $\frac{\text{desi}}{x_3} = - + + + + + + + + + + + + + + + + + +$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $   \frac{\text{gn 6}}{x_4} $ + + + + + +                                            | x5<br>+ + + + + + + + + + + + + + + + + + +                 | <u>x</u> <sub>6</sub><br>+ + +<br>+ +<br><br>- +<br>+ +<br>+ -<br> | x <sub>1</sub>                                                        | x2<br>+ + + + + + + + + + + + + + + + + + +                    | desi<br>x <sub>3</sub><br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>-                | <u>gn 7</u><br><u>x4</u><br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+           | <i>x</i> <sub>5</sub> + + + + + + + + + + + + + + + + + + + | <i>x</i> <sub>6</sub> + + + + + + + + + + + + + + + + + + +                   | x <sub>1</sub><br>                | <i>x</i> <sub>2</sub><br>- + + + + + + + + + + + + + + + + + + +    | <u>desi</u><br>x <sub>3</sub><br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+           | $   \frac{\text{gn 8}}{x_4} $ - + + + + + + + + + + +               | <i>x</i> <sub>5</sub> - + + + + + + + + + + + + + + + + + +                          | $x_6$ + + + + + + + + + + + + + + + + + + +                        |
| $\begin{array}{c} \# \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ \end{array}$ | $x_1$ + + + + + + + + +            | x <sub>2</sub>                                            | $\frac{\text{desi}}{x_3} = \frac{1}{2} + \frac{1}{2$ | $\frac{\text{gn 5}}{x_4}$                 | <i>x</i> <sub>5</sub> - + + + + + +                                  | <i>x</i> <sub>6</sub> - + + + - + + + + + + + + + + + + + +                   | x <sub>1</sub>                                                                       | x2<br>                                              | $\frac{\text{desi}}{x_3} = \frac{1}{x_3} + \frac{1}{x_3} $ | $   \frac{\text{gn 6}}{x_4} $ + + + + + + + + + + + + + + + + +                      | <i>x</i> <sub>5</sub> + + + + + + + + + + + + + + + + + + + | <i>x</i> <sub>6</sub> + + + + + + + + + + + + + + + + + + +        | x <sub>1</sub>                                                        | <i>x</i> <sub>2</sub> - + + + + + + + + + + + + + + + + + +    | $\frac{\text{desi}}{x_3} \\ - \\ + \\ - \\ - \\ + \\ + \\ + \\ + \\ + \\ +$                       | <u>gn 7</u><br><u>x4</u><br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>- | <i>x</i> <sub>5</sub> + + + + + + + + + + + + + + + + + + + | <i>x</i> <sub>6</sub> + + + + + + + + + + + + + + + + + + +                   | x <sub>1</sub>                    | <i>x</i> <sub>2</sub>                                               | <u>desi</u><br>x <sub>3</sub><br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+ | $   \frac{\operatorname{gn} 8}{x_4} $ - + + + + + + +               | x5<br>++++++++++++++++++++++++++++++++++++                                           | <i>x</i> <sub>6</sub> + + + + + + + + + + + + + + + + + + +        |

|        |   | D-op  | timal | G-op  | timal                 |
|--------|---|-------|-------|-------|-----------------------|
|        | # | $x_1$ | $x_2$ | $x_1$ | <i>x</i> <sub>2</sub> |
|        | 1 | -1    | -1    | -1    | 0.32                  |
|        | 2 | -1    | 0.26  | -0.78 | -1                    |
| N – 6  | 3 | -0.57 | 1     | -0.65 | 1                     |
| N = 0  | 4 | 0.08  | -0.17 | 0.21  | 0                     |
|        | 5 | 1     | -1    | 1     | -1                    |
|        | 6 | 1     | 1     | 1     | 1                     |
|        |   | $x_1$ | $x_2$ | $x_1$ | <i>x</i> <sub>2</sub> |
|        | 1 | -1    | -1.00 | -1    | -0.89                 |
|        | 2 | -1    | 1     | -1    | 1                     |
|        | 3 | -0.09 | 0.06  | -0.18 | 0.21                  |
| N = 7  | 4 | 0.08  | -1    | 0.06  | -1                    |
|        | 5 | 1     | -1    | 0.89  | 1                     |
|        | 6 | 1     | -0.09 | 1     | -1                    |
|        | 7 | 1     | 1     | 1     | -0.07                 |
|        |   | $x_1$ | $x_2$ | $x_1$ | <i>x</i> <sub>2</sub> |
|        | 1 | -1    | -1    | -1    | -1                    |
|        | 2 | -1    | 0     | -1    | 1                     |
|        | 3 | -1    | 1     | -0.78 | 0                     |
| M _ 9  | 4 | -0.09 | -1    | -0.07 | -1                    |
| IV - O | 5 | -0.08 | 1     | -0.06 | 1                     |
|        | 6 | 0.22  | 0     | 0.88  | 0                     |
|        | 7 | 1     | -1    | 1     | -1                    |
| _      | 8 | 1     | 1     | 1     | 1                     |

Table 3. Experimental designs that correspond to the extremes of the Pareto-optimal front.







