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Emerging pattern mining is a data mining task that aims to discover discrimina-
tive patterns, which can describe emerging behavior with respect to a property of
interest. In recent years, the description of datasets has become an interesting
field due to the easy acquisition of knowledge by the experts. In this review, we
will focus on the descriptive point of view of the task. We collect the existing
approaches that have been proposed in the literature and group them together in
a taxonomy in order to obtain a general vision of the task. A complete empirical
study demonstrates the suitability of the approaches presented. This review also
presents future trends and emerging prospects within pattern mining and the
benefits of knowledge extracted from emerging patterns. © 2017 The Authors. WIREs
Data Mining and Knowledge Discovery published by Wiley Periodicals, Inc.
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INTRODUCTION

Emerging pattern mining (EPM)1 is a data mining
task that searches discriminative patterns whose

support increases significantly from one class or data-
set to another.

Mined patterns can describe discriminative
behavior between classes or emerging trends amongst
datasets with respect to a property of interest by
means of an understandable representation.2 In this

way, EPM is halfway between prediction and
description because it describes some relationships in
data, which is common in unsupervised learning
tasks such as clustering, by means of a target variable
typically used in classification. In fact, EPM is inter-
esting for researchers in different fields like
chemistry,3,4 disease detection,5,6 bioinformatics,7–9

and others10 for its differentiating potential.
EPM belongs to the supervised descriptive rule

discovery (SDRD) framework.2 Similar tasks in
SDRD are subgroup discovery11,12 and contrast set
mining.13 Thanks to its nature, EPM can be used to
describe emerging or differentiating behavior with
respect to a property of interest in data. Hence, the
main objectives of EPM are the detection of differen-
tiating characteristics between classes and the discov-
ery of emerging trends in time-stamped data.1,14

This paper presents an overview of EPM from
the descriptive point of view. The main objective is to
demonstrate the descriptive capacity of patterns
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extracted by emerging patterns (EPs) algorithms,
according to the SDRD framework. In order to
achieve this objective, the paper is organized as fol-
lows: First, EPM is defined, where different kinds of
EPs and the main quality measures used are
described. The next section shows a taxonomy where
EPs algorithms are grouped into different categories.
This review is completed with a wide experimental
study over a battery of datasets. The results of this
work allow us to determine the suitability of different
approaches presented throughout the literature and
to determine new research lines in order to create
new proposals focused on description. Finally, the
trends and prospects of EPM are outlined.

EMERGING PATTERN MINING

The EPM problem was defined by Dong and Li1,14

as the task of finding patterns whose support
increases significantly from one dataset to another.

Formally, let I = {i1, i2, …, in} be a set of selec-
tors.15 A selector is a relational statement (Attri-
bute # Set), where Set is a value or a set of values
that belongs to the domain of the feature Attribute,
and # is a relational operator which could be =, 6¼,
2, =2, >, <, ≥, ≤. A logical complex (l-complex)15 is a
specific type of pattern which is a conjunction of
selectors. An example E contains an l-complex, or
the l-complex covers E, if E satisfies all the selectors
of the l-complex. An EP x is an l-complex whose
growth rate (GR)1 is higher than a given threshold
ρ ≥ 1. This GR is defined as:

GR xð Þ=

0, If SupD1
xð Þ = SupD2

xð Þ = 0,
∞ , If SupD2

xð Þ 6¼0^SupD1
xð Þ = 0,

SupD2
xð Þ

SupD1
xð Þ , another case ,

8>>>><
>>>>:

ð1Þ

where, SupD1
xð Þ is the support of x in the first data-

set (D1) and SupD2
xð Þ is the support with respect to

the second dataset (D2). Supports are calculated as

SupD1
xð Þ= countD1 xð Þ

jD1 j
and

SupD2
xð Þ= countD2 xð Þ

jD2 j ,

where, countDi xð Þ is the number of examples covered
by x in dataset i and |Di| is the number of examples
in dataset i.

The EPM was conceived from different points
of view in order to describe:

• Differentiating characteristics between classes
or datasets.

• Emerging trends in time-stamped datasets.

As an illustrative example, two EPs were taken from
the Mushroom dataset available at the UCI reposi-
tory16. This dataset contains two values for the class
(edible and poisonous)1:

X = f Odor = noneð Þ, G:Size = broadð Þ;
Ring:Number = oneð Þg

Y = f Bruises = noÞ G:Spacing = closeð Þ;ð
Veil:Color =whiteð Þg

The results obtained for each EP are presented in
Table 1. The pattern X is an EP from Poisonous to
Edible with a GR = ∞, while the other EP has a
GR = 21.4 from Edible to Poisonous. This means, on
the one hand, that instances matching pattern X only
appear in the edible class. On the other hand,
instances matching pattern Y are 21.4 times more
likely to appear in class poisonous than in edible. As
can be observed, both patterns are simple and
describe high discriminative characteristics for each
class.

These patterns can be represented as rules in
the form:

P :Cond!Class

where, Cond is a conjunction of selectors and Class
is the value of the target variable to analyze. The pre-
vious patterns could be represented as follows:

pattern Xð Þ : If Odor = noneÞ^ G:Size = broadÞ^ðð
Ring:Number = oneÞ!Edibleð

pattern Yð Þ : If Bruises = noÞ^ G:Spacing = closeð Þ^ð
Veil:Color =whiteð Þ! Poisonous

TABLE 1 | Results Obtained for Different Emerging Patterns (EPs)
in the Mushroom Dataset

EP SupPoisonous SupEdible GR

X 0.000 0.639 ∞
Y 0.814 0.038 21.4
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It is important to note that, by definition, patterns
obtained through EPs algorithms do not satisfy the
downward closure property,17 which states that sub-
sets of frequent patterns are also frequent. EPM rep-
resents an NP-Hard problem with respect to the
number of variables18 due to the nonapplicability of
such a property. Notice that the X pattern presented
in the previous example is an EP, while its sub-
pattern X = {(Odor = none)}, however, is not an
EP. In fact, none of its singleton sub-patterns are
EPs, so the downward closure property cannot be
applied anyway. The growth rate is based on the
change proportion between supports and not for the
current support. Therefore, a specific pattern,
i.e., with high number of selectors and generally with
low support, could obtain a higher change propor-
tion than a general pattern, which has a lower num-
ber of selectors and generally has higher support.
Thus, it is not possible to achieve an exact solution
in a reasonable time. However, throughout the litera-
ture EPM uses the downward closure property to
speed up algorithms as a pruning method, since low-
support EPs are considered irrelevant.

Context of Emerging Pattern Mining
Traditionally, in data mining there are two clearly
defined approaches: supervised and unsupervised
learning. In general, supervised learning refers to
tasks such as classification,19 regression,19 and tem-
poral series analysis and classification.20 Their main
aim is to predict the value of a property of interest in
new incoming instances. On the other hand, unsuper-
vised learning is referred to tasks such as summariza-
tion21 or association rule mining.22 In this case, the
aim is to describe relationships in data according to
different properties such as support or confidence,
and there is no interest property.

EPM attempts to build a descriptive model of
data with respect to a property of interest, i.e., using
supervised learning. Therefore, it is somewhere
between prediction and description, because it
describes some relationships between data with
respect to an interest property or class. This model is
built by patterns with specific characteristics in order
to describe emerging or discriminative behavior in
data. These descriptions should be general, simple,
and as precise as possible in order to be comprehensi-
ble for the experts. EPM belongs to the SDRD frame-
work, which includes similar tasks such as subgroup
discovery11,12 and contrast set mining.13 The main
difference between EPM and subgroup discovery is
that while subgroup discovery finds unusual distribu-
tions with respect to the property of interest, EPM

finds relationships in data with respect to the possible
values of the target variable. On the other hand, the
difference with contrast set mining is that while con-
trast set mining tries to find patterns with high differ-
ence of support, EPM tries to find patterns with a
high growth rate, which allows us to describe emerg-
ing tendencies in data.

Types of Emerging Patterns
EPM is considered an NP-Hard problem with respect
to the number of variables. To approximate this
problem efficiently, the authors have attempted to
reduce the number of patterns extracted. They try to
take only those patterns which describe some specific
and interesting relationships between variables. This
yields a more interesting and simpler set of patterns
which should be as precise as possible. These types of
patterns allow the description of a problem in an
easy and direct way.

Figure 1 presents the relationships between the
types of EPs most used throughout the literature,
which are summarized below:

• Jumping emerging patterns (JEPs). These are EPs
with a growth rate equal to infinity, i.e., the JEP
covers examples for a single class. They have a
great differentiator character between classes23:

JEPs = P jGR Pð Þ= ∞f g ð2Þ

• Minimal emerging patterns (MinEPs). A MinEP
is defined as an EP whose sub-patterns are not

FIGURE 1 | Relationships among different types of emerging
patterns (EPs).
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EPs any more. These kinds of patterns are the
most general EPs. They are interesting for
description because, in general, they contain a
low number of variables24,25:

MinEPs = P jGR Pð Þ ≥ ρ^∄S�P=GR Sð Þ ≥ ρf g ð3Þ

• Maximal emerging patterns (MaxEPs). This
type of pattern is the opposite of the minimal. A
MaxEP is an EP whose super-patterns are not
EPs any more. This produces very specific pat-
terns, which are very precise18:

MaxEPs = P jGR Pð Þ ≥ ρ^∄Q�P=GR Qð Þ ≥ ρf g ð4Þ

• Essential jumping emerging patterns (eJEPs).
These are also known as strong jumping emerging
patterns (SJEPs). This type of pattern is the inter-
section of the MinEPs set with the JEPs set24,25:

eJEPs = P jGR Pð Þ= ∞ ^∄S�P=GR Sð Þ= ∞f g ð5Þ

These kinds of patterns are easy to understand and
have high predictive power. They have been widely
used throughout the literature due to their descriptive
properties.

• Noise-Tolerant emerging patterns (NEPs). Also
known as constrained emerging patterns (CEPs).
This type is very close to JEPs but it allows us to
obtain precise patterns in noisy environments.
Formally, a NEP fromD1 toD2 must satisfy25,26:

NEPs = PjSupD1
Pð Þ ≤ δ1^SupD2

Pð Þ ≥ δ2
� �

, ð6Þ

where, normally, δ2 � δ1 in order to obtain patterns
with a high GR.

• JEPs with negation (JEPNs). They are an exten-
sion of the JEPs subset. These kinds of patterns
allow the representation of negated values, i.e., a
negated value represents the idea that such a
value does not appear in an example. Let I
denote the set of existing selectors and I = igi2I

�
the set of selectors with negated values. The new
set of possible selectors in a JEPN is defined as
P = p�I [I� j 8i2ℐ i2 p! i=2pg. Thus, JEPNs
are defined as27:

JEPNs = P jGR Pð Þ = ∞f g, ð7Þ

where, P = {x1, x2, … , xn | xn 2 P}. An example of
a JEPN could be the following pattern:

X = Odor = noneÞ, G:Size = broadð Þ;ðf
Ring:Number = oneÞð g,

which, represents those patterns without the value
none in the variable Odor, e.g., Odor = almond, and
contains (G.Size = broad) and (Ring.Number = one).

• Chi emerging patterns (Chi EPs). These are sim-
ilar to NEPs but introduce a χ2 statistical test in
order to improve the descriptive capacity of the
pattern. Chi EPs extracted are also considered
as significant. A pattern is considered Chi EP
when28,29:
• Sup(P) ≥ ξ, where ξ is the minimum support

threshold.
• GR(P) ≥ ρ, where ρ is the minimum growth

rate threshold.
• ∄S � P j (Sup(S) ≥ ξ) ^ (GR(S) ≥ ρ) ^ (

Strength(S) ≥ Strength(P)), where

Strength Pð Þ = GR Pð Þ
GR Pð Þ + 1Sop2 Pð Þ.

• jPj = 1 ∨ jPj > 1 ^ 8 S(S � P^| S | = | P |
−1))chi(P, S) ≥ η, where η = 3.84 is the
minimum threshold for the χ2 test and chi(P,
S) is calculated through a contingency table.

Despite the efforts of researchers in extracting only
those types of EPs that are relevant, most of these
kinds of patterns can be extracted at once with a sin-
gle execution of a mining algorithm. This is because
these patterns are interrelated. Figure 1 shows the
schema of these relationships. At the top level, there
are classical EPs.

Inside the EPs there are some interesting
groups:

• MinEPs and MaxEPs. As mentioned previously,
MaxEPs are the opposite of MinEPs and they
form two large groups. On the one hand,
MinEPs are the most general EPs. Their proper-
ties have been widely used throughout the liter-
ature due to an easier mining and good results
when joined with JEPs. On the other hand,
MaxEPs are very specific patterns with nor-
mally higher precision than MinEPs. However,
mining this kind of pattern is computationally
expensive.

• The ‘Jumping’ group. In this group there are
the JEPNs, the JEPs, and the SJEPs. As can be
seen, one is a subset of the other. The most
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general is the JEPNs due to the introduction of
the negated values. After that, JEPs are JEPNs
with only positive values. And finally, SJEPs are
minimal JEPs, and thus are also a subset of the
MinEPs. Moreover, some JEPs and JEPNs can
be MaxEPs. However, the number of patterns
with this condition is less than those JEPs or
JEPNs that are minimal.

• The noise tolerant group. NEPs and Chi EPs
belong to this group. The NEPs is a wide set of
patterns. In this set we can find some patterns
that are JEPNs, JEPs, or even SJEPs. Addition-
ally, the number of NEPs that can be maximal
is similar to those that are minimal because
more MaxEPs can fit with the conditions of
NEPs. In fact, NEPs are more likely to be Max-
EPs than MinEPs because MaxEPs tend to have
higher GR due to their precision. On the other
hand, Chi EPs is a subset of NEPs that tends to
be minimal due to the χ2 test joined with condi-
tion 3.

Quality Measures
EPM has been explicitly defined with respect to the
GR ((1)) measure, so it is one of the most important
measures of the task.1 However, it is necessary to
analyze the EPs from a new perspective. Knowledge
obtained from these patterns allows the experts to
learn the main discriminative characteristics between
classes, or emerging trends in data, easily. In fact, this
is more interesting when the amount of data grows,
because it is more difficult to obtain a general and
precise description of data in these environments.30

Therefore, an analysis of algorithms and patterns is
necessary in order to measure characteristics that ful-
fill these requirements of knowledge. These require-
ments are measured by means of the precision,
generality and interest of the patterns extracted.2

This assertion is key in order to bring precise and
concise knowledge to the experts.

EPs were conceived for analysis between data-
sets and, for extension, between classes of a dataset.
However, the number of these classes could be
greater than 2, i.e., multiclass datasets. An One-vs-
All (OVA)31 decomposition of the problem is neces-
sary in order to deal with multiclass problems. This
considers the positive class as the one represented in
the consequent part of the pattern and the negative
for the remaining classes, regardless of the number of
classes contained in the dataset.

It is necessary to show the confusion matrix
obtained for one pattern in order to determine its

quality.32 Table 2 represents a confusion matrix for a
pattern, where

• p is the number of examples correctly covered.

• p is the number of examples not covered by the
class.

• n is the number of examples incorrectly
covered.

• n is the number of examples not covered by the
nonclass.

• p + n is the number of examples covered by the
pattern.

• p + n is the number of examples not covered by
the pattern.

• Pos = p+ p is the number of examples for the
actual class.

• Neg = n + n is the number of examples for the
remaining classes.

• T = Pos + Neg is the number of examples for
the whole dataset.

For EPM, there are no measures that can esti-
mate the descriptive characteristics mentioned previ-
ously. However, for the SDRD framework there do
exist several measures for this objective. Then, it is
possible to measure the descriptive characteristics of
EPs according to the SDRD framework.33 A compar-
ative study of the behavior of several quality mea-
sures was presented in.34 In this study, the measures
were classified according to their main objective and
grouped following the Pearson correlation value. Fol-
lowing the classification performed in this study, the
most relevant measures for EPM are summarized
below.

Quality Measures Based on Precision
Quality measures that belong to this group quantify
the precision of a given pattern. In EPM, the acquisi-
tion of patterns with high precision is important in
order to obtain accurate knowledge. The most rele-
vant quality measures within this group are presented
below:

TABLE 2 | Confusion Matrix for a Pattern

Predicted condition

True condition Positive Negative

Positive p = tp p = fn

Negative n = fp n = tn

WIREs Data Mining and Knowledge Discovery Emerging pattern mining
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• Growth rate (GR). This is the measure that
defines an EP. It calculates the ratio between the
support of the pattern in the positive class and
the support in the negative. It is interpreted as
the discriminative power of a pattern1:

GR Pð Þ=

0, If
p
Pos

=
n

Neg
= 0,

∞ , If
p
Pos

6¼ 0^ n
Neg

= 0,

p�Neg
Pos�n , another case:

8>>>>><
>>>>>:

ð8Þ

Where Pos = p + p̄ and Neg = n + n̄ .

• Confidence (Conf ). This is defined as the ratio
of the predictive capacity of a pattern for the
positive class, i.e., examples correctly covered
among all examples covered35:

Conf Pð Þ = p
p + n

ð9Þ

This measure can be interpreted as the accuracy of
the pattern with respect to the examples it covers. It
only measures precision.

Quality Measures Based on Gain Accuracy and
Information
The quality measures of this group are considered as
hybrids because they have different objectives: to
improve the generality, precision, and interest of the
pattern. The most relevant quality measures are pre-
sented below:

• Weighted relative accuracy (WRAcc). Also
known as unusualness in the literature. It mea-
sures the trade-off between generality and accu-
racy gain36:

WRAcc Pð Þ= p +n
T

p
p + n

−
Pos
T

� �
ð10Þ

Where T = Pos + Neg. This value represents the bal-
ance between the coverage of the pattern, p + n

T

� �
and

its accuracy gain, i.e., the comparison of the accuracy
obtained with respect of a naive classification by con-

sidering all examples as positive p
p+ n −

P
T

� 	
. It is nor-

malized because the domain of this measure depends
on the class analyzed.37 A high value can be inter-
preted as a high balance between the generality of
the pattern and its confidence.

• False positive rate (FPR). This measures the per-
centage of examples incorrectly covered with

respect to the total amount of negative
examples38:

FPR Pð Þ= n
Neg

ð11Þ

It can be interpreted as the specificity of the pattern,
and normally this value must be minimized. This
measure can measure both precision and generality.

• True positive rate (TPR). Measures the percent-
age of examples correctly covered with respect
to the total number of positive examples39:

TPR Pð Þ = p
Pos

ð12Þ

This can be interpreted as the sensitivity of the pat-
tern. It combines precision and generality related to
the class.

Quality Measures Based on Interpretability
In SDRD, interpretability is defined as the ease of
analysis of the results by the experts. These measures
are normally related to the complete set of patterns
extracted and are calculated through:

• Number of patterns (# Patterns). This measure
indicates the number of patterns extracted from
a given problem.

• Number of variables of the antecedent (# Vari-
ables). This measure indicates to the experts the
complexity of the patterns extracted. The num-
ber of variables for a set of patterns is com-
puted as the average of the variables for each
pattern of that set.

In SDRD, a low number of patterns and variables
ease the analysis.

TAXONOMY FOR EPM ALGORITHMS

This section outlines a taxonomy for EPM algo-
rithms. It allows the identification of the strategies
followed by the algorithms in order to extract those
interesting subtypes of EPs presented previously. The
taxonomy has been divided into four different groups
of EPs algorithms. Each group contains methods
whose search strategies are similar. In addition, it
presents a brief description of each algorithm focused
on their advantages and drawbacks with respect to
descriptive induction. As a summary, Table 3 shows
the main algorithms for EPM developed under this
classification.
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Border-Based Algorithms
The concept of border was introduced within the first
definition of EPM by Dong and Li1,14 as an efficient
method of extraction of EPs. The border concept
allows a huge number of EPs to fit into a compact
representation. A border is defined as a pair hL, Ri,
where L, called left-border, is a set of MinEPs and
R, called right-border, is a set of MaxEPs. This pair
is considered a valid border when:

1. L and R are both antichains. A set of patterns
S is an antichain, if 8X , Y 2 S , X ⊈ Y
^ Y ⊈ X.

2. Each element of L is a subset of some element
of R, and each element of R is a superset of
some element of L.

These conditions allow the border to represent a con-
vex space within the EP space where those patterns
between L and R, i.e., those S such that X � S � Y
where X 2 L and Y 2 R, are all EPs. Most of the
methods within this approach use the Border-Diff
procedure as their core function in order to include
the borders that represent all EPs whose GR is
greater than the threshold.

Figure 2 presents the general schema of
border-based algorithms. First, it extracts the

borders representation of patterns that fulfill some
constraints on each dataset. EPs are those patterns
that are in the difference set of these borders. In
order to calculate this difference efficiently, the
Border-Diff procedure is executed. It handles only
its borders without generating any candidate set.
Within this group are the initial algorithms devel-
oped for the task.

The most important algorithms in this group are:

• MBD-LLBorder.1 This is the pioneering algo-
rithm for the extraction of EPs. It extracts the
large borders that represent the patterns whose
support is greater than a given threshold on
both datasets using the Max-Miner algorithm.52

After that, it performs the Border-Diff proce-
dure several times in order to obtain the differ-
ence of these large borders. All patterns with a
GR greater than a given threshold are returned.

• JEPProducer.41 This method obtains the border
representation of all JEPs. First, it obtains the
horizontal border of each dataset. A horizontal
border is represented as h{;}, {R1}i and it con-
tains all nonzero support patterns. Then, in
order to obtain JEPs it executes the Border-Diff
routine to get the border which represents the
difference of these sets represented by the hori-
zontal borders. It also contains incremental
operators in order to keep the JEPs border rep-
resentation without generating the horizontal
borders when new instances arrive.

• DeEPS.43 This method is based on lazy learn-
ing, i.e., the training data is the model itself. For
each new test instance, those selectors that do
not belong to the test instance are removed
from the model. After that, the JEPProducer
procedure is applied on this reduced dataset in
order to obtain the border-based representation
of a set of JEPs for each class that covers the
test instance. The resulting set of EPs is
obtained by repeating this procedure for each
test instance and then removing duplicates. This

TABLE 3 | Classification of the Main Algorithms for Emerging
Pattern Mining (EPM) Developed in the Literature

Border-based algorithms Tree-based algorithms

MBD-LLBorders1 Tree-based JEP-C40

JEPProducer41 BCEP42

DeEPS43 iEPMiner44

Decision tree-based algorithms StrongJEP-C25

LCMine45 Top-K46

CEPMine47 DGCP48

EP RandomForest49 Evolutionary fuzzy
system-based algorithms

FEPM50 EvAEP51

FIGURE 2 | General schema of a border-based algorithm.
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is currently the reference algorithm in this
group for EPM.

In summary, the border-based strategy is a first
approach to handle EPM efficiently. However, the
complexity of the search space is exponential to the
number of variables in the worst case. For this rea-
son, JEPs are used in order to reduce the search
space. Additionally, JEPs, which are very discrimina-
tive, are very sensible to noise. The border-based rep-
resentation makes the EPs obtained by this method
hard to comprehend by humans. In fact, the number
of patterns obtained when expanding the borders,
i.e., the representation of all patterns within the bor-
der, is huge if elements of L have many fewer vari-
ables than those on R. So, the descriptive properties
of EPs are almost useless in this representation.

Tree-Based Algorithms
The border-based strategy has an exponential com-
plexity. The algorithms in this group represent the
training data in a tree structure in order to efficiently
mine EPs. The general mining approach that follows
these algorithms is described in Figure 3.

In general, the nodes of the tree consist of a
selector and the occurrence counts of the pattern
formed by the path from the root to the place of the
node. The root of the tree is normally a null node
and the sub-tree of each child is called a component
tree (CT). The selectors are sorted by a measure,
which normally is GR. This keeps the most discrimi-
native selectors closer to the root in order to perform
a faster mining. Also, different pruning strategies can
be performed in order to obtain only those EPs
which are of interest. This strategy has the advantage
of a faster mining than border-based methods.

However, this general scheme forces the reinsertion
of instances when processing the second and consec-
utive CTs in order to keep the correct counts of pat-
terns.25 This normally creates a large bottleneck
when mining. The most important algorithms within
this group are:

• Tree-based JEP-C40 (TBJEP-C). This is the first
method with this approach. In fact, this method
can be considered as a hybrid method, because
it uses the Border-Diff procedure to obtain
JEPs. The aim was to improve the mining time
of the JEP-Classifier algorithm53 which is a clas-
sification algorithm on top of JEPProducer. To
achieve it, it uses a modification of the FP-Tree
data structure54 to allow the use of labeled
data. Each node of the tree contains the ele-
ments of the general scheme presented in
Figure 3 and a link to another node in the tree
with the same selector. The method allows six
different ordering methods for the selector
when they are introduced in the tree: frequency,
GR, inverse GR, hybrid, which is a weighted
average between frequency and GR, least prob-
able in the negative class and most probable in
the positive class orderings. After all examples
are inserted, the mining is performed by a
depth-first traversal until a node with zero
counts in one class and nonzero counts in the
other is found. This node is called the base
node. Then, the method collects those negative
instances which contain the selector in the root
and the selector in the base node by means of
the node-links. After that, the JEPs are
extracted by implementing the Border-Diff pro-
cedure using the JEP in the base node and the

FIGURE 3 | General algorithmic schema of a tree-based algorithm.
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negative instances collected. The experiments
show a speed-up of 2 and 20 times with respect
to the border-based algorithm. Moreover, it
allows a minimum support-threshold pruning.

• BCEP.42 This method uses the Pattern Tree (P-
Tree) structure24 to mine the complete set of
SJEPs. The tree is built by sorting the selectors
by GR. The mining strategy is performed by a
depth-first traversal finding SJEPs. The tree is
pruned by means of a minimum support thresh-
old or when a JEP is found, in order to obtain
only SJEPs. After that, the method keeps only
the most important SJEPs with a filtering strat-
egy similar to the Token Competition proce-
dure.55 In this procedure, only SJEPs that can
cover examples that are not already covered by
better-ranked patterns are kept.

• iEPMiner44 (iEPM). This uses the P-Tree data
structure to store the dataset. The objective of
this algorithm is to mine Chi-EPs. The selectors
are sorted by GR when building the tree. The
mining procedure follows a depth-first strategy.
On each node, conditions 1, 2, and 4 of Chi-EPs
are checked. If the pattern fulfills these condi-
tions, it is saved. The pruning strategy is based
on condition 4. If the value of the χ2 test
between the node and the candidate child node
is less than 3.84, then the addition of the new
selector does not significantly change the behav-
ior of the EP, because it is independent with a
95% of confidence. In addition, the behavior of
supersets that contains this selector will be the
same, so the sub-tree is pruned. After finishing
the tree traversal, condition 3 is checked over all
patterns mined in order to obtain only Chi-EPs.

• StrongJEP-C25 (SJEP-C). This algorithm mines
SJEPs with a support greater than a given
threshold. To obtain these patterns, it uses a
new data structure called a Contrast Pattern
Tree (CP-Tree) which is similar to P-Tree, but
without node-links. The algorithm builds the
tree sorting the selectors by support ratio in des-
cending order. This measure is defined as

SuppRatio Pð Þ = max TPR Pð Þ
FPR Pð Þ

FPR Pð Þ
TPR Pð Þ

� 	
: The use of

this measure allows patterns to be obtained for
both classes in a single execution. The method
mines the tree in a depth-first traversal, check-
ing if the node contains zero-counts in one data-
set and nonzero counts in the other, and prunes
when true. In addition, it prunes when the node
has a support value for both datasets lower
than the threshold.

• Top-k minimal JEPs46 (Top-k). This is an
improvement of the StrongJEP method which
only keeps those k patterns with the highest
supports. The idea is that SJEPs with high sup-
port are the most discriminative patterns. The
mining scheme is similar to SJEP-C. However,
the pruning strategies are different. Top-k uses
two pruning strategies: first, on each node it
checks if the pattern associated to the node is
considered D-discernibility minimal, i.e., let
X be the pattern associated to the node, X is D-
discernibility minimal if and only if
8Y�XsuppD

0
(X) < suppD

0
(Y), where suppD

0
(X)

is the support of pattern for the negative class.
If the node is not D-discernibility minimal, it
prunes. In addition, a minimum support thresh-
old pruning is used. This threshold grows
dynamically by storing the patterns in a heap
by nonascending support. Then if the number
of elements in the heap is equal to k, the sup-
port threshold is raised to the support of the
first element of the queue plus one. This allows
an important pruning in the CP-Tree, obtaining
the best k patterns much faster than SJEP-C.

• DGCP-Tree48 (DGCP). This uses a new data
structure called a Dynamically Growing Con-
trast Pattern Tree (DGCP-Tree). The counts of
a node are stored by the BSC-Tree structure.56

This structure allows efficient storing of the bit
string which represents the examples covered by
a selector. The main characteristic of this
method is that the mining of EPs is performed
during the construction of the tree. This mining
is performed in two phases: First, the singleton
selectors and BSC-Tree for both classes are
identified and constructed for each one. In addi-
tion, they are sorted by GR and singleton SJEPs
are mined. After that, the tree grows by copying
those right sibling nodes as the children of the
node are being processed, if they cover new
instances and their support is greater than the
threshold.

The mining heuristic, in almost all cases, is based on
a minimum support threshold pruning in order to
obtain subsets of MinEPs. In fact, most of them try
to mine SJEP with high support. The main idea
behind this prune is that patterns with very low sup-
port are completely useless and can be considered as
noise in data. This heuristic smooths the strong sensi-
bility of EPs to noise. This is an advantage because
they reduce the search space. Thus, they are less com-
plex and faster than the border-based approach. In
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fact, this approach has been widely used in the litera-
ture. Nevertheless, the heuristics used by these algo-
rithms for the extraction of SJEPs does not guarantee
that all patterns extracted are SJEPs.

Decision Tree-Based Algorithms
Algorithms in this section induce a set of decision
trees from training data. These decision trees are
modified by introducing more candidate splits, where
operators such as =, 6¼, ≤, ≥, <, >, 2, =2 are used. The
use of these operators allows the handling of numeric
attributes directly without a previous discretization
phase, which must be performed with border-based
or tree-based approaches. Moreover, the number of
EPs and their interpretability is improved by the use
of these operators.

The general working schema for generating a
decision tree-based algorithm is outlined in Figure 4.

The trees generated can be limited in depth in
order to speed up the mining. The extraction of EPs
from these trees can be performed by means of tra-
versing all the paths of the tree, or performing addi-
tional operations on the divided search space that
produces each tree. Algorithms that follow this
approach are:

• LCMine.45 This is the first algorithm that uses
this approach. It generates a fixed number of
trees, specified by the user. To generate a tree it
is necessary to provide a vector (k1, k2, … ,
kl), where l is the maximum depth of the tree
and ki is a number which indicates that the kth
best split in the ith level is picked up. The infor-
mation gain measure used is entropy.57 After
that, a post-processing filter is executed in order
to reduce redundancy.

• CEPMine.47 This is an improvement of the
LCMine. This algorithm induces EPs from a set
of C4.5 decision trees.57 The information gain

is weighted with respect to each training
instance. In addition, the extraction of EPs is
performed when the candidate splits are gener-
ated. In this case, whenever a split contains at
least μ objects in one class and at most one in
the other one, a pattern is generated even if the
split is not considered the best one. After that,
the best k splits are expanded, updating object
weights after each induction. The tree stops
when no patterns are extracted.

• EP random forest49 (EP-RF). This is a modifica-
tion of the Random Forest58 algorithm. The
algorithm generates the decision trees in the
same way as Random Forest. In this way, each
simple decision tree creates a partitioning of the
space, where instances are classified by the Ran-
dom Forest algorithm. EP-RF takes the same
leaf node with the same index for all generated
trees. After that, examples that are within the
space delimited for each tree are taken and
divided into positive and negative. Once col-
lected, EPs are extracted by executing the
MBD-LLBorder algorithm described in this
taxonomy.

• FEPM.50 This is a modification of LCMine in
which the tree induction method obtains fuzzy
EPs instead of crisp EPs. In this way, the calcu-
lus of the information gain for each split is
adapted to deal with fuzzy logic,59,60 which
takes into account fuzzy memberships functions
and fuzzy hedges. Also, splits are generated tak-
ing into account fuzzy hedges, where each
hedge is considered a potential split. A fuzzy EP
(FEP) is a modification of traditional EPs which
use fuzzy logic in order to represent numerical
variables. The use of fuzzy logic is performed
through linguistic labels, which gives an inter-
pretation of numerical variables which is closer
to human reasoning.61 An example of FEP is
represented below:

FIGURE 4 | General schema of the building of a decision tree for the extraction of emerging patterns (EPs).
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X : Odor = noneð Þ, Size2Broadð Þ;f
Ring:Number2 Slightly LowÞð Þð g, ð13Þ

where, Size 2 Broad and Ring.Number 2 Low are
numeric variables whose values are represented by
the linguistic labels Broad and Low with the fuzzy
hedge Slightly, respectively. Odor = none is a cate-
gorical variable.

Methods following this approach can deal with
numerical attributes directly, so they evade a previ-
ous discretization phase. This avoids the loss of
knowledge of the problem. Moreover, the addition
of operators such as inequalities, etc. or the use of
fuzzy logic on numeric variables obtains patterns
which are more interpretable.

Evolutionary Fuzzy System-Based
Algorithms
This type of algorithms makes use of evolutionary
algorithms62 together with fuzzy logic under the
name of evolutionary fuzzy systems (EFSs).63 The
objective is to find very descriptive FEPs. A general
schema is presented in Figure 5.

First, the algorithm initializes a population with
candidates EPs through codification of the ‘chromo-
some = pattern’ approach.64 In this approach, an
individual represents a potential EP. This population
is evolved in order to find high quality patterns. The
evolutionary process is guided by a fitness function
which measures the quality of an individual. This
function could be one of the quality measures pre-
sented previously or an aggregation of measures in
order to find high descriptive patterns. Finally, those
individuals with the highest fitness value are the EPs
returned to the expert.

This group of algorithms for EPM consists
nowadays of only one algorithm: EvAEP.51 This
method is based on a mono-objective evolutionary
algorithm.65 EvAEP follows an iterative approach
where the evolutionary process is repeated until a
stopping criterion is reached. The evolutionary pro-
cess returns the best pattern in the population upon
reaching the stopping criterion. The genetic operators
used are a two-point crossover operator and a biased
mutation operator.

The main advantages of this kind of method
with respect to the other groups are that the search
strategy performs an efficient global search through
the space. Execution time can be adapted in order to
find a good balance between execution time and
quality of results. The representation approaches and
genetic operators can be easily adapted in order to

ease this search. In addition, it is possible to improve
multiple objectives by means of multi-objective evolu-
tionary algorithms (MOEAs).66,67

EXPERIMENTAL STUDY

This section outlines the results of an experimental
study carried out in order to determine the quality of
the patterns extracted for each method focused on
descriptive induction. The behavior of a pattern with
respect to this approach is determined by quality
measures such as WRAcc, Conf, GR, TPR, and FPR.
These measures combine several factors such as inter-
pretability, precision and differentiation between sets,
amongst others. Additionally, the number of patterns
and the average number of variables are analyzed. In
order to achieve this objective the study is structured
as follows: first, the experimental framework is pre-
sented, where datasets, algorithms, and statistical
procedures used are shown. Then, the analyses of the
results of the study are presented below.a

Experimental Setup
In this section, the experimental setup is shown. First,
the characteristics of the datasets used are presented.
After that, the EPs algorithms and their parameter
configuration are shown. Finally, a brief explanation
of the statistical tests used in the study is presented.

Datasets
The algorithms in this study are compared with the
use of 36 datasets coming from the UCI Reposi-
tory.16b This is a compilation of well-known problems
which is widely used throughout the literature. Data-
sets are split using a distributed optimally balanced
stratified cross-validation.68 These partitions of data
have been taken from the KEEL Repository.69c Details
of these datasets are summarized in Table 4, where
the number of attributes together with the number of
instances and classes for each one are shown.

Some algorithms work only with nominal vari-
ables. Thus, a discretization of these datasets is per-
formed in order to work with these methods. The
discretization process used is the Fayyad discretize.70

Parameters and Base Algorithms
The parameters of the algorithms analyzed are pre-
sented in Table 5. Parameters were set according to
the values suggested by the author of each method in
their corresponding papers. For iEPM and BCEP, the
authors do not recommend any parameters. In this
case, parameters are chosen in order to be as similar
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as possible to the other algorithms to have a fair
comparison.

Due to the nondeterministic character of the
EvAEP algorithm, it has been executed three times
with different seeds. In this way, the results of EvAEP
are the average results of the three executions on the
five partitions.

There are no public implementations of any of
these algorithms. Therefore, the algorithms have
been implemented following the description in the
paper in which it is presented. They have been

developed in Java, and are grouped in a framework
called EPM-Framework, publicly available in a
website.d

Evaluation Setup
The objective of this study is determination of the
descriptive capacity of the patterns extracted. In par-
ticular, it is necessary to know if the descriptive
knowledge obtained is as general as possible in order
to be simple and interpretable. Also, the knowledge

FIGURE 5 | General schema of an evolutionary fuzzy system (EFS) algorithm for the extraction of emerging patterns (EPs).

TABLE 4 | Datasets Used in the Study, Including the Number of Attributes, the Number of Examples and the Number of Classes for Each One

Name # Attributes # Examples # Classes Name # Attributes # Examples # Classes

Appendicitis 7 106 2 Led7digit 7 500 10

Australian 14 690 2 Magic 10 19,020 2

Balance 4 625 3 Monk-2 6 432 2

Bands 19 365 2 Mushroom 22 5644 2

Breast 9 277 2 Newthyroid 5 215 3

Bupa 6 345 2 Page-blocks 10 5472 5

Car 6 1728 4 Phoneme 5 5404 2

Cleveland 13 297 5 Pima 8 768 2

Contraceptive 9 1473 3 Saheart 9 462 2

Crx 15 653 2 Segment 19 2310 7

Flare 11 1066 6 Tae 5 151 3

Glass 9 214 7 Tic-tac-toe 9 948 2

Haberman 3 306 2 Titanic 3 2201 2

Hayes-roth 4 160 3 Vehicle 18 846 4

Heart 13 270 2 Vowel 13 990 11

Hepatitis 19 80 2 Wine 13 178 3

Housevotes 16 232 2 Wisconsin 9 683 2

Iris 4 150 3 Yeast 8 1484 10
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obtained should be as precise as possible. The final
objective of EPM is the description of the underlying
phenomena in data. For this aim, the measures stud-
ied are those presented in Quality Measures section,
i.e., WRAcc, GR, Conf, TPR, FPR, number of pat-
terns, and number of variables. It is important to
remark that, following the results of the study pre-
sented in Ref 34, WRAcc, GR and Conf are not cor-
related. However, TPR and FPR are highly
correlated with GR. TPR is introduced to measure
the generality of the patterns obtained, which is key
in descriptive induction. On the other hand, FPR is
introduced in order to measure the precision of pat-
terns extracted, which is also a key point.

Each algorithm is evaluated over each dataset
following a distributed optimally balanced stratified
cross-validation68 with five folds which tries to divide
the dataset into folds, keeping the data distribution
as similar as possible. The advantages of using this
approach are:

1. Using cross-validation allows the calculation of
the quality measures over test data. Descriptive
knowledge in EPM should be general because
it describes the underlying phenomena of the
problem. Therefore, the evaluation of EPs on
test data allows us to determine whether
knowledge extracted is adapted to the underly-
ing phenomena.

2. Quality measures related with precision com-
ponents are calculated properly.

3. The robustness of the different kinds of EPs
extracted is measured because each fold slightly
changes the distribution of data.

Methods are compared with a single value for quality
measure and dataset. For example, ‘BCEP algorithm
on WRAcc measure gets an average value of 0.6 on
appendicitis dataset.’ This allows a simple compari-
son between methods for each quality measure stud-
ied. This value is calculated averaging, for all mined

TABLE 5 | Algorithms Used and Their Parameters Configuration for the Experimental Study

Algorithm Parameters

DeEPs α = 0.12

TBJEP-C1 Ordering = hybrid; α = 0.3; Pattern Max Length = −1

BCEP1 Minimum support = 0.01; Minimum growth rate = 40

iEPM1 Minimum support = 0.01; Minimum growth rate = 10; Minimum χ2 = 3.84

SJEP-C1 Minimum support = 0.01

Top-k1 k = 20

DGCP1 Minimum support = 0.01

LCMine max of items = 5; growth rate = 10; subset relation = superset; maximum depth = 10; maximum variability
per level = 5, 4, 3, 2

CEPMine max of items = 5; growth rate = 10; subset relation = superset; maximum depth = 10; maximum iteration = 100

EP-RF max of items = 5; growth rate = 10; subset relation = superset; maximum depth = 10; tree count = 100

FEPM max of items = 5; growth rate = 10; subset relation = superset; maximum depth = 10; tree count = 100;
number of labels = 4; hedges: very, somewhat, extremely, little, slightly, positively, generally.

EvAEP number of labels = 3; number of evaluation = 10,000; population length = 100; crossover probability = 0.6; mutation
probability = 0.01

1 The method can only deal with nominal variables.

TABLE 6 | Best Patterns Filters for Each Quality Measure

Algorithm WRAcc Conf GR TPR FPR Selected

BCEP Conf Conf Conf Conf Conf Conf

CEPMine Min Conf Min Min Conf Min

DeEPS Conf Conf Conf Conf Conf Conf

DGCP Min Conf Conf Min Conf Conf

EP-RF Min Min Min Min – Min

EvAEP – – – – – –

FEPM Conf Conf – Conf Conf Conf

iEPM – – – – – –

LCMine Min Min Min Min Min Min

SJEP-C Min Min Min Min Conf Min

Top-K Conf Conf Conf Conf Conf Conf

TBJEP-C Conf Conf Conf Min Conf Conf

The selected filter for each algorithm appears in the ‘Selected’ column. Conf,
confidence filter; Min, MinEPs filter; and –, no filter. Results obtained with
significant differences with respect to others filters employed are in bold.
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patterns, the values of the quality measure using the
testing datasets.

Statistical Tests for Performance
Comparison
The analysis of this study is supported by the Fried-
man test.71 This test is a nonparametric statistical
procedure for the comparison of more than two algo-
rithms or observations. The null hypothesis is that
the median of the observations are equal. The signifi-
cance level considered in this study is α = 0.05. In the
case of significant results, it is assumed that there are

significant differences between the algorithms. These
differences can be assessed by a post-hoc method.
The post-hoc method used in this experiment is the
Shaffer method.72 After that, if two algorithms have
significant differences the best of both is determined
by the algorithm with a lower Friedman rank value.
This procedure allows us to define safely the pairwise
comparison of this kind of studies.

In the tables presented in this study, a
highlighted result means that there are significant dif-
ferences, i.e., P-value ≤ α. For the comparison
between algorithms or observations, like the one pre-
sented in Table 7, the Friedman and Shaffer

TABLE 7 | Summary of Friedman and Shaffer Test for the Different Measures Studied

WRAcc Conf GR

Algorithm Ranking + � Algorithm Ranking + � Algorithm Ranking + �
FEPM 2.7500 9 11 iEPM 3.1388 7 11 iEPM 2.9861 7 11

EvAEP 3.2500 8 11 FEPM 3.1388 7 11 EvAEP 3.6666 6 11

iEPM 3.7638 6 11 Top-K 4.7777 4 11 Top-K 4.8472 4 11

TBJEP-C 5.5833 3 10 BCEP 5.6527 2 11 TBJEP-C 5.0138 4 11

CEPMine 6.1666 1 9 DGCP 5.6666 2 11 BCEP 5.44861 3 11

Top-K 6.2083 1 9 TBJEP-C 6.2638 2 9 DGCP 6.0416 2 10

BCEP 6.9166 1 8 CEPMine 6.7777 1 9 CEPMine 6.4444 1 9

DGCP 7.7916 0 8 EvAEP 6.7777 1 9 FEPM 7.3888 1 9

EP-RF 8.2777 0 8 SJEPC 8.0000 0 8 SJEPC 8.2083 0 7

LCMine 8.3333 0 7 EP-RF 8.1666 0 8 EP-RF 8.2777 0 6

SJEPC 8.6805 0 7 LCMine 9.1111 0 5 LCMine 8.7778 0 6

DeEPS 10.2777 0 4 DeEPS 10.5277 0 3 DeEPS 10.5277 0 3

TPR FPR

Algorithm Ranking + � Algorithm Ranking + � Algorithm # Patterns # Variables

EvAEP 2.0555 9 11 DeEPS 2.8055 6 11 BCEP 90.5151 4.0368

FEPM 2.6944 8 11 DGCP 2.9166 6 11 CEPMine 505.8500 3.6209

iEPM 3.5833 6 11 SJEPC 3.8472 5 11 DeEPS 2257.0444 6.6976

TBJEP-C 4.9861 4 10 Top-K 4.8055 4 11 DGCP 91.6758 1.9042

CEPMine 6.0000 4 9 BCEP 5.1250 4 11 EP-RF 2503.4888 5.1740

Top-K 6.1666 4 9 EP-RF 5.4722 4 11 EvAEP 10.9444 3.7036

BCEP 7.1527 1 8 LCMine 5.8888 4 9 FEPM 139.8722 2.8964

DGCP 7.5000 1 8 iEPM 7.0972 2 8 iEPM 40.8375 1.9499

EP-RF 8.8611 0 5 CEPMine 9.0555 0 4 LCMine 864.5555 5.0941

LCMine 8.9166 0 5 TBJEPC 9.2916 0 4 SJEPC 17043.2600 5.2436

SJEPC 9.2500 0 5 FEPM 10.1111 0 3 Top-K 40.5818 2.7690

DeEPS 10.8333 0 3 EvAEP 11.5833 0 3 TBJEP-C 367.9636 2.3565

# Patterns and # Variables show the average value of the measure.
The values in bold mean the best values obtained.
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tests,71,72 are joined and values are aggregated in
order to facilitate the analysis. The table is outlined
as follows: for each algorithm, the Friedman rank is
obtained and methods are sorted by this value in
ascending order. After that, it is necessary to deter-
mine whether the differences obtained in the ranking
are significant. Here two values are shown, the num-
ber of algorithms is significantly better than (+) and
the number of methods is equal to or better than (�).
‘+’ values are calculated as the number of algorithms
whose P-value in the Shaffer test are lower than α
and whose Friedman rankings are higher than the
method analyzed. The ‘�’ values are calculated as
the number of algorithms whose rankings are higher
than the method analyzed or whose P-values are
higher than α. Therefore, one algorithm in the table
is significantly better than the last ‘+’ algorithms in
the table, and it is statistically equal to the nearest
(‘�’ - ‘+’) algorithms, beginning at the position (‘+’
+1). More information about these statistical proce-
dures can be found in Ref 73

The results have been obtained by means of the
scmamp74 package from R statistical software.75

ANALYSIS OF RESULTS

This section presents the results of the study carried
out as follows:

1. The huge search space and the amount of pat-
terns extracted makes EPM a problem in itself
from the descriptive point of view. Thus, in
order to reduce the number of patterns keeping
only those with high quality, some filter strate-
gies are proposed and analyzed. These strate-
gies are:

• The original set of patterns.

• The set of MinEPs. Throughout the literature,
these kinds of EPs have been widely used due to
their ease of mining and their discriminative
power as SJEPs.

• The set of MaxEPs. This set of patterns contains
the most specific patterns. It is thus interesting to
show their behavior against MinEPs, which are
the opposite.

• The set of EPs whose confidence is greater than
60%. Patterns with high confidence are important
in order to obtain precise knowledge. Their study
is interesting in order to show if precise patterns
are also descriptive.

2. In the next phase, the best filter strategy consid-
ered previously for each method is employed in

order to determine which of the proposed
approaches fits better with descriptive induc-
tion objectives. To do that, a comparison
against all algorithms is carried out for each
quality measure analyzed. This allows us to
determine the best approach for each measure
and give some directions in order to perform
future research on those approaches that fit
best with the objectives.

Filtering of Patterns
The first part of the study is the selection of the best
filter strategy for each method. In order to do so, the
corresponding quality measures are obtained for each
filter and algorithm. After that, Friedman and Shaffer
tests are performed in order to choose the best filter
on each quality measure analyzed. Once the best fil-
ters on each measure and algorithm are determined,
the best filter for an algorithm is chosen. A filter is
selected if the number of quality measures where it is
the best is the highest. In the case of ties, the filter
with the lowest average number of patterns and vari-
ables is chosen.

In conclusion, this study allows the determina-
tion of the best filtering strategy and drives future
research on the development of methods that can
mine only these kinds of patterns, so more efficient
methods with better results can be developed.

Table 6 presents a summary of the analysis per-
formed, where the best filter for each quality measure
is shown. In addition, the final filter chosen appears
in the ‘Selected’ column. ‘Conf’ means confidence fil-
ter and ‘Min’ means MinEPs filter. The sign ‘-’ means
the original set of patterns.

As can be observed, in the majority of algo-
rithms it is necessary to filter the complete set of pat-
terns. This is due to a search strategy that finds
nonrelevant EPs in some methods. Nevertheless, the
iEPM and EvAEP are methods wherein these filters
are not necessary due to the search strategy per-
formed. Future strategies can follow a hybrid
approach where the mining of minimal patterns can
be performed. Nevertheless, these should be focused
on those minimal patterns with the highest confi-
dence in order to obtain patterns with higher descrip-
tive power.

Comparison Between Algorithms
In the first part of the study the best filter strategy
has been obtained for each method. After that, in this
second part, a comparison of all methods with their
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corresponding best filter applied is performed. The
main objective of this part is to show which
approach is most suitable for descriptive induction,
which allows us to obtain a guideline for future
research in this field. Additionally, it provides a guide
of use for nonresearchers of EPs algorithms, selecting
the method which best fits its necessities.

In this websitee the complete Friedman test for
each measure is available. The tests show significant
differences for each quality measure, so it is necessary
to perform the post-hoc procedure in order to see
which pair of methods have significant differences.

Table 7 shows the results obtained for each
method regarding each quality measure. This table
summarizes the results of the Friedman test and the
Shaffer post-hoc method.

The analyses of the results have been carried
out for each quality measure:

• WRAcc. The algorithm with the best results in
this measure is the FEPM algorithm, followed
by EvAEP and iEPM. FEPM is statistically bet-
ter than nine methods. EvAEP and iEPM out-
perform eight and six methods, respectively.
Moreover, they are better than or equal to the
rest of the methods (� = 11). Hence, the use of
algorithms based on fuzzy logic is interesting in
order to obtain patterns with high WRAcc. In
addition, Chi-EPs shows a good behavior
regarding this quality measure due to the use of
the χ2 test, which only takes those patterns that
refuse the test, so they have relevant knowledge.

• Confidence. This test shows that iEPM and
FEPM obtains the best confidence results with
similar ranks. They are better than seven
methods. The use of Chi-EPs allows obtaining
of high confidence patterns due to restriction
number 3 that defines this kind of EP, which
obtains patterns that cover the data very well.
Additionally, the fuzzy logic used in FEPM
allows a better coverage of the data, so a higher
confidence value is obtained. In addition, there
are three tree-based methods that are equal to
or better than the rest. This result shows that
the representation by a tree structure is good at
the acquisition of high confidence patterns. A
tree tries to find a good trade-off between the
support and the specificity of the pattern, which
results in high confidence patterns.

• GR. The percentage of EPs obtained in training
that are also EPs on test is measured. The best
results are obtained by the iEPM algorithm,
which is better than seven methods, followed by

EvAEP which outperforms six. The iEPM
method tends to obtain general EPs due to the
support and GR restrictions that Chi-EPs have.
Additionally, the patterns obtained are signifi-
cant because of the χ2 test pruning method, so
these kinds of patterns generalize better than
other alternatives. The evolutionary strategy of
the EvAEP shows a good behavior when
extracting real EPs because it prefers general
EPs to specific ones, these being more suitable
to be EPs in a test.

• TPR. The evolutionary approach of the EvAEP
algorithm obtains the best results. It is better
than nine methods. It is followed by FEPM
and iEPM, which outperform eight and six
methods, respectively. The evolutionary strat-
egy of EvAEP stimulates the production of EPs
with high coverage in order to obtain a
reduced set of patterns. This is interesting
because it describes the data with fewest pat-
terns. Fuzzy logic also plays a key role. The
use of LLs is well-suited to obtaining more
general patterns. In addition, the Chi-EPs is a
good alternative, because of restriction number
3 which tends to obtain patterns with the
highest support, so the number of examples
covered is increased.

• FPR. The DeEPS and DGCP methods obtain
the best results, both being better against six
methods. These methods obtain patterns that
are not general, as can be observed in the TPR
results, but are very specific instead. This is a
normal behavior of border-based methods, such
as DeEPS, which are only focused on classifica-
tion. The approach of these methods is promis-
ing when patterns with a fine-grained level of
description are necessary.

• # Patterns. In the case of the number of pat-
terns, the EvAEP algorithm obtains the most
reduced set of patterns, followed by the iEPM
and Top-K methods. These results are not sur-
prising in methods such as Top-K, where the
number of patterns obtained is determined by
the user. iEPMiner also obtains fewer patterns
than other approaches because Chi-EPs is a
subset of EPs, so there must be fewer EPs to
mine. However in general, from the descriptive
point of view, a reduced set of patterns allows
an easier interpretation of the knowledge
obtained and the evolutionary approach is a
very well-suited one. Nevertheless, the tree-
based approach is also a good methodology
when the number of patterns is key, but the
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number of patterns is normally significantly
higher with respect to the results obtained with
the use of the evolutionary approach of EvAEP.

• # Variables. The method with the fewest num-
ber of variables on average is the DGCP
method followed by the iEPM algorithm. This
method’s results show that Chi-EPs and the
mining strategy of iEPM are very well-suited
when obtaining patterns with a low number of
variables. The pruning strategy proposed on the
DGCP algorithm performs very well when
obtaining patterns with a low number of vari-
ables. Additionally, other approaches like the
use of fuzzy logic in FEPM allow us to obtain
patterns with a lower number of variables.

The results of the study show that Chi-EPs used in
the iEPM method obtains very good descriptive pat-
terns, with high unusualness, confidence, that gener-
alize very well and with good TPR values. However,
the number of patterns obtained is higher than with
other alternatives. The evolutionary approach of
EvAEP is well-suited for description and it obtains
the most reduced set of patterns, but with a high FPR
value. In general, throughout the study the use of
FEPs for knowledge representation is good for
descriptive induction. Hence, a probably promising
research line could be the hybridization of these tech-
niques, e.g., fuzzy Chi-EPs with evolutionary algo-
rithms as a search strategy in order to obtain
descriptive patterns with high quality.
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FIGURE 6 | Comparison of the average Friedman rank of the algorithms against the three relevant aspects of the supervised descriptive rule
discovery (SDRD) framework: interest, generality, and precision.
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From the point of view of the SDRD frame-
work, a visual summary of the most important char-
acteristics of SDRD11: interest, precision and
generality, measured as WRAcc, Conf, and TPR
respectively, is presented in Figure 6. It shows the
Friedman rank of the algorithms. The green square
shows the zone with a rank lower than 4. This zone
shows the most relevant and interesting approaches
for future research where FEPM, iEPM, and EvAEP
are within this square. Hence the approaches of these
algorithms are very interesting. Additionally, a more
detailed analysis of these methods is presented in
Figure 7, where the behavior on all quality measures
is shown. In this figure, GR represents the percentage
of patterns extracted that are EPs on test data, Pat-
terns and Variables has been normalized to appear in
[0,1] and the FPR value is actually 1 FPR, in order to
improve the interpretability of the chart.

On the other hand, the interpretability of
results is key in order to obtain valuable knowledge.
EvAEP has a much lower number of patterns than
iEPM and FEPM due to the fact that EvAEP was
developed to fulfill SDRD objectives, and iEPM and
FEPM were developed for classification. This figure
also provides a guideline for future research on the
approach with better results in order to improve its
behavior. As an example, the approach of EvAEP is
good at TPR, so evolutionary algorithms are an
interesting research line to follow in order to improve
this TPR value.

Finally, the majority of the methods in the liter-
ature are focused on classification and this fact is
reflected in this study. Border-based methods such as
DeEPS and the first tree-based algorithms such as
BCEP, SJEP-C, or Top-K obtain lower values of FPR
and a high number of patterns with high number of
variables, which allows the obtaining of very precise
patterns that are useful in classification, but are use-
less for descriptive induction.

TRENDS AND PROSPECTS

In this section some relevant aspects for future
research lines with the aim of obtaining more
descriptive EPs methods are shown. Following the
results of the complete study, possible future research
areas of study are:

• Research on more evolutionary approaches for
EPM. EvAEP shows good descriptive results.
Nevertheless, this method is only the first one
following this approach. The methodology used
can be improved in many different ways,
e.g., the use of MOEAs, representation based
on disjunctive normal form or the use of
cooperative–competitive approaches in the evo-
lutionary process.

• Research on ways of efficiently mining Chi-EPs.
The study reflects the high descriptive potential
of Chi-EPs. Thus, the creation of new models
that can efficiently mine these patterns can
improve the descriptive potential of EPM in sev-
eral ways.

• The introduction of fuzzy logic in EPs methods
allows us to obtain high levels of unusualness
and a better generality of the patterns obtained.
Additionally, the knowledge obtained by these
kinds of patterns is more understandable for
humans.76 This fact, joined with a search strat-
egy that finds a reduced set of patterns, allows
the obtaining of valuable knowledge for
experts. Thus, the use of fuzzy logic in EPM is
nowadays a promising research line.

• The evolutionary approach has been demon-
strated to be good in obtaining descriptive
knowledge. However, there are other kinds of
meta-heuristics like simulated annealing,77

swarm intelligence,78 and memetic algorithms79

amongst others that can also obtain relevant
results for EPM. There is an unexplored field of
research which seems to be promising for
obtaining descriptive EPs.

FIGURE 7 | Comparison of the behavior of the three best
methods against all analyzed quality measures.
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• Nowadays we generate high volumes of data,
with great variety, at high speed in noisy envi-
ronments, and it is necessary to maintain their
veracity. This defines the 4V’s model of Big Data,
which is a hot topic in the fields of enterprise and
academia.80,81 In this review, it has been shown
that EPM is complex when the amount of data is
huge, namely the number of variables. However,
some tree-based strategies like the EP-RF algo-
rithm can be easily adapted to be executed in dis-
tributed environments. The descriptive point of
view of EPM becomes even more important
when data grow, due to it being harder to obtain
a description of the data. Thus, an important
research direction of EPM is on the development
of methods that can deal with large amounts of
data focused on description.

• This review has been focused mainly on the
descriptive point of view of the task. However, it
is important to remark upon the duality of EPM,
where these patterns can be used as a classifier.
Thus, future studies can also be focused on
obtaining a good trade-off in accuracy/descrip-
tion in order to exploit the full capacity of EPM.

• The number of variables of the patterns extracted
for each algorithm has a direct dependent with
the parameters employed in their executions. In
this way, there is a need to analyze the best setup
for each algorithm in order to improve the trade-
off between description and interpretability. A
low number of variables with good values in the
different quality measures are desired.

• One of the main objectives of EPM is to find
emerging trends in time-stamped data. In this
way, a data stream can be considered as a spe-
cial type of time-stamped data where data
arrives continuously in the system in sequential
order. The acquisition of knowledge from these
streams can improve on-demand services like

health monitoring and trading, amongst others.
However, the development of EPM for data
streams is a challenge. It is necessary to adapt
quality measures to this sequential data. More-
over, it must be maintained incrementally in
order to be efficient. The approaches presented
should be adapted to data stream properties,
which include infinite size, quick response, and
robustness against the concept drift.82 A possi-
ble first approach to deal with data streams in
EPM is the use of sliding windows approaches,
which allows the use of classical methods over
small datasets. Nevertheless, the development of
new efficient approaches is necessary with the
aim of obtaining better results more efficiently.

CONCLUSIONS

This paper presents a complete study of EPM under the
SDRD framework. In fact, it presents a taxonomy of
the existing algorithms present in the literature and the
existing kinds of EPs. Additionally, this paper presents a
complete study where the Chi-EPs, and the pruning
strategy based on a χ2 test are highlighted. It is impor-
tant to remark that algorithms that use fuzzy logic show
good values regarding the measures studied, with an
easier interpretation of results. Evolutionary fuzzy sys-
tems obtain good results on the measures studied. The
study also highlights the importance of mining those
minimal patterns with the highest confidence in order to
obtain patterns with higher descriptive power.

NOTES
a Details of this experimentation appear in the website
http://simidat.ujaen.es/papers/OverviewEPM
b http://archive.ics.uci.edu/ml/j
c http://www.keel.es/datasets.php
d http://github.com/SIMIDAT/epm-framework—
e http://simidat.ujaen.es/papers/OverviewEPM
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