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Abstract 

The production of polyunsaturated fatty acids (PUFAs) concentrates by enzymatic catalysis has gained interest 

due to their stereospecificity and the milder conditions needed compared to the use of inorganic catalysts. The 

enzymatic glycerolysis of sardine oil by Lipozyme 435 to get PUFA concentrates in the forms of di- and 

monoacylglycerols (DAGs, MAGs) in an optimized amount of tert-butanol as the organic solvent was studied. 

First, mass transfer limitation of the reaction system was analyzed. The effect of different operating variables 

such as lipase loading, temperature and feed composition was investigated. A semi-empirical kinetic model 

based on the reversible elementary reactions of glycerolysis and hydrolysis of the glycerides was employed to 

correlate the experimental kinetic data. A mole ratio glycerol:oil of 3:1 was the optimum, which produced more 

than 84 wt% of MAG at 50ºC. A comparison with other glycerolysis systems was performed using MAG yield, 

reaction rate and significance of kinetic parameters. 
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1. Introduction 

Fish oil is rich in omega-3 (n-3) polyunsaturated fatty acids (PUFAs) such as eicosapentaenoic acid (EPA) and 

docosahexaenoic acid. The health benefits of n-3 fatty acids have been widely established in the literature [1-3]. 

Among the different types of lipid derivatives containing PUFA concentrates, MAG and DAG has good 

bioavailability [4, 5].  In addition, MAG or its mixtures with DAG account for 75 % of worldwide emulsifier 

production [6]. The process currently used in industry to obtain MAG is glycerolysis using an inorganic alkaline 

catalyst at high temperature (220 - 260ºC). This method has several disadvantages such as it gives a dark color 

and burnt taste as well as high energy consumption. Furthermore, chemical glycerolysis is not suitable for 

producing MAG rich in PUFA due to oxidization problems. Enzymatic glycerolysis is an attractive alternative 

for the production of MAG rich in PUFA since the reaction can be carried out under mild conditions [7] and 

structured products are obtained. 

The immiscibility of the reactants, glycerol and oil leads to mass transfer limitation in the glycerolysis of oils. 

Different approaches have been used in the literature to improve the contact between the reactants and hence 

reduce mass transfer limitation. Lipase-catalyzed glycerolysis has been carried out in different reaction media 

such as organic solvents [8], compressed fluids [9], and ionic liquids [10] in order to improve the mass transfer. 
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Recently the use of different surfactants to increase the interfacial area [11] and ultrasound irradiation [12] have 

also been proposed to reduce mass transfer limitation.  

This paper is part of a wider project for the optimization of MAG production by enzymatic glycerolysis of 

sardine oil. First, different tert-alcohols were evaluated as the solvent used to create a homogeneous phase [13]. 

Tertiary alcohols enhance the enzyme activity and accelerate the reaction rate as compared to the solvent-free 

system [14]. In a previous work, tert-pentanol was selected as the solvent and the effect of the glycerol:oil mole 

ratio was evaluated for its effect on kinetic behavior and MAG yield. The glycerolysis product was 

subsequently fractionated by a two-step molecular distillation to obtain a concentrated product of MAG and 

DAG rich in PUFA [15]. In this work, a different tertiary alcohol, tert-butanol was used as the solvent. Tert-

butanol has been used in different glycerolysis systems of vegetable oils such as olive oil [16, 17], palm oil [18], 

camellia oil [19] and sunflower oil [8, 20].  

The main objective of this work is to present a detailed kinetic study of enzymatic glycerolysis of refined 

sardine oil in tert-butanol as the solvent catalyzed by a commercial lipase Lipozyme 435. The amount of tert-

butanol added to create a monophasic system has been optimized based on liquid-liquid equilibrium (LLE) data 

previously determined [13]. This value was compared with the amount of tert-butanol added to other 

glycerolysis systems. The results in terms of MAG and DAG yields were compared with literature data reported 

for different type of oils and related to the high activity of the lipase for short and medium chain length fatty 

acids. 

First, the external and internal mass transfer resistances were analyzed in the heterogeneous system of the 

immobilized lipase. Mass transfer limitation can play an important role in the reaction. However, in most 

glycerolysis studies reported in the literature, no mass transfer studies were performed. 

Mathematical models are needed to predict and optimize the industrial process. However, not many works in 

the literature deal with the kinetic modeling of glycerolysis. One of the first works was carried out by Moquin et 

al. [9]. In that work, the kinetics of the non-catalyzed glycerolysis of soybean oil in SCCO2 medium were 

correlated by a sequence of reversible reactions to take into account the parallel hydrolysis reaction. The same 

model was used by Valerio et al. [11] in the kinetic study of solvent-free lipase-catalyzed glycerolysis of olive 

oil by Novozym 435 with Triton X-100 as surfactant. Although glycerolysis and hydrolysis reactions were 

proposed, no information on the experimental FFA production and rate of change of glycerol were provided and 

only the TAG, MAG and DAG concentrations were used in the fitting procedure to obtain the kinetic 

parameters. The mechanism of glycerolysis and hydrolysis of pure POP (1,3-palmitin-2-olein) by Rhizopus 

arrhizus lipase was studied by Tan and Yin [21] by including hydrolysis, esterification and isomerization of 

MAG and DAG. Cheirsilp et al. [22] proposed a Ping-Pong Bi Bi model that focused on the kinetics of the 

hydrolysis and esterification steps involved in the glycerolysis of palm oil in an acetone/isooctane mixture (3:1 

v/v). Water was dissolved in glycerol (10 % w/v of water added to glycerol) and therefore a large amount of 
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water was present in the reaction medium. Recently, Voll et al. [17] proposed a kinetic model based on the 

ordered-sequential Bi Bi mechanism for a lipase-catalyzed glycerolysis system of olive oil in tert-butanol as the 

solvent. In that work, the reaction products were expressed as total amount of MAG, DAG, TAG and FFA by 

weight percentage on a solvent-free basis composition. No experimental information on the glycerol 

concentration rate of change was provided. Fiametti et al. [12] used a similar model to the one proposed by Voll 

et al. [17] in the glycerolysis of olive oil by ultrasound irradiation. However, the parameters were not provided 

in the open literature although they could be available upon request to the authors. 

In this work, a similar approach to that previously proposed by Moquin et al. [9] was used. The kinetic 

parameters were compared when possible with previous values reported in the literature. This model was able to 

consider the concentration of all the compounds involved in the glycerolysis system: TAG, DAG, MAG, FFA, 

glycerol and water.  

2. Experimental 

2.1 Materials 

Refined sardine oil was provided by Industrias Afines S.L. (Spain) with a water content of 0.19 ± 0.03%. 

Glycerol was purchased from Sigma Aldrich with a purity of ≥ 99.5% and a water content of 0.18 ± 0.04%. 

Tert-butanol (TB) was purchased from Merck with a purity of ≥ 99% and a water content of 0.20 ± 0.03%. The 

products were stored over activated 3 Å molecular sieve to keep them dry. The food grade lipase Lipozyme 

435 from Candida antarctica (immobilized on a macroporous hydrophobic acrylic resin) was donated by 

Novozymes A/S (Bagsvaerd, Denmark). The water content of this lipase was 3.5 ± 0.3% as determined in 

triplicate by Karl-Fisher titration with a Mitsubishi CA-20 moisture meter. According to Novozymes A/S, the 

specific activity of the lipase is ≥ 8000 propyl laurate units/g. No additional water was added to the system. 

Therefore, water present in the reaction medium came only from the reactants.  

2.2 Enzymatic Glycerolysis of Sardine Oil 

Different vials containing a mixture of sardine oil, glycerol and TB were incubated at different temperatures 

from 303 to 333 K in a water bath with stirring. Different mole ratios of substrate and enzyme dosage were also 

studied. The amount of TB added was fixed at a mass ratio of 1.5:1 (TB:substrates) on the basis of previous 

studies on LLE [13]. At selected time intervals (from five minutes up to eight hours), a sample of the reaction 

mixture was withdrawn and filtered through a microfilter (0.45 µm, Sartorius RC) to stop the reaction by 

removing the lipase. All samples were stored at −18 ᵒC prior to analysis.  

The reusability of Lipozyme 435 in this process was tested by recycling the immobilized enzyme in six 

batches. After each run, the lipase was washed once with TB, and then twice with hexane in order to eliminate 

the remaining compounds. Afterwards, the lipase was dried at 303 K and stored in a desiccator under vacuum. 

No significant reduction in enzyme activity was found. In any event, a fresh biocatalyst was used in each run.  

Tert-butanol was evaporated under vacuum using a rotary evaporator (Heibolph VV2000) at 333 K. In this way, 
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TB can be reused by using the molecular sieve to eliminate the water content.  

2.3 Analysis of the reaction products 

The neutral lipid profile (TAG, DAG, MAG and FFA) was analyzed by a normal phase high performance liquid 

chromatography (NP-HPLC). The chromatographic apparatus consisted of a HPLC system (Agilent 1200) 

formed by a quaternary pump and an auto-injector. The chromatographic separation of the compounds was 

carried out at room temperature with a Lichrospher Diol column (5 µm, 4 mm×250 mm) and detection was 

performed by an evaporative light scattering detector (Agilent 1200 series) at 35 ºC and 0.35 MPa. Gradient 

elution was achieved by mobile phases A (isooctane) and B (methyl tert-butyl ether:acetic acid = 99.9:0.1, v/v). 

The method and calibration procedure were previously reported [23]. The regioisomers of DAG and MAG 

could not be distinguished by the applied analytical procedure. Therefore the total amount of MAG and DAG 

was reported for the kinetic experiments.  

The analysis of the remaining glycerol was performed by a high temperature gas chromatograph (HT-GC) 

system (HP 6890 Series GC System) equipped with a flame ionization detector (FID), a fused silica capillary 

column of 30 m × 0.25 mm i.d. coated with a 0.25 µm film thickness of 65% phenyl methylpolisiloxane (65HT) 

as the stationary phase and an Agilent Technologies 7683B Series automatic injector. The method and 

calibration procedure were previously reported [13]. 

2.4 Kinetic modeling 

The overall glycerolysis reaction can be described by:                

TAG  +  2 Gly              3 MAG       [1] 

However, glycerolysis is believed to follow a two-step reaction. First, one molecule of glycerol reacts with one 

molecule of TAG to yield one molecule of DAG and another molecule of MAG. The reaction of one molecule 

of DAG with one molecule of glycerol can also take place to yield two molecules of MAG:  

TAG + Gly                      DAG + MAG      [2] 

 

DAG + Gly                      2 MAG       [3] 

The breakdown of TAG due to reaction with MAG can also occur to produce two molecules of DAG [9]:  

 

 

TAG + MAG                   2 DAG       [4] 

Even in the presence of small amounts of water in the glycerolysis reaction medium, unwanted hydrolysis 

reactions must be considered: 

TAG + H2O                     DAG + FFA      [5] 

 

DAG + H2O                    MAG + FFA      [6] 
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MAG + H2O                    GLY + FFA      [7] 

Kinetic models are needed to predict and simulate the reaction. By formulating the mass balance equation for all 

the species of the reaction system, the concentration profile versus time can be obtained. In this way, the 

process can be optimized. The rate of change in concentration for each of the reaction components are described 

by the following differential equations: 

 

𝑑𝑑 𝑛𝑛𝑇𝑇𝑇𝑇𝑇𝑇 𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡⁄
𝑑𝑑𝑑𝑑

=−𝑘𝑘1𝑥𝑥𝑇𝑇𝑇𝑇𝑇𝑇𝑥𝑥𝐺𝐺𝐺𝐺𝐺𝐺+𝑘𝑘2𝑥𝑥𝐷𝐷𝐷𝐷𝐷𝐷𝑥𝑥𝑀𝑀𝐴𝐴𝐴𝐴−𝑘𝑘5𝑥𝑥𝑇𝑇𝑇𝑇𝑇𝑇𝑥𝑥𝑀𝑀𝑀𝑀𝑀𝑀 + 

𝑘𝑘6(𝑥𝑥𝐷𝐷𝐷𝐷𝐷𝐷)2−𝑘𝑘7𝑥𝑥𝑇𝑇𝑇𝑇𝑇𝑇𝑥𝑥𝐻𝐻2𝑂𝑂+𝑘𝑘8𝑥𝑥𝐷𝐷𝐷𝐷𝐷𝐷𝑥𝑥𝐹𝐹𝐹𝐹𝐹𝐹    [8] 

 
𝑑𝑑𝑛𝑛𝐷𝐷𝐷𝐷𝐷𝐷 𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡⁄

𝑑𝑑𝑑𝑑
=𝑘𝑘1𝑥𝑥𝑇𝑇𝑇𝑇𝑇𝑇𝑥𝑥𝐺𝐺𝐺𝐺𝐺𝐺-𝑘𝑘2𝑥𝑥𝐷𝐷𝐷𝐷𝐷𝐷𝑥𝑥𝑀𝑀𝑀𝑀𝑀𝑀−𝑘𝑘3𝑥𝑥𝐷𝐷𝐷𝐷𝐷𝐷𝑥𝑥𝐺𝐺𝐺𝐺𝐺𝐺 + 𝑘𝑘4(𝑥𝑥𝑀𝑀𝑀𝑀𝑀𝑀)2 +

2𝑘𝑘5𝑥𝑥𝑇𝑇𝑇𝑇𝑇𝑇𝑥𝑥𝑀𝑀𝑀𝑀𝑀𝑀−2𝑘𝑘6(𝑥𝑥𝐷𝐷𝐷𝐷𝐷𝐷)2+𝑘𝑘7𝑥𝑥𝑇𝑇𝑇𝑇𝑇𝑇𝑥𝑥𝐻𝐻2𝑂𝑂−𝑘𝑘8𝑥𝑥𝐷𝐷𝐷𝐷𝐷𝐷𝑥𝑥𝐹𝐹𝐹𝐹𝐹𝐹−𝑘𝑘9𝑥𝑥𝐷𝐷𝐷𝐷𝐷𝐷𝑥𝑥𝐻𝐻2𝑂𝑂 + 𝑘𝑘10𝑥𝑥𝑀𝑀𝑀𝑀𝑀𝑀𝑥𝑥𝐹𝐹𝐹𝐹𝐹𝐹      

    [9] 
𝑑𝑑𝑛𝑛𝑀𝑀𝑀𝑀𝑀𝑀 𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡⁄

𝑑𝑑𝑑𝑑
=𝑘𝑘1𝑥𝑥𝑇𝑇𝑇𝑇𝑇𝑇𝑥𝑥𝐺𝐺𝐺𝐺𝐺𝐺-𝑘𝑘2𝑥𝑥𝐷𝐷𝐷𝐷𝐷𝐷𝑥𝑥𝑀𝑀𝑀𝑀𝑀𝑀+2𝑘𝑘3𝑥𝑥𝐷𝐷𝐷𝐷𝐷𝐷𝑥𝑥𝐺𝐺𝐺𝐺𝐺𝐺 − 2𝑘𝑘4(𝑥𝑥𝑀𝑀𝑀𝑀𝑀𝑀)2 −

𝑘𝑘5𝑥𝑥𝑇𝑇𝑇𝑇𝑇𝑇𝑥𝑥𝑀𝑀𝑀𝑀𝑀𝑀+𝑘𝑘6(𝑥𝑥𝐷𝐷𝐷𝐷𝐷𝐷)2+𝑘𝑘9𝑥𝑥𝐷𝐷𝐷𝐷𝐷𝐷𝑥𝑥𝐻𝐻2𝑂𝑂 − 𝑘𝑘10𝑥𝑥𝑀𝑀𝑀𝑀𝑀𝑀𝑥𝑥𝐹𝐹𝐹𝐹𝐹𝐹−𝑘𝑘11𝑥𝑥𝑀𝑀𝑀𝑀𝑀𝑀𝑥𝑥𝐻𝐻2𝑂𝑂+𝑘𝑘12𝑥𝑥𝑀𝑀𝑀𝑀𝑀𝑀𝑥𝑥𝐹𝐹𝐹𝐹𝐹𝐹     

 [10] 

 
𝑑𝑑𝑛𝑛𝐺𝐺𝐺𝐺𝐺𝐺 𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡⁄

𝑑𝑑𝑑𝑑
= −𝑘𝑘1𝑥𝑥𝑇𝑇𝑇𝑇𝑇𝑇𝑥𝑥𝐺𝐺𝐺𝐺𝐺𝐺 +𝑘𝑘2𝑥𝑥𝐷𝐷𝐷𝐷𝐷𝐷𝑥𝑥𝑀𝑀𝑀𝑀𝑀𝑀−𝑘𝑘3𝑥𝑥𝐷𝐷𝐷𝐷𝐷𝐷𝑥𝑥𝐺𝐺𝐺𝐺𝐺𝐺 + 𝑘𝑘4(𝑥𝑥𝑀𝑀𝑀𝑀𝑀𝑀)2+𝑘𝑘11𝑥𝑥𝑀𝑀𝑀𝑀𝑀𝑀𝑥𝑥𝐻𝐻2𝑂𝑂−𝑘𝑘12𝑥𝑥𝐺𝐺𝐺𝐺𝐺𝐺𝑥𝑥𝐹𝐹𝐹𝐹𝐹𝐹    

  [11] 

 
𝑑𝑑𝑛𝑛𝐹𝐹𝐹𝐹𝐹𝐹 𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡⁄

𝑑𝑑𝑑𝑑
= 𝑘𝑘7𝑥𝑥𝑇𝑇𝑇𝑇𝑇𝑇𝑥𝑥𝐻𝐻2𝑂𝑂−𝑘𝑘8𝑥𝑥𝐷𝐷𝐷𝐷𝐷𝐷𝑥𝑥𝐹𝐹𝐹𝐹𝐹𝐹+𝑘𝑘9𝑥𝑥𝐷𝐷𝐷𝐷𝐷𝐷𝑥𝑥𝐻𝐻2𝑂𝑂 − 𝑘𝑘10𝑥𝑥𝑀𝑀𝑀𝑀𝑀𝑀𝑥𝑥𝐹𝐹𝐹𝐹𝐹𝐹+𝑘𝑘11𝑥𝑥𝑀𝑀𝑀𝑀𝑀𝑀𝑥𝑥𝐻𝐻2𝑂𝑂−𝑘𝑘12𝑥𝑥𝐺𝐺𝐺𝐺𝐺𝐺𝑥𝑥𝐹𝐹𝐹𝐹𝐹𝐹    

  [12] 
𝑑𝑑𝑛𝑛𝐻𝐻2𝑂𝑂 𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡⁄

𝑑𝑑𝑑𝑑
=−𝑘𝑘7𝑥𝑥𝑇𝑇𝑇𝑇𝑇𝑇𝑥𝑥𝐻𝐻2𝑂𝑂+𝑘𝑘8𝑥𝑥𝐷𝐷𝐷𝐷𝐷𝐷𝑥𝑥𝐹𝐹𝐹𝐹𝐹𝐹−𝑘𝑘9𝑥𝑥𝐷𝐷𝐷𝐷𝐷𝐷𝑥𝑥𝐻𝐻2𝑂𝑂 + 𝑘𝑘10𝑥𝑥𝑀𝑀𝑀𝑀𝑀𝑀𝑥𝑥𝐹𝐹𝐹𝐹𝐹𝐹−𝑘𝑘11𝑥𝑥𝑀𝑀𝑀𝑀𝑀𝑀𝑥𝑥𝐻𝐻2𝑂𝑂+𝑘𝑘12𝑥𝑥𝐺𝐺𝐺𝐺𝐺𝐺𝑥𝑥𝐹𝐹𝐹𝐹𝐹𝐹    

  [13] 

 

As explained above in the analytical procedure, the stereoisomers of DAG and MAG could not be distinguished 

and no difference was made between them in the model. The concentrations of the reaction products were 

expressed on a solvent-free basis. TAG, DAG, MAG, FFA and glycerol concentrations were experimentally 

determined. The water concentration could not be measured versus reaction time. According to Moquin et al. 

[9], it is possible to estimate the change in water concentration by subtracting the experimental FFA 

concentration from the initial water concentration since the formation of one mole FFA requires one mole of 

k11 

k12 
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water (Equations 5-7). 

The rate constants for the six kinetic equations were obtained by solving the set of differential equations 

simultaneously. The differential equations were solved numerically with a fourth order Runge-Kutta method 

and the parameters were optimized by minimizing the following objective function (O.F.): 

𝑂𝑂. F. =
∑ ∑ �xi,exp−xi,calc�

2n
i=1all samples

nsamples
· 100          [14] 

using the simplex Nelder-Mead method. The subscript “i” refers to the different components in the glycerolysis 

system: TAG, DAG, MAG, FFA, glycerol and water. The subscripts “exp” and “calc” refer to the experimental 

and calculated mole fraction of the different components for each experimental kinetic data point (nsamples) 

The root mean square deviation (rmsd) was calculated to evaluate the quality of the fitting: 

 

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = �∑ �𝑤𝑤𝑖𝑖
𝑒𝑒𝑒𝑒𝑒𝑒−𝑤𝑤𝑖𝑖

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐�
2𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁

𝑖𝑖=1
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁

        [15] 

where NOBS is the total number of kinetic data points for all the kinetic experiments and 𝑤𝑤𝑖𝑖
𝑒𝑒𝑒𝑒𝑒𝑒 and 𝑤𝑤𝑖𝑖

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 are 

the experimental and calculated weight fractions for the reaction compounds. 

3. Results and discussion 

3.1 Mass transfer analysis 

External and intraparticle mass transfer resistance can influence the observed reaction rate in heterogeneous 

catalytic processes such as immobilized lipase biocatalysis. Before the study of the effect of the kinetic 

variables, the mass transfer rate was analyzed. 

Tert-butanol was used as the organic solvent to provide an environment where oil and glycerol can interact 

since both reactants are completely immiscible. Tert-butanol helps to create a homogeneous phase and also 

decreases the viscosity of the reaction medium since both reactants are highly viscous, especially glycerol 

(Table 1). To evaluate the external mass transfer resistance, the glycerolysis reaction was carried out at different 

stirring speeds, from 120 to 200 rpm, while keeping constant the rest of the reaction conditions. The results are 

presented in Table 1. From these results, it can be concluded that there was no increase in the initial reaction 

rate of MAG formation in the speed range studied. This result was expected since external diffusion does not 

usually control the overall rate unless the stirring speed is very low or the reaction mixture is very viscous [24]. 

Tert-butanol helps to decrease the viscosity of the reaction medium since its viscosity is 100 time smaller than 

the viscosity of glycerol (Table 1), resulting in a low external mass transfer resistance and it acts as an inert 

carrier for the reactants to the active site of the enzyme. Hence, 170 rpm was chosen for all the glycerolysis 

reactions.  

Slow intraparticle diffusion can reduce the overall reaction rate, especially if the reactant molecules are large 

[25] and have a low mobility in the lipase support. Chesterfield et al. [26] analyzed the relative magnitude of the 
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external liquid mass transfer resistance to the combined internal resistances (intraparticle diffusion and reaction 

resistances) in the ethanolysis of waste cooking oil using Novozym 435 by plotting the reciprocal initial 

reaction rate (1/ro) as a function of inverse lipase loading (1/m). This plot should be a straight line, with a slope 

proportional to the combined internal resistances, and the intercept is proportional to the interphase mass 

transfer resistance. Figure 1 illustrates this linear dependence in the glycerolysis of sardine oil. The linear fit 

proved that the rate controlling step is the combined internal resistances since the intercept can be considered 

negligible.  

To evaluate the intraparticle diffusion effect, the lipase Lipozyme 435 was separated into two fractions by a 

400 µm sieve (46 wt % of Lipozyme 435 particles with ϕp > 400 µm). Kinetic experiments were carried out 

with each of the fractions obtained and compared with the results obtained with unsieved lipase. Figure 2 shows 

that the initial reaction rate of MAG formation was increased by decreasing the particle size of Lipozyme 435. 

This may indicate internal mass transfer limitation for the larger particles, although the same MAG yield was 

achieved at long reaction time. A significant pore diffusion resistance was also found by Chesterfield et al. [26] 

in the ethanolysis study with Novozym 435 (technical grade of Candida antartica).  

The experimental Thiele modulus, φexp, was calculated to evaluate the intraparticle resistance [27]: 

𝜙𝜙𝑒𝑒𝑒𝑒𝑒𝑒 = �𝑑𝑑𝑝𝑝
6
�
2 𝑟𝑟𝑒𝑒𝑒𝑒𝑒𝑒,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑜𝑜
        [16] 

 

dp is the mean particle diameter of Lipozyme 435 (dp = 383 µm, [26]). The effective diffusivity, Deff, was 

evaluated using [28]: 

𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒 = 𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝜀𝜀𝑝𝑝𝜎𝜎
𝜏𝜏

        [17] 

where εp, τ and σ are Lipozyme 435 porosity, tortuosity and constriction factor. These values were taken from 

Chesterfield [26] for Novozym 435 (εp = 0.5, τ = 6 and σ = 1). Dsubstrate-solvent is the molecular diffusivity of the 

reactants (glycerol and fish oil) in the reaction medium (tert-butanol in this work). It was estimated using the 

Wilke-Chang equation [29]: 

𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 7.4·10−8𝑇𝑇(𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝜓𝜓𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)
𝜂𝜂𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

0.6      [18] 

 

where Dsubstrate-solvent is the diffusion coefficient of the substrate in the solvent (cm2·s-1), Msubstrate is the molecular 

weight of the solvent (g/mol), T is the temperature (K), ηsolvent is the viscosity of the solvent, cP, Vsustrate is the 

molar volume of the substrate at its normal boiling temperature, cm3/mol and ψ the association factor of the 

solvent (dimensionless, ψ = 1 for non-associated compounds). The parameters values used in the calculation of 

φ are listed in Table 2. Molar volumes at the normal boiling point were estimated by the Tyn and Calus method 

[29]: 
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𝑉𝑉 = 0.285𝑉𝑉𝑐𝑐1.048         [19] 

where Vc is the critical volume in cm3/mol. Vc for glycerol was 255 cm3/mol [29]. No data of Vc for fish oil was 

found in the literature. The corresponding estimated value for triolein (Vc = 3235.65 cm3/mol) was used [30]. Φ 

was evaluated for both substrates, glycerol and sardine oil, at 323 K for rexp,glycerol = 0.0173 mmol·L-1·s-1, 

Cglycerol,o = 47.5 mmol·L-1 rexp,fish oil = 0.023 mmol·L-1·s-1 Cfish oil,o = 47.5 mmol·L-1.  

According to Bailey [31], when Φ is sufficiently large (Φ ≥ 3), diffusion of substrate is slow relative to its 

consumption. When Φ < 0.3 the limiting rate process is the chemical reaction. Φ for diffusion of glycerol in the 

reaction medium was found to be 1.9·10-2. However, a value of 0.36 was obtained for the diffusion of fish oil in 

tert-butanol, probably due to the bigger oil molecules that can lead to more diffusional limitation (Table 2). In 

any case, the value of Φ was close to the limit of 0.3 and the observed rate can be considered kinetically 

controlled. Based on the Φ values, the lipase was used in its commercially available size without sieving for 

further kinetic experiments.  

Yang et al. [20] studied the effect of the loading of Novozym 435 on the glycerolysis of sunflower oil. They 

found that an enzyme loading of more than 10% resulted in only a small increase in MAG yield. Therefore they 

suggested that 10-15% of enzyme loading was enough to obtain the maximum reaction performance. Moreover, 

other authors as Valerio et al. and Fiametti et al. [11, 12] have shown that high enzyme concentrations can lead 

to the formation of aggregates, making the enzyme active site unavailable to the substrates. Based on this and 

the results shown in Figure 1, further glycerolysis kinetics were performed with 10 wt% of Lipozyme 435 

based on reactant weight.  

 

3.2 Glycerolysis reaction system 

The presence of a catalyst is necessary since it has been shown in the literature [16] that under 70ºC the 

observed reaction rate without a catalyst is nearly zero. Figure 3c shows a typical glycerolysis profile of fish oil 

at the mole ratio of glycerol:sardine oil of 3:1 at 323 K with 10% of lipase loading in tert-butanol (68 % of tert-

butanol). The main reaction product at the above conditions was MAG (around 51 % mole percentage), but 

DAG and FFA production were also observed although the mole percent was around 3 % for both compounds. 

The initial water content in the reaction medium was less than 1 % by weight but it was nearly 10 % of the mole 

content of water in the reaction medium. Therefore FFA production can be observed. TAG consumption was 

nearly complete with a mole percent at equilibrium conditions lower than 2 %. 

3.2.1 Effect of reactant mole ratio 

The initial mole reactant ratio (MR) was varied between 1 and 9. Figures 3a-3d show the glycerolysis product 

profile expressed in mole fraction on a solvent-free basis. The reaction rate of formation of MAG was always 

higher than that of DAG and FFA. The presence of a solvent, tert-butanol, helped both reactants to diffuse to the 

active sites of the enzyme and MAG formation was favored. Valerio et al. [11] studied the kinetics of 
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glycerolysis of olive oil in a surfactant system (with Triton X-100 as surfactant) as an alternative to the use of 

organic solvents, and found that the DAG initial reaction rate was higher than that of MAG even with an excess 

of glycerol (MR=9:1). This behavior could be due to mass transfer limitation and can be compared to a situation 

of low glycerol concentration in the reaction medium.  

The optimal MR glycerol:oil must consider the MAG yield as well as the excess of glycerol employed in the 

glycerolysis reaction. The equilibrium yield of MAG was calculated as: 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑀𝑀𝑀𝑀𝑀𝑀 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 (%) = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑜𝑜𝑜𝑜 𝑀𝑀𝑀𝑀𝑀𝑀 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑜𝑜𝑜𝑜 𝑇𝑇𝑇𝑇𝑇𝑇·3

· 100   [20] 

Figure 4 shows that the MAG equilibrium yield remained practically constant at a MR higher than 5:1. A 

similar behavior was observed by Chesterfield et al [26] in the ethanolysis of waste cottonseed cooking oil by 

Novozym 435. These authors proposed the following relationship for the equilibrium yield: 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑀𝑀𝑀𝑀𝑀𝑀 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 (%) = 𝑎𝑎

1+𝑒𝑒𝑒𝑒𝑒𝑒�𝑅𝑅𝑅𝑅𝑜𝑜−𝑅𝑅𝑅𝑅
𝑏𝑏 �

     [21] 

Non-linear regression was performed by using the Marquardt algorithm (Statgraphics) giving a = 89.285 

defined as the limiting normalized MAG equilibrium [26], b = 0.922 and RMo = 1.35 with r2 = 0.999. McNeil 

(1990) also found that the MAG equilibrium yield was independent of the glycerol:oil mole ratio from mole 

ratio higher than 5:1. 

To take into account the excess of glycerol employed, Figure 4 also shows the MAG composition (expressed as 

mole percentage) on a solvent-free basis and on a solvent and glycerol-free basis. In the lipid basis (no 

glycerol), on increasing the MR, the MAG content increased sharply from a MR of 1:0 to 3:1 and then the 

MAG content slightly increased in the lipid fraction. On a solvent-free basis, when glycerol was considered in 

the global composition, a maximum was observed in the MAG content at a MR of 3:1, due to the excess of 

glycerol employed that was not consumed.  

Table 3 summarizes the glyceride equilibrium composition found in this work, as well as for other glycerolysis 

systems in the literature that use tert-butanol as solvent and immobilized Candida antarctica as the biocatalyst. 

The results are expressed in weight percentage on a lipid basis since in most studies, the composition was 

usually expressed this way. Although different lipase loadings were used in Table 3, the data listed in this table 

corresponded in most cases to equilibrium conditions and the comparison of the MAG yield can be established 

as valid. Table 3 shows the different results in terms of the MAG and DAG yields at the same initial MR (as 

will be explained in Section 3.2.2, the effect of temperature on the MAG equilibrium yield was not important). 

For instance, at the MR glycerol:oil of 4:1, the MAG percentage on a lipid basis ranged from 70% for sunflower 

oil to 91% for tuna oil. Regarding the type of oil, fish oils gave a higher MAG yield than vegetable oils. 

According to the shape and properties of the scissile fatty acid binding sites of Candida antarctica lipase, in the 

literature, it has been reported that this lipase has high activity for short and medium chain length fatty acids 

[32]. Table 4 presents the fatty acid composition of the oils listed in Table 3. It can be observed that fish oils 
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have the highest content of medium chain length fatty acids as C14:0, C16:0 and C16:1. Based on these results, 

a relationship between the fatty acid specificity of Candida antarctica lipase and MAG yield for the different 

types of oil was established. From Table 3, it can also be observed that the amount of tert-butanol added to the 

system was different, ranging from 45 % to 80 %. Tert-butanol helps to create a homogeneous reaction system 

and avoid mass transfer limitation. Figure 5 shows the binodal curve for the ternary system glycerol + sardine 

oil + tert-butanol at 303.15 and 323.15 K [13]. In this graph, the initial composition, expressed in weight 

fraction (wglycerol, woil, wtert-butanol), of the different glycerolysis systems listed in Table 3 were also shown. 

Although the binodal curves can be different for the oils compared in this work, the miscibility region is 

expected to be of the same order. From this graph, it can be observed that in most glycerolysis systems, a 

homogenous phase was obtained by adding enough tert-butanol. That is, the initial glycerolysis composition lies 

in the one phase region. However, in both glycerolysis studies for olive oil [16, 17], around 45 % weight 

percentage of tert-butanol was added to system. This amount seems to be not enough to create a homogenous 

phase. This can explain the low MAG yield obtained in these studies (around 65 %) compared to the other 

systems. In any case, MAG and DAG formed during the glycerolysis can act as emulsifier to avoid somehow 

mass transfer limitation. Nonetheless, in these cases, mass transfer limitation probably was present at the 

beginning of the process. Figure 6 shows the initial reaction rates as a function of initial MR glycerol:oil . It can 

be observed there was an increase of the initial reaction rate for MAG and glycerol with MR up to 3. At MR 

larger than 3, a decrease was observed. This could be due to glycerol inhibition of the lipase-catalyzed reaction 

at a high MR glycerol:oil. The initial reaction rates for TAG consumption and DAG and FFA production 

continuously decreased on increasing the MR. According to Figures 3 and 6, DAG production is favored by 

restricting the glycerol amount in the reaction medium. Similar findings were observed in other glycerolysis 

studies [16]. Krüger et al. [16] reported lower values for the initial reaction rates in the glycerolysis of olive oil 

at 328 K, 15 wt% of Novozyme and tert-butanol to substrate volume ratio of 1:1 (approximately 45 wt% of tert-

butanol, see Table 3). These authors obtained initial reaction rates of 2.136, 1.301 and 1.293 mmol/min at MR 

of 3:1, 6:1 and 9:1, respectively. The low values obtained by Kruger et al. [16] compared to the values obtained 

in this work (Figure 6) can be explained by assuming more mass transfer limitation at the beginning of the 

process due to incomplete miscibility of the reactants (see Figure 5). These authors also reported initial reaction 

rates for DAG production at the conditions previously detailed of 0.375, 0.221 and 0.208 mmol/min at MR of 

3:1, 6:1 and 9:1, respectively. These values are of the same order as the ones obtained in this work (Figure 6). 

Finally, an optimal mole ratio of 3:1 was chosen taking into account the different effects of the amount of 

glycerol on the glycerolysis kinetics.  

In a previous work, tert-pentanol was used as the organic solvent [15]. In that work, the effect of the glycerol:oil 

mole ratio on the MAG equilibrium yield and reaction rate was studied at three different values of 1:1, 3:1 and 

5:1. A MAG yield up to 90 % was reached at a mole ratio of 3:1, which was slightly higher than the value found 
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when using tert-butanol as the solvent (84 %). No differences in the MAG yield at a higher mole ratio could be 

observed for both tert-alcohols. In addition, higher initial reaction rates were observed when using tert-pentanol 

as the solvent. These findings can be related to the polarity of the solvents (log PTB = 0.35 and log PTP =0.85) 

and the hydrophobicity of the support of Lipozyme 435. Due to the higher hydrophobicity of tert-pentanol, the 

diffusion of reactants to the active site of the enzyme is favored.  

Table 5 lists the kinetic parameters (k1-k12) for the model used in this work and the values of the objective 

function for the different kinetic experiments. At the different mole ratios studied, the rate constant of the 

second step, k3, (DAG to produce MAG) is larger than the first step, k1, (TAG to DAG). Therefore, the initial 

breakdown of TAG is slower and it is the rate limiting step. Formation of MAG due to Eq. 3 was found to be 

negligible (k6 = 0), as well as hydrolysis of TAG, k7. From the values of the model parameters, it can be 

concluded that the esterification rates for glycerol, k12, MAG, k10,  and DAG, k8, with free fatty acids followed 

the sequence k8 < k10 < k12. This result was due to the steric hindrance of these groups [21]. This trend was also 

observed by Moquin et al. [9] in their kinetic modeling of the glycerolysis of soybean oil in supercritical carbon 

dioxide medium and Voll et al. [17] using an ordered-sequential Bi Bi mechanism in the glycerolysis of olive 

oil in tert-butanol. However, Valerio et al. [11] reported the order k10 < < k12 < k8 for a solvent-free Novozym 

435 catalyzed glycerolysis of olive oil in a surfactant system.  Based on the values of the model parameters 

(Table 5), the production rate of MAG by esterification of glycerol, k12, is of the same order as the production 

rate by the hydrolysis reaction of DAG, k9. 

It has been described that the MAG yield is favored at mole ratios larger than the stoichiometric (2:1). Voll et 

al. [17] proposed that the most obvious hypothesis is that the excess of glycerol can react with DAG to produce 

2 moles of MAG (see equations 1-2). This was reflected in the value of the k3 parameter as a function of mole 

ratio. k3 increased sharply from the MR of 1 to 3 and then remained constant, similar to the MAG equilibrium 

yield dependence on MR (Figure 4). To the contrary, Voll et al. [17] found in their kinetic model that the kinetic 

parameter for the DAG to MAG step was negligible and attributed the increase in MAG yield with an excess of 

glycerol to the hydrolysis/esterification steps (equations 4-6). In our study, the kinetic parameter of the 

hydrolysis of TAG, k7, was found negligible, although, the parameter for DAG hydrolysis, k9, and esterification 

of FFA formed, k12, were considerable.  

The continuous lines in Figure 3 are from the model proposed in this work. Good agreement between 

experimental and calculated product concentrations can be observed.  

3.2.2 Effect of temperature 

Different kinetic experiments were carried out at different reaction temperatures from 303 to 333 K with an 

enzyme concentration of 10 wt% (based on substrate weight) and at the previous identified optimal 

glycerol:sardine oil ratio of 3:1. Figure 7 shows the experimental kinetic data at the different reaction 

temperatures. The reaction rates of MAG, DAG and FFA formation as well as TAG and glycerol consumption 
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increased on increasing the reaction temperature (initial reaction rates values at 303, 313, 323 and 333 K for 

MAG production were 2.69, 4.26, 8.16 and 9.69 mmol·min-1·L-1 respectively). An increase of the reaction rate 

by 3.0 times was obtained from 303 to 323 K. Guo and Xu [10] found an increase by 2.2 times from 303 to 323 

K, and Krüger et al. [16] by 1.8 times from 313 to 343 K. An optimal working temperature in the range of 313 – 

338 K was reported for Novozyme 435 [11]. From Figure 7, it can be also observed that the reaction 

temperature has only a slight effect on the equilibrium product concentrations. This behavior with temperature 

was also observed for other transesterification reactions [16, 33]. 

Table 6 lists the kinetic parameters (k1-k12) of the semi-empirical model and the values of the objective function 

at the different temperatures used in this work. The continuous lines in Figure 7 are from our model. Good 

agreement can be observed between experimental and calculated product concentrations.  

An Arrhenius type dependence of temperature on reaction rate was found: 

𝑘𝑘𝑖𝑖 = 𝑘𝑘𝑖𝑖,𝑜𝑜𝑒𝑒𝑒𝑒𝑒𝑒 �
𝐸𝐸𝑎𝑎𝑎𝑎𝑎𝑎
𝑅𝑅𝑅𝑅
�         [22] 

where ki,o is the preexponential factor, Eact the activation energy and R is the gas constant. Table 7 lists the 

activation energy calculated by fitting the kinetic reaction rate constants of Table 6 to the Arrhenius equation. 

The most activated steps were steps 1, 2 and 5 (Ea1, Ea2 and Ea5) that correspond to TAG consumption and 

reaction of DAG and MAG. The other reaction steps have small or nearly no dependence on reaction 

temperature. Only few activation energy data were found in the literature for the different steps in the 

glycerolysis process and a comparison with literature data is difficult. Guo and Xu [10] reported a single 

activation energy of 33.20 kJ/mol for MAG formation by glycerolysis of sunflower oil with Novozym 435 in 

tert-butanol in a temperature range of 298-328 K. This value is of the same order as the highest values listed in 

Table 7 for the glycerolysis steps. Table 7 also shows the activation energy values reported by Voll et al. [17] 

using an order sequential Bi-Bi mechanism in the fitting for the glycerolysis of olive oil by Novozym 435 in 

tert-butanol. As can be clearly observed, a different order of activation energy is obtained for the different steps 

proposed, especially for the activation energy of the hydrolysis of MAG (step 11) and the reverse esterification 

of the free fatty acid (step 12). Table 7 also presents the activation energy values obtained by Valerio et al. [11] 

in the glycerolysis of olive oil by Novozym 435 in a surfactant system. A comparison of the solvent systems 

(tert-butanol in this case) and surfactant systems is difficult since the kinetic parameters for enzyme behavior 

depended strongly on the solvent medium [10]. In any case, TAG consumption by reaction with glycerol seems 

to be temperature dependent in all the cases shown in Table 7. Valerio et al. [11] found that the most sensitive 

step to temperature was the reaction of TAG with MAG (Ea5) with an extremely high activation energy.   

Table 8 shows the root mean square deviation, rmsd, calculated from Eq. 14 for all the kinetic experiments 

performed in this work at different temperatures and mole ratios. The low rmsd values obtained for all the 

products composition, less than 5 wt%, proved that the model fitted the glycerolysis system at the experimental 

conditions used. Table 8 summarized the rmsd obtained by Voll et al. [17] when correlating kinetic data to an 
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ordered-sequential Bi Bi mechanism and the values obtained in this work. Similar values of rmsd are obtained 

for both models. 

4. Conclusions 

Glycerolysis of sardine oil using Lipozyme 435 was carried out at different catalyst concentrations, 

glycerol:oil mole ratios and reaction temperatures. A homogeneous phase was created by adding an optimized 

amount of tert-butanol based on phase equilibrium calculations. It was shown that external and internal 

diffusion limitation can be considered negligible and the surface reaction was the rate controlling step. A lipase 

loading of 10 wt% of unsieved Lipozyme 435 based on reactant weight was used in all kinetic experiments. A 

mole ratio of glycerol:oil of 3:1 was the optimum and it produced more than 84 wt% of MAG at 50ºC. 

Experimental kinetic data were successfully correlated with a kinetic model based on the reversible elementary 

reactions. TAG consumption by reaction with glycerol and the reverse reaction are the steps more dependent on 

temperature. This results agrees with those for the TAG consumption in the literature. However, different 

kinetic parameters for most of the different steps involved in the glycerolysis system can be found in the 

literature and further studies are needed to be sure of the kinetic parameters of the different steps. 
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Table 1. Initial rate of MAG formation as a function of stirring speed (T = 303.15 K, 2.5 % enzyme loading 

based on substrate weight, MR = 3:1). Viscosity of reaction compounds. 

Orbital speed, rpm ro, mmol·L-1·min-1 

120 0.7 ± 0.1 

170 0.8 ± 0.2 

200 0.8 ± 0.1 

 

Compound 

Viscosity, mPa·s 

303 K 323 K 

Glycerol [34] 612 142 

Fish oil [35] 60-90* 20-30 

Tert-butanol [36] 3.392 1.421 

*: value at 298.15 K 

 

Table 2. Thiele modulus and parameter values used in its calculation 

Parameter Value 

Vglycerol 94.82 cm3·mol-1 

Vfish oil = triolein 1359.20 cm3·mol-1 

Φglycerol = 0.019 ± 0.004 < 0.3  Φfish oil = 0.35 ± 0.09 ∼ 0.3 
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Table 3. Equilibrium composition of glycerolysis reaction found in this work and for other glycerolysis systems found in the literature 

that use tert-butanol as solvent and immobilized Candida antarctica as biocatalyst. 

Oil T, K %  E MR % TB % MAG % DAG % TAG % FFA Reference 

Sardine 323 10 1:1 

3:1 

5:1 

9:1 

63 

68 

68 

74 

43.0 ± 1.5 

83.3 ± 2.1 

89.1 ± 1.8 

92.9 ± 1.5 

25.8 ± 1.9 

6.9 ± 1.1 

3.7 ± 0.8 

2.0 ± 0.7 

24.6 ± 1.5 

5.9 ± 1.0 

3.0 ± 1.0 

2.4 ± 0.8 

6.6 ± 1.1 

3.8 ± 1.1 

4.0 ± 1.3 

2.8 ± 1.1 

This work 

Sunflower 323 21 4:1 73 71.3 22.1 0.6 5.2 [8] 

Sunflower a 313 15 4.5:1 60  70 25 1 4 [20] 

Tuna 318 15 4:1 58.6 90.8 2.5 5.5 1.2 [37] 

Camelia 323 5 4:1 66 74.1 ± 2.7 24.6 ± 0.1 1.3 ± 0.1 - -b [19] 

Olive a, c 328 

328 

328 

343 

343 

10 

2.5 

2.5 

2.5 

2.5 

6:1 

3:1 

3:1 

9:1 

9:1 

45 

45 

80 

45 

80 

67 

34 

42 

53 

60 

17 

15 

19 

11 

14 

12 

50 

36 

33 

23 

4 

1 

3 

3 

3 

[16] 

Olive a 328 10 6:1 45 ∼62 ∼19 ∼15 ∼4 [17] 

(a) Graphical lecture 

(b) No reference to FFA formation 

(c) Data at 720 min of reaction time. 
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Table 4. Composition of medium chain length fatty acids in the oils used in the 

glycerolysis systems listed in Table 3. 

Oil 
Medium chain length fatty acids (%) 

Reference 
C14:0 C16:0 C16:1 

Sardine  12.4 ± 0.4 22.8 ± 0.2 12.5 ± 0.1 This work 

Tuna  4.2 30.6 4.7 [38] 

Sunflower 0.1 6.7 0.2 [8] 

Olive 0.1 – 1.2 7.0 – 16.0 - [16, 17] 

Camellia - 8.2 - [19] 
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Table 5. Calculated kinetic parameters at different glycerol:oil mole ratios (T = 323.15  K, 10 wt% Lipozyme 

435 based on substrate weight). Objective function and root mean square deviation (wt %) for the glycerolysis 

products. 

Model  

parameter 

Mole ratio 

1:1 3:1 5:1 9:1 

k1 0.0350 0.0264 0.0263 0.0285 

k2 0.0023 0.0248 0.0292 0.0276 

k3 0.7638 0.9167 0.9411 0.9411 

k4 0.0749 0.0400 0.0348 0.0338 

k5 0.0108 0.0096 0.0047 -- 

k6 -- -- -- -- 

k7 -- -- -- -- 

k8 0.0711 0.0046 -- -- 

k9 1.8168 1.9017 1.9022 1.9019 

k10 0.4052 0.0234 0.0202 0.0209 

k11 0.5853 0.8911 0.8942 0.8983 

k12 1.9714 1.8052 1.8033 1.8008 

O.F. 0.0019 0.0013 0.0009 0.0012 

Root mean squared deviation (wt %) 

TAG 4.7 3.4 5.6 4.6 

DAG 1.0 0.9 0.4 0.2 

MAG 3.8 2.7 5.8 5.6 

FFA 1.1 0.7 0.5 0.3 

Glycerol 0.4 1.3 1.7 2.2 

Water 0.2 0.3 0.1 0.3 

 

 

Table 6. Calculated kinetic parameters at different reaction temperatures (MR = 3:1, 10 wt% Lipozyme 435 

based on substrate weight). Objective function and root mean square deviation (wt %) for the glycerolysis 

products. 

Model  

parameter 

Reaction Temperature, K 

303 313 323 333 

k1 0.0104 0.0164 0.0264 0.0357 

k2 0.0106 0.0201 0.0248 0.0494 
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k3 0.9132 0.9132 0.9167 0.9194 

k4 0.0380 0.0395 0.0400 0.0436 

k5 0.0072 0.0114 0.0096 0.0174 

k6 -- -- -- -- 

k7 -- -- -- -- 

k8 0.0041 0.0049 0.0046 0.0049 

k9 1.9020 1.9017 1.9017 1.9021 

k10 0.0207 0.0223 0.0234 0.0241 

k11 0.8967 0.8923 0.8911 0.8970 

k12 1.8017 1.8041 1.8052 1.8069 

O.F. 0.0027 0.0021 0.0013 0.0030 

Root mean squared deviation (wt %) 

TAG 4.7 4.7 3.4 5.5 

DAG 0.6 0.7 0.9 0.6 

MAG 2.8 3.1 2.7 4.7 

FFA 0.4 0.6 0.7 0.7 

Glycerol 1.9 2.3 1.3 1.7 

Water 0.4 0.2 0.3 0.3 

 

 

 

Table 7. Activation energy, kJ/mol, for the different steps in some glycerolysis systems 

Step Ea,i (this work) Ea,i [17]* Ea,i [11]** 

1 35.18 18.30 27.91 

2 40.12 5.36·10-5 0.06 

3 0.20 -- 47.08 

4 3.52 1.097·10-4 2.68·10-12 

5 20.64 8.397·10-4 208.17 

6 -- 0.35 11.46 

7 -- 15.55 62.83 

8 4.10 -- 13.33 

9 0.001 2.33 1.11·10-13 

10 4.20 -- 69.46 

11 0.009 45.46 71.48 
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12 0.08 15.77 81.77 

(*) Solvent = tert-butanol 

(**) Surfactant system 

 

 

Table 8. Root mean square deviation (wt%) for glycerolysis products obtained with our model equations (1-6) 

TAG DAG MAG FFA Glycerol Water Reference 

4.74 0.63 4.02 0.60 1.65 0.25 This work 

4.19 2.73 3.58 1.04 -- -- [17] 

 (--) data not reported 

 

 

 
Figure 1. Effect of catalyst loading on initial reaction rate of MAG formation (T = 323 K, MR = 3:1). 
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Figure 2. Effect of particle size (○) dp < 400 µm; (◇) unsieved lipase; (△) dp > 400 µm on MAG formation 

reaction: T = 323 K, 5 wt % Lipozyme 435 loading, MR =3:1. Standard uncertainty u (mole fraction) = 0.02. 
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Figure 3. Time course of the glycerolysis reaction at different mole ratios (MR): (a) 9:1, (b) 5:1, (c) 3:1 (d) 1:1; 

323 K, 10 wt % Lipozyme 435 loading; □ MAG ○ FFA △ TAG ◇ glycerol × DAG. Continuous lines are for 

the model in this work. Standard uncertainty u (mole fraction) = 0.02. 
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Figure 4. MAG equilibrium yield (□) as a function of initial mole ratio (MR) glycerol:oil. The continuous line 

is for Eq. 20. MAG composition as mole percentage on a solvent and glycerol free-basis (●) and on a solvent 

free-basis (○). Continuous lines are the equilibrium composition obtained with the model in this work. 

 

 

 
Figure 5. Binodal curve of the ternary system glycerol + fish oil + tert-butanol at 303.15 K (−) and 323.15 K (--

-). Initial composition of glycerolysis reaction in tert-butanol medium: ● this work, ○ Sunflower oil [8], ◇ 

Sunflower oil [20], Δ Tuna oil [37], + Camellia oil [19], □ Olive oil [17], × Olive oil [16]. 
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Figure 6. Initial reaction rate as a function of initial mole ratio glycerol:oil (323 K, 10 wt % Lipozyme 435 

loading): □ MAG ○ FFA △ TAG ◇ glycerol × DAG.  
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Figure 7. Time course for the glycerolysis reaction at different temperatures: ( a) 303 K, (b) 313 K, (c) 323 K, 

(d) 333 K; 10 wt % Lipozyme 435 loading, MR =3:1; □ MAG ○ FFA △ TAG ◇ glycerol × DAG. Continuous 

lines are for the model in this work. Standard uncertainty u (mole fraction) = 0.02. 

 

Kinetic study of lipase-catalyzed glycerolysis of sardine oil in a homogeneous media. Comparison of 

glycerolysis kinetic parameters. 

SOLAESA Ángela G., SANZ M. Teresa*, BELTRÁN Sagrario, MELGOSA Rodrigo  

University of Burgos, Spain 

This work presents a detailed kinetic study of enzymatic glycerolysis of sardine oil catalyzed by the commercial 

lipase Lipozyme 435. Glycerolysis is carried out in tert-butanol to create a homogeneous system avoiding 

mass transfer limitations. 
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glycerolysis kinetic parameters 均相介质中脂肪酶催化沙丁鱼油甘油解反应动力学研究：甘油解动力学参

数的比较 

Ángela García Solaesa, María Teresa Sanz*, Sagrario Beltrán, Rodrigo Melgosa 

布尔戈斯大学生物技术与食品科学系（化学工程部），布尔戈斯 09001,西班牙 

摘要：多不饱和脂肪酸(PUFAs)的生产多集中在酶催化，与无机催化相比，酶催化具有定向性和更温和

的反应条件，因而酶催化制取多不饱和脂肪酸的路线在最近几年引起人们较大的兴趣。本文以优化量的

叔丁醇为有机溶剂，研究了脂肪酶 Lipozyme 435 催化沙丁鱼油甘油解反应生成 PUFA，后者多以甘油

一酯或二酯(DAGs, MAGs)的形式存在。首先分析了反应系统的传质影响，考察了脂肪酶载量，温度和

进料浓度等因素的影响，采用一个基于甘油酯甘油解和水解这对可逆基元反应的半经验动力学模型，成

功地关联了实验的动力学数据。结果表明，50 oC 甘油与油的摩尔比为 3:1 时最优，生成的 MAG 可达

84wt%以上。本文还考察了其他的甘油解体系，并在 MAG 收率，反应速率和动力学参数意义等方面进

行了比较。 

关键词：脂肪酶催化；甘油解反应；叔丁醇；传质；动力学模型 
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