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Abstract

Computed tomography (CT) is a nondestructive technique, based on absorbing X-rays, 
that permits the visualisation of the internal microstructure of material. The field of appli-
cation is very wide. This is a well-known technology in medicine, because of its enormous 
advantages, but it is also very useful in other fields. Computed tomography is used in 
palaeontology to study the internal structure of the bones from ancient hominids. In addi-
tion, this technology is being used by engineers to analyse the microstructure of materials. 
Materials engineers use this technology to analyse or develop new materials. Mechanical 
engineers use CT scans to study the internal defects of materials. Geotechnical engineers 
use CT scans to study several aspects of the rocks and minerals (cracks, voids, etc). This 
technology is also very useful to study de microstructure of concrete, especially in case of 
the new concretes (ultra-high performance concrete, fiber reinforced concrete, etc). In this 
chapter, an extended state-of-the-art of the most relevant research, related to the use of 
computed tomography to explore the microstructure of materials in civil and mechanical 
engineering, is exposed. The main objective of this chapter is that the reader can discover 
new applications of the computed tomography, different from conventional ones.

Keywords: CT scan, rocks, high performance concrete, fiber-reinforced high 
performance concrete

1. Introduction to computed tomography (CT) scan technology

Ever since Wilhelm Röntgen discovered X-rays in 1895, these rays have been used in many sci-
entific fields. One property of this type of radiation is that it can travel through matter, losing 
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energy on the way, in accordance with the law of Beer that equates intensity I with a mono-
chromatic X-ray travelling through an object in terms of the following expression (Eq. (1)).

	​ I = ​I​ 0​​ · exp​​{​​− ​∫​​ ​​ μ​​(​​s​)​​​ds​}​​​​	 (1)

where I0 is the initial intensity of the ray and μ(s) the linear attenuation coefficient along its 
trajectory.

The aforementioned linear attenuation coefficient, μ, fundamentally depends on the density, 
ρ, of the material at each point through which the ray travels. The quotient μ/ρ is approx-
imately proportional to Z3 in the standard range used in the computed tomography (CT) 
scans, where Z is the atomic number of the element.

CT is a nondestructive technique used to analyze the internal microstructure of materials based 
on the above-mentioned property of X-rays. The tomography equipment is composed of an 
emitter, which emits a ray at a given intensity, and a detector, which registers the reception 
intensity of the ray. In the analysis, the object revolves in front of the apparatus, consisting of 
the emitter, emitting rays in all directions on the plane, and the detector. Postprocessing of the 
signal to produce attenuation-corrected images, which coincide with the measurement of atten-
uation, means that the density of each point of the specimen under study may be determined. 
This process is repeated for different sections of the specimen, thereby obtaining tri-dimen-
sional (tomographic) information. Alternatively, a conic beam of X-rays can be emitted that are 
collected on a flat detector. In this case, only the specimen has to revolve, and relative displace-
ment between the emitter-detector apparatus and the specimen is unnecessary (Figure 1):

In all cases, the practical result is a tri-dimensional image, in grey scale, in which each grey 
area corresponds to a particular density value. Clearer tones represent higher densities, and 
darker tones represent lower densities.

The use of this technique commenced in medicine, during the last century, around the 1970s, as a 
non-invasive technique to explore the internal parts of patients, to display the inside of the body 
(organs, tissue, bones, etc.) and to detect abnormal structures that can indicate some pathology.

Over recent years, the technique has been discarded in medicine; however, it has been used 
in a more intense way in other scientific fields, especially science and engineering, where all 
variants of computerized tomography are increasingly employed.

In the 1980s, high-resolution tomographic equipment emerged commonly called micro CT 
scan. This new equipment used new sources of emissions, in the form of gamma rays and 
synchrotron radiation. At present, synchrotron radiation is the most widely used in modern 
equipment because of its high resolution and sharpness.

There are substantial differences between a CT scan for medical purposes and a CT scan in research 
and in the industrial sector. In the former case concerning medical equipment, the specimen or 
patient remains immobile, and it is the emitter-receptor apparatus that moves and revolves. 
However, it is the specimen that is moved and turned in an industrial or research CT scan.

Moreover, the equipment used in medicine presents very low intensity values because of the 
effects of high radiation on human health. These levels of radiation result in lower resolution 
and sharpness (Figures 2 and 3):
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Figure 1. The principle of the working of a CT scan [1].

Figure 2. An example of medical CT scan. Courtesy of Siemens.

Figure 3. An example of medical CT scan. Courtesy of YXLON.
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2. Use of CT scan technology in paleontology

Paleontology is one of the first scientific fields in which the use of computerized tomography 
started outside of medicine. Obviously, the technique of analyzing the bones of hominids and 
dinosaurs hardly differs from the technique used with humans and animals that are alive.

Numerous research papers have published studies in this field in which the CT scan is a very 
valuable instrument.

The fossilization process of an organism takes place over thousands of years, during which time loss 
and fragmentation of bones and other hard parts of the skeleton, decomposition, and so on occur. 
In addition, breakage occurs during their manipulation and study, which can imply an enormous 
loss. The primary objective of paleontological investigation is the reconstruction of skeletons and, 
from that point, to interpret many other biological and environmental characteristics, and so on.

The CT scan is a very useful tool here because it permits exact tridimensional images and, by 
means of software for the post-processing of images, can reconstruct skeletons without any 
need to manipulate the pieces. In addition, the information collected by the CT scan can serve 
as the basis for the regeneration of exact replicas using 3D printers [2–6].

In other cases, it may be physically impossible to remove the rocky sediment that hardens around 
the fossil. In that case, the CT scan can virtually eliminate it, revealing the “clean” piece [7] (Figure 4):

Figure 4. Virtual reconstruction and cleaning [7].
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In other cases, the CT scan can determine the biomechanical parameters of the fossils [8] and 
detect disease and pathologies [9].

Recently, some research works have been published, in which possible alterations to the sample, 
due to the radiation emitted by the CT-Scan in the course of dating studies, are analyzed [10, 11].

3. Use of CT scan technology in heritage and ancient relics

Relics and ancient artifacts, to some extent, share the characteristics of fossils, explained in the 
earlier section. In the first place, these objects are of singular value, so they have to be handled 
with great care. In many cases, they are pieces that have remained buried for thousands of 
years and may be covered by layers of rocky sediment that is strongly attached, the mechani-
cal removal of which implies a serious problem for the piece.

In these cases, the use of CT scan technology is of enormous interest. In the first place, the 
archaeological piece may be separated from the surrounding sediment as a virtual replica. 
In this way, the piece may be examined with the naked eye and studied without damaging 
it. Moreover, on the basis of the information obtained by the CT scan, exact replicas of the 
piece may be produced, using 3D printers. This option allows researchers to manipulate the 
replicas and to study them without the dangers, and the limitations involved in handling the 
original piece. It is also of interest for museums, as they can exhibit the replicas, for keeping 
the original piece safe in storage [12–16]. (Figure 5).

In other cases, the pieces are extremely delicate, such as paintings [17] and mummies [18]. In 
both cases, an analysis by means of CT scan technology preserves the integrity of the piece.

Figure 5. An example of rendering a prayer nut [12].
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4. Use of CT scan technology in asphalt mixtures

Asphalt mixtures are widely used in the construction of road pavements and airports, because 
of the advantages that they contribute, among which are high strength, easy manufacturing 
and maintenance, low noise emission, and so on.

From the structural point of view, asphalt mixtures are heterogeneous materials, composed 
of aggregates, asphalt, and porous networks. Their mechanical properties show high levels of 
dispersion, given that those properties depend on many factors, such as the form and the dis-
tribution of the aggregate, the asphalt content, the pore content, pore distribution, and so on.

Comparative numeric models, as close as possible to the real specimens, need to be devel-
oped, in order to understand the behavior of the asphalt mixtures better. In this sense, the CT 
scan is of great assistance, as it generates the exact geometry of the internal structure of the 
asphaltic mixture and subsequently a finite elements model (FEM) with which the real capac-
ity may be estimated against certain external actions. Comparing the numerical results with 
the tests carried out on the real specimen, it is possible to advance in the calibration of these 
models that predict the behavior of the material to improve its properties [19–23] (Figure 6).

In the case of special asphalts, it may be of great interest to know the exact distribution of cer-
tain compounds, with a view to understand their effectiveness. This situation applies to both 
additives for pavement restoration [24] and fiber-reinforced asphalts [24]. In many cases, with 
the assistance of the CT scan, correlations are sought between the mechanical behavior of the 
asphalt mix and its internal microstructure [25–28].

Figure 6. Extraction of the area of interest using CT scan technology [19].
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5. Use of CT scan technology in rock mineralogy

Since the 1980s, research has taken place in which CT scan technology has been applied to the 
analysis of the internal microstructures of rocks.

Rocks are heterogeneous materials containing pores and fissures and consisting of various 
materials, with different mechanical properties and of varying density. On many occasions, 
the structural behavior of a rock is strongly conditioned by its microstructure, especially in 
reference to pores and fissures.

Rock, as a structural material, is present in a range of civil engineering works, among which tunnels 
and dams are prominent. In tunnels, the mechanical characteristics of the rocks, their porosity, and 
their degree of internal fracturing strongly condition their stability, their convergence, and so on.

Something similar occurs in the case of dams, especially arch dams. These structural elements 
are cemented to rock faces, and their structural safety is strongly dependent on the mechani-
cal behavior of the rocks. The existence of failure planes or excessive internal fissuring might 
mean that the dam is not stable against the loads that it transfers, or it is not sufficiently water-
tight to ensure the retention of the water in the reservoir.

The foundations of large bridges, generally very deep foundations constructed with piles, 
usually reach down to the bedrock. Once again, the geological and mechanical characteristics 
of the rock clearly determine the structural safety of the bridge.

The possibilities offered by CT scanning in the field of geo-mineralogy are enormous [1, 29–
31]. In all of these cases, CT scan technology has been successfully used to understand the 
microstructure of the bedrock and its behavior in reaction to certain physical and mechanical 
processes (Figure 7).

Figure 7. Example of the possibilities of CT scan technology in rocks [29]. This time, the sequence shows a pore filling event.
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Porosity, linked to water absorption capacity, is a very important parameter in rocks, 
as demonstrated by the high number of scientific publications in this field. At present, 
the most relevant investigations are currently applying CT scan technology to evaluate 
porosity, regardless of whether it has structural consequences [32, 33]. Other investiga-
tive works have analyzed mechanical behavior and its connection with the mineralogical 
microstructure [34].

One of the variants of this theme is the study of petrous elements for their use in construc-
tion. A theme of great interest is the study of porosity in limestone used, for example, in 
façades and pedestrian pavements, as well as for the rehabilitation of historic buildings and 
as a masonry element. In all of these cases, determination of the porosity of limestone is essen-
tial when determining whether it is convenient for use in a particular climate. In the case of 
environments subjected to freezing-thawing cycles, a high porosity substantially reduces the 
working life of the limestone.

On this point, it is worth highlighting the studies developed by Dewanckele et al. [35] and 
Boone et al. [36], in which the behavior of porous limestone was analyzed against erosive 
processes and water absorption. To do so, CT scanning was used to analyze how the internal 
structure of the limestone evolves due to the aforementioned processes (Figure 8).

Figure 8. The example of rendering volumes of the changing pores in limestone [35]. The pores are color coded from red 
(large) to blue (small). Drawing A belongs to unweathered state, drawing B belongs to 6 days of weathering process, and 
drawing C belongs to 21 days of weathering process.
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6. Use of CT scan technology in metals

Metals are widely used materials in the industrial sector. At present, innumerable types of 
simple metals and alloys are used, each one of them with specific properties, useful for the 
function that they have to perform: very light or carrying heavy loads, electrical conductivity 
or otherwise, high and low thermal transmissivity, tenacity and fracture strength, abrasion 
resistance, hardness, mechanical capacity, corrosion resistance, and so on.

Metals are used in all fields of industrial engineering, without exception. Metal manufacturing 
processes are very varied, ranging from smelting and casting to more modern systems of stamp-
ing and injection. In general, the metals used in different fields present optimal properties for 
the function they will serve, with the optimal design of parts in terms of material consumption.

The use of CT scan technology is quite widespread in the industrial sector, especially in those 
sectors that develop elements of high added value (aeronautical, aerospatial, automotive sec-
tors, etc). One very common line of investigation, in which CT scan technology plays a rel-
evant role, is the study of defects produced during the manufacturing process, with a view 
to their improvement [37–40]. In some cases, comparisons have been established between the 
microstructure of the material and its mechanical behavior [41–44]. In these cases, the informa-
tion obtained by means of CT scanning is used for the generation of the tridimensional FEM 
models for the numerical simulation of the expected results and their subsequent comparison 
with the values measured in the tests. Here, the advantage of CT scanning is that it permits the 
construction of exact numerical models, which not only includes the different phases that con-
stitute the piece but also the pores, defects, fissures, and so on in their exact position (Figure 9).

Within this line of investigation, it is worth highlighting welded joints and their analysis [45]. 
Welding is the most extensive process, whenever possible, for joining together two metallic 
parts. The way in which the welding is done is fundamental to the final quality of the joint. 

Figure 9. The example of an analysis of mechanical behavior of metal under compression and CT scan analysis [44].  
(a) Sequential deformation recorded with a video camera and (b) sequential deformation “recorded” with a CT scan.
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In this sense, as in the earlier case, the defects produced in the weld can be evaluated during 
welding with CT scan technology helping to improve the process.

One particular case of metals, used from a structural point of view, is composite metals, gen-
erally composed of a bland or foamy metallic matrix to which fibers or particles are usually 
added to improve their rigidity and strength [46]. In these cases, the microstructure of the 
composite material may be analyzed with CT scan technology, evaluating the distribution of 
the reinforcement, its orientation in the case of fibers, and so on.

7. Use of CT scan technology in composites

Composite materials are widely used in engineering. They are generally composed of a matrix 
and reinforcement that is generally of particles or fibers. The reinforcement has the role of 
modifying the natural properties of the matrix, with the objective of achieving a material of 
the desired characteristics.

In general, in a composite material, three phases may be distinguished: matrix, reinforcement, 
and pores or cracks.

The behavior of the composite materials strongly depends on the distribution and the orienta-
tion of the reinforcement (the latter solely in the case of fibers) as well as the location in the 
pores and cracks.

Of great interest in this field, CT scan technology permits the evaluation of the microstruc-
ture of the composite material [47–52]. In many cases, the combined use of CT scan and 
mechanical or thermal characterization tests of the composite material allows relations to be 
established between the microstructure and its macroscopic response [53–57] (Figure 10).

Figure 10. The example of analysis of the microstructure of a composite [47]. (a) 3D braid geometry, (b) 3D braid geometry 
with imperfections, (c) 3D distribution imperfections, and (d) detailed view.
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As commented in earlier sections, a CT scan is the basis for the generation of exact FEM mod-
els, from which numerical simulations of all kinds may be performed [58, 59].

8. Use of CT scan technology in concrete

Concrete is one of the most widely used materials in the construction of infrastructure and 
buildings. One of the reasons for its extensive use is the relatively low price of extracting 
petrous materials from the environment. Another reason is the possibility of molding its 
geometry as it is poured in the fresh (fluid) state. The composition of concrete is highly het-
erogeneous as its matrix is composed of different materials: cement, sand, and rough aggre-
gate. The dosages of those elements are modified to obtain optimum mechanical capacities. 
Additionally, other types of materials are used to improve the performance of the concrete 
such as fibers and additives to modify the internal structure of the material.

Internally, what is generated is a matrix composed of aggregate fines and hydrated cement 
that cover the coarse aggregate (Figure 11). 

It is noteworthy that there are a multitude of parameters with a role in the final characteristic. 
The dosages of the different components are based on experimentation due to the different 
typologies or aggregates, sand, and cement that are available on the market. As an example, 
if in one region, the rocky material in the surrounding environment is granite, the aggregate 
will be based on this material.

Figure  11. Polypropylene fiber-reinforced concrete specimen. Aggregates (in white), cement matrix (in soft grey), 
polypropylene fibers (in dark grey), and porous (in black) can be identified. Courtesy of the University of Burgos (Spain).
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Moreover, concretes with additional qualities are under development in which fibers are 
added to their mixtures. There is at present a large quantity of fiber typologies in the market, 
so that at present, there is a broad process of investigation aimed at generating an optimal 
concrete in accordance with the desired performance.

Besides, public administrations are considering sustainability criteria that imply the develop-
ment of research that aims to produce concrete that incorporates recycled materials, so as to 
reduce the carbon footprint and the environmental impact.

Therefore, in view of the above, it may be said that even though concrete is a priori a relatively 
rough and ready technology, constant development and improvements in performance, as 
well as new applications in construction elements are topics that are in the investigative proj-
ects of universities and research centers throughout the world.

New tools that provide the researcher with information to supplement the results of conven-
tional tests have been incorporated to analyze concrete in this process of innovation for the 
determination of mechanical characteristics.

One of these tools that can be used to analyze the internal matrix of concretes and mortars is 
the computed tomography scan. The researcher is capable of analyzing unaltered samples of 
concrete in a non-destructive way, for example, in order to determine whether certain geo-
metric patterns exist that can in turn classify the physical characteristics of the sample.

Next, some of the practical applications of computerized tomography to concretes are described.

8.1. Application to the analysis of the internal matrix

Among the applications of the CT scan technology for the analysis of a concrete matrix, there 
are some experimental studies focused on recycled concretes [60]. In these studies, concretes 
with equal percentages of 50% recycled aggregate (RCA) and 50% natural aggregates were 
analyzed. The objective of the use of tomography is to evaluate the interfaces between both 
types of concretes. In addition, the porosity of each type of matrix is analyzed (Figure 12).

The identification of pores provides information on these internal gaps that the matrix pres-
ents. This information may relate to the size of the pores and their distribution within the spec-
imen. Information may also be extracted on the sphericity of the pores that is compared with a 
perfect sphere and finally, the spatial position of these pores within the matrix [61] (Figure 13).

The application of superabsorbent polymers (SAP) for the development of high performance 
concretes with the aim of reducing hydration-related problems of the cementitious matrix 
generates variations in the distribution of the pores within the concrete matrix and its porosity. 
These changes lead to modifications in the physical properties of the component [62].

Images of the spatial distribution of the pores may be obtained by means of computerized 
topography image analysis and the use of post-processing tools including volumes, numbers 
of pores, positions within the specimen, and sphericity indexes.

In this way, researchers can determine how the porosity map of the specimen is modified for 
different types of SAP additions (Figure 14).
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Figure 12. Interface paste-aggregate and porosity between matrices with recycled aggregates and natural aggregates [60].

Figure 13. Identification and classification of pores in sizes [61].
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In addition to the pores, the distribution of polymeric components is established. In the fol-
lowing image, the way each of the components of the polymer is obtained following segmen-
tation and their grouping is shown (Figure 15).

8.2. Applications to visualize fiber distribution

The addition of fibers improves the characteristics of concretes used in many different applica-
tions. The clearest and most widely used application is for the improvement of mechanical per-
formance. The fibers withstand traction forces that the concrete is incapable of withstanding. 
As with all petrous materials, concrete presents a very good capacity to withstand compressive 
forces, while its resistance to traction stress is relatively low.

Hence, the need to add strengthening elements, in the form of fibers to resist traction forces, 
is necessary.

By way of an example, fibers are in a phase of expansion in their application to self-compact-
ing concretes. The distribution and quantity of fibers represent a fundamental role in the final 
stress-resistant capacities of the concrete element [63].

Another factor that influences the mechanical capacities of fiber-reinforced concretes is fiber 
orientation within the matrix in relation to the traction planes of the component.

Figure 14. Identification of pores inside concrete matrix [62].

Figure 15. Segmentation and packing of the concrete matrix [61].
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There are different segmentation techniques for the determination of fiber orientation [64, 65] 
(Figure 16). In all cases, they begin with a common process divided into different phases:

1.	 In the first phase, it is necessary to separate those materials that correspond to the concrete 
matrix by means of a grey-scale threshold.

2.	 In the second phase, the voxels that correspond to the same fiber have to be separated, in 
an attempt to separate those groups of fibers that may be in contact with other groups.

3.	 Once each fiber has been identified and separated, it is possible to obtain the orientation of 
each fiber and to identify its position in space.

Another application of computerized axial tomography consists of analyzing the way in 
which the fibers may be distinguished during the manufacturing process of pre-fabricated 
elements and how that affects the reinforcement bars in the element [66] (Figures 17 and 18).

Figure 16. Procedure to identify fibers. The courtesy of the University of Burgos (Spain).

Figure 17. Fiber distribution around longitudinal rebars [66].
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8.3. Applications on internal analysis and cracking

The technology of the CT scan allows researchers to conduct analyses of concrete at a macro-level 
to identify the damage that may be generated in its matrix due to physical and chemical factors.

As described in the above sections, three-dimensional maps may be generated with this tool, which 
help the researcher to understand the internal mechanics of the concrete. There is at present no other 
real alternative that can reach the sub-millimetric level of detail of which tomography is capable.

In the case of the practical application carried out by Kim, Yun, and Park [67], CT scan technology 
was used to analyze samples of concrete and mortar at high temperatures. The objective was to 
determine how variations in temperature affected the behavior of the internal pores of the mate-
rial until their collapse. In the following image, the fissures that developed when the concrete 
was subjected to 1000°C are shown (Figures 19 and 20):

Figure 18. Schema of the fiber distribution and orientation during casting process [66].

Figure 19. Fracture development at 1000°C [67].
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It was determined that the appearance of fissuring began at a temperature of 600°C, and that 
this damage fundamentally began to occur in the zones close to the edges of the specimen, in 
the external zones, progressing as the temperature increased towards critical values until it 
reached a point of collapse.

Other studies related to fracture mechanics have analyzed how the fissuring of an element 
evolves when subjected to a flexural-traction test by using scanned images, in order to create 
a finite element model and a model of discrete damage adjusted to the physical interactions 
detected in the images [68] (Figure 21).

Finally, the following paragraphs describe research work that has been developed to deter-
mine the damage produced under cyclic loading in concrete specimens. Different specimens 
subjected to fatigue cycles at stress levels of 60, 70, 80, and 90% of resistance to static compres-
sion were analyzed.

The specimens were introduced before and after subjecting them to fatigue in the CT scan 
AC. The fissures within the concrete and their development were compared. A 3DMA algo-
rithm was used to calculate the “burn number” of the pores and fissures, a number that 
represents the distance of the voxels under analysis to the external surface of the pore. So, 
for example, the external voxels are assigned a value equal to zero. As the scan progresses 
into the interior of the pore or fissure, a higher value than the burn number is obtained 
[69]. Those voxels, in general within the value of 1, represented fissures of 1 voxel in width 
(Figure 22).

Figure 20. Imaging of fractures that developed at 1000°C [67].

Figure 21. Results of three studies: real (left), using CT-Scan (middle), and FEM (right) [68].
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Following the tests, a growth in the internal damage was observed as the stress levels of the 
uniaxial cyclic loading increased.

9. Conclusions

CT scan technology is a powerful research tool, with wide use capabilities in many scientific 
fields, and not only in medicine.

In this chapter, a general review has been carried out by different fields of science and engineering 
in which CT scan technology is currently being used successfully. As can be seen, the possibilities 
of this technology are very large and allow relevant advances in the knowledge of the materials.

Figure 22. Spatial representation of damage (burn number) to different stress levels [69].
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In the future, new equipment will be more powerful and more precise, which will allow us to 
see better the internal microstructure of our materials, which will help us to know them better 
and improve them, obtaining solutions adapted to each need.
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