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ABSTRACT 

The efficiency of lipase catalyzed glycerolysis of sardine oil in solvent free and supercritical 

carbon dioxide media has been investigated. The immiscibility between substrates, glycerol 

and oil, is an important drawback to reach good high conversions of triglycerides (TAG) into 

monoglycerides (MAG) and diglycerides (DAG) in short reaction times. To improve mass 

transfer rates, emulsification of both reactants as reverse micelles (glycerol-in-oil) has been 

carried out. Enzyme-catalyzed reaction is an attractive alternative since the reaction can be 

carried out under mild conditions avoiding the oxidation of omega-3 fatty acids. In this work, 

a commercial immobilized lipase (Lipozyme 435) was employed as biocatalyst. The effects of 

SC-CO2 density on reaction rates and oxidation stability has been compared with those 

obtained in solvent free system at atmospheric pressure. The effect of temperature and 

pressure on reaction yield, oxidation state of reaction products and enzyme stability was 

studied. Good stability of Lipozyme 435 has been observed in both systems proving no 

thermal deactivation at temperatures higher than its optimum. 

INTRODUCTION  

Fish oil is rich in omega-3 (n-3) polyunsaturated fatty acids (PUFAs) such as 

eicosapentaenoic acid (EPA) and docosahexaenoic acid. The importance of omega-3 PUFAs 

in human nutrition and disease prevention was scientifically recognized some decades ago 

because they are involved in many important biological processes in the human body. Among 

the different types of lipid derivatives containing PUFA concentrates, MAG and DAG have 

good bioavailability. In addition, MAG or its mixtures with DAG account for 75% of 

worldwide emulsifier production. The well-known drawbacks of the conventional chemical 

glycerolysis technique (energy intensive, low yields (30–40%), oxidized products) have 

prompted a growing interest in the development of alternative processes for the production of 

MAG and DAG rich in n-3 PUFAs. Enzyme-catalyzed reaction is an attractive alternative 

since the reaction can be carried out under mild conditions. To overcome the problem of the 

immiscibility of glycerol and oil, different approaches have been used in the literature to 

improve the contact between the reactants and hence reduce mass transfer limitation. Lipase-

catalyzed glycerolysis has been carried out in different reaction media such as organic 

solvents, compressed fluids, and ionic liquids, in order to improve the mass transfer. Recently, 

the uses of different surfactants to increase the interfacial area, and ultrasound irradiation have 

been also proposed to reduce mass transfer limitation. Although the best conversions are 

reached when the glycerolysis reaction is carried out in organic solvent medium, the cost, 

toxicity and energy required for removal from the product mixture, are important aspects to be 

considered when dealing with conventional solvent systems [1]. 

Enzymatic reactions in supercritical fluids (SCFs) rise as an alternative to organic solvents. 

This technology is based on the use of lipases which are able to catalyze different reactions in 

CO2 supercritical media. Supercritical carbon dioxide (SC-CO2) is probably the most used 
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SCF when choosing environmental replacement for organic solvents. Some previous studies 

of enzymatic reactions of different lipid sources in SC-CO2 have been reported in the 

literature. However, in case of enzymatic glycerolysis, other compressed fluids as propane, n-

butane, and acetone, have been used. Some studies of glycerolysis of soybean oil in SC-CO2 

can be found, but without using enzymatic catalyst at high temperatures [2]. 

On the other hand, biocatalytic processing in the presence of surfactants has also received 

attention in order to increase the miscibility of the substrates. Surfactants are molecules with 

amphipatic characteristics, and they are able to form micellar systems. In addition, lipases 

demonstrate high interfacial activity in micellar system, because the formation of the active 

site during the reaction occurs at the interface between the substrate and the enzyme. 

Nevertheless, it must be taken into account that food grade surfactants could be modified by 

lipases. For instance, the lipase Novozym 435 presented activity toward some surfactants as 

soy lecithin, Tween 65, Tween 80 and Tween 85 in glycerolysis reactions. To avoid this 

problem, other kind of synthetic surfactants have been used, such as sodium (bis-2-ethyl-

hexyl) sulfosuccinate (aerosol-OT or AOT). This anionic surfactant has the ability to form 

reverse micelles in a great number of non-polar organic substances as oils, and several other 

polar solvents such as glycerol. In this case, good results have been obtained in glycerolysis 

systems when adding more that 7.5% of AOT. However, the surfactant has to be removed and 

it may generate problems during downstream processes [3-4]. 

In this work a comparison of glycerolysis of sardine oil in solvent free and SC-CO2 media 

have been studied. In both systems, to improve the mass transfer limitation, avoiding the used 

of any organic solvent or surfactant, the formation of a microemulsion just with the reactants 

as reverse micelles (glycerol-in-oil) has been carried out. These microemulsions exhibit 

relatively ordered structure and provide an enormous interfacial area, which favors lipase-

catalyzed reactions. This emulsification process has been carried out just before the addition 

of the lipase. Agitation and MAG and DAG formation, as emulsifiers, help to create a good 

contact among reactants. The commercial immobilized lipase Lipozyme 435 from Candida 

antarctica B was employed as biocatalyst. The reaction kinetics have been determined at 

different operating pressures (0.1, 15, 20 and 25 MPa) and temperatures (40, 50, 65, 80, 

90ºC). The experiments were conducted in a batch mode keeping constant the enzyme 

concentration at 5 wt% (by weight of substrates) and agitation of 800 rpm. Finally the 

oxidative status in the final reaction products was evaluated through the peroxide and 

anisidine values. MAG yields and the oxidation stability of the reaction products were 

compared for both systems. 

MATERIALS AND METHODS 

Materials 

Refined sardine oil was kindly provided by Industrias Afines S.L. (Spain) with 18.3% of EPA 

and 7% of DHA and a water content of 0.2%. Glycerol was purchased from Sigma Aldrich 

with a purity of ≥ 99.5% and a water content of 0.18%. The food grade lipase Lipozyme® 435 

from Candida antarctica (immobilized on a macroporous hydrophobic acrylic resin) was 

kindly donated by Novozymes A/S (Bagsvaerd, Denmark). CO2 (99.9%) was supplied by Air 

Liquide S.A. (Spain). All other chemicals used were of analytical or HPLC grade. 

Microemulsions preparation  

To prepare the microemulsion of the substrates as reverse micelles, the appropriate amount of 

glycerol was added drop by drop to the suitable amount of oil (molar ratio: 3:1) while are 

completely mixed at high speed. High speed blender (Miccra D9 equipped with a DS-20/PF 

EMR rotor–stator) at different speed from 16000 to 35000 rpm was used by pulses during 3 

minutes. The characterization of the emulsions was performed 10 min after emulsification to 



avoid any creaming or coalescence effect. Droplet size distribution, mean droplet diameter 

and polydispersity index (PDI) of samples were measured by dynamic light scattering (DLS), 

using a Zetasizer Nano ZS apparatus (Malvern Instruments Ltd., UK) to evaluate the best 

conditions to produce a stable emulsion with small (or the smallest) droplet size. 

Glycerolysis of sardine oil by Lipozyme 435 

On one hand, the glycerolysis reaction in SC-CO2 has been performed in a high pressure 

batch stirred tank reactor made of stainless steel and having an internal volume of 100 mL. 

Emulsion was charged into the reactor and it was then closed, placed in a thermostatic water 

bath and connected to the pressure circuit. Subsequently, SC-CO2 was fed into the reactor by 

means of a high pressure pump (ISCO 260 D) up to the desired pressure, which was 

maintained by a digital pressure controller. Operating temperature and pressure have been 

varied in the range between 40-90ºC and 15-25 MPa, respectively. Samples were taken 

periodically during 8 h through a siphoned capillary equipped with a microfilter made of 

sintered steel, which prevented the withdrawal of the enzyme from the reaction mixture and, 

thus, stopped the reaction. On the other hand, the glycerolysis reaction, solvent free system, 

has been carried out in a 100 mL jacketed batch reactor at different temperatures. All the 

samples were stored at -18ºC prior to analysis.  

Analysis of the reaction products 

The neutral lipid profile (TAG, DAG, MAG and FFA) was analysed and quantified by a 

normal phase high performance liquid chromatography (NP-HPLC). The method and 

calibration procedure were previously reported [5].  

Measurement of lipid oxidation 

The oxidation status can be estimated using two assays: the peroxide value (PV) and the 

anisidine value (AnV). The PV measures the concentration of hydroperoxides formed in the 

initial stages of lipid oxidation (primary oxidation). The AnV is an estimation of the 

concentration of secondary oxidation products. Determinations of these values for the samples 

before and after the experiments have been performed in order to evaluate potential lipid 

oxidation processes during the glycerolysis reaction. Total oxidation of the oil can be 

estimated by the formula: TOTOX = 2PV + AnV. All determinations were performed 

according to standard methods [6-7]. 

RESULTS 

Emulsification process 

Some previous experiments have been performed to define the optimum speed in which the 

microemulsion presents the best droplet size distribution. As a reverse micelle system, the oil 

behaves as the continuous phase and glycerol represents the discontinuous one. The results 

showed that the smallest glycerol droplet diameter was obtained at 29000 rpm. In addition, 

the polydispersity index was low at this speed, around 0.4.  

To evaluate the effect substrates emulsification in the reaction rate, results have been 

compared with those obtained without substrates emulsification at the same conditions in SC-

CO2 media and in solvent free system. Lipase-catalyzed glycerolysis of sardine oil in SC-CO2 

media is presented in Figure 1, but the same tendency was observed for solvent free system. 

As it can be observed, mass transfer limitations lead to lower reaction rate when no previous 

emulsification of reactants was carried out. For the reverse micelle system, higher interfacial 

area is provided which favors lipase-catalyzed reactions. At longer reaction times, similar 

conversion was reached, probably due to the MAG and DAG formation that can act as 

emulsifiers.  



 

Figure 1. TAG conversion by lipase-catalyzed glycerolysis of sardine oil in SC-CO2 media with (■) and without 

() substrates emulsification. Reactions were performed at MR = 3:1 (glycerol:oil), T = 50ºC, enzyme loading 

5 % wt. of substrates and 15 MPa. 

 

Pressure effect on glycerolysis of sardine oil by Lipozyme 435 

Loss et al. [2] have recently reviewed different applications of supercritical fluids as 

alternative solvent for biocatalysis processes, concluding that there seems to be no “rule of 

thumb” for predicting the effect of pressure on enzyme activity in SC-CO2. On the one hand, 

operating pressure can affect the reaction rate constant, but also, density-related changes in 

the physical parameters of SC-CO2 may indirectly affect the enzyme catalytic activity, and 

thus the reaction performance. Figure 2 presents TAG conversion at different operating 

pressures (15 to 25 MPa) at 50ºC, and the corresponding kinetic reaction at atmospheric 

pressure (0.1 MPa). Initial substrate molar ratio (3:1 glycerol:sardine oil), and enzyme loading 

(5% wt. of substrates) remained unchanged. The results show that pressure had no significant 

effect on TAG conversion in the pressure range studied. As it has been previously explained, 

in the reverse micelle system, sardine oil behaves as the continuous phase. According to the 

literature, solubility of CO2 in fish oil slightly increase with pressure at constant temperature, 

for instance at 40ºC solubility at 10 MPa is 25.8% mass and at 25 MPa is 33.7% mass [8]. 

Therefore the improvement in the diffusivity in the reaction system is not significant by 

increasing operating pressure and not a significant effect of pressure in reaction rate has been 

observed. 

 

 
Figure 2. TAG conversion by lipase-catalyzed glycerolysis of sardine oil at different pressures. Reactions were 

performed at MR = 3:1 (glycerol:oil), T = 50ºC, enzyme loading 5 % wt. of substrates 

 

Temperature effect on glycerolysis of sardine oil by Lipozyme 435 

Operating temperature significantly influences enzyme-catalysed reactions by affecting both 

the enzyme activity and stability and the physical properties of the system such as viscosity 

and diffusivity [9]. To assess the effect of temperature on the kinetics of the glycerolysis of 
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sardine oil by Lipozyme 435 in SC-CO2 media and in a solvent free system, operating 

temperature has been varied from 40 to 90ºC. Initial substrate molar ratio (3:1 

glycerol:sardine oil) and enzyme loading (5% wt. of substrates) remained unchanged. For 

both reaction systems, the equilibrium conversion is essentially temperature independent, 

although, at 40ºC, 8 hours was not sufficient time to achieve equilibrium concentration. 

However, raising temperature from 40 to 90ºC resulted in an increase of the initial reaction 

rate, probably because of a higher kinetic energy of the molecules that leads to lower viscosity 

and higher diffusivity of the solvent and substrates. It must be highlighted that enzyme 

activity was not negatively affected by temperature even at 90ºC. Figure 3 compares the 

MAG production in a solvent free system and in SC-CO2 at two different operating 

temperatures, 50ºC and 80ºC. Neither reaction rates nor equilibrium conversion seem to 

improve when the reaction is performed in SC-CO2 media, probably due to the low solubility 

of SC-CO2 in the continuous oily phase. 

Figure 3. MAG production by lipase-catalyzed glycerolysis of sardine oil in (●) solvent free system and in (■) 

SC-CO2 media at (a) 50ºC and (b) 80ºC 

 

Comparison of lipid oxidation in both systems 

In this work, peroxide and anisidine values have been determined for the supplied refined 

sardine oil and the reaction mixtures obtained at the different temperatures assayed after 8 

hours of reaction in solvent free and in SC-CO2 media. To separate the lipid phase from the 

lipase and the remained glycerol, the whole sample was centrifuged at 5000 rpm and 35ºC 

during 10 minutes. The upper phase formed by reaction products was collected under N2 

atmosphere and stored at -18ºC prior to analysis. In Table 1, it can be observed the oxidation 

status for the initial oil and glycerolysis products obtained from 40 to 90ºC in SC-CO2 media. 

Anisidina values (around 24.0) are close to the limit but it can be considered “acceptable” and 

it seems to keep constant in the reaction products at different temperatures. Peroxide values 

however decreased from 40 to 90ºC. In fact, the lowest PV (3.6) was obtained at 90 ºC, the 

highest T assayed in this work. Further experiments should be done to verify this behaviour.  

Table 1. Oxidation status of glycerolysis products obtained in SC-CO2 media at different temperatures (3:1 as 

substrate molar ratio, 5% of Lipozyme 435 and 15.MPa) 

   Reaction Temperature (ºC) 

 Legal Max.* Initial oil 40 50 65 80 90 

PV (meqO2/Kg oil) 10 4.8 9.3 5.6 5.5 4.0 3.6 

AnV 30 24.2 23.5 23.1 23.6 23.4 24.8 

TOTOX 50 33.8 42.1 34.3 34.6 31.4 32 

*According to EPS (European Pharmacopeia Standard). 
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Similar results regarding oxidation status have been obtained in solvent free system in the 

same temperature range.  

CONCLUSION 

The emulsification of glycerol and oil, to carry out a glycerolysis reaction, improves the initial 

contact of the substrates with the lipase providing higher reaction rates in solvent free and in 

SC-CO2 media. The results show that pressure had no significant effect on conversion of TAG 

in the working pressure range. Otherwise, it has been demonstrated that an increase in 

temperature from 40 to 90 ºC produces higher reaction rates in both systems. It must be also 

highlighted that enzyme activity was not negatively affected by temperature even at 90 ºC. On 

the other hand, oxidation level of the products obtained under SC-CO2 is very similar to those 

obtained in solvent free at the same temperatures. Further studies of oxidation are being done 

for obtaining sound conclusions.  
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