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Highlights

• Feature selection with very few instances, possibly high-dimensional.

• Widely used protocol: 1) feature selection, 2) cross-validation to test a classifier.

• Alternative, proper, protocol includes both steps in a single cross-validation loop.

• Experiment using 24 datasets, 3 feature selection methods and 5 classifier models.

• The proper protocol accuracy is significantly closer to the true accuracy.
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bUniversidad de Burgos, Escuela Politécnica Superior, Avda. de Cantabria s/n, 09006 Burgos, Spain

Abstract

High-dimensional data with very few instances are typical in many application domains. Selecting a highly

discriminative subset of the original features is often the main interest of the end user. The widely-used

feature selection protocol for such type of data consists of two steps. First, features are selected from the

data (possibly through cross-validation), and, second, a cross-validation protocol is applied to test a classifier

using the selected features. The selected feature set and the testing accuracy are then returned to the user.

For the lack of a better option, the same low-sample-size dataset is used in both steps. Questioning the

validity of this protocol, we carried out an experiment using 24 high-dimensional datasets, three feature

selection methods and five classifier models. We found that the accuracy returned by the above protocol is

heavily biased, and therefore propose an alternative protocol which avoids the contamination by including

both steps in a single cross-validation loop. Statistical tests verify that the classification accuracy returned

by the proper protocol is significantly closer to the true accuracy (estimated from an independent testing

set) compared to that returned by the currently favoured protocol.

Keywords: feature selection, wide datasets, experimental protocol, training/testing, cross-validation,

1. Introduction

Selecting a feature subset of low cardinality and high discrimination power has been a centre-stage quest

since the dawn of pattern recognition [1, 2, 3, 4]. Feature selection from high-dimensional data has been

extensively studied [5, 6, 7, 8, 9, 10, 11, 12]. In many cases, feature selection is sought as the end goal

of the data analysis. For example, the user may wish to know which combination of genes out of several5

thousand genes forms a distinctive signature for a particular disorder [13]. In neuroscience, the user may

be interested in the multi-voxel patterns of brain activation which discriminate between different cognitive

states. Finding such multi-voxel patterns can be cast as a feature selection problem [14].

Wide datasets are characterised by a large number of features (high dimensionality) and a small number of

objects. Such wide datasets are common in many areas, examples of which are neuroimaging, bioinformatics,10

Email addresses: l.i.kuncheva@bangor.ac.uk (Ludmila I. Kuncheva), jjrodriguez@ubu.es (Juan J. Rodŕıguez)
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psychology, and sport sciences. What if the available sample has only a couple of dozens examples? This

may happen when data does not exist in abundance, for example, studies of rare diseases or extraordinary

athletes. Sometimes collecting of such data is prohibitively expensive or destructive. How reliable are any

conclusions drawn from such datasets? In particular, how meaningful is feature selection? Ultimately, we can

offer the user a subset of the original features, together with a trained classifier model, and an estimate of the15

classification accuracy. The classification accuracy in itself is a gauge of how good the returned feature set

is. Here we argue that, quite often, we are misleading the user by returning to them an optimistically biased

estimate of the classification accuracy. One reason for this bias is the so called “peeking phenomenon”, which

has already been brought to the attention of the community [15, 16], especially in the light of experimenting

with high-dimensional data [17, 18]. The “peeking” happens if the data for testing the model is seen during20

some part of the training. Peeking usually happens when there is a preliminary training stage, for example

data quantisation, feature selection, or parameter tuning. The effect is that the estimate of the classification

accuracy which we return to the user may be optimistically biased. More importantly, the returned feature

set may also be an artefact rather than a highly discriminative set.

While the caution of overfitting in feature selection has been raised several times over the past years [16,25

15], it does not seem to have been properly addressed by the larger community, and especially in applications

which are most vulnerable. Curiously, a comprehensive recent survey by Li et al. [19] does not even mention

the issue, while another one uses considers only the training data for feature selection [20]1. Instead, these

studies review elaborate methods for stable, sparse, and multi-source feature selection from wide data.

All these developments critically depend on using the correct training/testing protocol, and may not be30

adequate at all for very small sample size data. The difficulty in offering a stable and unbiased estimate

of the classification accuracy may render the selected feature subsets no better than chance. In addition

to joining the appeal for clean, non-contaminated feature selection protocols, here we set out to address

two further issues. First, we demonstrate the deficiency of the widely used (flawed) protocol using 24 high-

dimensional datasets, three feature selection methods and 5 classifiers. Second, we propose a clean protocol35

and show that its accuracy matches significantly closer the accuracy estimated from a properly sized datasets.

The rest of the paper is organised as follows. Related work is presented in Section 2. Section 3 discusses

the right and the wrong protocol for feature selection, and gives an example of the optimistic bias which

the wrong protocol is prone to. Section 4 reports and discusses our experimental results, followed by our

recommendations in Section 5.40

1 https://doi.org/10.1145/3136625, https://arxiv.org/abs/1601.07996
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2. Related work

2.1. Many studies are unaware of the overfitting caveat

Smialowski et al. [16] and Reunanen [15] warn about the optimistic bias of an improperly applied feature

selection protocol, and emphasise the importance of using testing data unseen at any part of the feature

selection and the classifier training. In spite of this warning, “peeking” is still widely present, casting45

doubts in the findings of the respective studies. Sometimes it is not clear whether the training/testing

protocol has been applied only to testing the classifier or to the feature-selection-classifier-training together.

A keyword search for the joint term ‘feature selection’ on Web-of-Science2, carried out on the 11 January

2018 returns over 2,300 articles since 2017. A thorough systematic analysis of these publications in the light

of our research question is infeasible, hence we opted for a small set of random examples. We selected these50

examples blindly, without specifically looking for articles which will confirm our concern about the wrong

protocol. Out of the 17 papers we picked, 6 apply the wrong protocol, 4 do not give explicit details to judge

either way, and 7 apply the training/testing correctly [21, 22, 23, 24, 25, 26, 27]. We took our motivation

from the alarmingly high proportion of studies oblivious to the overfitting caveat. These findings make our

message even more important because the comparisons in these studies (not cited for obvious reasons), and55

the related claims, may be compromised by using a flawed evaluation metric.

2.2. Peaking and peeking

We should be cautious not to confuse “peeking” with “peaking”. The “peaking phenomenon”, also called

in the past “peak-effect” or “The Hughes paradox” [28, 29, 30] is now well documented. The paradox is

that by discarding information (features), we may obtain a better classifier. There are at least two causes60

for this phenomenon. First, the classifier model is never the perfect (Bayes) classifier. If, hypothetically, we

knew the exact probability distributions of the classes, all relevant features will be suitably exploited, and

all irrelevant ones, ignored. There will be no decline in the accuracy if more features are included, be they

relevant or irrelevant. Since the ideal classifier is only a fiction, a substitute is usually chosen from the large

toolbox of pattern recognition and machine learning. For some of these models, irrelevant features may spoil65

the performance (for example, the k-nearest neighbour (k-nn)). Second, the fact that the dataset is finite,

precludes estimating the parameters of the classifier to arbitrarily precision. This in itself could contribute

to the peaking effect. The peak identifies the optimal number of features for the chosen classifier model and

feature selection procedure. Note, therefore, that “peeking” is quite different from “peaking”. “Peeking” is

an oversight on the experimenter’s part while “peaking” can be described as a data/model quirk.70

2http://wok.mimas.ac.uk/
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2.3. The effect of the small sample size

Wide datasets with low sample size are typically too small to allow for a split into training and testing.

Take for example The Great British Medallists Research Project which is an in-depth study of 32 former

GB athletes from Olympic sports3 Selecting the most important traits and practices may inform further

training and selection decisions for boosting the performances of elite athletes. The dataset limits come75

from the fact that there are simply no more instances to add. Nonetheless, the hold-out protocol where

relatively small-size data sets are split randomly into a training and a testing part is still used in feature

selection [31].

The problem of an inadequately small sample size has been flagged in the past [32]. However, here we

are interested in extreme cases of very small-size data, which have not been considered before.80

While concerns have been raised before, to the best of our knowledge, there is no comprehensive exper-

imental study which clearly demonstrates the extent of the problem of overfitting in feature selection for

very low-sample-size data. To illustrate this point, we replicated results due to Raunannen, 2003 [15]. The

problem of the overfitting has been aptly exemplified by a sequential forward selection (SFS) on the ‘sonar’

data from the UCI repository [33] (2 classes containing respectively 97 and 111 instances, and 60 features).85

Half of the data was used for training, and the other half for testing. The feature selection was carried out

through the leave-one-out cross-validation protocol (LOO) on the training part of the data. The nearest

neighbour classifier (1-nn) was used as the classifier of choice in the wrapper approach. Thus the accuracy of

the classifier with the selected feature subset is directly the output from the SFS procedure. The “proper”

testing accuracy was subsequently estimated on the testing data for all feature set sizes. Figure 1 shows the90

training (LOO) accuracy and the testing classification accuracy for 10 splits into halves, and the accuracy

averaged across the 10 splits. The axes are formatted to match exactly Figure 1 in the original paper.

Both curves match the ones in the original paper. We further carried out experiments where instead of

50% (104 instances), the training data contained 20% (42 instances) and 10% (21 instances) of the data.

Again, 10 runs with different random splits into training and testing were carried out, and the accuracy curves95

were averaged across the 10 runs. Figure 2 shows the averaged accuracies as functions of the cardinality of

the feature set.

To highlight the severity of the problem, we showed the discrepancy between predicted and actual

accuracy by joining the corresponding values for 50% split of the data. The figure shows that the gap

between these accuracies increases dramatically for smaller training sizes considered here.100

Here we examine experimentally the inadequacy of the flawed protocol and propose an alternative.

3http://ipep.bangor.ac.uk/medalists_research.php.en
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Figure 1: Results for the ‘sonar’ data set replicating the SFS illustrative experiment of Reunanen, 2003 [15]. The subsets of

features were obtained from SFS. The leave-one-out accuracy of 1-nn was used as the as the feature subset evaluation criterion.

Figure 2: Comparison of accuracies for different sample sizes for the ‘sonar’ data set. Small markers show the training

(predicted) accuracy, and large markers, the testing (actual) accuracy of the 1-nn classifier. The subsets of features were

obtained from SFS. The leave-one-out accuracy of 1-nn was used as the as the feature subset evaluation criterion.

6
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3. Methods

3.1. Feature selection approaches and their applicability to small-sample-size data

While the field abounds with feature selection methods, little will be suitable for the wide datasets

considered here. The way of traversing the possible candidate subsets of features will be no different from105

the ways adopted in the conventional approaches. However, the criterion for evaluating these subsets must be

chosen with caution. Consider the three established approaches: wrapper, filter, and embedded selection [34].

In the wrapper approach, a classifier is trained using the candidate subset of features, and a discrimination

measure (usually the classification accuracy) is subsequently calculated. The filter approach, on the other

hand, uses a proxy for the desired discrimination measure, and avoids training a classifier. While in the110

former two approaches the classifier model is not directly responsible for selecting or ranking the features,

some classifier models allow for this combined process (embedded approach). Examples of such models are

the decision tree classifier, the linear SVM classifier, and the random forest classifier ensemble [35].

It is universally accepted that wrapper methods give better results than filter or embedded methods.

For wide datasets, however, the drawbacks of the wrapper approach are amplified into major flaws. The115

first flaw is the lack of fidelity. In a dataset with N objects, a leave-one-out (N -fold) cross-validation will

give only N + 1 possible distinct values for the accuracy. The feature sets of interest will likely take an

even more limited set of values corresponding to the higher spectrum of the accuracies. Thus, they may

not be distinguishable from one another or from other, less valuable, feature sets. The second flaw is the

increased risk of overfitting compared to the filter or the embedded approach. Thus, we propose to use the120

state-ot-the-art filter and embedded methods for evaluating the candidate subsets for extreme wide datasets.

In the experiments further on, we apply the Fast Correlation-Based Filter (FCBF) [6], ReliefF [36, 37], and

the Symmetrical Uncertainty [38].

3.2. The right and the wrong protocols

Here we argue the main point of this study. A remarkably large number of studies in feature selection,125

including some quite influential ones, use a flawed (contaminated) protocol, which openly or subtly includes

peeking. This protocol is illustrated in Figure 3. First, the feature selector F is applied to the data, and

a set of features S is selected. Next, classifier models C are evaluated on the same data, possibly using

cross-validation, and the best classifier is returned to the user along with the estimate of the classification

accuracy from the cross-validation experiment, ALOO.130

The caveat here is that the dataset is used twice: once for finding S through F , and once for evaluating

C. Thus the classifier’s testing data have already been used for selecting S. Hence, a positive bias can be

expected due to this “peeking”. How can this be done without peeking? Figure 4 shows one possible answer

in the form of a non-contaminated protocol, which will be called the “proper” protocol.
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Data Select using F S LOO of C(S) ALOO(S)

Figure 3: Diagram of the widely used but incorrect (contaminated) protocol for feature selection. Boxes represent inputs and

outputs; shaded boxes represent output returned to the user; and circles represent procedures. S is the selected subset of

features; ALOO(S) is the classification accuracy predicted through leave-one-out cross-validation for the chosen classifier C,
and F is the chosen feature selection method.

In the proper protocol, the cross-validation loop includes the feature selector F . A feature set (or ranking)135

Si is obtained for each cross-validation fold using the respective training data. Then the chosen classifier

C(Si) is trained on the same training data using the selected features. Finally the testing data for the fold

is used to evaluate the accuracy of C(Si). By averaging the accuracies for the cross-validation folds, we

obtain one final value, APRO, which estimates the accuracy of the whole process (feature selection followed

by classification). At no point in this training process is the testing data seen by the feature selector or140

classifier. At the end, the output returned to the user is the feature set S obtained from the whole dataset

through F . Interestingly, in most cases, this is the same set obtained from the wrong protocol. The difference

is in the classification accuracy which accompanies this set. Our hypothesis is that, due to the peeking,

ALOO is optimistically biased, and therefore misleading, while APRO is closer to the true accuracy, which

can be estimated from a previously unseen testing set.145

3.3. An example of the optimistic bias of the wrong protocol

Figure 5 shows an example of the above argument. We chose the arrhythmia dataset from the UCI

repository [33]. The data contains 279 features (attributes) and 452 objects (instances). We grouped the

class labels into two classes: (1) normal (207 objects, 45.8%) and (2) arrhythmia (245 objects, 54.2%).

Extreme wide datasets were sampled 100 times, with 10 objects in each class. We chose the ReliefF feature150

ranker as F , and the linear discriminant classifier (LDC) with a diagonal covariance matrix and uniform

priors as C. A feature ranking was obtained for each of the 100 runs. The incorrect protocol illustrated in

Figure 3 was applied to derive the predicted accuracy ALOO(S) for feature subsets of increasing cardinality,

labelled ‘LOO’ in the figure. In this example, we set the maximum cardinality to 40% of the cardinality

of the feature set. The “proper” protocol was applied as well, giving accuracy APRO, which is labelled as155

‘Proper’ in the figure.

The accuracy of C trained on the whole wide dataset of 20 objects, AT (labelled ‘Test’ in the figure), was

evaluated using the remaining 432 objects left aside for testing. We treat this value as the desired quantity,

which ALOO and APRO strive to approximate. For comparison, for every run, we calculated the accuracy of

8
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Apply F on training fold i

LOO on F

Train C(Si) on training fold i.

Test C(Si) on testing fold i.

i = 1, . . . , N

DataPart 2 Select using F S

Figure 4: Diagram of the “proper” protocol for feature selection. Boxes represent inputs and outputs; shaded boxes represent

output returned to the user; and circles represent procedures. S is the selected subset of features; APRO(S) is the classification

accuracy predicted through leave-one-out cross-validation for the chosen classifier C, and F is the chosen feature selection

method.

a random permutation of the features instead of the ranking offered by F . As there is no selection method to160

cross-validate in the random approach, the “wrong” and the “proper” protocols both amount to evaluating

the LOO accuracy using the training data, denoted RLOO, and labelled as ‘Random LOO’ in the figure.

Again, we subsequently calculated the quantity which RLOO attempts to predict by evaluating a C trained

on the whole training data (with the respective random subset of features) using the testing part of the

data. This value, RT , is labelled in the figure as ‘Random Test’.165

The graph shows exactly where the problem lies. We have shaded the gap between ALOO and AT in

blue, and the gap between APRO and AT in red. Clearly, ALOO is heavily optimistically biased, whereas

APRO is a lot closer to AT . The large optimistic bias is caused by using the wrong protocol (peeking), which,

unfortunately, is the standard practice in many studies, even very highly valued ones. However, APRO is not

a perfect solution to this problem either. There is a visible pessimistic bias of APRO. One possible reason170

9
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Figure 5: An example of the optimistic bias of the wrong feature selection protocol using the arrhythmia data from UCI.

for this bias is that when we evaluate C in Part 1 of the right protocol in Figure 4, the classifier is built on

N − 1 objects, and for the testing accuracy, we build the classifier on all N objects. Given that N is quite

small, the difference of one object is noticeable, even for a stable classifier models as LDC. Still, we argue

that this bias is smaller than the bias of ALOO, and is better suited as a guarantee returned to the user.

The random curves, expectedly, run under the curves using a proper feature selector, showing lower175

classification accuracy. The argument why RLOO is worse than RT is the same as above. To obtain RLOO,

we train C on N − 1 objects, and for RT , on N objects.

The classification accuracy as a function of the number of features will not behave in the same way

for all classifiers. There could be idiosyncratic pockets of features which perform excellently for a specific

classifier and are largely overlooked by most other classifiers. The peak-effect may be strongly or less180

strongly pronounced depending on the classifier. The same argument holds for the feature selection method

F . There could be “lucky pairings” between F and C for the dataset of interest, giving high accuracy with

fewer features, but this cannot be known in advance.

10
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4. Experimental study

The purpose of the experiment is to verify our hypothesis that the proper feature selection protocol gives185

a closer estimate of the testing accuracy than the widely used contaminated protocol. In addition, we will

seek to answer the following questions:

1) Does the protocol choice have the same impact over different feature selection methods?

2) Does the protocol choice have the same impact over different classifier models?

4.1. Data190

The characteristics of the 24 datasets used here are presented in Table 1. They were taken from the

repository4 [20]. Some of the datasets within the collection are from the UCI Machine Learning Repository

[33].

4.2. Feature selectors and classifiers

The experiments for this part of the study were carried out in Weka [39]. We experimented with the195

following choices of feature selection methods F and classifier models C implemented in Weka:

Symmetrical Uncertainty [38] (SU) is a measure of correlation between two nominal features based on

their individual and joint entropies. When one of the two features is the class variable, we have a measure

of the worth of the paired feature. This measure can be used for ranking the features. It does not take into

account any interaction between them. To apply this measure to continuous-valued features, they are first200

discretised.

Fast correlation-based filter (FCBF) [6] also uses SU. Unlike SU, however, it takes into account the

correlation between the features. The method aims at selecting features which have high correlation with

the class variable and low correlation among themselves.

ReliefF [37], a variant of Relief [36], is an instance-based feature ranking method. A subset of the205

instances is randomly selected multiple times and the feature weights are updated based on the proximity

of the instances from the same classes in the selected sample.

The classifiers used were: the nearest neighbour (1-NN), the decision tree classifier (J48) [40], the linear

discriminant classifier (LDC)5, the näıve Bayes classifier (NB) and the Random Forest classifier ensemble

(RF) [41].210

4The repository is available at http://featureselection.asu.edu/datasets.php
5pseudo-linear LDA is implemented in Weka.
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Table 1: Characteristics of the high-dimensional datasets.

Dataset Instances Features Classes

ALLAML 72 7129 2

arcene 200 10000 2

BASEHOCK 1993 4862 2

Carcinom 174 9182 11

CLL SUB 111 111 11340 3

COIL20 1440 1024 20

colon 62 2000 2

gisette 7000 5000 2

GLI 85 85 22283 2

GLIOMA 50 4434 4

Isolet 1560 617 26

leukemia 72 7070 2

lung 203 3312 5

lymphoma 96 4026 9

madelon 2600 500 2

PCMAC 1943 3289 2

Prostate GE 102 5966 2

RELATHE 1427 4322 2

SMK CAN 187 187 19993 2

TOX 171 171 5748 4

USPS 9298 256 10

warpAR10P 130 2400 10

warpPIE10P 210 2420 10

Yale 165 1024 15

12
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4.3. Calculation of the criteria values

We carried out 10 runs for each data set. For FCBF, the number of features was determined within

the algorithm. For the ranker methods, the number of features was varied as {1, 2, ..., 9, 10, 15, 20, ...100}.
In each run, the dataset was randomly split into a training part of 10 × c instances for training, and the

remaining instances for testing, where c is the number of classes. Denote the training part (10 instances215

per class) by Dtrain, and the testing part by Dtest. For a chosen feature selection method F and a chosen

classifier model C (for a fixed number of features or number determined by F), we calculated the following

criteria of interest:

• ALOO. Apply F on Dtrain to obtain feature set S. Denote by Dtrain(S) the restriction of Dtrain on

the feature subspace S. Evaluate C on Dtrain(S) using leave-one-out cross-validation. This accuracy220

is ALOO.

• APRO. Organise a leave-one-out loop on Dtrain. For each training fold, i, apply F (with or without

cross-validation) to obtain feature set Si. Test C using Si on the remaining testing instance. The

averaged accuracy on the testing instances is APRO.

• AT . Apply F on Dtrain (with or without cross-validation) to obtain feature set S. (This is the same225

step as in calculating ALOO.) Evaluate C on Dtest(S). This accuracy is AT .

4.4. Protocol and results

To enable statistical analyses, we need to determine a suitable number of features for the rankers. We

tried two approaches:

• Maximum. For each run, identify the maximum of the curve ALOO and store the smallest number for230

which this maximum is achieved, NM . In the same way, determine N ′
M , for which the curve of the

proper protocol peaks.

• Parabola. Assuming that there is a peak effect as described in Section 2, we fit a parabola y =

ax2 + bx+ c (through least squares) to ALOO and APRO. If the parabola is convex (a < 0), we return

the position of the maximum NP = − b
2a (similarly for N ′

P ). If the parabola is concave, the Maximum235

method above is applied to determine NP (N ′
P ).

In this way, we may have different feature sets and different cardinalities by LOO and Proper. Denote

by AY
X the accuracy AX measured for a feature set of cardinality Y . If our hypothesis is correct, AN ′

PRO will

be closer to AN ′
T than AN

LOO is to AN
T . In other words, we would expect the following inequality to hold:

|AN ′
PRO −AN ′

T | < |AN
LOO −AN

T |. (1)

13
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Tables 2–6 show the results for the individual data sets, and the feature selection methods: FCBF, Reli-240

efF/Maximum, ReliefF/Parabola, Symmetric Uncertainty/Maximum, and Symmetric Uncertainty/Parabola.

We show the classification accuracies ALOO, APRO, and the respective AT , averaged across the 10 runs and

the 5 classifiers. Given in the tables are also the averaged cardinality of the selected feature subset, |S|, for

each dataset. We denote the difference of interest by ∆X = AX − AT , where X stands for LOO or PRO.

The columns with the differences are shown in boldface in the table. For each dataset, the smaller one of the245

two differences ∆ – by absolute value – is shown in a box. Since the values of the classification accuracies

are not commensurable across datasets, nor are the differences thereof, only the sign rank statistical test is

applicable. The p-values from the sign test comparing the paired values of |∆| are given in the respective

table caption. For all feature selection methods, we found significant difference at level 0.01. This supports

our hypothesis that the proper protocol gives closer estimates of the true accuracy compared to the peeking250

protocol for very small-size data.

Next we ran the sign test for the paired observations separately for each classifier and feature selection

method. Each test was calculated from 240 pairs of values (24 data sets, 10 runs). We ran the right-tailed

sign test with null hypothesis: |APRO − AT | ≥ |ALOO − AT | (LOO is equivalent or better than the proper

protocol). All p-values, with one exception, were under 0.00005, strongly rejecting the null hypothesis,255

thereby landing further support to our claim. The only relatively larger p-value of 0.0274, still under 0.05,

was observed for the FCBF feature selector and the J48 classifier.

To examine further the effect of the classifier model on the differences between the predicted and true

accuracy, we plot in Figure 6 |ALOO −AT | versus |APRO −AT | for the five classifier models. Each point on

the plot comes from one run, a given feature selection method and the classifier specified in the title of the260

sub-figure. Thus, each plot contains 24 datasets × 10 runs × 5 feature selection methods/variants = 1,200

points. Out of these, we calculated the percentage where |ALOO − AT | > |APRO − AT |, supporting our

hypothesis, shown as “win” (W) in the title of the sub-figure. All such points are above the diagonal line

of the square. We also show in the title the percentage of draws (D), where |ALOO − AT | = |APRO − AT |,
and the percentage of losses (L), where |ALOO − AT | < |APRO − AT |. It sign test is applied to any of the265

data subsets in the 5 sub-figures, the hypothesis in eqn (1) is strongly supported.

Finally, we illustrate the reduction of optimistic bias when using the correct protocol in Figure 7. We

chose one example of feature selection method (ReliefF/Max) and classifier (Random Forest) but we note

that all such plots look similar. ALOO, APRO and the respective AT are averaged across the 10 runs for

each data set. A dot marker represents (AT ,ALOO) for a given data set, and a triangle marker, represents270

(AT ,APRO). The markers for the same data sets are joined by an arrow from LOO to PRO. The downward

tendency of the arrows shows the reduction of the optimistic bias by applying the correct protocol.

In summary, we confirm that using the proper protocol for feature selection from very wide datasets

gives more truthful results compared to the currently favoured protocol, which we termed here “the wrong”
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Figure 6: Scatteplot of |ALOO − AT | versus |APRO − AT | the five classifier models. Each point on the plot comes from one

run, a given feature selection method and the classifier specified in the title of the sub-figure. W/D/L mean win/draw/loss,

where W is the percentage of points where (1) holds.
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Figure 7: Scatterplot of ALOO and APRO versus AT . A dot marker represents (AT ,ALOO) for a given data set, and a triangle

marker, (AT ,APRO). The markers for the same data sets are joined by an arrow from LOO to PRO.

protocol or the “contaminated” protocol. Our results also suggest that the bias is likely universally present275

across many feature selection methods and classifier models.

5. Conclusions

This paper demonstrates the importance of applying a clean (non-contaminated) protocol for feature

selection for wide datasets with a very low sample size. While the set of features returned to the user may

be the same from both protocols, the estimate of the classification accuracy, which must be returned too,280

will likely be misleading if the wrong protocol is used. Running an experimental study with 24 datasets, we

found statistically significant differences between the biases of the wrong and the proper protocols for all

classifier models and feature selection methods we tested.

Based on these results, we recommend using the proper protocol (Figure 4) instead of the popular

alternative (Figure 3).285

Further on, the ranker methods, which are suitable for this type of data, need additional analysis for

choosing the cardinality of the feature set to be returned. We examined two simple variants: maximum

and parabola, and found that the conclusions applied to both. As a future line of research, we are planning

to investigate other methods for determining the cardinality of the best feature subset using a stability

index [42, 43]. Ensembles of ranker methods are also a good way forward [44] for very small-size data. In290
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addition to a more stable ranking, they offer further possibilities to use stability for obtaining the cardinality

of the returned feature subset. Apart from the optimistic bias considered here, feature selection from wide

datasets of very small sample sizes poses further problems. The selected feature set may not be better than

a randomly picked feature set of the same cardinality. A good practice to verify the merit of the returned

feature set would be to compare the estimated accuracy with that of randomly generated feature subsets of295

the same cardinality, similarly to random permutation tests. Most importantly, one should seek to increase

the sample size.
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[37] M. Robnik-Šikonja, I. Kononenko, Theoretical and empirical analysis of relieff and rrelieff, Machine Learning 53 (1) (2003)

23–69. doi:10.1023/A:1025667309714.

URL https://doi.org/10.1023/A:1025667309714380

[38] M. A. Hall, G. Holmes, Benchmarking attribute selection techniques for discrete class data mining, IEEE Transactions on

Knowledge and Data Engineering 15 (6) (2003) 1437–1447. doi:10.1109/TKDE.2003.1245283.

[39] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, I. H. Witten, The WEKA data mining software: an update,

SIGKDD Explor. Newsl. 11 (1) (2009) 10–18. doi:10.1145/1656274.1656278.

URL http://doi.acm.org/10.1145/1656274.1656278385

[40] J. Quinlan, C4.5: Programs for Machine Learning, Morgan Kauffman, 1993.

[41] L. Breiman, Random forests, Machine Learning 45 (2001) 5–32.

[42] L. Kuncheva, A stability index for feature selection, in: Proc. IASTED, Artificial Intelligence and Applications, Innsbruck,

Austria, 2007, pp. 390–395.

[43] W. Altidor, T. Khoshgoftaar, A. Napolitano, A noise-based stability evaluation of threshold-based feature selection tech-390

niques, in: Information Reuse and Integration (IRI), 2011 IEEE International Conference on, IEEE, 2011, pp. 240–245.

[44] T. Abeel, T. Helleputte, Y. Van de Peer, P. Dupont, Y. Saeys, Robust biomarker identification for cancer diagnosis with

ensemble feature selection methods, Bioinformatics (Oxford, England) 26 (3) (2010) 392–3988.

Appendix

19



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Table 2: FCBF feature selection method. Classification accuracies ALOO, APRO, and the respective AT , averaged across the

10 runs and the 5 classifiers. |S| is the averaged cardinality of the selected feature subset. ∆X = AX −AT , where X stands for

LOO or PRO. The columns with the differences are shown in boldface. For each dataset, the smaller one of the two differences

∆ – by absolute value – is shown in a box. The p-value of the sign test for equivalence of ∆LOO and ∆PRO is 0.0066.

Dataset |S| ALOO AT ∆LOO |S| APRO AT ∆PRO

ALLAML (2.0) 92.3 80.2 12.1 (2.0) 80.2 80.2 -0.0

BASEHOCK (5.8) 77.6 65.0 12.6 (5.8) 57.2 65.0 -7.8

CLL SUB 111 (44.6) 88.3 55.6 32.7 (44.6) 66.5 55.6 10.9

COIL20 (101.4) 84.1 85.0 -0.9 (101.4) 83.0 85.0 -2.0

Carcinom (192.7) 88.7 86.8 2.0 (192.7) 81.6 86.8 -5.2

GLIOMA (37.3) 87.7 67.5 20.2 (37.3) 68.1 67.5 0.6

GLI 85 (2.0) 94.9 70.6 24.3 (2.0) 65.9 70.6 -4.7

Isolet (17.0) 68.2 67.5 0.7 (17.0) 64.9 67.5 -2.7

PCMAC (4.8) 71.4 57.6 13.8 (4.8) 50.9 57.6 -6.7

Prostate GE (4.6) 95.1 78.3 16.8 (4.6) 77.8 78.3 -0.5

RELATHE (6.5) 80.6 54.2 26.4 (6.5) 55.7 54.2 1.5

SMK CAN 187 (13.3) 86.8 54.0 32.8 (13.3) 60.3 54.0 6.3

TOX 171 (40.1) 77.5 54.2 23.3 (40.1) 52.8 54.2 -1.5

USPS (17.6) 71.1 73.0 -1.9 (17.6) 68.2 73.0 -4.7

Yale (18.2) 63.3 56.7 6.6 (18.2) 58.6 56.7 2.0

arcene (21.5) 84.3 54.7 29.6 (21.5) 51.3 54.7 -3.4

colon (12.8) 86.1 62.6 23.5 (12.8) 65.8 62.6 3.2

gisette (17.0) 91.0 70.5 20.5 (17.0) 67.5 70.5 -3.0

leukemia (8.0) 96.2 87.2 9.0 (8.0) 79.2 87.2 -8.0

lung (68.6) 93.9 84.8 9.1 (68.6) 87.0 84.8 2.2

lymphoma (46.6) 97.9 91.5 6.4 (46.6) 90.0 91.5 -1.5

madelon (8.6) 81.1 49.7 31.4 (8.6) 35.2 49.7 -14.5

warpAR10P (23.4) 81.5 80.5 1.1 (23.4) 75.4 80.5 -5.0

warpPIE10P (48.5) 92.5 91.3 1.2 (48.5) 90.7 91.3 -0.6
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Table 3: ReliefF feature selection method, MAXIMUM version. Classification accuracies ALOO, APRO, and the respective AT ,

averaged across the 10 runs and the 5 classifiers. |S| is the averaged cardinality of the selected feature subset. ∆X = AX −AT ,

where X stands for LOO or PRO. The columns with the differences are shown in boldface. For each dataset, the smaller one

of the two differences ∆ – by absolute value – is shown in a box. The p-value of the sign test for equivalence of ∆LOO and

∆PRO is 0.0015.

Dataset |S| ALOO AT ∆LOO |S| APRO AT ∆PRO

ALLAML (15.2) 97.6 86.9 10.7 (19.2) 93.9 87.5 6.4

BASEHOCK (21.6) 87.2 62.5 24.7 (8.2) 69.3 60.3 9.0

CLL SUB 111 (30.0) 84.1 52.1 32.0 (22.3) 78.1 51.1 27.1

COIL20 (92.5) 72.1 73.0 -0.9 (87.7) 70.9 72.2 -1.3

Carcinom (69.5) 85.3 82.7 2.6 (69.3) 80.8 82.6 -1.8

GLIOMA (35.7) 87.5 69.1 18.5 (27.3) 80.5 68.2 12.4

GLI 85 (7.7) 96.9 75.1 21.8 (19.7) 86.6 77.0 9.6

Isolet (89.4) 67.4 67.4 -0.0 (90.1) 66.9 67.3 -0.4

PCMAC (20.0) 88.4 59.6 28.8 (15.0) 65.0 58.1 6.9

Prostate GE (16.5) 96.5 79.6 16.9 (12.4) 89.9 80.6 9.3

RELATHE (17.0) 88.8 54.3 34.5 (29.3) 64.1 54.4 9.7

SMK CAN 187 (13.6) 93.9 57.6 36.3 (18.0) 72.6 56.7 15.9

TOX 171 (43.2) 79.8 56.2 23.6 (51.2) 65.8 57.8 8.0

USPS (67.0) 72.6 72.0 0.6 (66.1) 70.5 71.9 -1.4

Yale (68.4) 63.2 59.7 3.5 (70.0) 60.4 60.8 -0.4

arcene (19.1) 90.8 58.0 32.8 (26.0) 69.3 56.7 12.6

colon (7.9) 90.8 62.8 28.0 (11.7) 75.5 64.3 11.2

gisette (15.4) 95.0 72.9 22.1 (24.6) 83.0 74.1 8.9

leukemia (12.5) 99.2 89.8 9.4 (15.8) 95.8 89.7 6.1

lung (44.9) 92.8 81.2 11.5 (57.0) 89.7 82.5 7.2

lymphoma (16.6) 99.1 77.5 21.6 (39.3) 94.7 77.8 16.9

madelon (27.8) 93.5 50.8 42.7 (18.9) 66.4 50.1 16.3

warpAR10P (62.9) 77.6 77.4 0.2 (60.2) 76.2 76.5 -0.2

warpPIE10P (54.9) 89.9 84.9 4.9 (51.9) 87.8 85.3 2.6
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Table 4: ReliefF feature selection method, PARABOLA version. Classification accuracies ALOO, APRO, and the respective AT ,

averaged across the 10 runs and the 5 classifiers. |S| is the averaged cardinality of the selected feature subset. ∆X = AX −AT ,

where X stands for LOO or PRO. The columns with the differences are shown in boldface. For each dataset, the smaller one

of the two differences ∆ – by absolute value – is shown in a box. The p-value of the sign test for equivalence of ∆LOO and

∆PRO is 0.0003.

Dataset |S| ALOO AT ∆LOO |S| APRO AT ∆PRO

ALLAML (43.5) 96.9 90.0 6.9 (47.5) 95.9 89.5 6.4

BASEHOCK (33.8) 84.7 63.6 21.1 (15.4) 73.6 61.1 12.5

CLL SUB 111 (47.9) 79.1 51.9 27.2 (41.0) 76.7 51.1 25.5

COIL20 (85.6) 69.6 71.6 -2.0 (85.6) 69.7 71.7 -2.0

Carcinom (67.1) 79.8 81.7 -1.9 (71.8) 79.3 81.5 -2.2

GLIOMA (60.4) 81.7 68.0 13.7 (53.8) 81.9 68.2 13.8

GLI 85 (32.9) 96.3 78.1 18.2 (40.8) 91.0 77.5 13.5

Isolet (86.7) 65.4 66.9 -1.5 (88.8) 65.7 67.1 -1.4

PCMAC (39.1) 84.2 59.7 24.5 (26.3) 72.0 58.2 13.8

Prostate GE (31.5) 95.1 80.4 14.7 (30.7) 90.1 80.0 10.1

RELATHE (34.3) 84.5 54.0 30.5 (37.9) 68.9 54.6 14.3

SMK CAN 187 (31.9) 91.6 58.2 33.4 (32.9) 78.7 56.5 22.2

TOX 171 (60.3) 73.0 57.1 15.9 (66.3) 70.3 59.0 11.3

USPS (76.6) 69.2 72.1 -2.9 (77.6) 69.1 72.1 -3.0

Yale (66.2) 59.2 61.3 -2.1 (72.4) 59.4 61.3 -1.9

arcene (37.8) 88.4 58.2 30.2 (38.2) 77.5 57.0 20.5

colon (17.7) 88.8 63.2 25.6 (23.7) 78.2 64.1 14.1

gisette (32.8) 93.9 74.2 19.7 (31.9) 84.0 74.0 10.0

leukemia (25.2) 99.0 90.0 9.0 (28.6) 96.4 90.2 6.2

lung (71.2) 89.0 84.8 4.3 (75.2) 88.7 85.8 2.8

lymphoma (56.1) 98.5 83.2 15.3 (64.9) 97.0 83.8 13.2

madelon (51.6) 90.9 50.8 40.1 (27.3) 74.3 50.0 24.3

warpAR10P (67.2) 75.1 77.3 -2.1 (69.8) 75.4 77.5 -2.0

warpPIE10P (58.1) 87.5 85.2 2.3 (59.0) 87.3 85.6 1.7
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Table 5: Symmetrical Uncertainty feature selection method, MAXIMUM version. Classification accuracies ALOO, APRO, and

the respective AT , averaged across the 10 runs and the 5 classifiers. |S| is the averaged cardinality of the selected feature

subset. ∆X = AX − AT , where X stands for LOO or PRO. The columns with the differences are shown in boldface. For

each dataset, the smaller one of the two differences ∆ – by absolute value – is shown in a box. The p-value of the sign test for

equivalence of ∆LOO and ∆PRO is 0.0003.

Dataset |S| ALOO AT ∆LOO |S| APRO AT ∆PRO

ALLAML (9.6) 98.6 85.5 13.1 (21.8) 92.6 87.0 5.6

BASEHOCK (8.7) 84.1 64.9 19.2 (13.4) 70.1 63.2 6.9

CLL SUB 111 (18.8) 87.1 53.3 33.7 (28.0) 75.7 54.2 21.5

COIL20 (81.9) 79.0 79.2 -0.2 (83.7) 77.8 79.1 -1.3

Carcinom (56.4) 88.0 85.2 2.8 (61.9) 82.5 85.0 -2.5

GLIOMA (28.5) 89.3 63.8 25.4 (34.9) 80.3 65.8 14.4

GLI 85 (3.2) 98.8 72.4 26.4 (22.9) 83.8 75.2 8.6

Isolet (86.6) 68.6 68.4 0.2 (86.7) 67.8 68.4 -0.6

PCMAC (10.9) 80.4 59.2 21.2 (5.1) 69.0 60.7 8.3

Prostate GE (6.0) 98.5 81.2 17.3 (18.0) 89.4 81.7 7.7

RELATHE (13.2) 87.6 52.9 34.7 (9.7) 67.0 53.0 14.0

SMK CAN 187 (12.4) 95.6 55.3 40.3 (9.9) 73.8 55.4 18.4

TOX 171 (37.7) 80.3 55.8 24.5 (44.3) 66.0 55.3 10.7

USPS (76.4) 65.5 65.4 0.1 (77.4) 63.4 65.1 -1.7

Yale (49.0) 67.6 61.3 6.2 (51.4) 63.7 59.1 4.7

arcene (17.2) 93.8 56.1 37.7 (24.1) 67.4 56.3 11.1

colon (7.1) 92.3 63.2 29.1 (25.3) 74.7 61.3 13.4

gisette (20.6) 96.1 74.2 21.9 (24.4) 82.2 73.9 8.3

leukemia (6.5) 99.4 87.7 11.7 (17.6) 92.8 90.1 2.7

lung (38.6) 95.8 81.2 14.6 (51.1) 90.0 81.9 8.2

lymphoma (23.2) 99.5 80.0 19.5 (45.3) 93.8 82.3 11.5

madelon (15.1) 92.0 50.1 41.9 (22.9) 59.8 50.1 9.7

warpAR10P (64.5) 78.9 77.3 1.6 (61.6) 76.8 77.6 -0.8

warpPIE10P (68.2) 90.3 87.2 3.0 (69.4) 88.9 86.7 2.2
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Table 6: Symmetrical Uncertainty feature selection method, PARABOLA version. Classification accuracies ALOO, APRO,

and the respective AT , averaged across the 10 runs and the 5 classifiers. |S| is the averaged cardinality of the selected feature

subset. ∆X = AX − AT , where X stands for LOO or PRO. The columns with the differences are shown in boldface. For

each dataset, the smaller one of the two differences ∆ – by absolute value – is shown in a box. The p-value of the sign test for

equivalence of ∆LOO and ∆PRO is 0.0015.

Dataset |S| ALOO AT ∆LOO |S| APRO AT ∆PRO

ALLAML (32.2) 98.2 87.5 10.7 (48.2) 93.9 87.7 6.2

BASEHOCK (28.0) 81.3 64.6 16.7 (33.8) 76.1 64.4 11.7

CLL SUB 111 (22.3) 85.4 53.5 31.9 (49.6) 75.9 54.9 21.0

COIL20 (73.4) 76.7 78.3 -1.6 (72.9) 76.3 78.4 -2.1

Carcinom (62.0) 85.3 85.6 -0.3 (67.2) 84.4 85.8 -1.5

GLIOMA (39.9) 85.7 66.8 18.9 (52.0) 82.7 69.1 13.7

GLI 85 (15.0) 98.7 75.6 23.1 (30.5) 86.4 75.5 10.9

Isolet (90.3) 67.0 68.2 -1.2 (92.6) 67.1 68.4 -1.3

PCMAC (25.2) 79.0 59.1 19.9 (14.1) 71.7 60.6 11.1

Prostate GE (18.5) 97.3 81.1 16.2 (38.6) 91.6 81.7 9.9

RELATHE (28.4) 84.1 53.4 30.7 (34.3) 76.5 52.9 23.6

SMK CAN 187 (20.7) 94.7 55.8 38.9 (14.9) 78.1 55.7 22.4

TOX 171 (60.1) 75.1 58.0 17.1 (63.4) 71.2 57.8 13.4

USPS (83.1) 62.9 65.1 -2.1 (85.5) 62.6 65.2 -2.6

Yale (56.9) 63.6 61.1 2.5 (56.8) 63.8 61.3 2.4

arcene (33.5) 91.9 57.4 34.5 (41.4) 76.6 57.2 19.4

colon (14.7) 90.8 62.0 28.8 (41.0) 79.3 61.6 17.7

gisette (33.2) 95.0 74.6 20.4 (34.8) 84.2 73.8 10.4

leukemia (19.4) 99.2 88.6 10.6 (36.2) 94.5 90.5 4.0

lung (61.8) 94.0 82.8 11.1 (70.4) 91.8 83.2 8.6

lymphoma (59.0) 98.2 85.6 12.6 (69.0) 97.5 85.5 12.0

madelon (21.1) 85.9 50.4 35.5 (35.7) 69.2 50.1 19.1

warpAR10P (60.6) 76.3 78.7 -2.4 (63.0) 76.6 78.5 -1.9

warpPIE10P (67.7) 88.3 87.0 1.3 (68.3) 88.0 87.1 0.9
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