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The outbreak of epidemics, the rise of religious radicalization
or the motivational influence of fellow students in classrooms
are some of the issues that can be described as diffusion
processes in heterogeneous groups. Understanding the role
that interaction patterns between groups (e.g. homophily or
segregation) play in the diffusion of certain traits or behaviours
is a major challenge for contemporary societies. Here, we study
the impact on diffusion processes of mixing (or, alternatively,
segregating) two groups that present different sensitivities or
propensities to contagion. We find non-monotonic effects of
mixing and inefficient segregation levels, i.e. situations where
a change in the mixing level can benefit both groups, e.g.
where an increase in the mixing level can reduce the expected
contagion levels in both groups. These findings can have
fundamental consequences for the design of inclusion policies.

1. Introduction
We consider a contagion process [1] in a population made up
by two groups, where each group presents a different contagion
propensity. Individuals regularly interact with other individuals,
who may belong to the same group (intra-group interactions) or
to the other group (between-group interactions). The mixing level
is measured by the fraction of between-group interactions. In this
paper, we study how mixing—or, alternatively, segregating—the
two groups may affect the expected level of diffusion of a certain
trait. We show that a particularly interesting case may arise, where
a change in the mixing level can improve the well-being of both
groups in the population, i.e. where there are Pareto-inefficient
mixing levels [2]. In the case of a disease, this would imply that
increasing the mixing between the two groups can reduce the
infection levels in both groups.

2018 The Authors. Published by the Royal Society under the terms of the Creative Commons
Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted
use, provided the original author and source are credited.
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The first model we analyse is a multi-type susceptible–infected–susceptible (SIS) model [3,4] with

two groups, where each group presents a different propensity to contagion. Initially, we assume that all
individuals within the same group present the same susceptibility to contagion, but this hypothesis is
relaxed later. Depending on parameter values, the multi-type SIS process has been shown to converge
either (i) from any initial conditions, to the situation where there is no diffusion in either group, or (ii)
from any non-null initial fraction of infected individuals, to a positive almost globally asymptotically stable
state [3,4]. Here we investigate the impact of mixing the two groups on their respective infection levels at
the positive stable state. We also explore the robustness of our results to more general settings.

Among the most related papers in the literature1, [3,4] analyse the existence of an almost globally
asymptotically stable state (the endemic state [9,10]) in the multi-type SIS model, and their results
constitute the starting point for our study of the effect of mixing on such state for the two-type SIS case.
An extension of the analysis in [3,4] to varying population size can be found in [11]. Epidemic thresholds
[12] for a multi-type contagion model with different mixing levels are studied in [13]. Their framework
includes the SIS model as a particular case, so their analysis of the local stability of the no-infection state
applies to the two-type SIS model too. Epidemic thresholds and endemic equilibria in a two-type SIS
model considering a bipartite network (which corresponds to the highest possible level of mixing in our
setting) are studied in [14,15], while the analysis in [16] deals with random mixing without bias. The
models in [13–16] generalize our approach by considering different interaction frequencies or network
degree distributions, but the analysis of the endemic state in those papers corresponds to one particular
mixing value (either a bipartite network [14,15] or random mixing [16]), while here we consider arbitrary
mixing levels and explore the sensitivity to mixing of the endemic state.2

As a first illustration of our main results, consider the case of an infectious disease spreading in a
population composed of two distinct groups of individuals (figure 1): one group is more sensitive to
contagion (the sensitive group, in red) and the other group is less sensitive (the resistant group, in blue).
Note that the two groups need not be defined by their contagion propensities: some other variable, such
as race, the presence of some gene or habitat, could characterize the partition of the population into
two groups. If the group-defining variable is somewhat correlated with the sensitivity to contagion, then
the two groups will present different average sensitivities, which is the only condition required in our
model.

We are interested in analysing the consequences of changing the level of mixing between groups. To
conduct such an analysis in the simplest possible way, we keep the average frequency of individual
interactions constant, and we modify the fraction of interactions between individuals belonging to
different groups. One might intuitively predict that, as the level of mixing increases, the infection levels
in both groups should approximate, with an increase of infections in the resistant group and a decrease of
infections in the sensitive group. Thus, the sensitive group would always benefit from a higher fraction
of between-group interactions, whereas the resistant group would always be harmed by it.3

We show that, while the first part of the previous intuition holds true (i.e. the infection levels do
approach as mixing is increased), the second part is not always true, i.e. the resistant group may benefit
from interacting more with the sensitive group. In other words, there can be inefficient mixing levels, i.e.
situations where increasing between-group interactions leads to a reduction of infections in both groups
(figure 1b, case B).

The underlying reason for this paradoxical effect is the feedback loop created between groups:
from an initial stable situation corresponding to a given mixing level (e.g. 60% mixing in the scenario
corresponding to case B in figure 1b), increasing the interaction level between groups can be initially
costly for the resistant group, which will initially meet more infected individuals. However, it can turn
out to be beneficial for that same group once the returns from the positive effect induced on the other
group are collected (i.e. the reduction in the infection level of the sensitive group), and a new equilibrium
is obtained in which both groups are better off.

1For extensions of epidemic models to networks, see [1,5–8].

2Also related, there have been some reports of a non-monotonic effect of mixing on diffusion levels in simulation experiments [17].
More distantly related to our study, considering costly strategic decisions that can mitigate the infection process, two-type SIS models
for different mixing levels have been studied with relation to the issue of strategic immunization or adoption of prevention measures
[18,19].
3To make statements about individuals’ well-being, first we have to assume that the infected state is either desirable or undesirable.
If the infected state is undesirable, then each group’s well-being decreases with its own equilibrium infection level, i.e. the fewer
infected individuals, the better. In contrast, if the infected state is desirable, the group’s well-being increases with its own infection
level, i.e. the more infected individuals, the better. Notice that, in this framework, the equilibrium determines an average fraction of
infected individuals in each group, but the identity of such individuals will typically change from one period to another: agents are
permanently switching from infected to susceptible and vice versa.
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Figure 1. Interaction structure and infection levels as a function of mixing. (a) (From left to right) Examples of a segregated population
case (m= 0), an unbiasedlymixed population case (m= 0.5) and a bipartite population case (m= 1). (b) Infection levels in equilibrium
for the resistantgroup (blue) and the sensitivegroup (red) as a functionof themixing levelm for twodifferent cases. In caseB, the infection
level in the resistant group is a non-monotonic function of the mixing level, and Pareto inefficient mixing levels exist. Parameters {λ1,
λ2} for the SIS model: case A: {1, 2}, case B: {0.55, 2}.

The infection narrative constitutes a natural motivating example, but the framework can be extended
to a variety of contexts [1,20–22]. In the infection narrative, individuals may be in an infected or in a
susceptible state; in other contexts, the state of infection can be interpreted as the state of adopting
a particular behaviour, technology, idea or belief, versus the state of adopting another alternative. In
these cases, we will use the more general term diffusion level, instead of infection level, for the fraction of
individuals in a group adopting one of the states.

In the social networks literature, the question we address can be more naturally posed as: ‘how do
different levels of homophily or segregation affect the diffusion of a trait?’, where ‘homophily’ refers
to the tendency of individuals in one group to interact preferentially with other individuals in the same
group [23]. This issue is relevant because many social interactions exhibit significant homophily based on
characteristics such as race, age, profession, etc. [24,25], while some other relationships (i.e. buyer-seller
networks) are characterized by a high degree of heterophily or disassortative mixing.

In a practical situation, regardless of the existing level of mixing, a decision maker or social
planner could potentially influence the interaction patterns between groups by implementing specific
incentives, rules or goal-directed policies. The key question, then, is how induced changes in between-
group interaction patterns affect diffusion. Examples include healthcare programmes to promote
interactions between individuals of similar health characteristics [26], or compositional classroom
designs to encourage school students with high academic motivation to interact with students with lower
motivation [27–29].4

4Naturally, we do not claim that our simple model can be directly applied to any such situations and used to automatically derive
policy recommendations in settings where other factors not included in the model may play an important role. Our model has been
purposefully designed to illustrate a phenomenon that can occur in a variety of contexts and, precisely for this reason, it is highly
stylized.
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The rest of the paper is organized as follows. In §2 we present the model. Section 3 contains the

formal results. In §4, motivated by some of the potential fields of application, we present and analyse a
generalization of the SIS model. Finally, §5 presents a discussion and the concluding remarks. The formal
proofs and a robustness analysis can be found in the electronic supplementary material.

2. Two-type SIS model
Our model is based on the susceptible–infected–susceptible (SIS) contagion framework, extended to a
multi-type setting [3]. In particular, we focus on a population composed of two groups of equal size:
one of the groups is the resistant group and the other one is the sensitive group. Individuals can be
in one of two possible states: ‘susceptible’ or ‘infected’. In each time period, each individual interacts
with another individual with probability p > 0 and, depending on the state of its partner, may become
infected. Specifically, a susceptible individual in group i ∈ {1, 2} becomes infected with probability υ i > 0
if it happens to interact with an infected individual. Individuals who are already infected recover and
become susceptible again with probability δi > 0.

Let m ∈ [0, 1] represent the mixing level, i.e. the probability that an interacting individual of one
particular group meets an individual from the other group. Thus, m is the expected fraction of between-
group interactions. As illustrated in figure 1, if m = 0, individuals interact only with individuals from
their own group (which is the fully segregated case), whereas if m = 1, individuals interact only with
individuals from the other group (which is the bipartite case).5

We use a continuous-time mean-dynamic approximation to study the evolution of the adoption levels
in each group. To do so, let ρi denote the fraction of infected individuals in group i. The evolution of ρi
in each group over time is described by the following nonlinear system of differential equations:

ρ̇i = pυi(1 − ρi)[mρj + (1 − m)ρi] − δiρi, (2.1)

where m is the mixing level, i, j ∈{1, 2} and i �= j.
To interpret these equations, note that, in order to get infected, a non-infected individual in group i—

whose number is proportional to (1 − ρi)—must interact with an infected individual of either the same
or the other group—which happens with probability p[mρj + (1 − m)ρi]—and get infected—which then
happens with conditional probability υi. In turn, the number of recoveries per period is proportional to
the number of infected individuals—whose prevalence is ρi—and to the probability of recovery δi.

Note that parameters p, υ i and δi can be interpreted as rates instead of probabilities. We can rewrite
these equations as

ρ̇i = δi[λi(1 − ρi)[mρj + (1 − m)ρi] − ρi], (2.2)

where λi = (p υ i/δi) represents the effective adoption rate for group i. Thus, the equilibria and the long-run
dynamics of this model can be characterized using exclusively three parameters: λ1, λ2 and m.

The SIS equations analysed in the paper constitute the deterministic mean-dynamic [33] of the
described underlying stochastic process. These equations provide a good approximation to the actual
stochastic dynamics occurring in finite populations when those populations are large enough [33,34].
In the electronic supplementary material, we show the robustness of the reported results to different
population sizes, as well as to the inclusion of some heterogeneity within groups.

3. Formal results
In this section, we state the results obtained from the analysis of the model. Detailed proofs of the
propositions can be found in the electronic supplementary material. The results in this section are
graphically summarized in figure 2, where the space of plausible effective adoption rates (λ1, λ2) ∈ [0,
∞) × [0, ∞) has been partitioned into different regions according to the impact of the mixing level m on
the equilibrium diffusion values in each group, and on the population average.

In region A, the no-diffusion state is a global attractor. In region B, there is a positive threshold
m̄ < 1 such that for 0 < m < m̄ there is a positive almost globally asymptotically stable state (leading

5There is a close relationship between the mixing level in our model and the concept of modularity in general networks. The modularity
of a partition of a network into groups is the fraction of intra-group links minus the expected value of such a fraction if links were
distributed at random [30,31]. For networks with two groups where the number of links departing from nodes in each group (i.e. the
sum of the degrees of all nodes belonging to each group) is the same, as in our model on expectation, the fraction of between-group
links m and the modularity Q of the partition given by the groups are linearly related in a particularly simple way: Q = (1 – m) – ½ =
½ – m. Similarly, the relationship between the mixing level m and the assortativity coefficient r [32] in our model is also straightforward:
r = 1 – 2m.
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Figure 2. Regions of effective adoption rate values (λ1 andλ2) corresponding to qualitatively different effects of the mixing levelm on
equilibrium infection levels. The main graph (a) illustrates the different regions in the {λ1, λ2} plane. The accompanying graphs (b–e)
represent the stable equilibrium infection levels (blue for the resistant group, red for the sensitive group, and green for the average) as
functions of m for {λ1, λ2} values corresponding to regions B, C, D and E, respectively. In region A, there is no diffusion. The {λ1, λ2}
values selected for the graphs are: B: {0.25, 2}, C: {0.3, 4}, D: {1, 4}, and E: {2, 5}. An interactive program to check the effect of mixing
for different adoption rates is available at http://demonstrations.wolfram.com/MixingAndInfectionInATwoGroupSISModel/.

to positive diffusion in both groups), while for m > m̄ the dynamics converge to the no-diffusion state.
In the remaining regions, for any positive value of the mixing level m and any initial state with some
infection, the process converges to a positive almost globally asymptotically stable state.

In regions B and C, the infection level for the resistant group is a non-monotonic function of m, with
an interior maximum. In region B, the average infection level is monotonic decreasing. In regions C and
D, the average infection level (ρ1 + ρ2)/2 is a non-monotonic function of m, with an interior maximum.
Finally, in region E, the three infection levels are monotonic functions of m.

For the formal propositions, and without loss of generality, let us assume that group 2 is the sensitive
group, i.e. 0 < λ1 < λ2. We are interested in the stationary states and the dynamics of equation (2.2) for m ∈
(0, 1); the extreme cases m = 0, m = 1 and λ1 = λ2 are discussed in the electronic supplementary material.

The stationary states of equation (2.2) are the pairs of values (ρ1, ρ2) ∈ [0, 1]2 such that ρ̇1 = 0 and
ρ̇2 = 0. Given the specification of the model, which precludes spontaneous infection, the state where all
individuals are susceptible (i.e. no individual is infected) is always stationary. Depending on the values
of the parameters, the diffusion dynamics either converge from any initial state to the situation where
there is no diffusion in either group, or present a positive almost globally asymptotically stable state to which
the system converges from any non-null initial fraction of infections. The following result formalizes this
statement.

Proposition 3.1 (Globally asymptotically stable state). If λ2 > 1 and either λ1λ2 > 1 or m < m̄, where
m̄ = 1 − (1 − λ1λ2)/(λ2 + λ1 − 2λ1λ2), there is a positive globally asymptotically stable state in [0, 1]2\{(0, 0)}.
Otherwise the no-diffusion state (0, 0) is globally asymptotically stable in [0, 1]2.

As an immediate corollary of proposition 3.1, if the effective adoption rate in the sensitive group is
not greater than one (λ2 ≤ 1), then the process converges to the no-diffusion state (0, 0), which is globally
asymptotically stable. The interesting cases, consequently, are those in which the effective adoption rate
in at least one of the groups is greater than one.

The threshold m̄ coincides, naturally, with the local-stability threshold of the no-diffusion state
characterized in [13] for this case. Proposition 3.1 can be derived, after some adaptations, from the results
in [3] or [4] for multi-type SIS models. In the electronic supplementary material, we present an alternative
proof for the two-type case that is helpful to show equivalent results for some parametrizations of the
general contagion model that we analyse later.

Given that there is a unique globally asymptotically stable state in our dynamics, we can proceed by
conducting comparative static analyses. In particular, we can study the effect of the mixing level m on
the stable infection levels for the sensitive and resistant groups separately, within the range of positive
values of m where the stable positive equilibrium exists, i.e. for λ2 > 1, m ∈ (0, 1] if λ1λ2 > 1 and m ∈ (0, m̄)
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if λ1λ2 ≤ 1. Let ρE

i denote the fraction of infected individuals in group i at the positive stable equilibrium
(which is a function of m). By analysing the derivatives of ρE

i with respect to m in the considered range of
values where the positive equilibrium exists, we obtain the following results for the positive equilibrium
infection levels.

Proposition 3.2 (Infection level in the sensitive group). The stable positive equilibrium infection level
in the sensitive group ρE

2 is a strictly decreasing function of the mixing level m. Its maximum level, 1 − λ−1
2 ,

corresponds to m = 0. If λ1λ2 ≤ 1, then ρE
2 decreases to 0 as m → m̄−, with m̄ ≤ 1. If λ1λ2 > 1, ρE

2 obtains its
minimum value (λ1λ2 − 1)/( λ1λ2 + λ1) > 0 at m = 1.

Proposition 3.2 implies that, by increasing the mixing level, the infection level in the sensitive group
can only decrease (figure 2). If being infected is undesirable, the sensitive group can only benefit from
more mixing. Alternatively, if being infected is desirable, the sensitive group can only be harmed by
more mixing. Note that if the resistant group is resistant enough (specifically, if λ1 < λ−1

2 , with λ2 > 1),
then a sufficiently high level of mixing would kill the infection in the whole population. This could be
either desirable or undesirable, as it can mean the disappearance of a disease, but it can also mean the
disappearance of a desirable trait or behaviour from the whole population.

Proposition 3.3 (Infection level in the resistant group).

(i) For adoption rates λ1 >
√

λ2/(λ2 − √
λ2 + 1), which is always the case if λ1 > 1, the stable positive

infection level in the resistant group ρE
1 is a strictly increasing function of the mixing level m ∈ (0, 1).

The minimum level for ρE
1 is limm→0+ ρE

1 = Max(0, 1 − λ−1
1 ), corresponding to m = 0.

(ii) For adoption rates λ1 <
√

λ2/(λ2 − √
λ2 + 1), the stable positive infection level in the resistant group ρE

1
is a non-monotonic function of m which increases from limm→0+ ρE

1 = 0, obtains a maximum value at
some interior value of m and then decreases, either back to limm→m̄− ρE

1 = 0 if λ1λ2 ≤ 1, or to (λ1λ2 −
1)/( λ1λ2 + λ2) > 0 (obtained at m = 1) if λ1λ2 > 1.

Proposition 3.3 implies that, if the effective adoption rate in the resistant group is greater than one
(meaning that both groups, if isolated, would sustain some infection in equilibrium), then, by increasing
the mixing level, the infection level in the sensitive group decreases and the infection level in the resistant
group increases. In this case, favouring one group by changing the mixing level can only harm the other.6

This behaviour corresponds to parameter regions D and E in figure 2, which are defined by the first
condition in proposition 3.3 (which also assumes λ1 < λ2 for the sake of notational simplicity and without
loss of generality).

More interesting findings are obtained in regions B and C in figure 2, wherein the effective adoption
rate is greater than one in the sensitive group but lower than one in the resistant group.7 In these regions,
corresponding to the second part of proposition 3.3, the equilibrium infection level in the resistant group
is null when the group is isolated; it increases initially with more mixing and eventually decreases
(possibly back to zero again, if in region B) after having obtained some interior maximum value. This
implies that there are inefficient mixing levels regardless of whether being infected is desirable or
undesirable, as we explain below.

If being infected is desirable, an example of an inefficient mixing level would be the bipartite situation
(m = 1) in graph C of figure 2, where both groups would increase their equilibrium infection level by
reducing the mixing level to around 70%. Again in graph C, if being infected is undesirable, all mixing
levels for which the infection level in the resistant group is greater than the value corresponding to
the bipartite situation (m = 1) would be inefficient, because, by increasing the mixing level to m = 1,
both groups would decrease their equilibrium infection level. Finally, in region B (where λ1λ2 ≤ 1), for
sufficiently high mixing levels, the infection would even be eliminated from the whole population.8

The following proposition concerns the average infection level in the population at the stable positive
equilibrium ρE = (ρE

1 + ρE
2 )/2, which is a function of m in the range where the positive equilibrium exists.

6Unless infection is desirable in one group and undesirable in the other, a case we do not consider here.

7In these situations, for a resistant individual, and given some positive mixing level, coordinating with the other resistant individuals
to increase the mixing level can be advantageous to reduce the average time infected, even though more mixing with susceptible
individuals is individually costly if the other resistant individuals do not follow suit. In this sense, in a strategic setting, increasing the
mixing level could constitute a social dilemma. However, it follows from proposition 3.3 that no situation for the resistant group can
be strictly better than the situation with no mixing.
8The behaviour in region B is somewhat less surprising once it is understood that enough mixing can eliminate the infection, and
considering that a positive level of infection in one group implies a positive level of infection in the other. Continuity would then
make the blue line in graph B go from a no-infection level at m = 0 back to a no-infection level again for sufficiently high mixing, going
through positive values in the way.
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Proposition 3.4 (Average infection level).

(i) If λ1λ2 ≤ 1, the average infection level ρE is a decreasing function of m, with limm→m̄− ρE = 0.
(ii) If λ

3/4
1 (λ2 + 1) ≥ λ

3/4
2 (λ1 + 1), which requires λ1λ2 > 1 and λ2 > 3, ρE is an increasing function of m.

(iii) Otherwise ρE is a non-monotonic function of m, initially increasing and then decreasing, which obtains
an interior maximum. In this case, the minimum average diffusion is obtained either at m = 1, if λ1 <√

λ2/(λ2 − √
λ2 + 1), or at m = 0 otherwise.

Proposition 3.4 implies that the average infection level decreases to zero in region B, is non-monotonic
in regions C and D, and is increasing in region E. This has relevant implications as to the optimal mixing
level when the objective is maximizing or minimizing the average infection level. In particular, if the
adoption rates lie in region B, then average diffusion is maximized in the segregated case (m = 0) and
minimized (reaching no diffusion) whenever the mixing level is sufficiently high (i.e. m > m̄). If the
adoption rates lie in regions C or D, average diffusion is maximized at an intermediate level of mixing,
and minimized at one of the extremes (m = 1 in region C, m = 0 in region D). Finally, if the adoption rates
lie in region E, average diffusion is an increasing function of mixing, so it is maximized in the bipartite
case (m = 1) and minimized in the segregated case (m = 0).

Proposition 3.5 (Difference between infection levels). The difference between the stable positive infection
levels in the sensitive and resistant groups (ρE

2 − ρE
1 ) is a strictly decreasing function of the mixing level m. This

difference is always positive for (ρE
1 , ρE

2 ) �= (0, 0).

Proposition 3.5 implies that the difference between the infection levels of both groups is always
minimized at the bipartite situation (m = 1).

4. General contagion model
The SIS model of contagion analysed in the previous sections can be extended to address more general
situations [1,20–22,35], such as peer effects in classrooms, where it seems reasonable to assume that the
probability of switching from infected (i.e. motivated student) to susceptible (i.e. non-motivated student)
is affected by the current state of partners. A similar issue is how the internal organization of a work team,
where some individuals are easier to motivate than others, affects the overall level of productivity. On
the one hand, in these cases, as in the SIS model, an important factor for an individual to switch from one
state to the other can be the state of his/her partner. On the other hand, there are some limitations of the
SIS model when considering social contagion applications [36]: in a SIS model only one of the states is
contagious, while the recovery rate is independent of whether one’s partner is infected or not. Here we
consider a more general framework which, even though it might still constitute a rough simplification for
some of the motivating applications, overcomes the indicated limitations. A related though more limited
generalization of the SIS model can be found in the SISa model [36] (see [1, §X], for other generalizations
of epidemic models as social contagion processes). The key assumption in our model is that individuals’
state transitions depend on their current state and on the state of the individuals they interact with.
We show that the qualitative results that we have described for the two-group SIS model, namely the
existence of situations where the equilibrium diffusion levels are non-monotonic functions of the mixing
level m, as well as the existence of Pareto-inefficient outcomes, hold in this more general case.

Consider an extended model which includes as parameters for each population i ∈ {1, 2} the following
contagion and recovery rates, conditional on the current state of the interacting individual (state S or
state I):

— υi|S: rate at which individuals in state S who interact with individuals in state S adopt state I.
In an infection model, this is the rate of infection when meeting a healthy partner (due to other
factors of infection). In a school motivation model, this would be the rate at which students in
group i in motivation state S and with a partner in motivation state S adopt motivation state I
(due to other motivating factors).

— υi|I: rate at which individuals in state S who interact with individuals in state I adopt state I. This
is the rate of infection when meeting an infected partner.

— δi|S: rate at which individuals in state I who interact with individuals in state S adopt state S.
This is the rate of recovery when having a healthy partner.

— δi|I: rate at which individuals in state I who interact with individuals in state I adopt state S. This
is the rate of recovery when having an infected partner.
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Figure 3. Equilibrium diffusion values as a function of the mixing level in the general contagion model. Parameter values (%):
(υ1|S, υ1|I, δ1|I, δ1|S)= (1, 15, 60, 70); (υ2|S, υ2|I , δ2|I, δ2|S)= (1, 80, 1, 20).

Leaving apart the limit cases in which some parameters are either 1 or null, we assume that 0 < υi|S <

υi|I < 1 and 0 < δi|I < δi|S < 1.
The probability that an individual in group i interacts with an individual in state I is Ii = (1 − m)ρi +

mρj, with index j indicating the other group: j ∈ {1, 2}, j �= i.
The system of differential equations describing the evolution of adoption in each group over time is:

ρ̇i = (1 − ρi)[υi|IIi + υi|S(1 − Ii)] − ρi[δi|IIi + δi|S(1 − Ii)]

To interpret these equations, note that (1 − ρi) is the prevalence of individuals in group i that can change
to state I (because they are in state S), υi|IIi is the rate at which such individuals meet a partner in state I
and then change to state I, and υi|S(1 − Ii) is the rate at which such individuals meet a partner in state S
and then change to state I. The rest of the terms can be interpreted similarly.

For each value of m and ρj ∈ [0, 1], ρ̇i is a second-degree polynomial in ρi such that ρ̇i(ρi = 0) = υi|S +
mρj(υi|I − υi|S) > 0, and ρ̇i(ρi = 1) = −[δi|I + m(1 − ρj)(δi|S − δi|I)] < 0.

Consequently, for each value of m and ρj ∈ [0, 1] there is a unique and positive value of ρi ∈ [0, 1]
satisfying ρ̇i = 0, and this equation defines a ‘reaction function’ ρR

i : [0, 1] × [0, 1] → (0, 1), (ρj, m) →
ρR

i (ρj, m), which provides the corresponding equilibrium diffusion level in group i.
It is not difficult to see that, for a fixed value of m, ρR

i is strictly increasing in ρj (this follows from the
fact that ∂ρ̇i/∂ρj > 0) and that, if (υi|I − υi|S) > (δi|S − δi|I), it is also strictly concave (strictly convex if the
inequality is reversed). For the strictly concave–concave case, as well as for the strictly convex–convex
case (which can be easily transformed to the concave–concave case via a change of variables), the same
arguments that we used in §A2 of the electronic supplementary material for the SIS model can be applied
to show that there is a unique interior globally asymptotically stable stationary state.

Figure 3 illustrates the equilibrium diffusion values (ρE
1 , ρE

2 ) as a function of the mixing level m
for a parametrization of this model. It shows that the same qualitative features that we discussed
for the multi-group SIS model also apply to this extended case: the diffusion level in a group can
be a non-monotonic function of the mixing level, and there can be Pareto-inefficient mixing levels.9

Again, for policy considerations, it also shows that the qualitative global effect of modifying the
level of segregation or mixing between groups varies with the parameter values of the groups:
given most reasonable sets of objectives, a modification of the mixing level in one direction (increase
or decrease) could be beneficial or prejudicial depending on the status quo and on the parameter
values of both groups. Particularly, for the issue of ability sorting in schools (for which empirical
findings are often controversial and sometimes even contradictory [27–29]), our extended model
would suggest a way of reconciling apparently opposing recommendations within one single coherent
explanation: increasing the level of mixing between students with high and low academic performance
can have a positive or negative overall effect depending on students’ responsiveness to their
partners’ state.

9There are also parameter combinations for which there are no inefficient mixing levels. For instance, for the ‘mirror’ case in which
υi|1 = δj|0 and υi|0 = δj|1 , with i, j ∈ {1, 2}, i �= j, it can be easily shown that ρE

1 + ρE
2 = 1, so any increase in one of the equilibrium infection

levels must correspond to a decrease in the other.
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5. Discussion
Humans belong to different groups according to race, gender, age, abilities, preferences, etc. Most kinds
of human interactions are biased in the sense that they take place preferentially between individuals
of the same group (homophily) or, conversely, between individuals of different groups (disassortative
mixing). Nonetheless, social policies can be implemented to modify the level of mixing between different
groups. We have studied the effect on diffusion processes—such as the adoption of a particular behaviour
or the spread of a disease—of mixing two groups with different propensities for adoption.

Our results using a SIS model show that, for some parameter regions, the diffusion level in the
resistant group is a non-monotonic function of the mixing level m (proposition 3.3). This is a consequence
of two opposing effects taking place simultaneously when increasing the mixing level from an initial
equilibrium situation. On the one hand, by mixing more with the sensitive group, which has more
infected individuals or adopters, the number of adopters in the resistant group should increase. On
the other hand, a greater mixing with the resistant group decreases the diffusion level in the sensitive
group (proposition 3.2). This, in turn, creates a feedback loop effect on the resistant group such that,
when the reduction of adopters in the sensitive group is strong enough (i.e. when m is sufficiently high),
the number of adopters in the resistant group also decreases as mixing increases.

If the diffusion level in the resistant group is non-monotonic, there are Pareto inefficient mixing levels,
i.e. mixing levels such that both groups would be better off at some other mixing level. In this case,
avoiding Pareto-dominated outcomes, which can be considered a generally desirable objective [2], would
rule out a range of (non-efficient) mixing levels, though, in general, it would not provide just one single
optimal mixing level. Optimizing the average diffusion is another possible objective for a social planner
to focus on. In such a case, and depending on the groups’ adoption rates, the optimal mixing level can
range from the totally segregated case (m = 0) to the bipartite case (m = 1). An alternative objective worth
exploring can be to reduce the diffusion difference between groups. To achieve this, the bipartite case
where all interactions are between groups (m = 1) is always the best structure (proposition 3.5). However,
it should be noted that this situation may be Pareto inefficient (see, e.g. the graph representative of region
C in figure 2, assuming a desirable trait).

The generalization of the SIS model that we have considered also shows parameter regions such
that the equilibrium diffusion levels are non-monotonic functions of the mixing level m, with Pareto-
inefficient mixing levels.

To conclude, our results indicate that the best mixing level among heterogeneous groups will
generally depend not only on the desired objective (such as, for instance, maximizing the average
diffusion level), but typically on the effective adoption rates (or propensities) of each group, these
being parameters that are well defined and which can be measured or estimated. A ‘one-fits-all’
recommendation does not exist, meaning that the optimal policy could be very different for different
contexts. Furthermore, the existence of inefficient mixing levels highlights the importance of estimating
appropriately the relevant contagion parameters before embracing any particular policy.

Data accessibility. A computer program available at https://luis-r-izquierdo.github.io/micopro/ implements the two-
type SIS model used in the robustness analysis. An interactive Mathematica demonstration that computes and
displays the equilibrium infection levels as a function of the mixing level is available at http://demonstrations.
wolfram.com/MixingAndInfectionInATwoGroupSISModel/.
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