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Abstract: A novel amperometric biosensor for the determination of Al(III) based on the inhibition
of the enzyme superoxide dismutase has been developed. The oxidation signal of epinephrine
substrate was affected by the presence of Al(III) ions leading to a decrease in its amperometric current.
The immobilization of the enzyme was performed with glutaraldehyde on screen-printed carbon
electrodes modifiedwith tetrathiofulvalene (TTF) and different types ofnanoparticles. Nanoparticles
of gold, platinum, rhodium and palladium were deposited on screen printed carbon electrodes
by means of two electrochemical procedures. Nanoparticles were characterized trough scanning
electronic microscopy, X-rays fluorescence, and atomic force microscopy. Palladium nanoparticles
showed lower atomic force microscopy parameters and higher slope of aluminum calibration curves
and were selected to perform sensor validation. The developed biosensor has a detection limit of
2.0 ± 0.2 µM for Al(III), with a reproducibility of 7.9% (n = 5). Recovery of standard reference material
spiked to buffer solution was 103.8% with a relative standard deviation of 4.8% (n = 5). Recovery of
tap water spiked with the standard reference material was 100.5 with a relative standard deviation of
3.4% (n = 3). The study of interfering ions has also been carried out.

Keywords: superoxide dismutase biosensor; aluminum; tetrathiofulvalene; screen-printed
electrodes; nanoparticles

1. Introduction

Aluminum toxicity has been shown in vivo and in vitro, but complexity of its interactions with
human organism makes it very difficult to assign the responsibility in Alzheimer’s disease. It can
be considered as the combined effect of oxidant action, participation on amyloid cascade, neuronal
degeneration [1] and accumulation in neurofibrillary tangles. Aluminum presence favors T protein
link trough phosphate bridge [2] and alters homeostatic ion equilibrium [3], and it has shown a strong
effect on reactive oxygen species (ROS) production on living organisms, due to iron accumulation
in oxidative stress [4]. Markedly, ROS impaired enzymes such as superoxide dismutase (SOD) and
catalase react with radical species such as O2•−, OH•−, and ONNO•−. Although O2•− radical is not
so reactive itself, in the presence of Fe2+, Fenton reaction can turn it into hydroxyl radical, which is the
most potent radical. These findings show that O2•− is involved in cellular damage. Biosensors have
employed superoxide dismutase (SOD), an enzyme that scavenges superoxide to measure superoxide
anion accordingly with the reactions [5]:

Cu2+ − SOD + O2•− → Cu1+ − SOD + O2
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Cu1+ − SOD + O2•− + 2H+ → Cu2+ − SOD + H2O2

O2•− affects cytochrome c (Cyt c) by oxidizing Fe2+ to Fe3+ and reducing itself to H2O2.
O2•− radical levels were found to be elevated in homogenized cancerous brain tissue compared
to normal human brain tissue [6]. O2•− is formed in living biological systems by the donation of
an electron to molecular oxygen, through oxidation of semiquinone-type radicals formed in the
mitochondrial electron transport chain. In its presence, free radical scavengers, enzymes such as
superoxide dismutase and glutathione peroxidase (GSH-Px), decrease their antioxidant status, and lipid
peroxide levels are increased.

Aluminum administration to laboratory animals induces SOD dysfunction and damage on target
organs [7–10]. It has been found that zinc [11], selenium [12] and therapies used against Alzheimer’s
disease [13–16] have a protective role against aluminum induced toxicity, improving SOD function.
Aluminum presence in humans is associated with oxidative stress [17,18].

Biosensors constructed with screen printed electrodes (SPCE) offer low detection limits, easier
assembly of metallic nanoparticles (NPs), good reproducibility, low contamination and excellent
biocompatibility with enzymes and antibodies [18]. The metal NPs’ small size, high mechanical
strength and high chemical and thermal stability allow them, when acting as enzyme-carrier materials,
to improve the efficiency of immobilized enzymes, facilitating reaction kinetics, and supplying a larger
surface area, leading to higher enzyme loading per unit mass of particles. This fact allows achieving
enhanced device sensitivity and reduced mass transfer resistance [19]. Besides, NPs increased electric
conductivity and electron transfer between redox enzyme center and electrode [20,21].

Different types of NPs such as metal, metal oxides, semiconductors, polymers and
composite-metal NPs have been used to assembly miniaturized electrochemical sensors and biosensors.
Gold NPs (AuNPs), due to their unique properties, relatively low cost and ease of preparation,
are the most used in many biochemical applications [22,23]. AuNPs can be synthesized by different
chemical methods and applied to electrochemical detection of As(III) [24]. AuNPs use in amperometric
biosensors and electrochemical techniques enhances detection sensitivity [25–27].

Due to their inertness, platinum NPs (PtNPs) are the principal metal NPs alternative for anodic
current measurement and have been applied to formaldehyde [28], neurotransmitters [29], glucose [30],
uric acid [31], and As(III) determination [32].

Glassy carbon electrodes modified with palladium nanoparticles (PdNPs) have been applied to
catecholamines determination [33]. PtNPs and PdNPs/methylthiophene (PMT) sensors have been
applied to dopamine (DA) and AA determination [34].

Rhodium NPs’ (RhNPs) main application has been as precursors for the preparation of
catalytics [35,36] and for catalysis and sensing of cytochrome c [37] and H2O2 [38], as well as for
biosensing of α-ketoglutarate [39].

Due to sensitivity and specificity joint benefits produced by modified SPCEs with metallic NPs
and enzymes, this research work was conducted with the goal to compare the effect of NPs of Au, Pt,
Pd and Rh deposited by distinct electrochemical procedures on sensitivity of amperometric inhibition
SOD by aluminum, with TTF as mediator using epinephrine (EPI) as substrate.

Most developed biosensors that immobilize SOD enzyme in a carrageenan gel are based on
H2O2 amperometric detection [40] and were successfully applied as a tool for antioxidant capacity
assessment to evaluate red and white wines [41], fresh herbs and fruits, olives, tea [42–44], algae [45],
phytoterapeutic preparations [46], drugs containing salicylic and as corbic acid, and β-carotene [40,47].
This developed biosensor enables measurement of antioxidant capacity of healthy and diseased tissues
in vitro [40], and was also applied to determination of total antioxidant capacity of berries [48].

The others SOD based biosensors that employ modified solid electrodes are shown in Table 1.
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Table 1. SOD based biosensors applied to samples of biological interest.

Technique Electrode Potential Modification Range LOD Sample/Analite Reference

CV 1 SPCE −0.8–+0.8 V Pyrrole/SAMs 0.5 × 10−9–5 M 0.5 × 10−9 M
cultured human

keratinocytes NO2
- [49]

Amperometry CFME 2 +0.25 V cysteine/AuNPs (13–104) × 10−9 M - O2•− [50]

Amperometry SPCE −0.1 V porous Pt-Pd/nafion (16–1536) × 10−6 M 0.13 × 10−6 M
Cell culture

medium/O2•−
[51]

CV 1 Chronoamperometry Gold electrode −0.2–+0.5 V Au/Cys/SOD 9, Au/GNP/Cys/SOD 10 and
Au/GNP/Cys/SOD/Chit 11 0.5–4 Gy 0.03 × 10−6 M thallium 201/water [52]

Amperometry GC CFME 2 0.2 V NTA/HT 7 10−7–10−4 M 21 × 10−9 M brain tissue/O2•− [53]

CV 1

Carbon paste
electrode Electrochem 0–0.3 V

cytochrome c in solution and
Fe(III)-protoporphyrin immobilized (1–6) × 10−3 M 0.3 × 10−3 M

Xantine [54]

System Carbon paste electrode Protoporphyrin and cytochrome both immobilized (1–8) × 10−3 M 0.2 × 10−3 M

Cronoamperometry Composite electrode −0.3 V PtPd-PDARGO 6 (0.016–0.24) × 10−3 M 2 × 10−6 M DMEM 5/O2•− [55]

Amperometry GC 8 −0.3 V
MWCNT 4

(0.01–0.3) × 10−3 M 1 × 10−6 M
Wines, berry
juice/O2•−

[56]
PEDOT 3

Amperometry SPCTTFE 12 0.2 V SOD/PdNP 13 (1.0–60) × 10−5 M 2 × 10−6 M

Al(III)

This articlewater

samples
1 Cyclic voltammetry; 2 carbon fiber microelectrode; 3 poly(3,4-ethylenedioxythiophene); 4 multiwalled carbon nanotubes, 5 Dulbecco’s modified Eagle’s medium; 6 PtPd poly
dopamine reduced graphene oxide; 7 Nitrilotriacetic acid/histidine-tag; 8 glassy carbon; 9 gold, cysteine, super oxido dismutase; 10 gold, gold nanoparticles cysteine, super oxido
dismutase; 11 gold, gold nanoparticles cysteine, super oxido dismutase, chitosane; 12 screen printed carbon TTF5% electrode; 13 super oxide dismutase, palladium nanoparticles.
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Taking into account that TTF allows the rapid electron transfer between SOD and electrode
surface can be carried out at lower potential [57], and that pro-oxidant activity of aluminum inhibits
SOD activity [58], this study indicates that Al(III) SOD inhibition can be performed at lower potential
compared to other aluminum enzymatic determinations. It was shown for the first time using SPCTTFEs
that Al(III) inhibits SOD enzyme linked with Alzheimer’s disease at low concentrations.

2. Materials and Methods

2.1. Reagents

All solutions were prepared with purified water supplied by TKA Gen Pure, inverse osmosis,
with a UV lamp irradiation system.

SOD enzyme (30 KU), EPI, bovine serum albumine (BSA), glutaraldehyde (GA) and hydrogen
tetrachloroaurate (III) trihydrate (HAuCl4) were obtained from Sigma-Aldrich (Sigma-Aldrich),
Steinheim, Germany).

Solutions of platinum, rhodium and palladium 0.1 mM were prepared from ICP solutions of
1000 mg/L (Merck, Darmstad, Germany).

Titrisol solutions from (Merck, Darmstad, Germany)were used to prepare stock standard solutions
of Al(III), Cu(II), Fe(III), Sn(II), Zn(II), Co(II), Ni(II), Se(IV) Cr(III), Cd(II), Pb(II), W(VI) and V(V). Mo(VI)
and Ca(II) solutions were obtained from Inorganic Ventures (Lakewood, NJ, USA). As(V) and Hg(II)
solutions were prepared from Atomic Spectroscopy Standards solutions (Perkin Elmer Co, Whaltham,
MA, USA).

Al(III) solutions used for spike were prepared from High Purity Standards (Charleston, SC, USA)
confirmed against standard reference material SRM 3101.

Britton Robinson (BR) supporting electrolyte solutions were prepared as usual with boric,
phosphoric and acetic acids (Merck, Darmstadt, Germany), and the required pH was obtained by
adjusting with NaOH solution (Suprapur, Merck, Darmstadt, Germany).

Several inks were used in the fabrication of SPEs, namely Electrodag PF-407 A (carbon ink),
Electrodag 6037 SS (silver/silver chloride ink) and Electrodag 452 SS (dielectric ink) supplied by
Acheson Colloiden (Acheson Colloiden, Scheemda, The Netherlands).

The working electrode ink was prepared by thoroughly mixing carbon ink with tetrathiofulvalene
(CTTF) 5%. TTF was obtained from Acros Organics (Acros Organics, Geel, Belgium).

2.2. Equipment

An electrochemical system Autolab PGSTAT Echo Chemie128 N with GPS software was used to
record electrochemical measurements (Echo Chemie, Utrech, The Netherlands).

All pH values were adjusted with a pHmeter (Mettler Toledo, Schwerzenbach, Switzerland).
A S-3700 Hitachi was used to perform scanning electronic microscopy (SEM) of SPCEs. An IXRF

Systems model 550i was used to obtain spectra of elements on the SPCE. Atomic force microscopy
(AFM) parameters and images were obtained with a NanoScopeQuadrex Digital Instruments Veeco
Metrology Group.

SPCTTFEs Construction

SPCTTFEs were homemade built using a DEK 248 printing machine (DEK, Weymouth,
UK) using polyester screens with appropriate stencil designs mounted at 45◦ to the printer
stroke. These transducers consisted of three screen-printed electrodes deposited onto polyethylene
terephthalate films (HiFi Industrial Film, Dardilly, France). The different inks were screen-printed
and cured according to the manufacturer’s specifications. The working electrode ink was prepared by
thoroughly mixing carbon ink with TTF (5% v/w) and immediately screen-printed. One electrode is
shownin (Figure 1).
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Figure 1. Screen printed electrodic system used.

2.3. Nanoparticles Electrodeposition Methods

SPCTTFEs modification with nanoparticles (NPs/SPCTTFEs) was carried out by both controlled
potentialand cyclic voltammetry scan methods.

(A) Metal plating was carried at two different potentials namely +0.3 and +0.18 V, in a quartz
cell containing Au(III), Pt(IV), Rh(IV) or Pd(IV) solutions (0.1 mM) in H2SO4 (0.5 M) [24]. Following
electrodeposition process, the NPs/SPCTTFEs was removed from platting solution, rinsed with purified
water and wiped carefully.

(B) Cyclic voltammetry deposition was performed doing a set of seven successive voltammetric
scans between +1.0 and −0.2 Vin a quartz cell containing Au(III), Pt(IV), Rh(IV) or Pd(IV) (0.1 mM) in
H2SO4 (0.5 M) [59]. Electrodes were prepared by setting two cyclic voltammetric conditions namely
CV1 and CV2.

CV1: delay time 60 s, step potential 0.0150 V, scan rate 0.050 V/s.
CV2: delay time 120 s, step potential 0.025 V, scan rate 0.100 V/s.
After nanoparticles deposition, the electrode was rinsed with purified water and wiped carefully.

2.4. SOD Enzyme Immobilization onto AuNPs//SPCTTF Es

Enzyme was immobilized by crosslinking polymerization with glutaraldehyde [60] on the surfaces
of AuNPs/SPCTTFEs, PtNPs/SPCTTFEs, PdNPs/SPCTTFEs, and RhNPs/SPCTTFEs. To carry out the
immobilization procedure, superoxide dismutase enzyme solution was prepared by dissolving enzyme
in Britton Robinson buffer at pH 7.0. To avoid loss of enzymatic activity, BSA was used in a mixture
made of 20 µL of SOD (5.9 mg/mL), 10 µL of BSA (1.69% w/v) and 10 µL of GA (2.5% v/v) [61].
This mixture was dropped onto the surface electrode and stored at 4 ◦C before used and between
measurements. The modified electrode was washed with purified water, before and after use.

3. Results

3.1. Optimization of Experimental Parameters

EPI originates an amperometric signal at NPs/SPCTTFE with SOD enzyme immobilized
(SOD/PdNPs/SPCTTFE), after which a steady-state current is reached. The presence of Al(III)
ions produces SOD enzyme inhibition which causes a decrease in the EPI amperometric signal.
Al(III) concentration influence inhibition process and can be quantitatively evaluated determining the
difference between the steady state current in absence of Al(III), (I0), and the steady state current in the
presence of Al(III), (I) namely ∆(I0-I).Accordingly, with the following working principle proposed in
Scheme 1, a SOD based biosensor, with TTF incorporated in electrode ink, has been developed.
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furthermore, if applied potentials were higher than +0.6 V, the electrodes showed erratic behavior. 
Since substrate response increases with concentration, a value of 1.6 × 10−4 M for EPI was chosen, as 
this concentration gives a proper sensibility, and a very stable signal with very low noise. Upper 
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Scheme 1. Oxidation of EPI on SOD/SPCTTFE.

The parameter ∆(I0-I) depends on EPI concentration, applied potential (Eap) and pH solution.
Therefore, an optimization of these variables was performed in order to ensure the quality of the results.

Because the dependence between ∆(I0-I) and Al(III) concentration is linear, substrate response
was obtained from pH 5.0 to pH 8.0, and a pH of 5.0 was selected regarding substrate stability to
autoxidation. In the same way, substrate response was obtained from +0.20 V to +0.60 V, and a potential
of 0.2 V was selected driving substrate oxidation to epinephrinequinone [57]. Then, several aluminum
inhibition calibration curves were performed at different potential and pH values and their slopes
were compared, in order to obtain Al(III) inhibition effect with pH and Eap. Slope calibration curve
with pH was calculated from pH 5.0 to pH 8.0. In the same way, slope calibration curve with potential
was calculate from +0.20 V to +0.60 V. Higher slope values were obtained at pH 5.0 and Eap of +0.2 V,
so these conditions were chosen to perform Al(III) inhibition calibration curves. Slopes of calibration
curves with potential and pH are shown in Figure 2.
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Figure 2. (a) Slope values of Al(III) calibration curves with pH; and (b) Slope value of Al(III) calibration
curves with applied potential. [EPI] = 1.6 × 10−4 M; Britton Robinson buffer pH 5.0, Eap = +0.2 V
vs. Ag/AgCl.

Findings indicated that substrate stability improved at low values of pH and potential;
furthermore, if applied potentials were higher than +0.6 V, the electrodes showed erratic behavior.
Since substrate response increases with concentration, a value of 1.6 × 10−4 M for EPI was
chosen, as this concentration gives a proper sensibility, and a very stable signal with very low
noise. Upper concentrations produced higher noise on amperometric recording of calibration
curves. Under the selected conditions, the electrodes showed good performance. Calibration
curves of Al(III) using SOD/AuNPs/SPCTTFEs, SOD/PtNPs/SPCTTFEs, SOD/PdNPs/SPCTTFEs,
and SOD/RhNPs/SPCTTFEs were obtained under the optimized conditions.
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Preliminary experiments showed that modification of electrode surface with NPs increased the
sensitivity of the biosensor; therefore, a thorough study of conditions of NPs deposition was carried
out. AuNPs, PtNPs, PdNPs and RhNPs were deposited on electrodes surfaces according to methods
described in the Experimental Section.

3.2. XRF and SEM for NPs/SPCTTFE Study METHOD A

Two different controlled potentials, +0.18 V and +0.3 V, were applied for 15 s to SPCEs in order to
deposit NPs of every metal. X-ray fluorescence emission (XRF) spectra were obtained from surfaces
of SPCTTFEs modified with the different type of NPs. Table 2 shows XRF percentage of elements
deposited using indicated potentials.

The plating of metals at +0.18 V for 15 s produced a higher percentage of Au, Pd and Rh.
Pt deposited percentage was higher at +0.30 V. Since the Eap of +0.18 V applied for 15 s produced a higher
percentage for Pd, Rh and Au, and the application of a deposition potential of +0.3 V did not deposit Pd or
Au, conditions of Eap of +0.18 V and 15 s of method A were selected to deposit NPs of metals.

Table 2. XRF percentage of element deposited on SPCTTFEs by method A and B.

Method A Method B

Element
XRF% XRF% XRF% XRF%

(+0.18 V, 15 s) (+0.30 V, 15 s) CV1 CV2

Pd 0.136 0.00 0.557 0.632
Pt 0.223 1.48 2.74 2.71
Rh 0.693 0.380 4.49 2.95
Au 1.42 - 1.87 2.23

The inhibition calibration curves for Al(III) are shown in Figure 3, where the lowest slope
value corresponds to SPCTTFE without NPs deposited and the highest corresponds to SOD/AuNPs
SPCTTFE. The other metal NPs modified SPCTTFE tested showed lower linear adjustment than
SOD/AuNPs SPCTTFE.

SEM images of AuNPs obtained by method A deposited on SPCTTFE are presented in Figure 4.
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3.3. XRF and SEM for NPs/SPC TTFEs Study METHOD B

XRF percentagesforevery metal deposited with method B are shown in Table 1. AuNPs, PtNPs,
PdNPs and RhNPs were deposited on SPCTTFEs according to method B and modified with immobilized
SOD. SOD/SPCEs modified with metallic NPs showed the best linear adjustedAl(III) calibration curve
at CV1 conditions for PtNPs and at CV2 conditions for PdNPs (Figures 5 and 6). Regressions with
the best linear fit performed by methods A and B showed that the highest slope corresponds to
SOD/PdNPs/SPCTTFEs (Figure 7). SEM image of PdNPs/SPCTTFEs at CV2 conditions is shown
in Figure 8, where it is observed that PdNPs are deposited in a regular form on SPCTTFEs for the
CV2 conditions.
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Figure 7. Calibration curves of Al(III) for (�) SOD/PdNPs/SPCTTFEs; (K) SOD/RhNPs/SPCTTFEs
prepared method B; CV2 conditions; (�) SOD/PtNPs/SPCTTFEs, prepared by method B and CV1
conditions and (•) SOD/AuNPs/SPCTTFEs, prepared by method A, [EPI] = 1.6 × 10−4 M, Britton
Robinson buffer pH 5.0, Eap = +0.2 V vs. Ag/AgCl.
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Figure 8. SEM image of PdNPs/SPCTTFE prepared by method B and CV2 conditions.

3.4. AFM Analysis of SPCTTFEs Prepared by Methods A and B

AuNPs deposit on SPCTTFE increases roughness of SPCTTFE compared with control electrode,
as can be observed in AFM images of the surfaces of AuNPs/SPCTTFEs obtained by deposition of
AuNPs at 0.18 V for 15 s (Figure 9). The highest slope presented for SOD/AuNPs/SPCTTFE using
method A is afforded by lower AFM parameters of AuNPs at 0.18 V for 15 s, than when the CV1or CV2
conditions are used. AFM images of PdNPs/SPCTTFEs obtained by deposition of PdNPs at CV1 and
CV2 conditions are shown in Figure 10. Analysis of AFM parameters confirmed that metal deposited
was nanometric size. Table 3 shows the most important parameters of NPs/SPCTTFEs and SPCTTFEs
control electrode obtained through tapping mode and Roughness Kurtosis (RKu) and Skewness (RSk)
coefficients. PdNPs/SPCTTFEs, obtained using CV2 conditions, showed lower Roughness Average
(RA), Roughness Mean Square (RMS) and height of the highest peak above mean line in the profile
(Rmax) than other SPCTTFEs modified with metallic NPs, indicating that PdNPs/SPCTTFEs prepared
by CV2 condition present a more homogeneous surface [62]. AFM image of PdNPs prepared by CV2
method showed lower values of RA andRMS when compared tosurface prepared by CV1 method.

Table 3. AFM parameters of modified SPCTTFEs with metallic NPs.

NPs/SPCTTFEs Method/Conditions RA (nm) RMS (nm) Rmax (nm) RKu RSk

SPCTTFE - 16.8 21.5 131 3.53 −0.183

AuNPs/SPCTTFE

A/0.18 V 31.3 39.2 218 3.34 −0.537

B/CV1 33.8 41.4 234 2.62 0.126

B/CV2 34.6 44.5 303 3.19 −00292

PdNPs/SPCTTFE
B/CV1 24.8 34.6 216 4.72 0.0604

B/CV2 14.7 18.2 106 2.69 0.0939

PtNPs/SPCTTFE
B/CV1 106 140 864 3.63 0.157

B/CV2 106 140 864 3.60 0.141

RhNPs/SPCTTFE
B/CV1 22.0 28.1 173 3.30 −0.0733

B/CV2 25.6 33.9 204 3.65 −0.189
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Figure 10. (a) AFM image of PdNPs/SPCTTFE prepared under method B andCV1conditions; and
(b) AFM image of PdNPs/SPCTTFE prepared under method B and CV2 conditions.

It was observed that PdNPs/SPCTTFEs modified by means of method B and CV2 conditions
showed lower AFM values than the other NPs/SPCTTFEs. Then, it was decided to analyze the response
of EPI at SOD/NPs/SPCTTFEs in presence of aluminum.

3.5. Inhibition Behavior of Al(III) on SOD Enzyme

Michaelis Menten Km apparent constants were estimated by Lineweaver–Burk plot. It was
obtained in presence and absence of Al(III) with SPCTTFEs modified with AuNPs, PtNPs, RhNPs and
PdNPs. Modified electrodes were prepared under the best conditions for each NP deposition method
used, namely 0.18 V for method A and CV2 conditions for method B. Figure 11 shows amperometric
recording of SOD/PdNPs/SPCTTFEs (obtained by method B and CV2 conditions).
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and CV2 conditions, [EPI] = 1.6 × 10−4 M and consecutive additions of 100 μL of Al(III) 3.7 × 10−4 M 
into the cell, Britton Robinson buffer pH 5.0, Eap = +0.20 V vs. Ag/AgCl. Inset: Calibration curve 
corresponding to this amperogram. 
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Figure 11. Amperometric recording performed with SOD/PdNPs/SPCTTFE, prepared under method B
and CV2 conditions, [EPI] = 1.6 × 10−4 M and consecutive additions of 100 µL of Al(III) 3.7 × 10−4 M
into the cell, Britton Robinson buffer pH 5.0, Eap = +0.20 V vs. Ag/AgCl. Inset: Calibration curve
corresponding to this amperogram.

Km apparent values of modified electrodes are shown in Table 4.

Table 4. Km apparent values for SPCTTFEs modified with AuNPs, PtNPs, RhNPs, and PdNPs.

Km Apparent (M) SOD/AuNPs/SPCTTFEs SOD/PtNPs/SPCTTFEs SOD/PdNPs/SPCTTFEs SOD/RhNPs/SPCTTFEs

Method A 0.18 V

Without Al (7.8 ± 0.3) × 10−4 (1.2 ± 0.3) × 10−4 (1.5 ± 0.4) × 10−3 (3.3 ± 0.2) × 10−3

Al(III) 7.25 × 10−6 M (1.3 ± 0.1) × 10−3 (1.4 ± 0.3) × 10−2 (1.0 ± 0.1) × 10−2 (1.4 ± 0.1) × 10−2

Al(III) 2.18 × 10−5 M (3.7 ± 0.3) × 10−3 (1.8 ± 0.6) × 10−2 (1.3 ± 0.1) × 10−2 -

Method B and CV2 conditions

Without Al (1.5 ± 0.2) × 10−3 (5.8 ± 0.3) × 10−4 (1.5 ±0.3) × 10−3 (1.2 ± 0.1) × 10−4

Al(III) 7.25 × 10−6 M (2.7 ± 0.4) × 10−3 (1.3 ± 0.4) × 10−3 (5.0 ±0.4) × 10−3 (6.4 ± 0.5) × 10−3

Al(III) 2.18 × 10−5 M (3.05 ± 0.5) × 10−3 (3.0 ± 0.8) × 10−3 (1.2 ±0.3) × 10−2 (5.4 ± 0.2) × 10−3

3.6. Validation of SOD/PdNPs/TTF/SPCE Based Biosensor

SOD/PdNPs/SPCTTFEs were selected to perform validation of the developed biosensor trough
estimation of their performance parameters.

3.6.1. Limit of Detection

The limit of detection under the optimum working conditions (2.0 ± 0.2 µM) was calculated from
the standard deviation (Sy/x) of five Al(III) inhibition calibration curves according to the criteria 3
Sy/x [63], and its RSD was 7.9%. Analogous to LOD, quantification limit (LOQ) was estimated under
optimal conditions from the standard deviation of five Al(III)inhibition calibration curves using the
criteria 10 Sy/x, and its value was 6.7 ± 0.5 µM, with a RSD of 7.9%.

3.6.2. Precision

This parameter is usually calculated in terms of reproducibility and repeatability. Repeatability
was assessed using the same electrode surface. In this way, successive calibrations for Al(III) were
tested with SOD/PdNPs/SPCTTFEs prepared under CV2 conditions. The electrodes were conditioned
in a Britton Robinson buffer solution, pH 5.0, stirring for 5 min between experiments. The RSD
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obtained for the slopes of the first two graphs was 5.1%, but, in the third measurement, a decrease in
the biosensor sensitivity and a RSD increase, reaching 15%, were observed. Because the electrodes are
disposables, the reproducibility is a better estimate of performance. Likewise, the reproducibility of
the amperometric signal was checked using the slopes of five regression lines carried out with different
electrode surfaces, RSD slope value estimated was 7.0%.

3.6.3. Accuracy

The accuracy of the developed method was tested by a recovery study in which a known amount
of Al(III) standard reference material (SRM), SRM High Purity Standards solution (Lot Number
1121015, (1000 ± 3) mg·L−1) was spiked to a buffer solution.

The aluminum average concentration quantified by the developed procedure, 1038 ± 50 mg·L−1

(n = 5; α = 0.05), matches the certified value of the sample considering the associated uncertainty.
The mean recovery percentage obtained was (103.8 ± 4.8)%. Recovery values are shown in
Table 5. SRM was spiked to tap water replicates, SRM aluminum average concentration found was
1005 ± 34 mg·L−1 (n = 3; α = 0.05).Mean recovery percentage obtained was (100.5 ± 3.4)%. Recovery
values are shown in Table 6.

Table 5. Recovery of Al(III) SRM (1000 mg/L ± 3 mg/L) spiked to buffer solution.

Added SRM Found SRM Found SRM SRM Recovery

(M) (M) (mg/L) (mg/L) -
1.30 × 10−5 1.235 × 10−5 9.50 950 95.0

- 1.366 × 10−5 10.51 1051 105.1
- 1.370 × 10−5 10.51 1051 105.3
- 1.374 × 10−5 10.58 1058 105.8
- 1.402 × 10−5 10.79 1079 107.9
- - Mean 1038 103.8
- - SD 50.3 5.0
- - RSD 4.8 4.8

Table 6. Recovery of SRM (1000 mg/L ± 3 mg/L) spiked to tap water.

Added SRM (mg/L) Found SRM (mg/L) SRM (mg/L) SRM (mg/L) Recovery (%)

0.170
0.180 10.44 1044 104.0
0.171 9.90 990 99.0
0.169 9.82 982 98.2

- - Mean 1005 100.5
- - SD 34 3.4
- - RSD 3.4 3.4

3.7. Study of Interferences on SOD/PdNPs/SPCTTFE Biosensors

Interference study was performed comparing the percentage of inhibition showed by the developed
SOD based biosensor in the presence of aluminum and other foreign ions. Three concentration levels of
possible interfering ions, namely 1 × 10−3 M, 1 × 10−4 M, and 1 × 10−6 M, were tested. Regarding
Al(III), LOD value obtained for SOD/PdNPs/SPCTTFE is meaningful at 1 × 10−4 M. As can be seen in
Figure 12, the highest interference effect was found for Sn(II), Cd(II) and Mo(VI) for concentrations
tested; however, these cations should usually not be present in water.



Sensors 2016, 16, 1588 14 of 19
Sensors 2016, 16, 1588 14 of 18 

 

 
Figure 12. Inhibition percentage of current at SOD/PdNPs/SPCTTFE, (method B and CV2 conditions) 
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Mo(VI), Ni(II), Ca(II), Fe(III) and Cr(III) at three concentration levels; [EPI] = 1.6 × 10−4 M; Britton 
Robinson buffer pH 5.0, Eap = +0.2 V vs. Ag/AgCl. 

4. Discussion 

SOD biosensor was developed looking for effect of metallic NPs on sensibility of slopes of Al(III) 
calibration curves. One initial hypothesis was that NPs generation methodology influence sensitivity 
of biosensor. For these reasons, two different methodologies to deposit NPs were tested, direct 
deposit at 0.18 V produced the highest slope for AuNPs, CV2 deposit methodology produced the 
highest slope for PdNPs, followed for RhNPs andCV1 deposit methodology produced the highest 
slope for PtNPs. Criteria used for slope selection were linearity and sensibility. Regarding all 
optimum slopes values obtained with SOD/NPs/SPCTTFEs biosensors under the two methodologies, 
the highest slope value was obtained for SOD/PdNPs/SPCTTFEs based biosensor. NPs’ physical 
characteristics are also modified by deposit methodologies.Although SEM were performed on every 
NPs/SPCTTFEs prepared by means of the above-mentioned methodologies and NPs were visualized, 
AFM is a more appropriate instrument for NPs/SPCTTFEs surface characterization. AuNPs/SPCTTFEs 
prepared by method A showed lower AFM parameters, namely RA, RMS and Rmax, than CV 
deposition methodologies. PdNPs/SPCTTFEs prepared by CV2 showed lower AFM parameters than 
PdNPs/SPCTTFEs prepared by CV1. Although PtNPs/SPCTTFEs prepared by CV2/CV1 showed similar 
AFM values and slopes, best linearity was obtained for CV2 condition. RhNPs/SPCTTFEs prepared 
under CV2 condition showed much better linearity than CV1. All RKu values are near 3, providing 
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in presence of: Al(III), Cu(II), As(V), Zn(II), Hg(II), Sn(II), Co(II), Cd(II), Pb(II), W(VI), Se(IV), V(V),
Mo(VI), Ni(II), Ca(II), Fe(III) and Cr(III) at three concentration levels; [EPI] = 1.6 × 10−4 M; Britton
Robinson buffer pH 5.0, Eap = +0.2 V vs. Ag/AgCl.

4. Discussion

SOD biosensor was developed looking for effect of metallic NPs on sensibility of slopes of Al(III)
calibration curves. One initial hypothesis was that NPs generation methodology influence sensitivity
of biosensor. For these reasons, two different methodologies to deposit NPs were tested, direct deposit
at 0.18 V produced the highest slope for AuNPs, CV2 deposit methodology produced the highest
slope for PdNPs, followed for RhNPs andCV1 deposit methodology produced the highest slope for
PtNPs. Criteria used for slope selection were linearity and sensibility. Regarding all optimum slopes
values obtained with SOD/NPs/SPCTTFEs biosensors under the two methodologies, the highest slope
value was obtained for SOD/PdNPs/SPCTTFEs based biosensor. NPs’ physical characteristics are also
modified by deposit methodologies.Although SEM were performed on every NPs/SPCTTFEs prepared
by means of the above-mentioned methodologies and NPs were visualized, AFM is a more appropriate
instrument for NPs/SPCTTFEs surface characterization. AuNPs/SPCTTFEs prepared by method A
showed lower AFM parameters, namely RA, RMS and Rmax, than CV deposition methodologies.
PdNPs/SPCTTFEs prepared by CV2 showed lower AFM parameters than PdNPs/SPCTTFEs prepared
by CV1. Although PtNPs/SPCTTFEs prepared by CV2/CV1 showed similar AFM values and slopes,
best linearity was obtained for CV2 condition. RhNPs/SPCTTFEs prepared under CV2 condition
showed much better linearity than CV1. All RKu values are near 3, providing evidence that the
obtained values are closer to a normal distribution, and the surface is named Mesokurtic, for kurtosis
minor 3, surface is flat and called Platykurtic. When kurtosis is greater than 3, surface owns more
peaks than valleys. RSk measures the profile of symmetry about mean line. If the height distribution is
asymmetrical and the surface has more peaks than valleys, skewness is positive, while in the opposite
case, skewness is negative.

SOD/NPs/SPCTTFEs based biosensor was based on Al(III) inhibition of SOD, and Km inhibition
were estimated for SOD/NPs/SPCTTFEs under method A andCV2 condition. It was established that
Al(III) exerts its inhibitory action at low concentration. Inhibitory effect for SOD/NPs/SPCTTFEs was
confirmed by means of Km app values with Al(III) increasing concentrations. This fact is in accordance
with theoretical considerations regarding enzymatic behavior in presence of inhibitors. However, the
last measurement for SOD/RhNPs/SPCTTFEs, displayed an unusual behavior.

SOD/PdNPs/SPCTTFEs were selected to perform validation of the developed biosensor.
The selection was based on the Al(III) inhibition calibration curves of SOD enzyme, that clearly
showed higher sensibility by modifying SPCTTFEs with PdNPs prepared under method B and CV2
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conditions than the other metallic NPs. Al(III) inhibition on SOD/NPs/SPCTTFEs could be used with
analytical purposes, but at first it is necessary to perform developed biosensor validation. This goal
was achievedby performance parameters estimation. Precision was established through reproducibility
of calibration curves slope, as SPCTTFEs are disposable, and this reproducibility is a good precision
estimate. LOD and LOQ values allowed quantification of low Al(III) concentrations. Recovery
percentage of certified SRM afforded accuracy of SOD/NPs/SPCTTFEs based biosensor and indicated
that developed SOD/PdNPs/SPCTTEs biosensor can be applied to Al(III) determination in aqueous
solutions.Validation results suggest that the fabrication procedure of the SOD/PdNPs/SPCTTFEs based
biosensor is reliable and allows reproducible amperometric responses to be obtained with different
electrodes constructed using the method described in this work.

A weakness of biosensor SOD/PdNPs/SPCTTFEs is its response to interfering ions, but these
toxic ions should not be naturally present in water. Ca(II) and Fe(III) usually found in water do not
interfere. Al(III) showed inhibition on SOD enzyme at all tested concentrations.

5. Conclusions

A novel amperometric biosensor based on SOD/PdNPs/CTTF/SPCEs was developed, validated
and applied to Al(III) determination in aqueous matrixes. The biosensor was based on inhibitory effect
of Al(III) on SOD enzyme and presents fast response, very good reproducibility, stability, and low
LOD. Michaelis Menten constants were calculated from Lineweaver–Burk plots and showed increasing
values with Al(III) concentration in accordance with theory of enzymatic inhibition.

SOD enzyme immobilization was easily and rapidly achieved by crosslinking using
glutaraldehyde and allowed obtaining a good reproducibility value of biosensor.

Modification of SPCTTFEs with different types of NPs improves biosensor performance. A study
of electrolytic generation conditions of NPs of Au, Pt, Rh and Pd onto SPCTTF E surface was carried
out and results showed that SPCTTFEs modified with PdNPs by means of cyclic voltammetry under
method B and CV2 conditions (delay time 120 s, step potential, 0.025 V, scan rate 0.1 V/s) gave a higher
sensibility on amperometric inhibition of Al(III) calibration curves.

SEM images showed presence of the metallic NPs deposited on SPCTTFEs. XRF study was
conducted to evaluate percentages of every metal deposited on SPCTTFEs. In addition, AFM study
showed roughness, characteristic of SPCTTFEs and NPs/SPCTTFEs surfaces and provided useful
information about morphology and surface homogeneity. It was also found that PdNPs/SPCTTFEs
deposited by method B and CV2 conditions had lower RA, RSM and Rmax than the others metallic NPs.

Biosensor validation was performed under optimized conditions: pH 5.0, applied potential of
0.2 V and a concentration of EPI of 1.6 × 10−4 M. The recovery value obtained using certified material,
supported the feasibility of SOD/PdNPs/SPCTTFEs based biosensor for Al(III) determination.

Developed biosensor presents LOD similar to other developed Al(III) biosensors, but it has the
advantage of using a lower applied potential of only +0.2 V. The possibility of using this biosensor at
low potentials results in a muchhigher selectivity compared with the others Al(III) biosensors.
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