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Abstract 

A new procedure is presented to analyse the performance of grid-tied PV facilities. It 

needs limited amounts of data that are easily sourced and is based on knowledge of the 

analyzed system and its mode of operation. The procedure is applied, in a case study, to 

compare real PV production at two 100 kWp grid-connected PV installations. Located 

in the same geographical region, the installation of these two facilities followed the 

same construction criteria -PV panels, panel support system and wiring- and the 

facilities were exposed to the same atmospheric temperature and solar radiation. They 

differ with regard to their inverter technology: one facility uses an inverter with an 

integrated transformer system and the other uses a transformerless inverter. The results 

show that the transformerless inverter system performed better than the isolated system 

by a factor of 1.2%, which, in economic terms, represents more than 2000 €/year.  

Keywords: PV facilities, performance, transformerless inverter, isolated inverter. 

 

1. INTRODUCTION 

Renewable energy sources, which includes PV, will be essential for Europe to achieve 

its all-important objectives of reducing greenhouse gases and to guarantee decentralised 

energy production from local sources [1]. The solar PV market has seen spectacular 

growth over the recently years, a trend that is forecast to continue over coming years. Its 

main drivers are the reduction of PV generation costs and the introduction of new 
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regulations to stimulate the use of renewable energy. The success of these policies relies 

on the cost-per-watt reduction of PV systems, in order to make PV energy more 

competitive with respect to traditional energy sources [2]. Importantly, there is huge 

potential for further reductions in the costs of generation: around 50% up until 2020. 

Depending on system size and irradiance levels, the cost of PV electricity generation in 

Europe could decrease from a range of 0.16-0.35 €/kWh, in 2010, to a range of 0.08-

0.18 €/kWh, in 2020 [3]. The profitability of these investments has become a priority 

for both government and industry, although financial subsidies may slowly be removed 

as grid parity is gradually reached. 

 

Various studies have been conducted on PV plant performance and its different 

elements [4-7]: the influence of PV module technology [8, 9], inclination [10, 11], 

inverter and control systems [12], sun-tracker system [13] and wiring [14] have been 

determined for experimental and real facilities,. They underline the relatively important 

role of all these elements in overall system performance. 

 

One of the fundamental problems in any analysis of the energy performance of real 

grid-tied PV systems is the lack of reliable operational data over extended periods. 

Although owners of PV systems have an inherent incentive to ensure that their systems 

perform well, many homeowners and construction firms lack the necessary information 

and expertise to carry out this task effectively [15]. Some studies have been performed 

at experimental facilities equipped for data collection [12, 16-23]. Data from owners or 

maintenance services are very scarce and real PV systems are not usually monitored.  

Measurement systems at most facilities only record total production, which is necessary 

for invoicing the energy that is produced. In some cases, data are recorded in the 

inverter system after the conversion stage. Poor knowledge of technical and constructive 



  

 

 3

features and their operational quality affects the visibility and image of renewable 

energy and hinders the optimization and predictive maintenance of PV plants that are 

already up and running. Very few studies using real data from the owners or operators 

have been published [24, 25]. The contribution of this study could help to fill this gap, 

encouraging owners and maintenance services to improve their facilities. 

 

Various methodologies guide the design of grid-tied PV facilities based on the 

optimisation of such parameters as array distribution on the plot, use of sun tracker 

systems, type of connection to the inverter, and distribution of electrical protection. In 

any case, the PV array is connected to the network through a power processor: the 

inverter system. The essential function of the inverter is to extract the maximum power 

from the PV array and process it with maximum efficiency for transmission under 

appropriate conditions to the AC network. This involves the use of a suitable algorithm 

for Maximum Power Point Tracking (MPPT). As few conversion stages as possible 

should be used, as well as an appropriate signal that meets safety and quality 

requirements for injection into the network [26].  

Different architectures have been described for PV inverters [27] and configurations for 

facilities [28] that offer reliable technical solutions, in view of local conditions. In all of 

them, the cost of the inverter together with the associated operating and maintenance 

costs, are between 10-15% of the total investment costs of a PV facility [12].  

 

Grid-connected PV facilities must satisfy the standards issued by the utility companies 

and network regulators. In Spain, inverter systems were used with a transformer and a 

low voltage tie to the grid, up until the entry into force of Royal Decree 661/2007 [29], 

which permitted network connections with transformerless inverters. The consequent 

proliferation of systems that need new power transformer units, where the owner of the 
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PV system is responsible for implementation and maintenance costs, has led to the 

introduction of transformerless inverters at a lower cost for the plant. An obvious 

question that arises is the impact of these changes on energy performance and 

installation costs.  

 

A new procedure is presented in this study to analyse the performance of grid-tied PV 

facilities. It needs limited amounts of data that are easily sourced and is based on 

knowledge of the analyzed system and its mode of operation. This procedure has 

previously been applied by the research group [24]. It is examined here in a case study, 

in order to conduct a comprehensive analysis of the influence of one of the key elements 

of PV facilities on their energetic and economic performance: the inverter system. 

Theoretical works [30] claim that transformerless inverter systems outperform isolated 

systems. Experimental measures are highlighted, as several factors affect the operation 

of an inverter that are difficult to predict by simulation alone. The present work uses 

two complete years of production data from real PV systems to test the extent to which 

this is true. Previous works [31, 32] have reviewed existing inverter technologies, but 

have not analysed the influence that the use of one system or another may have on 

energy efficiency and cost of installation.  

 

2. BACKGROUND 

PV inverters for inclusion in a transformer system at the conversion stage are classified 

as either isolated inverters, with galvanic isolation, or transformerless inverters. Kjaer 

et. al. [27] performed a comprehensive review of the requirements to be covered by the 

grid: detection of islanding operation, and system grounding of the inverter system, 

related to power quality, injection of DC current into the grid, among others. They also 

analyzed aspects related to cost, efficiency and the service life of the inverter. Galvanic 
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isolation causes transformation losses, estimated at between 1% and 2%. 

Transformerless inverters perform better than isolated inverters. Additionally, low 

frequency transformers (LFT) increase the weight and the cost of the system in 

comparison with transformerless inverters [30]. In most modern facilities, the trend is to 

use High Frequency Transformers (HFT), which increase the performance of the 

inverter by up to 2% [33]. New topologies of transformerless inverters with high 

efficiency and low leakage currents to ground have been proposed [34-37]. Electrical 

leakage to ground due to the structure of PV arrays is another important issue, 

especially for transformerless facilities, if one of the terminals of the array cannot be 

grounded [36]. Current leakage to ground can be very significant, causing radiated and 

conducted electromagnetic interferences, distortion of the network signal and further 

losses to the PV system. It is therefore important to avoid hazardous ground potential 

gradients in transformerless inverters [38]. Table 1 presents a compilation of the pros 

and cons of both types of inverters. 

 

Table 1 

 

The three most important disadvantages of transformerless inverters (possibility of 

injection of DC to the network, current leakage to ground, and electromagnetic 

interferences) are properly solved in the most modern systems [39]. Their evident 

prevalence in the European market is due to their advantages in terms of cost, weight, 

size and performance [36].  

 

 

3. THE FACILITIES 
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This case study involves two facilities (System 1 and System 2) located at the centre of 

the Spanish autonomous region of Castilla y León, at Herrera de Valdecañas (System 1) 

and at Magaz de Pisuerga (System 2), at a distance of 12.9 km from each other. The 

geographical coordinates of both systems are shown in Table 2. They stand on a gentle, 

south-facing slope that is conducive to natural air circulation, one of the most beneficial 

aspects for improving the panels’ electrical production in summer time. Hence, the two 

facilities are subject to very similar environmental conditions, in terms of temperature, 

radiation, humidity, and wind speed. The area benefits from very favourable 

atmospheric conditions. Solar irradiation is estimated at approximately 1,450 

Kwh/m2year[40]. The ambient temperature range is between 4ºC and 20ºC and the 

number of cloudy days is very low [41]. Figure 1 presents photographs of both 

installations.  

 

Figure 1 

 

The PV panels at both facilities are FOTONA model-180D [42] and their technical 

specifications are presented in Table 2. A mobile structure adjusts the position of the 

panels according to the time of year, in order to optimize electrical production. Its 

design also helps to minimize the visual impact of the facilities. The maximum height of 

the panels (1.80 m) usually occurs during winter time and they can be lowered at other 

times of the year, using a manual system that can vary their angle of inclination by 

between 5º and 50°. This adjustment is performed every 26 days or so. Figure 2 presents 

the panel support system and Figure 3, its highest and lowest positions. This panel 

support system is a standard fitting in all facilities run by the same company [24, 25].  

Figure 2  

Figure 3 

Table 2 
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The distribution of the panels in the plot determines the arrangement of the protection 

systems and wiring losses. Both facilities are structured in arrays composed of 14 PV 

panels grouped into 3 strings. Each string has a protection box, containing the protection 

elements (fuse and a 10 A switch). System 1 can generate 113.4 kWp with 630 modules 

arranged in 45 groups each with 14 PV panels. The second facility, System 2, can 

generate 110.8 kWp with 616 modules arranged in 44 groups. Groups of the array are 

connected in series that operate with a voltage of 515.2 volts (within the voltage range 

of the inverter). The current for each group is 4.89 A. 

 

System 1 is located in a rectangular plot symmetrically distributed from South to North. 

The facility is structured in 15 rows, each with 3 PV arrays. System 2 is arranged in 15 

rows with a different number of arrays: 3 rows of 1 array, 2 rows of 2 arrays, 3 rows of 

3 arrays and 7 rows of 4 arrays. The protection boxes are located within the plot to 

minimize wiring losses.  

 

Only one 100 kW inverter was selected for both systems: Sunny Central 100 SC 

(Indoor) [43] in System 1 and Sunny Central 100 HE (Outdoor) [44] for System 2. 

Their technical specifications are shown in Table 2. Both inverters are installed 

according to the manufacturer’s instructions and use the same technology, except that 

System 1 has a transformerless inverter and System 2, an isolated inverter.  

 

4. THE CASE STUDY 

4.1. The analysis procedure  

The proposed procedure involves a comparison that allows us to analyse the influence 

of different parameters on total plant performance, distributing data production at 

comparable quantitative intervals. It has previously been applied with some success 
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[24]. Total production data is used to analyse the performance of the facility. Detailed 

knowledge of wiring (location and connection of PV arrays, length and section of 

wiring) and of the technical specifications of both the inverter and the transformer 

systems is necessary.  

 

The study began by comparing total electrical production, reducing all data to 100 kWP.  

As very few facilities have radiation data in the exact area in which they are located, the 

first operation to perform is the estimation of global radiation levels in the area. In 

nearby facilities, it may be assumed that radiation will be the same for both plants. 

Several computer applications, such as PVGIS[40] or PVSyST[45], calculate average 

radiation levels at virtually any point on the map [46]. Nevertheless, the stochastic 

distribution of solar radiation can explain significant differences at nearby locations, 

although calculated radiation in this case was the same. An estimate of the actual 

incident radiation on an installation can be made from production data, the number of 

PV groups, the operating voltage and the maximum current, IPM, in Peak Sun Hours (the 

equivalent number of hours per day when solar irradiance averages 1000 W/m2, p.s.h.)  

 

Wiring losses were calculated as a function of the wiring and the distance between the 

inverter and the measurement system (AC wiring losses) and the distances between the 

panels and the protection boxes, and the distance from the protection boxes to the 

inverter (DC wiring losses), for the maximum value of the electrical current flowing 

from the facilities.  

 

Total production of each facility, PC.S.,  may be calculated from eq. (1):  

 

ACinverterDCPVpanelsSC LELELEPP ....... −−−=       Eq. 1 



  

 

 9

 

where  PPVpanels are the PV electrical production in panels, E.L.DC  the DC wiring losses, 

E.L.inverter, the electrical losses in the inverter system and E.L.AC, the AC wiring losses. 

Applying equation 1 to both facilities and subtracting the respective results allows us to 

study the differences in the qualitative behaviour of the items in the equation.  

 

4.2. Data analysis and classification 

 

The two facilities under study – System 1 and System 2 – are the property of 

SOLARSAN S.L., which provided the data to the research group for this case study: 

total electric production, measured by the inverter and by the measurement system from 

both facilities over two years, 2009 and 2011: a total of 720 days with information on 

all seasonal periods. The study began by comparing electrical production at two 

available points, inverter and measurement system, reducing all data to 100 kWP.  

 

The technical specifications of the wiring in System 1 and System 2 for electrical AC 

and DC wiring loss calculations are shown in Table 3. The results presented in Table 4  

are divided into DC and AC wiring loss. They take account of the estimated annual 

operating time for the area where the facilities are situated [40].  

 

Table 3  

Applying equation 1 to the facilities and subtracting, the difference in electric losses caused by 

the inverter,  E.L.inverter: 

 

ACDCSCPVpanelsinverter LELEPPLE ...... .. Δ−Δ−Δ−Δ=Δ                             Eq. 2 
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where,  E.L.DC and  E.L.AC represent the calculated differences in DC and AC electrical 

wiring losses, respectively.  PC.S. and  PPVpanels. represent the difference between total 

electrical production measured by the counter system and produced by the PV panels, 

respectively. From the manufacturer’s specifications, a lower performance is estimated 

for an isolated transformer, so that the calculated  E.L.inverter should be a positive value.  

 

As a first approximation, radiation [40] and temperature are assumed to be 

approximately the same at both facilities, given  their proximity. That proximity  means 

that they operate under very similar atmospheric characteristics [41]. This hypothesis 

also assumes equal production of PV panels ( PPVpanels=0).  Figure 4 shows the 720 days 

under analysis, 76.7% of which present a positive value of calculated  E.L.inverter. The 

number of days with positive values for the  E.L.inverter is greater than the number of days 

with negative values in all of the 24 months. Only in the months of lower production 

(December, January and February) do the number of days with positive and negative 

values converge. This confirms the working hypothesis, regardless of the electrical 

production facilities and the time of year under consideration. 

 

Figure 4 

 

To confirm the hypothesis that  PPVpanels=0, a detailed calculation of global radiation 

from the aforementioned procedure was performed. Differences in global daily radiation 

calculated from total production, working voltage, number of PV arrays and IPM were 

between 3.608 and -2.540 p.s.h. The data were classified by homogeneity and all days 

in each interval are analyzed. As Figure 5 shows differences in global radiation, for 

most of the days under study, calculated between both facilities are within the shortest 

ranges. Analysing the days in the interval (-0.25,1) p.s.h., the  E.L.inverter has a positive 
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value in 97% of cases. Only in 19 days was the performance of the transformerless 

inverter worse than the performance of the isolated inverter. Those days occurred when 

total production at the facilities was low, at below 100 kWh/day, so that both inverters 

were working at some distance from the MPPT.  

 

Figure 5 

 

As other factors will affect the variations in production at both facilities, a more detailed 

data analysis was conducted in which the calculated radiation levels were considered the 

same. For this study, days with differences in global calculated radiation lower than 

0.125 p.s.h have been used. A total of 205 data items were within this interval and 

 E.L.inverter was only negative on 15 days, , when total production was lower than 100 

kWh/day. For other values, assuming an average for the photovoltaic transformation of 

14 % efficiency, (performance level of the PV panel specified by the manufacturer), 

then  E.L.inverter> PPVpanels, regardless of the sign of both magnitudes. The difference 

between  E.L.inverter and  PPVpanels increased in the summer months, when production was 

greater, and was of the same order in the months of January and December, with very 

low production, when the inverters were operating outside the MPPT, a situation that is 

reflected in Figure 6. 

 

Figure 6 

Finally, a comparison between the values for  E.L.inverter and  PC.S (Figure 7) reveals that 

both magnitudes continued to follow the same trend. This fact means that the 

unexpected negative values of  E.L.inverter are related to large differences in PV panel 

production, due to significant differences in global radiation, when the analysis is not 

applicable.  
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Figure 7 

 

5. RESULTS AND CONCLUSIONS 

 A new procedure to calculate the performance of a grid connected PV system has been 

proposed. The procedure has been used to analyse two grid-tied PV plants over two full 

years of operation under real conditions. The analysis is based on a few parameters that 

are easily obtained from the management of the plant. We have studied the influence of 

two different inverters in use. Located in neighbouring geographic areas, both facilities 

experience similar meteorological conditions. The same criteria was followed for the 

installation of the two systems: use of the same PV panels and wiring layout, and 

minimization of electrical wiring losses before and after the inverter system. The 

facilities only differ with regard to the type of inverter they use: the inverter is from the 

same manufacturer and uses the same technology, except that System 1 has a 

transformerless inverter and System 2 an isolated inverter. A detailed analysis of the 

losses due to the wiring and the operation of the inverters has been completed on the 

basis of actual production data, measured at the inverter outlet and in the counter 

system. This analysis has shown that the transformerless inverter has habitually fewer 

operational losses than the isolated inverter, regardless of the radiation conditions and 

the time of the year under consideration. The performance of the transformerless 

inverter is estimated to be 1.2% higher than the isolated inverter. As annual production 

at each installation is valued at €60,000 over 30 years of operation, the use of the 

transformerless inverter implies a total saving of €20,000. The cost of the 

transformerless inverter is 10% lower than the isolated inverter and the associated costs 

of operation and maintenance and the occasional errors detected at both facilities are 
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equal over the two years of this study (100% operational days for both systems). The 

experimental results confirm the theoretical predictions discussed in the literature and 

presented in the introduction section, which claim that transformerless inverters present 

greater energy efficiency than the isolated inverter. We may therefore conclude that the 

transformerless inverter system is more profitable from both an economic and energetic 

point of view and that its installation will imply shorter repayment schedules.  
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Nomenclature section 

E.L.AC  AC wiring losses. 

E.L.DC DC wiring losses. 

E.L.inverter Electrical losses caused by the inverter system. 

HFT High Frequency Transformers. 

IPM Maximum power Current 

kWp kW peak 

LFT Low Frequency Transformers. 

MPPT Maximum Power Point Tracking. 

p.s.h. Peak sun hour 

PC.S. Total electrical production of each facility measured at the counter system. 

PPVpanels PV electrical production in panels. 

PV Photovoltaic. 

VPM Maximum power Voltage 

WP Peak power 

 E.L.AC Calculated differences in AC wiring electrical losses. 

 E.L.DC  Calculated differences in DC wiring electrical losses. 

 E.L.inverter Calculated differences in the inverter electrical losses 

 PC.S. Calculated difference in the total production. 

 PPVpanels Calculated differences in PV electrical production at panels. 

 

 

 

 

 



  

 

 17

Figure captions: 

 

Figure 1: (a) System 1 at Herrera de Valdecañas and (b) System 2 at Magaz de 

Pisuerga, Castilla y León. 

Figure 2: Panel support system. Detail of mechanical support. 

Figure 3: Panel support system. High and low panel positions. 

Figure 4: Distribution of days with positive and negative values of calculated  E.L.inverter 

throughout 2009 and 2011. 

Figure 5: Distribution at regular intervals of the differences in daily global radiation 

(p.s.h.) calculated between the two facilities: System 1 and System 2. 

Figure 6: Comparison between  E.L.inverter and  PPVpanels, (KWh/day), and total 

production of System 1.  

Figure 7: Number of days per month when the value of  PC.S and  E.L.inverter follow the 

same pattern (positive or negative). The figure reveals that incoherent values of 

 E.L.inverter are related to differences in PV panel production 
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Figures 

 

 

Figure 1: (a) 

 

Figure 1: (b) 
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Tables: 

 

Table 1: Advantages and disadvantages of isolated inverters and transformerless inverters for PV 

facilities 

Transformerless inverter Isolated transformer inverter 

- Stronger electromagnetic impact. 

- Higher performance 

- Lower weight and cost. 

- Small size 

- Additional electrical protection systems. 

- Lower Electromagnetic Interferences. 

- Isolated Input and output voltage  

- Lower performance 

 

 



  

 

 26

 

Table 2: Geographical positions and technical specifications of both systems case study 

 System 1 System 2 

Longitude 41º 59´ N 42º 03´ N 

Latitude 4º 24´ W 4º 12´ W 

Sea Level 720 m 829 m 

PV panels FOTONA 180D 

VPM (V) 36.8 36.8 

IPM   (A) 4.89 4.89 

WP   (W) 180 180 

Performance  15% 15% 

Tolerance  2-5% 2-5% 

Nº panels 630 616 

Nº groups 45 44 

Vgroup (V) 515.2 515.2 

Facility power (kW) 113.4 110.88 

Inverter 
SMA Sunny Central  

100  SC 

SMA Sunny Central  

100 HE 

WDC (kW) 105 103 

WP (kW) 115 115 

VDC (V) 100 1000 

IDC (A) 235 235 

Nº inlet  DC 3 3 

VAC (V) 400 300 

IAC (A) 145 193 

T. range (ºC) -20,+50 ºC -20,+50 ºC 

Performance (%) 96.6 98.5 

Trafo info With trafo Transformer-less 

Protection a) IP 20 IP 44, IP 54 

a) from IEC 62052-11:2003.   Electricity metering equipment (AC) – General requirements, tests and test conditions -- Part 11: Metering equipment 
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Table 3: Technical specifications of System 1 and System 2 wiring. 

  Length (m)  Section (mm2) Max. current (A) 

DC wiring 20 10 4.85 

DC wiring 20;75 10;50 4.85;73 

DC wiring 20;40 10;50 4.85;73 

DC wiring 15 50 73 

System 1 

AC wiring 2 70 145 

DC wiring 33 10 4.85 

DC wiring 26 10;50 4.85;73 

DC wiring 20 10; 50; 50 4.85;73;73 

DC wiring 13 10 4.85 

DC wiring 30 50 73 

System 2 

AC wiring 60 120 192 
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Table 4: Experimental data of electrical production of System 1 and System 2, measured at the inverter 

outlet and the counter system and the calculated DC and AC wiring losses. 

 

 

Total electrical production 

(inverter system) 

kWh 

Total electrical production 

/counter system 

kWh 

DC wiring losses 

kWh 

AC wiring losses 

kWh 

System 1 285112 275371 11118.4 1771.2 

System 2 280676 278017 29554.8 9611.5 
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A new procedure to analyse the performance of PV facilities is presented.  

It only requires limited amounts of data that are easily sourced. 

Data sets on production were collected over two complete years. 

The transformerless inverter outperforms the isolated inverter. 

 
 


