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Abstract

An experimental approach is presented for the measurement of wear that is common in the threading of cold-forged steel. In this work, the first
objective is to measure wear on various types of roll taps manufactured to tapping holes in microalloyed HR45 steel. Different geometries and
levels of wear are tested and measured. Taking their geometry as the critical factor, the types of forming tap with the least wear and the best
performance are identified. Abrasive wear was observed on the forming lobes. A higher number of lobes in the chamber zone and around the
nominal diameter meant a more uniform load distribution and a more gradual forming process. A second objective is to identify the most accurate
data-mining technique for the prediction of form-tap wear. Different data-mining techniques are tested to select the most accurate one: from
standard versions such as Multilayer Perceptrons, Support Vector Machines and Regression Trees to the most recent ones such as Rotation Forest
ensembles and Iterated Bagging ensembles. The best results were obtained with ensembles of Rotation Forest with unpruned Regression Trees as
base regressors that reduced the RMS error of the best-tested baseline technique for the lower length output by 33%, and Additive Regression
with unpruned MSP as base regressors that reduced the RMS errors of the linear fit for the upper and total lengths by 25% and 39%, respectively.
However, the lower length was statistically more difficult to model in Additive Regression than in Rotation Forest. Rotation Forest with unpruned
Regression Trees as base regressors therefore appeared to be the most suitable regressor for the modeling of this industrial problem.
© 2016 Society of CAD/CAM Engineers. Publishing Servies by Elsevier. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

There are two basic technologies for manufacturing internal
threads: form tapping (using roll/form taps) and cut tapping
(using cut taps). The first process is chipless because the thread is
formed by a cold-working process. Hence, stronger threads,
particularly in materials susceptible to strain hardening, good
thread calibration and a longer tool life are achieved. Form
tapping is studied in the present work, applied in this case to a
cold-forged piece, in which the holes were punched in a cold-
forging process. In the case of form tapping, the thread is formed
by deformation of the raw material in a cold-working process [1].
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This process causes an imperfection at a minor diameter of the
formed threads (thread peaks) referred to as a claw or a split crest,
although these imperfections imply no reduction in strength [2,3].
Claw shapes depend on the hole diameter before threading [4].
Form tapping can be performed on ductile steels, non-ferrous
alloys [5] and tempered steels [6].

Stéphan et al. [7] maintained an acceptable forming torque and
deep enough threads to avoid stripping problems by optimization of
the initial hole diameter. Fromentin et al. [8] studied the 3D plastic
flow in form tapping, measuring material displacement and Stéphan
et al. [9] developed a 3D finite element model for form tapping
with the ABAQUS 6.5 software program.

The prediction of tap wear involves three degradation
phenomena: adhesive, abrasive and erosive wear. Adhesive
wear is caused by the transfer of material from one surface to
the other. Abrasive wear is caused by material removal from a
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solid surface, due to the sliding effect of hard particles or
roughness peaks against the other contact surface. Finally,
erosive wear is material loss from a solid surface, due to the
action of a fluid containing solid particles.

Simulations were focused on external thread manufacturing by
deformation [10]. Domblesky [11] worked on the simulation of
thread rolling with good accuracy and then on the optimization of
process parameters [12]. The most direct approach involves a
macroscopic description of worn surfaces and empirical modeling
of the wear based on the process parameters [13].

Data-mining represents a collection of computational tech-
niques, which analyze very complex phenomena. The most
common data-mining techniques applied to manufacturing
problems include Artificial Neural Networks (ANNs), Support
Vector Machines (SVMs), k-Nearest Neighbors Regressors,
and Regression Trees. A combination of two or more models,
known as an ensemble, sums the predictions capabilities of the
combined models. Ensembles have demonstrated their super-
iority over single models in many applications. For
instance, Yii [14] used ensembles to identify out-of-control
signals in multivariate processes. Liao et al. [15] and Bustillo
and Rodriguez [16] used ensembles for grinding wheel and
multitooth tool condition monitoring, respectively, while Cho
[17] and Bisaeid [18] used ensembles for end-milling condi-
tion monitoring and simultaneous detection of transient and
gradual abnormalities in end milling. Ensembles have the
advantage of circumventing the fine tuning of other artificial
intelligence models such as ANNs [19]. The most common
types of ensemble techniques are Bagging, Boosting and
Random Subspaces. Finally, a recent ensemble technique,
Rotation Forest [20], has demonstrated a capability to model
different industrial problems [21]. All these techniques will be
presented in detail in Section 3. To the best of the authors'
knowledge, there are no other investigations that have modeled
form tapping process outputs with data-mining techniques.
One novel robust approach for root-cause identification in
machining process using a hybrid learning algorithm and
engineering-driven rules was developed by Shichang et al.
[22]. In contrast, Mazahery [23] proposed the use of ANN for
tribological behavior modeling of composites, adjusting the
weights and biases in the network during the training stage to
minimize modeling error. In relation to aluminum
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nanocomposite processing, Mazahery [24] proposed the use
of genetic algorithms to predict the mechanical properties and
to optimize the process conditions and Shabani [25] used
adaptive neuro-fuzzy inference systems combined with the
particle swarm optimization method for process optimization.
The novelty of this paper resides in its combination of an
experimental analysis and a data-mining model to extract as
much information as possible on tool wear in form tapping
processes, an industrial process in high demand. The Multi-
layer Perceptron, the most widely used standard artificial
intelligence technique mentioned in the literature, was used
to identify the baseline improvements of this new approach
[19]. This paper is structured as follows: at the end of this
introduction, Section 2 presents the fundamentals of form
tapping and the experimental set-up realized to obtain real data
for this industrial process; Section 3 introduces the data-mining
techniques that will be used to model these industrial data;
Section 4 presents and discusses the experimental results of the
measurements and of the modeling using the data-mining
techniques; finally, Section 5 sums up the main conclusions
obtained from this research and future lines of work.

2. Form tapping fundamentals and experimental
procedure

2.1. Form tapping

Tap geometry is the most important parameter for a reliable
process. The standard tap characteristics are chamfer length,
the number of pitches in the chamfer, tap diameter and the
number of lobes around a tap section. Fig. 1 shows the
geometry and features of a typical forming tap. All pictures
showing taps are oriented with the tap tip to the left. As shown
in Fig. 1, each rounded corner of a tap section is referred to as
a lobe, where deformation or friction occurs against the inner
surface of the previous hole. Hence, the tap section is defined
by a curved side polygon that may typically have three, five, or
six corners, which are referred to as lobes.

Three type of lobes are distinguished in each tap: i)
incremental forming lobes situated in the chamfer area; ii)
calibration forming lobes around the nominal diameter; and,
finally, iii) guiding lobes leading up to the tap shank. The
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Fig. 1. Terminology and geometry of roll taps [13].
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Fig. 2. Tap profile and wear for a new tap and after 3000 and 5000 threads.

shapes of the calibration and the guiding lobes are not so very
different, so the precise frontier between them is a function of
tap wear and is not exact, as will be shown later on. With
regard to the application of data-mining techniques, the
variation in length on the rake side (upper length) and in the
length on the relief side has been considered (down length) for
each lobe, as well as the variation in the total length of
each lobe.

Two types of wear are observed in forming taps: material
abrasive wear and adhesive wear. Abrasive wear is mainly
observed in the lobes that remain in contact with the material
during the material removal process. If they are in the chamfer
region of the forming tap, the lobes are increasingly concave
and spread out on the side at variable depths that are as deep as
the part of the thread in contact with the tool. In the case of a
lobe located on the guiding zone, with the nominal diameter,
contact with the material is up until the moment of elastic
recovery, and the height of the areas on the flanks is at a
maximum, since the thread is totally formed during the
moment of contact.

Adhesive wear is defined as follows. Coating wear always
begins at the front of the lobe. Initially, delamination is likely
and then, as the wear becomes more progressive, it will
probably be associated with abrasive friction. Steel may be
deposited on the frontal part of the lobe, by adhesion on the
area of the coating with abrasive wear. The material is
deposited on the front side of the lobe and it extends to cover
the lobe in the opposite direction to the abrasive wear of the
back lobe. The adhesion is therefore described as runout.

2.2. Experimental set-up

The experimental objective was to test different type of roll
taps with different geometries and levels of wear. The tapping
conditions included external lubrication of 15% emulsion at a
pressure of 6 bars, applying the following process parameters:
M10 x 1.5 form tap ISO dimensions, 1200 mm/min feed
speed, 1.5 mm/rev feed rate, 800 rpm rotation speed, and
30 m/min forming speed.

The taps shared the following characteristics: a) base
material, high speed steel with TiN coating, and b) 6GX
tolerance. Six taps were tested for 3 different types of roll taps
(total 18 forming taps). Type 1 had a 5-pitch chamfer with a
hexagonal (60°) geometry without oil grooves. Type 2 had a 3-

pitch chamfer with a pentagonal (72°) geometry with oil
grooves. Type 3 had a 3-pitch chamfer with a pentagonal
(72°) geometry without oil grooves. The number of pitches
was directly proportional to the length of the chamfer. A high
number of pitches in the chamfer area causes problems in blind
holes that have requirements for low clearance at the bottom of
the hole. Each tap presented different levels of wear, due to
previous working in a real workshop, reaching 1000, 2000,
3000, 4000 and 5000 threads, to be compared with a new
unworn tap (Fig. 2). Wear analysis and experimental results
are exhaustively presented in [13], basically using a field
microscope and a special jig for setting tool in the same
coordinate measurement system, as it is a common practice in
this kind of experimentations.

The thread length of a forming tap is usually manufactured
with a higher tolerance than the cut tap equivalent in metric
and diameter, due to the degree of elasticity of the material that
means the work piece will always contract after any plastic
forming process. Consequently, the fresh thread is always
slightly smaller than the form tap profile. The operation has to
be executed in one stroke, because it is almost impossible to
manually repeat the form-tapping process after the first
lamination, due to the strain hardening that is provoked by
the first operation, which is not a problem in the case of cut
taps. Therefore, it is necessary to manufacture the roll taps so
that their upper tolerance limit is closest to the internal thread.
For this reason, all the taps in the study were 6GX tolerance, to
ensure that tolerance was not a factor that could affect the
results.

The work piece material was a microalloyed HR45 steel,
categorized under the group of microalloyed (HSLA — High
Strength Low Alloy) steels. HSLA steel has a fine ferrite-
pearlite structure with a small addition (max 0.15%) of the
combination of Al, Ti, Nb, and V elements. According to data
provided by an end-user, it has the following characteristics:
yield strength ¢,,=359 MPa, ultimate tensile strength o, =
473 MPa and final strain A=34.3%. The small test parts were
cold forged and a punch was used to open two holes with a
diameter of 9.3 mm and a hardness of 223 HV, measured
inside the holes. Cold forging always induces strain hardening,
so this measurement is important for a correct interpretation of
the results that are presented later on. The test part was a strut
that attaches a motor to a vehicle chassis; cold forging ensures
a highly productive process.
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The tests were performed on a 3-axis CNC machine with a
14 kW spindle. All the tests were performed under both dry
and lubricated conditions, so as to compare the different taps,
forming two threads under each of the two conditions. The
objective of using coolant was to avoid overheating in the
thread/tap contact area, to increase lubrication, and to study
tool behavior under industrial conditions. Otherwise, the dry
condition was used because monitoring was more directly
related to tap damage state.

Thus, tap wear measurements were taken on all the lobes in
the chamfer zone to establish a baseline wear value for the
graph: on the lobes that were slightly smaller than the nominal
diameter and on successively wider ones. When the nominal
diameter lobes started to lose their geometry, the successive
ones continued to work and they also registered wear. It should
be remembered that the forming lobes induce strain hardening
and therefore the last lobe in the chamfer zone deforms the
work piece material in its hardest state. Deformation not
completed by this lobe must be completed by the
successive ones.

In short, the procedure consisted of measuring wear after
form tapping, under two different conditions, dry and with
drilling fluid, with new taps and with taps after 1000, 2000,
3000, 4000 and 5000 previous threads formed under real
working conditions in a company that used the same type of
toolholder and emulsion coolant.

2.3. Dataset generation

Having measured tap wear in each experiment, 3 datasets for
the data-mining models were generated: one for each output.
Among the variables that influenced the wear process, the
following were considered: type of forming taps, number of
threads and lobe of the tap. Lobes are numbered starting from
the first one at the tap tip, as previously explained. Tap wear
was evaluated in terms of the variation from nominal values of
3 lengths for each lobe of the tap: lower length, upper length
(always starting from the maximum outer diameter of the
forming lobe) and total length, as previously presented (see
Fig. 1 in Section 2). Table 1 summarizes the variables under
consideration and their variation range and whether they act as
input or output for the data-mining model. Although most of
these variables take a limited number of values due to the
definition of the experiment, the data-mining model will
consider the number of threads and the 3 outputs as continuous
variables, because they can take continuous values under
industrial conditions. Other variables, such as the type of
forming tap and tap lobe, are considered categorical variables:
the type of forming tap only takes 3 possible values and the
lobe of the tap takes 25, see Table 1. Only the 25 first lobes are
considered in the data-mining models, because they are the
only ones common to the three forming taps, even though the
3 types of roll tapshave a different number of lobes.

As previously explained, the smaller diameter tap lobes
showed no wear until the chamfer diameter was sufficiently
wide to engage the material. The data set therefore contains
many zeros that reflect no-wear in the lobes. From the 435

Table 1
Variables, units and ranges used to generate the dataset.

Variable [Units] Input/ Range [number of zeros]
output

Type of forming taps Input 1, 2, 3 (Type 1, 2 and 3)

Lobe of the tap Input 1-25

Number of threads Input 1,000-5,000

Upper length [mm] (on  Output 0-1.17 [131]

rake side)

Lower length [mm] (on  Output 0-0.76 [123]

relief side)

Total length [mm] Output 0-1.78 [109]

instances of each of the 3 data sets, 109, 123 and 131 instances
recorded a zero value for the output, see Table 1. These zero
values mean that around 30% of the experiments show no-
wear on the measured lobe of the tap. If a data-mining
technique evaluates this data set it will be programmed to
prioritize zero values to increase its accuracy.

3. Data-mining techniques

As explained in the introduction, the data-mining discipline
provides algorithms to forecast the values of some output
variables from a set of input variables. There are two types of
prediction techniques: regression, if the studied variable can
take continuous values, and classification, when the output can
only vary between a limited set of values. In our experimental
work, a regression analysis is formed for each output variable,
y. In this type of formulation, the forecast of the model is based
on a function, f, of the so-called attributes (input variables), x.
This general expression for regression is shown in Eq. (1),
considering a case with m attributes.

Yestimated :f(x)’ X € mm’ Y€ R (1)

The most precise technique for the problem under study was
chosen from the algorithms of the state-of-the-art for regres-
sion. Root Mean Squared Error (RMSE) was used to compare
the regressors This metric measures the deviation that the
predicted class value has with regard to its real value. The
expression of RMSE is given by the square root of the mean of
the squares of the deviations, as Eq. (2) shows, where each of
the n instances of the data set are denoted by x;,y;.

2)

The most popular regression techniques were used in the
tests. These algorithms can be divided into four families:

1. Decision tree regressors: the consideration of this type of
techniques is necessary to understand the second family: the
ensemble regressors.

2. Ensemble techniques [26]: the most frequently used algo-
rithms were tested, as they have proved their suitability in
several types of industrial tasks [14-19,21,27].
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3. Function-based regressors: ANNs [28] and Support Vector
Regression (SVR) [29] were used. The choice of SVR and
ANNs was due to their popularity The success of ANNSs in
modeling several industrial problems should be noted
[30-33], while SVR is a widely used regression technique
[34].

4. The approach of instance-based regressors has a completely
different formulation from the other families, as there is no
analytic model to express the class value as a function of the
attributes. Alternatively, the forecast value is obtained by
the instance similarity to some other instances in the
training dataset. The k-Nearest Neighbors Regressor [35]
was used in the tests as representative of this type of
prediction.

3.1. Decision-tree-based regressors

Following a strategy known as divide and conquer, a
decision-tree-based regressor uses recursive data divisions in
a single attribute. Each division is performed by maximizing
the differences observed between the class values [36], while
several statistical procedures may be used to determine the
most discriminant decision.

There are two types of regressors based on decision trees,
depending on what they store in their leaves. While a linear
regression model is saved in each leaf of the model trees, an
average of the values of a group of instances is used in the
regression trees, minimizing the intrasubset variation in the
class values [37]. The Reduced-Error Pruning Tree
(REPTree) [38] and MS5P [36] were chosen as the main
representative techniques for the regression and the model
trees, respectively.

Both regressors have two possible configurations: pruned
and unpruned trees. Considering a single tree-based regressor
and some type of ensembles of regression trees, it is more
convenient to use pruned trees to avoid overtfitting. However,
there are certain types of regression tree ensembles that can
benefit from the use of unpruned trees [39]. Ensembles of
regression trees are described in the next section.

3.2. Ensemble regressors

An ensemble regressor is a prediction method that combines
the forecasts of several models: the base regressors [40]. In
this work, the three most popular types of ensembles were
used: Bagging [41], Boosting [42] and Random Subspaces
[39]. In these three regression techniques, the same learning
algorithm is used to train each base regressor, but different
training sets are formed from the original. In all cases, we used
regression trees as base regressors.

In Bagging, the training sets were formed using sampling
with replacements (i.e., given a training set, a particular
instance may not appear in it or could appear several times)
[41]. The base regressors were independent, as the process
followed to train each base regressor takes no account of the
other regressor. One variant of Bagging is called IteratedBag-
ging. This technique combines Bagging ensembles: the first

one is formed by conventional Bagging, but the differences
between the real and the predicted values (called residuals) are
used in the training process for the others [43].

On the contrary, the base regressors in the case of Boosting,
are sequentially trained, each one of which is influenced by the
previous one [44]. A weight is added to the instances, in order
to change the training of the base regressors. The errors of
previous regressors are used to reweight the instances, so that
the next regressor is trained with the instances that were
previously wrongly forecast. The final prediction of Boosting
also takes the accuracy of each base regressor into account.
One common variation of Boosting implementation for regres-
sion is AdaBoost.R2 [45]. In this case, the error of each base
regressor is calculated using the loss function, L(i). Three types
of loss functions were used in the experimentation. If Den is
the maximum value of a loss function, then linear loss, L,
square loss, L, and exponential loss, L, are given by the
expressions in Eq. (3).

Li(i) = I(i)/ Den

Ly(i) = [i(i)/Den]” 3)
Le(i) = 1 —exp(—I(i)/Den)

Random Subspaces uses subsets of fewer dimensions than
the original data set to train the base regressors. This
methodology has two goals. On the one hand, to avoid the
well-known problem of the curse of dimensionality (many
regressors decrease their performance when the data sets have
a large number of attributes), and, on the other, to improve
prediction accuracy, by choosing low correlated base
regressors.

Rotation Forest [20] is the most recent ensemble tested in
this research. It trains each base regressor, in this case
RepTrees or M5P Modal Trees, by grouping their attributes
into subsets (e.g., subsets of three attributes are usually taken).
Then Principal Component Analysis is computed for each
group using a subsample from the training set. The whole
dataset is transformed according to these projections and can
then be used to train a base regressor.

Five ensemble regressors were used in the experimentation:
Bagging, IteratedBagging, Random Subspaces and Additive
Regression, a hybrid between Bagging and Boosting ensem-
bles [46] and Rotation Forest.

3.3. Artificial neural networks

Inspired by biological processes, ANNs are based on the
information transmission system used by neurons in the brain
[47]. In this research, the Multilayer Perceptron (MLP) [47]
was used, because of its popularity as an ANN variant that can
approximate functions of great complexity [48]. The structure
of this model is formed of three layers [49]. The first one has
the inputs (attributes), the second one is called the hidden
layer, and the third one the output layer). Eq. (4) shows how
the prediction, Y, is obtained. The output of the hidden
layer, y,4.» 1s used as the input of the output layer. W; and W,
denote the weight matrix of the hidden and output layer,
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respectively, By and B, their biases, and f,,, and f,,,,, their
activation functions.
Yhide =Fnet(W1x+ B1) @
Youtpur =f0utput (Wzyhide + BZ)

These activation functions vary with the structure. In our
experimental work, the most common structure was used,
where the activation function for the hidden layer is the
identity and the activation function for the output layer is
tansig [49].

3.4. Support vector regressor

This technique makes its prediction using a function, f{x),
with a set of parameters that are calculated during the training
stage, in order to minimize the RMSE [50]. The formulation of
this function for a linear case is given by Eq. (5). The
prediction, f(x), from the input attributes, x, is obtained by
using terms, w and b, where (w, x) is the inner product in the
input space, X.

f)=w,x)+b with weX beR (5)

The desired function should fit the training examples as
closely as possible, but without overfitting the data, in order to
define a formulation that may be generalized to other instances.
In other words, the desired function shows low prediction
deviations, but as flat as possible [50]. Expressing these two
objectives in an optimization problem, the target is for f(x) to
have at most e deviation from the forecast outputs, y;, for all
the training data, and at the same time to minimize the norms
of w. A certain degree of error will therefore be allowed in the
forecasts, but it is limited by e. In real data, solving the
previously described optimization problem may be unfeasible
or lead to overfitting, if there are some instances with large
deviations of the general trend. For that reason, Boser et al.
[29] redefined the optimization problem, allowing deviations
larger than e for some instances. Consequently, an extra term,
C, was added to the formula, as shown in Eq. (6). This
parameter is a trade-off between the flatness and the deviations
of the errors larger than e.

i

minimize  [lw|*+CY_ (&+¢&)
i=1

S.t.

yi—(wxi)—b<e+§
(w,xi)+b—y; <e+&
£, >0

(6)

The optimization problem presented in Eq. (6) belongs to
the convex type, and can be solved using the Lagrange
method. Eq. (7) shows the so-called dual problem that is

associated with it.

maximize
1 ! ] i
~5 2 (=) (5= ) —e 3 =) + D=t
ij= = =
S.t.
!
> (a—aj) =0
i=1
aj,a;f €[0,C]

)

The formulation given in Eq. (7) refers only to the linear
case, but a generalization using a non-linear function is
possible. In the general definition of the SVR, the inner
products are not directly calculated in the original input feature
space, but the so-called kernel function, k(x, x') is used instead.
This function fulfils a set of conditions (called Mercer's
conditions) [51]. Linear and radial basis, the two most
frequently referenced kernels in the literature, were used in
the experimentation.

3.5. K-nearest neighbor regressor

In this data-mining technique, the predicted class value is
the mean of the k most similar training instances, which were
previously stored [52]. Euclidean distance was the most
commonly used function to measure the similarity between
instances. In our experimental work, the number of neighbors
was optimized using cross validation.

4. Results and discussion
4.1. Experimental results

In this section, the results of the experiments on wear
measurements are present. First, a visual inspection was
undertaken to determine whether the taps had suffered any
damage such as lobe ruptures or excessive material adhesion.
The lower length and the upper length each lobe edge were
measured, commencing in each case with the maximum outer
diameter of the forming lobe, as shown in Fig. 3. A magnified
worn area of a lobe is shown on the right of Fig. 3, measured
with an optical microscope. All measurements were taken by
positioning taps on the same fixture, so as to avoid projection
errors and to ensure sufficient repeatability. In this figure, the
edge that engages the material is the rake edge, while the other
length of the edge is the relief edge (both standard industrial
terms in cutting operations).

As shown in Fig. 3, the first part of the edge in the direction
of rotation that engages the material is the rake edge, which is
the part of the edge that suffers abrasion wear. Following the
flank actions of the rake, the relief flank that is in contact with
the material undergoes abrasion and adhesion wear, as its edge
removes material. A typical “wave on sand” pattern caused by
adhesion is shown in Fig. 3. Total lobe wear is given by the
sum of the wear on both flank lengths.
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Fig. 3. Forming lobe wear: Left) tap rotation; Right) Wear on the relief (lower) and rake (upper) flanks.
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Fig. 4. Evolution of “Type 1” forming tap wear.

The wear on each lobe is illustrated in Figs. 4-6. Here, the
lobes are numbered starting from the first one at tap tip. One
hypothesis would suggest that worsening wear on each lobe
depends on the general wear of the roll tap, because wear on
previous lobes would imply a greater strain on the successive
ones, as is clearly explained below. All the wear patterns
corresponded to abrasion on the rake flank and abrasion and
slight adhesion on the relief flank. The limits of the chamfering
zone are indicated on the figures.

“Type 1” roll taps with previous wear of 1000, 3000 and
4000 threads showed a rising trend line from non-existent wear
on the first lobes to levels of about 0.1 mm. Furthermore, the
higher the number of threads, the higher the tap wear will be.
Wear was almost zero for the first 4 lobes of an almost new tap
with “only” 1000 previous threads. It then increased to reach a
constant value after the 10™ lobe. A provisional conclusion
was therefore reached that the first lobe of nominal diameter
will not be the most highly damaged.

However, the trend lines of tap wear with 2000 and 5000
threads had a non-linear evolution. The wear was not uniform

in close lobes. The lobes with greater wear interacted more
with the material, while the lobes with less wear may have
been working less due to the eccentricity of the tap, which
could be the explanation for this random behavior.

Contrary to the previous case, the results for “Type 2” roll
taps (Fig. 5) pointed to strong wear for the first lobes and a
rapid decrease for the following ones to a constant value
between the 7th and 16th lobe (Fig. 5). As shown in Fig. 5,
wear decreased to zero for the 5 cases (taps with 1000 to 5000
previous threads), it was higher for the last level (5000
threads), and was lower for the first level (1000 threads).
Wear evolution was completely different to that of the “type 1”
taps. A difference explained by the increased diameter between
the pitches in the chamfer zone that was greater than the
increase of subsequent threads; the first lobe that reached the
nominal diameter worked very intensely.

For “Type 3” roll taps (Fig. 6), the evolution of wear started
from zero for the two first lobes, increased to a maximum and
decreased again. As shown in Fig. 6, wear increased as the tap
diameter increased. Once the final thread diameter had been
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reached, wear on the subsequent lobes decreased, due to lower
contact with the material as the thread had recently been formed.
The lobes engaging with the material underwent lighter
deformation that resulted in less wear (15th to 25th lobe).

The different tap wear behaviors can be attributed to the
geometry of the chamfer tap (5-pitch chamfer for “Type 1”
forming taps, 3-pitch chamfer for “Type 3” and “Type 2”
forming taps) and the number of lobes in each section
(hexagonal in “Type 17, and pentagonal in “Types "2 and 3”).
The geometry of “Type 1” led to a more progressive deforma-
tion of the material and therefore implied less wear.

In the three roll taps under study, higher wear appeared in the
chamfer lobes. When form tapping was at the nominal diameter,
the guiding edges were in contact with previously deformed
material. For this reason, wear decreased gradually at these
edges until it reached zero wear values. Ten guiding lobes in the
three roll taps were necessary to reach zero wear level.

4.2. Data-mining prediction results

Tap forming is a complex process, in which a direct
relationship between process inputs and the output (tap wear)
is not easily established. This conclusion has been outlined in
the previous analysis of the experimental tests and may also be
extracted from a data-mining perspective, if the scatter plots of
inputs and outputs are drawn. Fig. 7 presents the scatter plots
for each input (type of forming taps, lobe of the tap and
number of threads) and one of the outputs (total length). These
plots show that there is no obvious relation between the input
variables and the output. Each symbol, blue square, red circle
and yellow cross, represents a different type of forming tap (1
to 3 types respectively). The same conclusion can be extracted
for the other two outputs: lower length and upper length. A
suitable method is therefore needed to model the tap wear form
from the process input variables.
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However, before the most suitable model for tap wear can
be identified, it is necessary to establish a baseline or threshold
that assures the right performance of the data-mining models or
rejects their predictions due to low quality. The Root Mean
Square Error (RMSE) for the predicted values related to the
measured values was taken as a quality indicator. Two baseline

Table 2
Dataset variation of the outputs and RMSE for the 2 proposed baselines
techniques.

Lower length Upper length Total length

[mm] [mm] [mm]
Mean value 0.12 0.15 0.27
Maximum 0.77 1.17 1.78
Minimum 0 0 0
RMSE Naive 0.14 0.20 0.30
approach
RMSE Linear 0.12 0.16 0.23
approach
Table 3
Methods notation.
Method Abbreviation
Bagging BG
Iterated Bagging IB
Random Subspaces RS
AdaboostR2 R2
Additive Regression AR
Rotation Forest RF
REPTree RP
M5P Model Tree M5P
Support Vector Regressor SVR
Multi-Layer Perceptron MLP
k-Nearest Neighbor Regressor kNN

approaches were considered: the first one is a naive approach,
which considers the mean value of each output as the most
probable value for each condition; the second one considers a
linear fit of the 3 inputs for each output. Table 2 shows the
mean, maximum and minimum values of each of the 3 outputs
in the dataset and the RMSE values calculated for the naive
approach and the linear approach of each output for the whole
dataset. From the industrial point of view, any prediction
model that reduces the RMSE by more than 20% will provide
useful information to the process engineer on tap wear.

As explained in Section 3, the main techniques of the state
of art for regression were tested, including regression trees
(RepTrees and MSP trees), ensembles (Bagging, Iterated
Bagging, Random Subspaces, Adaboost, Additive Regression
and Rotation Forest), SVRs, ANNs (MLPs), and nearest
neighbor regression. Table 3 summarizes the abbreviations
used to denote these techniques. As regards notation, two
further considerations should be taken into account. Firstly, in
the case Adaboost.R2, the type of loss function is indicated by
the suffixes "L", "S" and "E" (Linear, Square and Exponential,
respectively). Secondly, whether the trees are pruned or
unpruned is indicated between brackets (P or U).

A 10 x 10-fold cross-validation procedure [17] was fol-
lowed, to generalize the results of the data mining techniques.
In 10-fold cross-validation, the data is divided into 10 folds.
Nine folds are used to build a model and the other fold is used
to evaluate the model. The estimation obtained with cross-
validation is the average of 10 values obtained for each fold.
Cross-validation was repeated 10 times, that is 10 x 10-fold
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Table 4
RMSE values for all the tested data-mining techniques.

Method Lower length Upper length Total length
RMSE RMSE RMSE
Naive approach 0.14 0.20 0.30
Linear approach 0.12 0.16 0.23
SVR Linear 0.09" 0.17" 0.22"
SVR Radial 0.09 0.13 * 0.16
R2 L M5P (P) 0.10" 0.13" 0.15
R2 L M5P (U) 0.10" 0.13" 0.15
R2 S M5P (U) 0.09" 0.13" 0.15
R2 S M5P (P) 0.09" 0.13" 0.15
R2 E M5P (P) 0.10" 0.13" 0.15
R2 E M5P (U) 0.10" 0.13" 0.15
R2 E REPTree (P)  0.12" 0.17" 0.23"
R2 E REPTree (U) 0.10" 0.17" 0.20"
R2 S REPTree (U)  0.10" 0.14" 0.18"
R2 S REPTree (P)  0.11 0.17" 021"
R2 L REPTree (P)  0.11" 0.16" 021"
R2 L REPTree (U) 0.10" 0.16" 0.20"
MLP 0.10" 0.13" 0.16
Knn 0.09" 0.14" 0.18"
MS5P (P) 0.09" 0.13 0.16"
MS5P (U) 0.09" 0.13 0.16"
REPTree (P) 0.10" 0.18" 0.21"
REPTree (U) 0.10" 017" 021"
BG REPTree (P) 0.09" 0.17 * 0.19
BG REPTree (U) 0.09" 0.15" 0.17"
BG M5P (P) 0.09 0.13" 0.16"
BG MS5P (U) 0.09 0.13" 0.16"
RF REPTree (P) 0.09" 0.15" 0.197
RF REPTree (U)  0.08 0.13 0.16
RF M5P (P) 0.09 0.13" 0.16"
RF M5P (U) 0.09 0.13" 0.16
IB REPTree (P) 0.10" 0.16" 0.18"
IB REPTree (U) 0.10" 0.15" 0.18"
IB M5P (P) 0.09 0.13" 0.16"
IB M5P (U) 0.09 0.13 0.16
AR M5P (P) 0.09" 0.13 0.15
AR MS5P (U) 0.09" 0.12 0.14
AR REPTree (P) 0.10" 0.17" 0.20"
AR REPTree (U) 0.12" 0.16" 0.20"
RS 50% MS5P (P) 0.10" 0.16" 0.20"
RS 50% M5P (U)  0.10" 0.15" 0.20"
RS 50% REPTree  0.10" 0.16" 021"
RS 50% REPTree  0.10 0.16 021"
(U) £l * *
RS 75% REPTree  0.10 0.16 021"
RS 75% REPTree  0.10 0.16 021"
P) . . ;
RS 75% M5P (P)  0.10 0.16 0.20"
RS 75% M5P (U)  0.10" 0.15" 0.20"

cross validation, averaging the results obtained from each
cross-validation, in order to reduce the variance of the final
estimation. In this way the prediction of the model is the
average of the predictions of 100 models. Weka software [38]
was used for modeling and validation.

The parameters of the techniques were chosen as follows:

1. The number of base regressors in the ensembles was set to
100

2. In the SVR with linear Kernel, the trade-off parameter was
optimized in the range of 2 to 8, while in the radial basis
case, the optimization ranges were 1 to 16 for C and 10>
to 102 for y

3. The training parameters momentum, learning rate and
number of neurons of the neural networks were optimized
in the ranges 0.1 to 0.4, 0.1 to 0.6, 5 to 15, respectively

4. In the k-nearest neighbor regressor, the optimal number of
neighbors was chosen from 1 to 11.

In Table 4 the detailed RMSE values are shown for the three
outputs under study, where an asterisk indicates the regressors
that were statistically worse than the best one for each output
(the reference for the test for each output is the regressor with
lower RMSE, which is in bold). Table 2 also collects the
RMSE for two approaches considered as baselines for a final
discussion of the results. Two main considerations can be
extracted from the results of Table 4:

1. Two methods present the lower RMSE for the three
outputs: Rotation Forest with unpruned REPTree as base
regressors for the lower length, and Additive Regression
with unpruned M5SP as base regressors for the upper and
total lengths. However, the second method is statistically
worse than the first one to model the lower length.

2. There are only two methods which do not lose in any of the
three outputs: Rotation Forest with unpruned REPTree as
base regressors (the winner for the lower length) and
Iterated Bagging with unpruned MS5P as base regressors.

Finally, if we compare the results of these prediction models
in Table 4 with the two approaches considered as baselines,
new conclusions may be extracted. First, all the data-mining
techniques under consideration showed a better performance
than the naive approach (e.g. for the lower length the RMSE of
the tested techniques was in the range of 0.09-0.12 mm and
was 0.14 mm for the naive approach). Second, not all of the
data-mining Techniques under consideration showed a better
performance than the linear fit (e.g. the RMSE of the tested
techniques for the upper length were within the range 0.12-
0.18 mm and the linear fit was 0.16 mm), There are two
reasons that can explain this result: first, the reduction of the
dataset size due to the cross-validation technique does not
apply to the linear fit, which is significant due to the small size
of the dataset; second, training and validation are done on the
same data in the linear fit case, while the cross validation
technique applied to data-mining models used new data for
validation that was not presented in the training step. The most
important conclusion, however, even though data mining
undergoes a loss of accuracy due to cross validation (because
only part of the experimental dataset is used for the training
stage, keeping part of the instances for the validation stage), is
that there are still some data-mining models that clearly
improve the precision of the two baseline techniques (that
use the whole experimental dataset in the training stage). For
example Rotation Forest with unpruned REPTree as base
regressors reduced the RMSE of the linear fit by 33% for the
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lower length, and Additive Regression with unpruned M5P as
base regressors reduced the RMSE of the linear fit by 25% and
39%, for the upper and total lengths respectively. Taking all
these considerations into account, Rotation Forest with
unpruned REPTree as its base regressors appeared to be the
most suitable regressor with which to model this industrial
problem.

To summarize, the most accurate Data Mining technique is
Rotation Forest with unpruned REPTree as base regressors. It
predicts the lower, upper and total wear length with an RMSE
of 0.08, 0.13 and 0.16 mm respectively. Under similar training
conditions, the Naive approach predictions presents an RMSE
of 0.14, 0.20 and 0.30 mm for the same outputs and the linear
approach an RMSE of 0.12, 0.16 and 0.23 mm, clearly higher
than the RMSE of the Rotation Forest in all cases.

5. Conclusions

This paper has presented a study that has analyzed the
process of wear during tap forming for threading of cold
forged steel parts from an experimental and a data-mining
perspective. Wear observed on the forming lobes was of the
abrasive type. This type of wear implies the loss of lobe
diameter involving successive lobes. The “Type 1” forming tap
had the least wear and showed the best performance. Forming
tap geometry appeared to be a very important factor. The
“Type 1” hexagonal section tap produced superior results to the
“Type 2” and the “Type 3” pentagonal section tap. The higher
the number of lobes in the chamber zone (5-pitches) and
around the nominal diameter (6 lobes) resulted in a more
uniform load distribution and a more gradual forming process.

The second objective of this study was to identify the most
accurate data-mining-based model to solve this real-life
industrial problem. The data set consisted of 285 instances
with 3 inputs and 3 outputs. Several methods were investi-
gated, including all the main techniques of the state of art for
regression: regression trees, ensembles, SVRs, ANNs and k
nearest-neighbor regression. 10 x 10 cross-fold validations
were performed to generalize the prediction results of these
models.

Two baseline approaches were considered to analyze the
performance of the data-mining models: the first considered
the mean value of each output as the most probable value for
each condition; the second considered a linear fit of the 3 inputs
for each output. The most accurate model was Rotation Forest
with unpruned REPTree as its base regressors; it reduced the
RMSE of the linear fit by 33% for the lower length, and the
Additive Regression with unpruned MSP as base regressors
that reduced the RMSE of the linear fit for the upper and total
lengths by 25% and 39% respectively. However, Additive
Regression was statistically worse than Rotation Forest at
modeling the lower length, and therefore, Rotation Forest with
unpruned REPTree as its base regressors appeared to be the
most suitable regressor for the modeling of this industrial
problem.

Future work will consider other ensemble methods, using
ensembles of other methods instead of regression trees and will

study the use of non-homogeneous ensemble models, ensem-
bles built by combining different methods (e.g., SVM and
RBF), that might improve the final accuracy of the model.
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