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RESUMEN

En un sentido amplio del término, la inteligencia artificial es cualquier tipo de inteligencia
de la que disponga una máquina. Más concretamente, es una rama del conocimiento que
trata de construir agentes inteligentes, entendiendo estos como entidades que utilizan

las percepciones del entorno para llevar a cabo acciones que maximicen alguna medida de
rendimiento. Dentro del variado número de tareas que engloba la inteligencia artificial, esta tesis
se centra en el aprendizaje automático. Este término ha evolucionado a partir del estudio del
reconocimiento de patrones. La idea subyacente es la de diseñar algoritmos que sean capaces de
aprender y hacer predicciones sobre los datos. El rendimiento en este caso viene dado por cómo
de buenas son las predicciones hechas sobre los datos. Las percepciones los valores numéricos de
los datos, y las acciones la modificación de valores de parámetros y la emisión de la predicción.

Tradicionalmente, el aprendizaje automático se ha dividido en tres grandes grupos: super-
visado (donde se dispone de ejemplos etiquetados que sirven como modelos para aprender), no
supervisado (donde los ejemplos no se encuentran etiquetados) y por refuerzo (inspirado en la
psicología conductista, donde los agentes deciden sus acciones con el objetivo de aumentar la re-
compensa). El foco de la presente tesis se centra en el aprendizaje supervisado. En el aprendizaje
supervisado, los algoritmos deben ser entrenados con un conjunto de ejemplos etiquetados (la eti-
queta es el atributo objetivo a predecir), los cuales son utilizados por los algoritmos para realizar
futuras predicciones. Dos tareas ampliamente estudiadas en el área son clasificación y regresión,
dependiendo de si lo que se desea predecir es un valor categórico o numérico respectivamente.

A medida que las bases de datos, utilizadas para entrenar los sistemas previamente explicados,
se hacen cada vez más grandes, aparecen nuevos retos para los algoritmos de aprendizaje.
La minería de datos, un subcampo de las ciencias de la computación íntimamente ligado al
aprendizaje automático y el reconocimiento de patrones, surge para dar solución a estos problemas.
Una de las primeras fases en el proceso de descubrimiento de conocimiento (KDD) son las técnicas
de preprocesado, que adecúan los conjuntos de datos para permitir su posterior tratamiento. Una
de estas técnicas, llamada selección de instancias, trata de reducir el tamaño de las muestras
mediante la eliminación de todas aquellas instancias que no aporten información relevante al
conjunto.

Esta tesis se centra en el estudio de métodos de selección de instancias. Se han analizado
las técnicas del estado del arte y desarrollado nuevos métodos para cubrir algunas áreas que no
habían recibido la debida atención hasta el momento.
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ABSTRACT

In the broadest sense of the term, artificial intelligence is any type of intelligence that
a machine can demonstrate. More specifically, it is a branch of knowledge that seeks to
construct intelligent agents, where these are understood as entities that use perceptions from

the environment to carry out actions that maximize some measure of performance. Within the
broad spectrum of tasks that artificial intelligence encompasses, this thesis focuses on machine
learning; a term that evolved from the study of pattern recognition. The underlying idea is to
design algorithms that are capable of learning and making predictions from data sets.

Traditionally, Machine Learning has been organized into three large groups: supervised
learning (with labelled data set examples that are used for learning), unsupervised learning (with
data set examples that are not labelled), and reinforcement learning (inspired by behaviourist
psychology, where the behaviour of each agent aims to maximize its reward). This thesis focuses
on supervised learning. The algorithms of supervised learning must be trained with labelled data
sets (the label is the attribute to be predicted), which are used by the algorithms to make future
predictions. Two widely studied tasks in this area are classification and regression, depending on
whether the predicted value is either nominal or numeric, respectively.

New challenges have arisen for learning algorithms, as the data bases that are used for
training systems have grown in size. Data Mining emerges as a field of computer science closely
related to both machine learning and pattern recognition that can address those sorts of problems.
Preprocessing techniques represented one of the very first phases of the process of “Knowledge
Discovery in Databases” (KDD). Their purpose is to adjust data sets to make their subsequent
treatment easier. One of those techniques, instance selection, is used to reduce the size of a data
set by removing the instances that provide no valuable information to the whole data set.

This thesis focuses on the study of instance selection methods. State-of-the-art techniques are
analysed and new methods are designed to cover some of the areas that have not, up until now,
received the attention they deserve.
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In God we trust. All others must bring
data.

W. Edwards Deming
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1
INTRODUCTION

This chapter introduces the reader to the basics of Machine Learning, paying particular

attention to preprocessing techniques. The experimental methodology commonly used

in the literature is also presented in this chapter.

Preprocessing methods are essential for achieving accurate models. It should never be for-

gotten that a trained model can only be as accurate as the data used in the training phase. The

focus of this thesis is supervised learning, the common name for prediction methods in Data

Mining. The availability of massive data sets has been incessant, ever since the beginning of

the Information Age. One of the major challenges of the data mining community is to achieve

fast, scalable and accurate approaches (Chawla et al., 2004) to data management. Among the

possible solutions to cope with overwhelming volumes of data is the reduction of the data sets.

One successful reduction technique is instance1 selection. Instance selection is in particular the

topic of this thesis. It will be analysed in depth throughout the present chapter.

1.1 Supervised learning

The aim of supervised learning is to discover hidden relationships between input attributes (i.e.

variables or features) and a target attribute. The target attribute can be numerical or categorical:

if the target is numerical, the prediction task is named regression, as opposed to classification

where the target attribute is discrete or categorical.

Model is the term that denotes the structure generated by some learning algorithms after the

learning phase. This phase consists in training the algorithm with a labelled data set, so that the

algorithm can discover the underlying relationship between the input attributes and the target

1The terms object, instance, and example will be used interchangeably throughout this thesis.
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CHAPTER 1. INTRODUCTION

Hair Feathers Eggs Milk Airborne Aquatic Predator Legs Type

true false false true true false false 4 mammal
false true true false true false false 2 bird
false false true false false true true 8 invertebrate
false false true false true true true 4 amphibian

TABLE 1.1. Example of a classification data set, the goal is to predict the type of the
animal.

Cylinders Displacement HP Weight Acceleration Model Year MPG

4 110 87 2 672 17.5 70 25.0
4 81 60 1 760 16.1 81 35.0
4 89 62 1 845 15.3 80 29.8
5 183 77 3 530 20.1 79 25.4
6 232 112 2 835 14.7 82 22.0
8 360 150 3 940 13.0 79 18.5

TABLE 1.2. Example of a regression data set, the goal is to predict the car city-cycle
fuel consumption in miles per gallon.

one. The goal of the training phase is to achieve an explicit model that can be used to predict

instances that have never been seen before. However, not all algorithms create a prediction model,

accordingly, algorithms can be grouped into two clusters: eager learning and lazy learning (both

concepts are detailed further on).

Data sets used for training are usually described as a set of instances. Each instance is a

vector of attribute values, one of them is the variable of interest or “target”. Usually, the attribute

values are nominal or numerical, but there are many others such as date, Boolean. . .

As previously stated, the type of target attribute defines two different problems: classification,

when the target is either categorical or nominal, and regression, when the target is continuous.

Tables 1.1 and 1.2 show a tabular representation of two data sets: classification and regression,

respectively.

Supervised learning has a myriad of application domains, such as bio-informatics, finance,

medicine, engineering, telecommunications, among others.
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1.2. INTRODUCTION TO DATA PREPROCESSING

1.1.1 Lazy learning

Lazy algorithms construct no models throughout the training phase; instead they simply store

the whole data set and postpone its evaluation until a query is submitted; exactly the opposite

procedure to the one that eager algorithms follow.

The advantages and disadvantages of these methods are due to their way of working, as

previously explained. They need large spaces to fit the whole training set and are slow when

they have to evaluate a query. The advantages include a fast training phase (they only store the

whole data set) and good local approximators. Moreover, they can add new examples with no

need for retraining, because they only need to add the new examples to their data base. This last

advantage makes them especially suitable for changing environments, such as concept drift on

streaming learning (Tsymbal, 2004).

Examples of lazy learning algorithms are k nearest neighbours and case-based reasoning,

among others.

1.1.2 Eager learning

Eager algorithms construct a predictive model during the learning phase. The model that is

generated differs according to the algorithm: decision trees, neural networks, etc. The model that

is constructed is used by the algorithm to make predictions when new queries are submitted.

Training instances are used to build the model and, when the training phase ends, the

algorithm only needs the model to decide the target of the new instance. Accordingly, eager

algorithms have no need to store the whole data set, but only the model, which usually requires

much less space. It is commonly named batch or off-line learning, because the training phase is

only done once.

Examples of eager algorithms are those that build decision/regression trees, artificial neural

networks, and support vector machines, among others.

1.2 Introduction to data preprocessing

As previously stated, input data are the cornerstone of Machine Learning. Algorithms need

accurate and well-formed data sets for training purposes. Unfortunately, external factors usually

degrade data consistency in the real world, e.g. presence of noise, superfluous data, huge amount

of instances or features (García et al., 2014). Hence, data preprocessing tasks take up a significant

length of time in Machine Learning work-flows. Two main groups are commonly used to bring

different preprocessing techniques together: data preparation and data reduction.

5



CHAPTER 1. INTRODUCTION

1.2.1 Data preparation

Data preparation gathers several different techniques used to suit data for Data Mining processes

and it is usually a mandatory step. Why is it so important? Imagine a problem of interest: the

data sets have first of all to be gathered from the source or sources and then prepared for use2.

The steps for data preparation are grouped and briefly explained below:

• Data cleaning: includes tasks like noise identification and treatment of missing values. In

a nutshell, the aim of data cleaning is to obtain a well-formed data set suitable to feed

algorithms.

• Data transformation: usually done under human supervision, it comprises such tasks as

discretization, summarization, and aggregation. . .

• Data integration: comprises the processes of merging data from multiple data sources.

Special care must be taken to avoid duplicated instances, and different data domains,

among others.

• Data normalization: different attributes can have different ranges and some methods, such

as distance-based methods, are very sensitive to the scale of the features. Normalization

processes provide the same range and scale for all attributes.

1.2.2 Data reduction

Nowadays, available data sets are progressively increasing in size. As a consequence, many

systems have difficulties when processing (big or huge) data sets to obtain exploitable knowl-

edge (García-Pedrajas and de Haro-García, 2014).

The aim of data reduction is to decrease complexity and to improve the quality of the resulting

data sets by reducing their size. The size of data sets can be reduced in terms of both features

and instances. Some relevant techniques are grouped below:

• Discretization: the process of transforming numerical into discrete attributes. The challenge

is how to find the best ranges or intervals into which the numerical values should be split.

The discretization process can also be considered as part of the data preparation stage.

The decision to include it as a data reduction task is explained in (García et al., 2014):

the discretization stage actually maps data from a large range of numeric values onto a

reduced subset of categorical ones.

• Feature extraction: includes several modifications to the features such as removing one or

more attributes, merging a subset of them, or creating new artificial ones.

2In some cases, the data without preparation could be good enough to feed an algorithm, but its results would
probably not make sense.

6
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factors, such as the decreasing of the complexity and improvement of the quality of
the models yielded, the role of data reduction is again decisive.

As mentioned before, what are the basic issues that must be resolved in data
reduction? Again, we provide a series of questions associated with the correct answer
related to each type of task that belongs to the data reduction techniques:

• How do I reduce the dimensionality of data?—Feature Selection (FS).
• How do I remove redundant and/or conflictive examples?—Instance Selection

(IS).
• How do I simplify the domain of an attribute?—Discretization.
• How do I fill in gaps in data?—Feature Extraction and/or Instance Generation.

In the following, we provide a concise explanation of the four techniques enu-
merated before. Figure 1.4 shows an illustrative picture that reflects the forms of data
reduction. All of them will be extended, studied and analyzed throughout the various
chapters of the book.

(a) Feature selection
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reduction. All of them will be extended, studied and analyzed throughout the various
chapters of the book.

(b) Instance selection

14 1 Introduction

Feature Selection

Instance Selection

Discretization

Fig. 1.4 Forms of data reduction

factors, such as the decreasing of the complexity and improvement of the quality of
the models yielded, the role of data reduction is again decisive.

As mentioned before, what are the basic issues that must be resolved in data
reduction? Again, we provide a series of questions associated with the correct answer
related to each type of task that belongs to the data reduction techniques:

• How do I reduce the dimensionality of data?—Feature Selection (FS).
• How do I remove redundant and/or conflictive examples?—Instance Selection

(IS).
• How do I simplify the domain of an attribute?—Discretization.
• How do I fill in gaps in data?—Feature Extraction and/or Instance Generation.

In the following, we provide a concise explanation of the four techniques enu-
merated before. Figure 1.4 shows an illustrative picture that reflects the forms of data
reduction. All of them will be extended, studied and analyzed throughout the various
chapters of the book.

(c) Discretization

FIGURE 1.1. Main kinds of data reduction. Figures reproduced from (García et al.,
2014).

• Instance generation: in this task, new artificial instances are created as a summary of the

original ones. The new instances are created with the aim of improving the representative-

ness of the whole data set while reducing its size.

• Feature selection: the elimination of some attributes can make the learning process easier.

The presence of irrelevant or duplicate features in the data set are challenges for the

algorithms.

• Instance selection: attempts to find the most representative subset, of the initial data set,

without lessening the predictive capabilities of original one. In other words, if we train one

algorithm with the original data set, and another with the selected subset, both algorithms

must perform in a similar manner (Nanni and Lumini, 2011). Instance selection can be

seen as a special case of instance generation, where the instances to be generated are

limited to the original ones. These methods play a central role in data reduction processes.

Whereas feature selection or discretization processes reduce complexity, instance selection

reduces the data set size (García et al., 2016).

1.3 Instance selection

As previously explained, instance selection algorithms are intended to reduce the complexity of

learning algorithms by reducing the number of examples of data sets (Leyva et al., 2015). The

purpose of these algorithms is to extract the most significant subset of instances by discarding

those that do not provide valuable information. Figure 1.2 illustrates the instance selection

process. The reduction of the data set has two main advantages: it reduces both the space

requirements of the system and the processing time of learning tasks.
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Training set T S ⊂ T

Superflous instances in T

Selection criterion

Subset selected S

FIGURE 1.2. Instance selection process. Figure based on (Olvera-López et al., 2010).

The selected set of instances can be used for training any kind of algorithm but, traditionally,

many instance selection algorithms have been developed for the k nearest neighbours classifier

(Cover and Hart, 1967), or kNN for short. For this reason, the term used for the selection process

is also prototype selection (García et al., 2014). In this thesis, the term instance selection is used

to refer to the task that involves the selection of a subset of instances from the original data set,

without considering the subsequent algorithm that has to be trained.

When real-world data sets are examined, the imperative need for instance selection algorithms

becomes increasingly clear. On the one hand, the average data set size is becoming larger and

larger. On the other hand, real data sets usually contain noisy instances, outliers, and anomalies.

Attempts to train a classifier, for example, on the basis of millions of instances can be a difficult,

or even an intractable task. The selection of a proper subset of instances is therefore a good

option for shrinking the size of the sample, enabling its subsequent treatment.

1.3.1 Taxonomy

Instance selection methods are usually categorized under the following headings: the direction of

the search, the type of selection, and the evaluation of the search (Garcia et al., 2012). Figure 1.3

shows the instance selection methods from their origins up until to 2012. Table 1.3 gathers some

important characteristics of well-known instance selection algorithms. The different properties of

the taxonomy are explained below.
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1.3. INSTANCE SELECTION

3.2 Prototype Selection Methods

More than 50 PS methods have been proposed in the

literature. This section is devoted to enumerating and

designating them according to a standard followed in this

paper. For more details on their descriptions and

implementations, the reader can visit the webpage
http://sci2s.ugr.es/pstax associated with this paper. Im-
plementations of the algorithms in Java can be found in
KEEL software [114].

Table 1 presents an enumeration of PS methods reviewed
in this paper. The complete name, abbreviation, and
reference are provided for each one. In the case of there
being more than one method in a row, they were proposed
together and the best performing method (indicated by the
respective authors) is depicted in bold.

3.3 Taxonomy of Prototype Selection Methods

The properties studied above can be used to categorize the
PS methods proposed in the literature. The direction of the
search, type of selection, and evaluation of the search may
differ among PS methods and constitute a set of properties
which are exclusive to the way of operating of the PS
methods. This section presents the taxonomy of PS methods
based on these properties.

In order to situate the PS methods in time, we illustrate a
map of the main methods proposed in each paper
enumerated in Table 1. We refer to those which are the
preferred or have reported the best results in the paper in
which they were proposed as main methods (in other
words, the ones in bold when more than one method is
proposed in a certain paper). Fig. 2 depicts the map of PS
methods. The figure allows us to point out interesting facts:

. Condensation and Edition techniques display oppo-
site behavior and they were joined when IB3 was
proposed. IB3 is the first hybrid method which
combines an edition stage with a condensation one.
Since its proposal, there has been a significant effort
in proposing new hybrid approaches, decreasing the
proposals of condensation methods.

. Few edition methods have been proposed in
comparison to the other two families. The main
reasons are that the first edition method, ENN,
obtains good results in conjunction with kNN and
the edition approaches do not achieve high reduc-
tion rates, which is one of the objects of interest in
PS. Incremental edition approaches have not been
proposed because it is very important to know the
complete set of data for identifying noisy instances.

422 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 34, NO. 3, MARCH 2012

TABLE 1
PS Methods Reviewed

Fig. 2. Prototype selection map.FIGURE 1.3. Instance selection methods according to the established taxonomy. Figure
reproduced from (Garcia et al., 2012).

TABLE 1.3. A brief sample of state-of-the-art instance selection methods as per the
aforementioned taxonomy. Computational complexity extracted from (Jankowski
and Grochowski, 2004) and authors’ papers.

Strategy Direction Algorithm Complexity Year Authors

Edition Incremental LSSm O (n2) 2015 Leyva et al. (2015)
Decremental ENN O (n2) 1972 Wilson (1972)
Batch All-kNN O (n2) 1976 Tomek (1976)

Condensation Incremental CNN O (n3) 1968 Hart (1968)
Incremental PSC O (n logn) 2010 Olvera-López et al. (2009a)
Decremental RNN O (n3) 1972 Gates (1972)
Decremental MSS O (n2) 2002 Barandela et al. (2005)

Hybrid Decremental DROP1-5 O (n3) 2000 Wilson and Martinez (2000)
Batch ICF O (n2) 2002 Brighton and Mellish (2002)
Batch HMN-EI O (n2) 2008 Marchiori (2008)
Batch LSBo O (n2) 2015 Leyva et al. (2015)
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1.3.1.1 Direction of search

Instance selection can be considered as a search problem; given a particular measure, its goal is

to find the most representative subset of instances for that measure (Cano et al., 2005b). Five

groups may be defined on the basis of the search direction:

• Incremental: they start with an empty data set and add those instances that fulfil a

predefined criterion. Their problem is that they are highly sensitive to the order in which

instances appear. Their main advantages are that data can be processed on stream, they

are usually faster, and they need low storage requirements.

• Decremental: they work in the opposite direction, starting with the whole data set, and

they then remove instances following a predefined criteria. The order is again important,

but not so much as in the previous group. Their main drawback is that the whole data set

has to fit in the memory.

• Batch: instances are analysed in batch mode, i.e. they are processed successively and are

marked for deletion, but the removal process only occurs once at the end of the algorithm.

Their essential advantage is that they retain the overall view of the whole data set at all

times.

• Mixed: they can be seen in between the three previous groups. They start with a predefined

subset, then instances are added or deleted according to certain criterion.

• Fixed: these methods are a sub-family of mixed ones but, in this case, the final instance

number is (as an input parameter of the algorithm) predefined from the outset.

1.3.1.2 Selection strategy

The keystone of the classification process is, forgive the repetition, classification boundaries.

Decision boundaries are formed by instances of two or more different classes that are close to

each other. Accordingly, instances can be either border points (close to boundaries) or central

points3 (far away from boundaries) (Wilson and Martinez, 1997). Figure 1.4 show an example of

two dimensional data set with two classes and 50 instances. The instances found on the decision

boundaries are called border points, while the others are called central points. Three groups are

usually considered in the selection strategy:

• Condensation algorithms: attempt to retain border points, i.e. instances close to the decision

boundaries. They commonly achieve high reduction rates. The problem with these methods,

is that they are highly affected by noisy instances (Jankowski and Grochowski, 2004).

3Some authors, such as Liu and Motoda (2002), consider some other types of points such as critical points and
prototypes, although these have been omitted from the taxonomy that is explained here.
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x1

x2

central points border points central points

FIGURE 1.4. Artificial data set with 50 instances, two features (x1 and x2) and two
classes (diamond and circle). The decision boundary is the area where both classes
come together.

• Edition algorithms: work in the opposite direction, removing border points. They delete

the instances that are not in agreement with their neighbours. They are not interested

in reduction, but in noise elimination. As a result, their reduction rates are lower than

condensation algorithms.

• Hybrid algorithms: as the name suggests, they are somewhere between the above tech-

niques, and their aim is to find the smallest and the most accurate subset of instances.

They remove both central and border instances.

Recently, a new approach that will not fit under any of the previous categories has emerged:

rank methods (Rico-Juan and Iñesta, 2012). These methods sort instances by their importance

(i.e. their usefulness for the classification process), after which, a subset of the best instances is

selected (Valero-Mas et al., 2016).

1.3.1.3 Search Evaluation

Instance selection methods can be grouped according to the strategy used for selecting instances:

either wrappers or filters (Olvera-López et al., 2010).

• Wrapper: the decision either to select or to delete an instance is obtained by a classifier,

usually the kNN.

• Filter: the decision is made by using some heuristics or rules and is not based on a classifier.

11
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1.3.2 Computational complexity

As previously stated, instance selection serves to reduce the size of a data set. The complexity of

traditional instance selection algorithms is the main problem in any analysis (García-Osorio et al.,

2010; Silva et al., 2016). As Table 1.3 shows, the computational complexity of the vast majority of

instance selection algorithms is, at least, log-linear. In consequence, a possible solution to manage

increasingly large data sets is their reduction with instance selection methods. Unfortunately,

they are also affected by high computational complexity. Hence, some approaches have recently

emerged that seek to overcome this problem. These different approaches are explained below.

1.3.2.1 Scaling-up approaches

Over the last few years, different approximations have been used to try to adapt instance selection

methods to big/huge data sets. The very first proposal was stratification, used by Cano et al.

(2005a) to boost evolutionary instance selection methods. Their idea consists of splitting the

original data set into disjoint strata (groups or sets of instances) with the same class distribution

as the original one. The scaling-up benefits can be tuned by means of varying the size of each

stratum. Moreover, the stratification process is suitable for boosting any other method. An

improved version of the previous method was presented by de Haro-García and García-Pedrajas

(2009). The beginning of the process is the same: to split the whole data set into disjoint sets.

After the first batch of sets have been processed, the selected instances by the algorithm are

joined, and the process starts again.

A more novel and remarkable approach (because of its performance) was proposed by García-

Osorio et al. (2010). The process is performed in a predefined number of rounds r. In each round,

a partition splits the whole data set into different disjoint subsets, also called bins. As in the

previous approaches, an instance selection algorithm is performed over every single bin. The

algorithm updates an array of votes by increasing them by one if the instance has been selected.

After performing a predefined number of rounds, the array of votes is used to determine, by

means of a threshold, which instances should be either selected or removed.

Other works, such as (Angiulli and Folino, 2007), have focused on developing a distributed

method for computing a consistent subset of very large data sets.

1.3.3 Most common methods

It has been noted in the current chapter that a great number of instance selection algorithms

already exist and many others are presented every year. The most influential instance selection

algorithms according to García et al. (2016) are depicted below: Condensed Nearest Neighbour

(CNN), Edited Nearest Neighbour (ENN), Decremental Reduction Optimization (DROP) and

Iterative Case Filtering (ICF). An application of the aforementioned methods to a subsample of

the banana data set shows the selected subsets in Figure 1.5.
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(a) Banana data set: 1 326 instances
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(b) CNN: 307 instances
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(c) ENN: 1 168 instances

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x1

x 2

(d) DROP3: 144 instances
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(e) ICF: 176 instances

FIGURE 1.5. Subsample of Banana data set filtered with the most influential instance
selection methods according to García et al. (2016): CNN, ENN, DROP3 and ICF.
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1.3.3.1 Condensed Nearest neighbour

The algorithm of Hart (1968), Condensed Nearest Neighbours (CNN) is considered the first formal

proposal of instance selection for the nearest neighbour rule. The concept of consistency with

respect to the training set is important in this algorithm, and is defined as follows: given a

non-empty set X (X 6= ;), a subset S of X (S ⊆ X ) is consistent with respect to X if, using the

subset S as a training set, the nearest neighbour rule can correctly classify all the instances in X .

Following this definition of consistency, if we consider the set X as the training set, a condensed

subset should have the properties of being consistent and should, ideally, be smaller than X .

Algorithm 1 shows the structure of the method. It starts with a data set, S, initially with only

one randomly selected instance (alternatively, S could have one randomly selected instance per

class in the data set). Then, it attempts to classify all the instances of X by using the instances

in S, according to the nearest neighbour rule. If it is successful, the algorithm proceeds with

the next instance, otherwise the misclassified instance is added to S and the verification of the

correct classification of X starts from the beginning once again. It will eventually terminate,

returning S as a selected data set.

Algorithm 1: Condensed Nearest Neighbour (CNN)
Input: A training set X = {(x1, y1), ..., (xn, yn)}
Output: The set of selected instances S ⊆ X

1 S = {x1}
2 foreach x ∈ X do
3 if x is misclassified using S then
4 Add x to S
5 Restart

6 return S

1.3.3.2 Edited Nearest Neighbour

The first proposal for editing data sets was presented by Wilson (1972) with the name of Edited

Nearest Neighbour (ENN). It is a decremental method, thus it starts with the whole data set X ,

and each instance is removed, if it is not well classified by its k nearest neighbours. The number

of nearest neighbours, k, is a parameter of the algorithm. In the original paper, k was set to 3.

Algorithm 2 shows its pseudocode. ENN removes noisy as well as border instances, achieving

neater decision boundaries. Moreover, central instances are unaffected by the editing process.

The goal of this algorithm is not the reduction of data set, but to improve the accuracy of the

selected subset. Due to its cleaning capabilities, it has been used by many other algorithms for

noise filtering (e.g. DROP3, ICF. . . ).
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Algorithm 2: Edited Nearest Neighbours (ENN)
Input: A training set X = {(x1, y1), ..., (xn, yn)}, the number of nearest neighbours k
Output: The set of selected instances S ⊆ X

1 S = X
2 foreach x ∈ S do
3 if x is misclassified using its k nearest neighbours then
4 Remove x to S

5 return S

c

a

b

d

Figure 1.6: Representation of nearest neighbour and associate relations in a two dimensional
space: each point represents an instance, there are two different classes (black and white), and
k = 3. The nearest neighbours of a are {b,c,d}, so a is an associate for b,c, and d.

1.3.3.3 Decremental Reduction Optimization Procedure

The DROP (Decremental Reduction Optimization Procedure) family of algorithms (Wilson and

Martinez, 2000) comprises some of the best instance selection methods for classification (Brighton

and Mellish, 2002; Olvera-López et al., 2009b; Pérez-Benítez et al., 2015). The instance removal

criterion is based on two concepts: associates and nearest neighbours. The relation of associate

is the opposite of nearest neighbour: an instance p that has q as one of its nearest neighbours

is referred to as an associate of q. The set of nearest neighbours of one instance is called

neighbourhood. The set of associates for each instance is a list with all instances that have that

particular instance in their neighbourhood. Figure 1.6 shows a two dimensional data set with

two classes (black and white points). The k nearest neighbours of a, for k = 3, are {b,c,d}. This

means that a is an associate of the instances of b,c and d .

The pseudocode of DROP3 is described in Algorithm 3. It begins with a noise-filter (similar

to ENN), after which, the instances are sorted in order of the distance to their nearest enemy.

The lists of nearest neighbours and associates are calculated for each instance. Then, on the

main loop of the algorithm, for each instance x, with contains the number of associates of x that

are correctly classified when x is kept in the data set, whereas without contains the number of

associates that are correctly classified when x is removed from the data set. If without is greater

than or equal to with, the instance x is removed, because its elimination will not influence the
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classification of its associates. If x is removed, all of its associates need to update their neighbour

list.

Algorithm 3: Decremental Reduction Optimization Procedure 3 (DROP3)
Input: A training set X = {(x1, y1), ..., (xn, yn)}, the number of nearest neighbours k
Output: The set of selected instances S ⊆ X

1 Noise filtering: remove any instance in X misclassified by its k neighbours
2 S = X
3 Sort instances in S by the distance to their nearest enemy
4 foreach instance x ∈ S do
5 Find x.N1...k+1, the k+1 nearest neighbours of x in S
6 Add x to each of its neighbour’s list of associates

7 foreach instance x ∈ S do
8 Let with= # of associates of x correctly classified by x as a neighbour
9 Let without= # of associates of x correctly classified without x

10 if without≥ with then
11 Remove x from S
12 foreach associate a of x do
13 Remove x from a’s list of nearest neighbour
14 Find a new nearest neighbour for a
15 Add a to its new neighbour’s list of associates

16 return S

1.3.3.4 Iterative Case Filtering

The selection rule of the Iterative Case Filtering algorithm (Brighton and Mellish, 2002), or ICF

for short, uses two concepts: coverage and reachable. These two concepts are closely related to the

neighbourhood and associate lists used by the DROP algorithms. The coverage of an instance is

its neighbourhood but, instead of considering a fixed number of neighbours, k, all instances closer

than its closest enemy are within its coverage set4. The reachable set of an instance is the set of

all instances for which that particular instance is within their coverage set. Figure 1.7 represents,

in a two dimensional space, the previous concept. The example is formed of six instances (points)

that belong to two different classes (black and white). The dashed circle centred in a is the

boundary of its local set, c is the nearest enemy of a, and the distance between both instances

defines the radius of the local set of a.

The deletion rule is as follows: if the cardinality of the reachable set of an instance (its set of

associates) is bigger than its coverage (its neighbourhood), the instance is removed from the data

set. So, if another object generalizes the information of that instance, the algorithm will remove

4The local or coverage set is formed by the group of instances included in the largest hypersphere centred on an
instance such that all of them are of the same class (Leyva et al., 2015).
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c

a

b

Figure 1.7: Representation of the local set in a two dimensional space: each point represents an
instance, and there are two different classes (black and white). As the nearest enemy of a is c,
the local set of a is composed of a and b: LocalSet(a)= {a,b}.

it. The ICF algorithm begins with a noise-filtering stage that addresses the drawbacks of noisy

data sets, in the same way as DROP3.

There are two stages in the ICF: i) noise filter, and ii) selection process (see Algorithm 4).

First of all, it removes noisy instances from the original data set. Then, both the coverage and

the reachable sets are calculated for each instance. On the main loop, the method checks the

cardinality of reachable and coverage (for each instance). If one instance has |reachable| >
|coverage|, it is marked for removal; once they have been evaluated, those marked for removal

are deleted. This process continues until no further instance will be removed.

Algorithm 4: Iterative Case Filtering (ICF)
Input: A training set X = {(x1, y1), ..., (xn, yn)}, the number of nearest neighbours k
Output: The set of selected instances S ⊆ X

1 S = X
2 Noise filtering: remove any instance in S misclassified by its k neighbours
3 repeat
4 foreach instance x ∈ S do
5 Compute coverage(x)
6 Compute reachable(x)

7 progress = False
8 foreach instance x ∈ S do
9 if |reachable(x)| > |coverage(x)| then

10 Flag x for removal
11 progress = True

12 foreach instance x ∈ S do
13 if x flagged for removal then
14 S = S− {x}

15 until not progress
16 return S
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1.3.4 Big data

In recent years, the massive growth in the volume of databases has led to the coining of the new

term: big data. The definition of the new term is not clear, although Laney (2001) described it as

the opportunities and difficulties that appear, as data volumes and variety and processing speeds

increase. Another possible, and common, definition for big data is the difficulties and problems

that emerge when the amount of data for processing exceeds the capabilities, memory and/or

time, of a given system (Minelli et al., 2012).

Big data faces the problems associated with these types of data sets at various levels: firstly,

we need implementations that, with regard to the computational complexity of the algorithms,

are scalable and that run in linear time; at the level of methodologies, we are looking for a means

of designing algorithms that can be executed in parallel on groups of computers, a task that

is suited to MapReduce (Dean and Ghemawat, 2008); and, finally, at a technological level, we

seek frameworks that provide a series of APIs and data structures that facilitate the work of

implementing algorithms, for which purpose Spark (Zaharia et al., 2010) and Hadoop (White,

2009) have proven their worth.

Efficient methods are needed to process increasingly massive data sets, and an intuitive

solution to cope with them is their size reduction. Instance selection has shown itself to be effective

for this task, by reducing the size of the data sets while preserving their predictive capabilities.

The problem that emerges at this point, as previously explained, is the high computational

complexity that these methods have.

Recently, some studies have focused on instance reduction for big data, both on instance

selection (Triguero et al., 2015) and on instance generation (Triguero et al., 2014). However, as

García et al. (2016) remarked, more scalable methods are required for instance selection with the

aim of tackling the current size of data sets.

1.4 Experimental methodology

Instance selection algorithms serve to reduce the size of data sets and to select the most repre-

sentative possible subset. The task must be considered as a multi-objective problem: on the one

hand, reduction and, on the other, accuracy. Both objectives, nonetheless, are usually in opposite

directions (Leyva et al., 2015). This section presents the most common methodology used in the

instance selection literature.

1.4.1 Model validation

Estimation of the accuracy of a predictive model (classifier or regressor) when using the selected

subset is necessary for the evaluation of instance selection algorithms. If the accuracy of the model

is to be properly estimated, then an estimation method with low bias and low variance (Kohavi,

1995) is necessary. Some of the most common estimation methods are presented here; the reason
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FIGURE 1.8. Diagram of k-fold cross-validation with k = 4. Each dot represents an
instance and the colour defines the class.

why there are so many methods is because all of them fail under certain conditions (Schaffer,

1994).

1.4.1.1 Holdout

Holdout estimation, or test sample estimation, is performed in a simple manner by splitting the

original data set into two disjoint subsets: a training set and a test (or holdout) set. A common

configuration for this method is to use 2/3 of the original data set for training, and the remaining

1/3 for testing. The main problem with this method is that the data may not be properly used for

training, because one third of the original data set is missing.

1.4.1.2 Cross-validation

Commonly referred to as k-fold cross-validation, or rotation estimation, this method splits the

original data set into k disjoint sets (or folds) of approximately equal size. The learner is trained

k times, using k−1 folds for training, and the remaining fold is used for testing. Training and

testing sets are interchanged throughout the execution as can be seen in Figure 1.8.

A complete cross-validation would require all possible combinations to be tested, which is too

expensive to apply in practice, so a number of 10 folds is commonly used (McLachlan et al., 2005).

1.4.2 Performance measures

When researchers wish to analyse an instance selection method, three measures are typically

taken into account: accuracy, compression and computational complexity. Despite the fact that an

ideal method would maximize accuracy and compression, as quickly as possible, all these goals

often work in opposing directions (Leyva et al., 2015). All of these measures are briefly discussed

below.
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Notation Name Example

O (1) Constant Determine whether a number is even or odd
O (logn) Logarithmic Find an item in a sorted vector of size n by using binary search
O (n) Linear Compute the arithmetic mean of a vector of size n
O (n logn) Loglinear An average case of sorting a vector of size n by using quicksort
O (n2) Quadratic Compute the 1 nearest neighbour of a data set with n instances

TABLE 1.4. Summary of common computational complexities expressed in “Big O”
notation.

N

n

O (n)O (n2)

O (logn)

O (n logn)

O (1)

FIGURE 1.9. Number of operations according to the computational complexity. N is the
number of operations and n the size of the input data set.

1.4.2.1 Computational complexity

Computational complexity is usually expressed in “Big O” notation. It represents the response (in

time) of the algorithm to changes in the input size. It is an asymptotic notation that facilitates a

comparison of the different growth rates of various methods. It is also a means of showing the

increased time that the algorithm requires when the data sets become larger.

Table 1.4 shows a brief list of common computational complexities expressed in the stated

notation. Figure 1.9 offers a graphical representation of the number of operations that correspond

to different computational complexities as the data sets grow in size.
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Predicted condition
Positive prediction Negative prediction

Actual Positive class True positive (TP) False negative (FN)
condition Negative class False positive (FP) True negative (TN)

TABLE 1.5. Confusion matrix coloured according to positive/negative prediction and
positive/negative condition.

1.4.2.2 Compression

One key aspect of instance selection algorithms is their capability to reduce data sets, in other

words: their ability to distinguish the most relevant instances (Valero-Mas et al., 2016). Let us

consider the retention rate as the number of instances retained by the algorithm (|S|) divided by

the number of instances of the original data set (|X |),

(1.1) m = |S|
|X |

the compression rate can be defined as 1−m.

The higher the compression, the lower the number of instances selected by the algorithm.

Unfortunately, higher compression rates typically yield low accuracy selected subsets.

1.4.2.3 Accuracy

The most common metric for measuring accuracy is the rate of correctly classified instances

divided by the total number of instances:

(1.2) accuracy= number of correctly labelled instances
total number of instances

In spite of the fact that accuracy is a well-known measure, it does not take into account

asymmetric costs. In many real world situations, the proportion of instances between classes

is not symmetrical: there are many more instances of one class than the other. For example, in

clinical diagnosis there are usually by far fewer instances of sick individuals than healthy ones.

In these situations, other metrics are more appropriate, such as: F1 score (Baeza Yates and Neto,

1999), and Geometric Mean (Barandela et al., 2003).

All of them are supported by a confusion matrix: a tabular representation of the hits and

misses of the learner as shown in Table 1.5.

By using the confusion matrix, several rates can be defined. The Geometric Mean, or G mean

for short, is defined as:

(1.3) G mean =
√

specificity×recall
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where

(1.4) specificity= TN
TN +FP

(1.5) recall= TP
TP +FN

F1 score (F-measure or F-score) is the Harmonic mean of precision and recall:

(1.6) F1 measure= 2× precision×recall
precision+recall

where

(1.7) precision= TP
TP +FP

1.4.3 Statistical comparisons

Statistical tests have become an essential tool for comparing different methods with the aim of

determining whether one method (or more) is significantly better than the others (Derrac et al.,

2011). Commonly, experiments used to check whether one method is better than another involve

several data sets. The results of methods for the different data sets are the observations, which

are compared by means of statistical tests5. The tutorial proposed by Derrac et al. (2011) was

followed in this section.

According to the capability of tests to compare two or more methods, statistical tests can be

sorted into two different groups: pairwise (one vs. one) and multiple comparisons (all vs. all).

1.4.3.1 Pairwise comparisons

These comparators are the simplest ones, only able to compare two different algorithms.

• The Sign test: begins by separately counting the wins and losses. These counters are used in

inferential statistics with a two-tailed binomial test. The null hypothesis states that if each

of the two algorithms wins on approximately n/2 out of n datasets then both algorithms are

equivalent. By using the z test, it can be determined whether one algorithm is significantly

better than the other. A specific definition would be as follows: if the number of wins of

one algorithm is, at least, n/2+1.96 ·pn /2, then that algorithm is significantly better (at a

confidence level of 0.05) than the other.

5The statistical tests explained and used in this thesis are non-parametric or distribution-free tests.
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• The Wilcoxon signed rank test: more powerful and therefore preferable to the previous

Sign Test. It starts by computing the differences between the scores of both algorithms (di)

and takes no account of a pair of scores, if the difference between both scores is zero. These

differences are ranked according to their absolute values and, in case of a tie, both ranks

are summed up and divided by two. So, let R+ be the sum of ranks when the first algorithm

is better than the second and let R− be the opposite.

(1.8) R+ = ∑
di>0

rank(di)+ 1
2

∑
di=0

rank(di)

(1.9) R− = ∑
di<0

rank(di)+ 1
2

∑
di=0

rank(di)

The result of the test is calculated by comparing the minimum value between R+ and R−

(T =min(R+,R−)) and the Wilcoxon distribution for n degrees of freedom. So, one algorithm

will outperform the other, if T is less than or equal to the value of the Wilcoxon distribution

for n degrees of freedom.

1.4.3.2 Multiple comparisons

When more than two algorithms are compared, the previously explained methods are no longer

useful. There are other specifically designed methods to tackle these situations. In 1×N compar-

isons, one method is taken as the control method, and the other methods are compared against

it. Moreover, N ×N comparisons consider all possible combinations between all methods at the

same time.

• Average ranks: rather than a statistical comparison itself, average ranks is included here

because it is commonly used in combination with the other tests described below. Average

ranks are calculated as follows: the results of the methods are ordered according to the

measure of interest. A value of 1 is assigned to the best method, the value 2 to the second

best, and so on. In the case of a tie, values of the ranks are added up and divided by the

number of methods that have tied. Once the ranking of each data set and algorithm has

been calculated, the average for each method is computed. The closer the ranking is to one,

the better the method.

• The Friedman Test: a nonparametric procedure with similarities to ANOVA (ANalysis

Of VAriance). The null hypothesis is that the medians of the samples are equal. The test

begins with a calculation of the average ranks explained above. The null hypothesis states
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that all algorithms perform similarly, if the ranks are equal. The Friedman statistic F f is

computed as:

(1.10) F f =
12n

k(k+1)

[∑
j

R2
j −

k(k+1)2

4

]

where n is the number of data sets, k is the number of models to be compared, and R j is

the average rank of the model j. F f must be compared with a χ2 distribution with k−1

degrees of freedom6.

• Iman-Davenport’s Test (Iman and Davenport, 1980): uses a modified statistic to avoid the

undesired conservative effect of the Friedman test. The statistic is computed as

(1.11) FID = (n−1)F j

n(k−1)−F j

FID must be compared with F distribution with k−1 and (k−1)(N −1) degrees of freedom.

1.4.3.3 Post-hoc procedures

The methods explained above are able to detect significant differences over all of the methods,

however, they are unable to compare two methods by themselves properly. This drawback is the

reason for the widespread use of post-hoc procedures.

A family of hypotheses can be defined for the purpose of drawing a comparison between one

control method and some others. Post-hoc procedures offer a p-value to determine whether or not

the hypothesis can be rejected.

For each nonparametric test, a conversion of the rankings is defined by using a normal

approximation. Equation 1.12 shows the z computation for the Friedman test.

(1.12) z = (Ri −R j)/

√
k(k+1)

6n

where Ri and R j are the average ranks of the algorithms that are compared.

6When n and k are large enough, Derrac et al. (2011) proposed n > 10 and k > 5, but exact critical values must be
used for a smaller number of n and k (Sheskin, 2003).
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Instance-based learning algorithms suffer
from several problems.

Aha et al. (1991)
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2
MOTIVATION AND GOALS

Having introduced the theoretical background of the thesis in the preceding chapter, the

rationale for this work is described below. The main goal of this thesis is the design of

new methods and their improvement, so as to apply instance selection algorithms in

under-explored areas, such as regression problems and huge data sets. All the chapters that are

referenced hereinafter are from Part II – Publications.

• Despite the fact that instance selection for classification has been broadly researched over

the last decades, instance selection methods for regression task has not aroused as much

interest. The difficulties associated with this task are the main reasons. Chapters 1 and 3

present new instance selection methods designed specifically for regression.

• In the same way that the combination (ensemble) of either multiple classifiers or regressors

offers better performances than those methods by themselves (Kuncheva, 2004), the idea of

merging instance selection methods for regression is presented and tested in Chapter 2.

• As previously outlined, the computational complexity of instance selection methods means

that they are unable to be used with big or huge data sets. Although recent works have

been developed to scale up instance selection methods, all of them are based on the divide-

and-conquer idea. Chapter 4 addresses the problem of instance selection on huge data sets

from a new point of view. The use of locality sensitive hashing, LSH for short (Leskovec

et al., 2014), means data sets may be processed extremely quickly in one pass. The new

method is of linear complexity in relation to the number of instances.
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Any sufficiently advanced technology is
indistinguishable from magic.

Arthur C. Clarke
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3
DISCUSSION OF RESULTS

The most valuable aspect of research is communication and dissemination. The research

performed during this thesis is no exception and has yielded valuable results in the form

of journal papers, congress communications, and other informal communications. All of

these contributions are listed below, however only journal papers are compiled as chapters in

Part II of the present thesis.

3.1 Journal papers

1. Instance selection for regression by discretization.

Authors: Álvar Arnaiz-González, José F. Díez-Pastor, Juan J. Rodríguez, César Ignacio

García-Osorio.

Published in: Expert Systems With Applications (Q1).

Year: 2016.

2. Instance selection for regression: Adapting DROP.

Authors: Álvar Arnaiz-González, José F. Díez-Pastor, Juan J. Rodríguez, César Ignacio

García-Osorio.

Published in: Neurocomputing (Q1).

Year: 2016.

3. Fusion of instance selection methods in regression tasks.

Authors: Álvar Arnaiz-González, Marcin Blachnik, Mirosław Kordos, César García-Osorio.
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Published in: Information Fusion (Q1).

Year: 2016.

4. Instance selection of linear complexity for big data.

Authors: Álvar Arnaiz-González, José F. Díez-Pastor, Juan J. Rodríguez, César García-

Osorio.

Published in: Knowledge-Based Systems (Q1).

Year: 2016.

3.2 Non-indexed journals and other communications

1. MR-DIS: Democratic Instance Selection for big data by MapReduce.

Authors: Álvar Arnaiz-González, Alejandro González-Rogel, José F. Díez-Pastor, Carlos

López-Nozal

Published in: Progress in Artificial Intelligence.

Year: 2017.

2. MR-DIS – a scalable instance selection algorithm using MapReduce on Spark.

Authors: Álvar Arnaiz-González, Alejandro González-Rogel, Carlos López-Nozal.

Published in: ERCIM News.

Year: 2017.

3. Study of instance selection methods (poster).

Authors: Álvar Arnaiz-González.

Presented in: INIT/AERFAI 2017 – Summer School on Machine Learning.

Year: 2017.

3.3 Conference papers

1. Selección de instancias en regresión mediante discretización (Instance selection for regres-

sion by means of discretization).

Authors: Álvar Arnaiz-González, José F. Díez-Pastor, Juan J. Rodríguez, César Ignacio

García-Osorio.

Published in: ESTYLF 2014 – XVII Congreso Español Sobre Tecnologías y Lógica Fuzzy.

Year: 2014.
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2. LSH-IS: Un nuevo algoritmo de selección de instancias de complejidad lineal para grandes

conjuntos de datos (LSH-IS: A new instance selection algorithm of linear complexity for

huge data sets).

Authors: Álvar Arnaiz-González, José F. Díez-Pastor, César Ignacio García-Osorio, Juan J.

Rodríguez.

Published in: CAEPIA 2015 – XVI Conferencia de la Asociación Española para la In-

teligencia Artificial.

Year: 2015.

3. Enfoque MapReduce para el democratizado de métodos de selección de instancias (MapRe-

duce approach for the democratization of instance selection algorithms).

Authors: Alejandro González-Rogel, Álvar Arnaiz-González, Carlos López Nozal, José F.

Díez-Pastor.

Published in: CAEPIA 2016 – XVII Conferencia de la Asociación Española para la In-

teligencia Artificial.

Year: 2016.

3.4 Source code repository

In science, it is important to be able to reproduce studies made by other researchers. As Collberg

and Proebsting (2016) said: “Reproducibility is a cornerstone of the scientific process”. With this

in mind, the source code of the different algorithms designed and developed for the thesis are

publicly available at the GitHub repository on: https://github.com/alvarag/.
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It is impossible to compile a list of the
most significant achievements in the past
decade without offending or alienating
half of my readership. I will leave this
task to the main judge – time.

Kuncheva (2004)
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4
CONCLUSIONS

A study of instance selection methods is presented in this thesis. Their contributions can

be grouped into two main problems: classification and regression. A summary of the chief

contributions are listed below.

4.1 Regression

The lack of instance selection methods for regression (Kordos and Blachnik, 2012) sparked my

initial interest in this task. The first idea to address this gap was discretization, which consists

in transforming the continuous output variable into discrete counterparts. The proposal was

tested as a noise filter against two state-of-the-art instance selection methods for noise reduction,

both of which were prepared to process regression problems. The results showed a very good

performance on noise identification, accuracy and compression. Moreover, the proposed meta-

model can not only be used for noise filtering, but for adapting any other instance selection

classification algorithm.

The DROP family, presented by Wilson and Martinez (2000), contains some of the best instance

selection techniques and is now considered a standard for instance-based learning (García et al.,

2016). Hence, our aim was to adapt these methods for regression, to test whether the adaptation

inherits the same beneficial behaviour in regression. Two different approaches addressed the

adaptation and both were empirically tested. The results were competitive and, additionally, the

robustness of the method in the presence of noise was assessed.

Finally, the combination of several instance selection methods for regression was evaluated. A

bagging-like process was presented and evaluated against different algorithms. The experimental

study concluded that the combination gave better results than the method by itself, i.e. this study

upheld the ‘ensemble’ thesis.
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4.2 Classification

Given the aforementioned computational complexity of the traditional instance selection methods,

a couple of new algorithms for huge data sets were proposed. The proposal is able to cope with

vast amounts of data due to its linear complexity in relation to the number of instances. The new

methods are not only faster than state-of-the-art algorithms, but they are also competitive in

terms of accuracy. One of the proposed algorithms is able to process instances on fly, with no

need to fit the whole data set into the memory, which makes it specially suitable for big data

environments.

The problems that emerge with big data are diverse. We have centred on the lack of instance

selection methods that are able to cope with big data. We focused on of the most popular

methods, the Spark framework, which bases its performance on the MapReduce model (Dean

and Ghemawat, 2008). With this in mind, we designed and implemented a parallel version of one

instance selection method called Democratic Instance Selection (DIS) by following the MapReduce

model. The results were satisfying and the method was tested in a big data environment by using

the Cloud Dataproc1 Google services.

1Main page of Google Cloud Dataproc available on https://cloud.google.com/dataproc/.
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Anyone who has never made a mistake
has never tried anything new.

Albert Einstein
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5
FUTURE LINES

Instance selection is a research topic of great interest nowadays, as is evident from the

numerous papers on the topic, frequently published in scientific journals. Researchers are

engaged with both lines of investigation that form the central focus of this thesis: instance

selection for regression (Song et al., 2017) and instance selection for big data (Si et al., 2017).

As a result, the future lines of the research are twofold: on the one hand, to improve current

instance selection methods for regression; and, on the other hand, to research new methods and

to develop them so that they are able to manage extremely large data sets.

5.1 Regression

Three journal papers on instance selection for regression are compiled in this thesis. However

there is still a lot of room for improvement, mainly related with the complexity of the methods. All

of the algorithms that were implemented are based on traditional instance selection classification

algorithms, so their complexity is at least exponential, O (n2). The reduction of their complexity is

a pressing topic and urgently required, due to the fast growth of real data sets. This is particularly

important for industrial applications, as Kordos and Blachnik (2012) has noted, because there

are massive regression data sets, which require faster and more effective reduction techniques.

5.2 Big data

In accordance with big data environments, the design and study of new methods (or the im-

provement of existing ones) are essential. Data sets are getting larger and larger, as previously

explained, but there are still only a few instance selection methods capable of dealing with

them. Even though some data reduction techniques of low complexity have emerged in recent
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Figure 5.1: Visual examples of single-label data sets: binary on the left and multi-class on the
right. Dashed lines represent the boundaries between classes.

years (Olvera-López et al., 2009a; Silva et al., 2016), their implementation into big data frame-

works are not available. This means they can neither be used on real-world data sets, nor

compared with the few existing implementations.

5.3 Multi-label

There is a new topic where the usefulness of instance selection is starting to become apparent:

multi-label learning. In the same way as single-label classification seeks to assign a label to

an instance for which the label is unknown, multi-label classification presents a similar task.

The difference between them is that instances have a collection of labels, known as labelset,

rather than only one. This peculiarity implies a much more difficult task, because there are

hidden relationships between labels that must be taken into account. So far, there are only

a couple of works in which instance selection has been used for multi-label data sets (Charte

et al., 2014; Kanj et al., 2016). For this reason, my ongoing research is an attempt to design new

instance-selection methods that are capable of processing multi-label data sets. Figure 5.1 shows

a couple of examples of single-label data sets, with two (binary) and more classes. Figure 5.2

shows an example of a multi-label data set.

The work on this topic during the last year has already borne fruit, as a result the following

couple of papers were submitted to indexed journals. The reviewers’ answer of the first paper has

not yet arrived. In regard to the second one, it is currently being reviewed.

• “Binary relevance approach for multi-label instance selection”.

• “The extension of local sets to multi-label classification provides good instance selection

methods”.
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Figure 5.2: Visual example of a multi-label data set and its boundaries. Each of the four pictures
is an instance and there are three classes: mountain, water, and tree. Dashed and dotted lines
represent the boundaries between individual classes.

5.4 Multi-target regression

A topic closely related to multi-label is multi-target regression. Whereas each instance in multi-

label learning has a set of labels, each instance in multi-target data sets has a set of numeric

values (Appice and Džeroski, 2007). In other words, the aim of Multi-target regression is the

simultaneous prediction of multiple target variables for each instance (Spyromitros-Xioufis et al.,

2012).

There are many real-world problems to which multi-target regression can be applied. The typ-

ical example from the environmental sciences involves the prediction of the distribution structure

of species in an environment (Demšar et al., 2006). Other areas where multi-target regression is

commonly used are bio-informatics and medicine, among others (Appice and Džeroski, 2007). As

in multi-label, instance selection for multi-target regression is yet to be researched.
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Simple rules survive.

Devroye et al. (1996)
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1
INSTANCE SELECTION FOR REGRESSION BY DISCRETIZATION

This journal paper presents the idea of using the discretization process with the aim of

adapting instance selection algorithms for classification to regression. The meta-model

process is presented, so that any instance selection method can be used. The concept

in the paper is an adaptation of the Wilson Edition algorithm (ENN (Wilson, 1972)) that is

tested against two instance selection methods for regression: MI (Guillen et al., 2010) and

RegENN (Kordos and Blachnik, 2012). Both methods are noise filters, so the experiments were

carried out by adding artificial noise. In addition to their comparison in terms of accuracy and

compression (conventional instance selection measures), their identification of noise instances is

also evaluated by considering a binary problem.

Authors: Álvar Arnaiz-González, Jose-Francisco Díez-Pastor, Juan José Rodríguez-Diez, César

Ignacio García-Osorio

Type: Journal

Published in: Expert Systems with Applications 54: 340 – 350

Year: 2016

Reference: Arnaiz-González et al. (2016b)
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Instance selection for regression by discretization

Álvar Arnaiz-González, José F. Dı́ez-Pastor, Juan J. Rodŕıguez, César Garćıa-Osorio

University of Burgos, Spain

Abstract

An important step in building expert and intelligent systems is to obtain the knowledge
that they will use. This knowledge can be obtained from experts or, nowadays more
often, from machine learning processes applied to large volumes of data. However, for
some of these learning processes, if the volume of data is large, the knowledge extraction
phase is very slow (or even impossible). Moreover, often the origin of the data sets used
for learning are measure processes in which the collected data can contain errors, so the
presence of noise in the data is inevitable. It is in such environments where an initial
step of noise filtering and reduction of data set size plays a fundamental role. For both
tasks, instance selection emerges as a possible solution that has proved to be useful in
various fields. In this paper we focus mainly on instance selection for noise removal. In
addition, in contrast to most of the existing methods, which applied instance selection to
classification tasks (discrete prediction), the proposed approach is used to obtain instance
selection methods for regression tasks (prediction of continuous values). The different
nature of the value to predict poses an extra difficulty that explains the low number of
articles on the subject of instance selection for regression.

More specifically the idea used in this article to adapt to regression problems “classic”
instance-selection algorithms for classification is as simple as the discretization of the
numerical output variable. In the experimentation, the proposed method is compared
with much more sophisticated methods, specifically designed for regression, and shows
to be very competitive.

The main contributions of the paper include: i) a simple way to adapt to regression
instance selection algorithms for classification, ii) the use of this approach to adapt a
popular noise filter called ENN (edited nearest neighbour), and iii) the comparison of
this noise filter against two other specifically designed for regression, showing to be very
competitive despite its simplicity.

Keywords: instance selection, regression, mutual information, noise filtering, class
noise

Email addresses: alvarag@ubu.es (Álvar Arnaiz-González), jfdpastor@ubu.es
(José F. Dı́ez-Pastor), jjrodriguez@ubu.es (Juan J. Rodŕıguez), cgosorio@ubu.es
(César Garćıa-Osorio)
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1. Introduction

Automatic supervised learning begins with a dataset of instances or examples, each of
which is composed of input-output pairs. The learning problem consists in determining
the relation between the input and the output values. When the output is a nominal
or discrete value, the task is one of classification, as opposed to regression in which the
value to predict is a continuous, numerical and non-discrete value.

The problem of using a finite set of examples to learn the relation between the values
of the dependent and independent variables is not unique to Machine Learning, but is also
a classic problem of statistics and pattern recognition. There are many real applications
in which a solution to this problem would be of interest, among which figure image
processing [45, 56], speech recognition [53], genome sequencing [22], industrial processes
[25], fraud detection [38], and software engineering [49], finances [51], to mention only a
few.

Regardless of the dataset that is analysed, the presence of noise in the real-world
applications is common [16, 41, 46, 60], besides reduce learning abilities of models [61]
and their elimination is by no means a clear cut process [20]. Various methods have been
proposed for their detection and elimination that follow various approaches. This paper
centres on the selection of instances, which has been widely studied, focusing above all
on classification. The problem has not been studied as much in relation to regression
datasets, among other reasons because of the complexity of this type of dataset [34].
While in classification, the number of classes or values to be predicted is usually very
low (the simplest example would be binary problems), the output variable in regression
is continuous, such that the number of possible values to predict is unlimited [35]. This
paper seeks to apply all the algorithms conceived for classification purposes to regression
problems, on the basis of a meta-model.

The main contributions of the paper are:

• An approach for adapting to regression instance selection method initially designed
for regression. It makes available a wide-range of instance selection methods for
regression to researchers.

• The proposed approach was used to adapt ENN [57] (edited nearest neighbour) to
regression.

• The performance of the new model was compared against two state-of-the-art noise
filters for regression [23, 35].

This article has the following structure: first, the instance selection process for clas-
sification is explained and the problems involved in applying this technique to regression
are analysed. Then, the proposed method, consisting of the discretization of the numeri-
cal variable, is presented in the section 3. In section 4, the results of the experimentation
are analysed, and in the final section, the conclusions are extracted and future lines of
work are suggested.

2. Instance-selection methods

Instance-based learners, also called lazy learners, are very effective, despite its sim-
plicity [10] and nowadays are still frequently used in experimental studies in Machine
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Learning [40]. However, these methods suffer from various disadvantages [33]. They are
very sensitive to the presence of noise in the training data [43]. In addition, few algo-
rithms are able to generate results within a reasonable time span when using large-sized
datasets that need to be processed these days [35].

According to [30], instance selection serves two purposes: to reduce noise and to
eliminate outliers in the datasets (noise filters); and, to reduce the complexity of instance-
based learning algorithms [1] (condensing algorithms), with the intention of reducing the
number of examples in the training set.

[35] explained that industries require expert and intelligent systems to optimize their
processes. Datasets in industries are huge and require techniques able to reduce their
complexity before building the prediction models. Moreover, instance selection has been
used not only in industrial processes, below we described some other fields of application:

• Steel industry: We have found two works [36, 35] in which authors found necessary
to reduce the size of datasets due to the great number of samples that are avail-
able in steel processes. Whereas [36] tried to reduce the size as previous stage of
clustering, [35] used neural networks after instance selection process.

• Stock markets: in stock market analysis, [32] developed a new genetic instance
selection method to reduce the complexity of induced solutions. They used the
direction of change (increase or decrease of the stock index from one day to the next)
in the daily Korea stock price index. Stock markets are complex and noisy, thus the
instance selection method proposed gave the chance to improve the performance of
artificial neural networks.

• Bankruptcy prediction: financial institutions need accurate bankruptcy prediction
models, since is essential for their risk management. In [2] the combination of
instance and feature selection was tested with the aim to improve, using genetic
algorithms, the performance of case-base reasoning (CBR).

• Computer vision. A challenging problem in computer vision is the recognition
of traffic signs (TSR) because in autonomous vehicles it has a crucial impact on
driver safety. [13] used a genetic algorithm for feature and instance selection over a
benchmark of TSR, as opposed to [2], they performed instance and feature selection
separately. They addressed the trade-off between accuracy, data set size reduction
and time spent during the selection process, which is always present.

• Time series. The domains where time-series classification is used are wide, including
finance, networking, medicine, astronomy, robotic, chemistry and industry [31].
Therefore the use of instance selection techniques for this problem is already under
investigation [11, 23].

2.1. Instance selection for classification

Instance-selection algorithms are intended to reduce the complexity of the learning
algorithms by reducing the number of examples, they extract the most significant and
discard those that do not provide valuable information [19], for example, the outliers and
the examples introduced as a consequence of noise in the measurement process.
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The literature contains a large number of instance-selection algorithms designed for
classification purposes and new ones continue to appear. An up-to-date taxonomy may
be found in [17].

The need for instance selection becomes obvious when the datasets used in real life
are examined. Attempts to train a classifier, for example, on the basis of millions of
instances can be a difficult, even an insurmountable task. The selection of instances
therefore appears to be a good alternative, to reduce the complexity of the sample,
enabling its subsequent treatment.

The term “instance selection” brings together a range of procedures and algorithms
that are intended for the selection of a representative subset of the initial training dataset
[32]. A first classification of these techniques is usually done using as criteria the purpose
of their application, dividing them into two large groups: editing (or noise filtering), and
condensation algorithms.

2.1.1. Edition techniques

Noise filtering techniques attempt to eliminate the erroneously labelled instances from
the training set and, at the same time, they attempt to clear possible overlaps between
regions of different classes. In other words, their principal objective is to achieve compact
and homogeneous groups; one of such techniques is the Wilson’s editing algorithm [57].
If an instance is badly classified on the basis of the rule k -NN, it will basically eliminate
that instance from the training set (Algorithm 1).

Algorithm 1: Wilson’s editing algorithm (ENN)

Data: Training set {X,Y } = {(x1, y1), ..., (xn, yn)}, number of neighbours k to
consider, and δkNN (xi), the majority class of the k nearest neighbours.

Result: Edited set S ⊆ {X,Y }
1 S = {X,Y }
2 foreach xi, yi ∈ S do
3 Find x.N1...k, the k nearest neighbours of xi in X − {xi}
4 if δkNN (xi) 6= yi then remove xi, yi from S

end
5 return S

2.1.2. Condensation techniques

One of the problems that arises when real-world datasets are analysed is the large
number of examples that they contain, making the learning process computationally
costly and preventing the use of certain algorithms on certain datasets. This condition
is even more evident with algorithms based on neighbourhood criteria. The search for
the neighbourhood of each instance grows in a significant way along with the size of the
dataset. An obvious alternative that will counter this size-related problem and acceler-
ate calculation of the nearest neighbour, in addition to the various efficient algorithms
described in the literature, consists in reducing the number of instances in the training
set, but trying not to increase the classification error.

In general, the objective of any condensation technique consists in removing all those
instances from the training set that have no explicit influence on obtaining a classification
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result that is equal or very similar to the result obtained with the training set. The
principal difference betweeen the different condensation techniques centres on the method
used for the correct estimation of the instances that are and are not necessary.

The family of condensation techniques can be divided into selection and replacement
schemes, depending on the form in which the instances are obtained from the condensed
set. Algorithms that belong to the first group select instances in the original set, creating
a condensed set that is a proper subset of the original training set. In the case of
techniques with replacement strategies, the instance members of the condensed set are
“constructed” on the basis of the examples in the original set through the use of a
transformation function, so that these instances that are generated will not necessarily
coincide with the original examples.

2.2. Instance selection for regression

Few studies have been conducted on the application of instance-selection techniques to
datasets with a numerical and non-discrete output variable and there are few algorithms
that are specifically designed for that purpose [50]. As previously mentioned, one of the
reasons why instance selection for regression has not been the subject of many studies is
its complexity [35]. While the problem in classification is to determine the boundaries
between classes, and the number of these is finite, in regression, it is necessary to predict
the value of the output variable, and this is continuous and with an arbitrary number
of values. This research area is of interest for several reasons: i) there are datasets with
a large number of instances that can not as yet be correctly analysed because of their
size, ii) if it is possible to eliminate or reduce the noise, the results obtained with the
predictors can be improved, iii) there are still few studies in the area.

Despite the difficulty, some instance selection algorithms have emerged that are able
to deal with numeric class. [1] presented a new method (k-SN: k surrounding neigh-
bours) for function prediction in lazy learning algorithms, it could be considered a first
proposal of this kind of algorithm in regression task. A few years later, [52] presented
a genetic algorithm for outlier detection and feature selection in linear regression mod-
els. More recently, [5], also following a genetic approach, addressed the problem in the
framework of MOEL (multiobjective evolutionary learning) of fuzzy rule-based systems
(FRBs [28]). Regarding time series prediction, [23] presented a new method based on
mutual information for outlier detection achieving good results in both artificial and real
datasets (a detailed description is given in section 2.2.1). Afterwards, the same approach
was generalized for dataset reduction in time series [50]. Finally, some other authors
have focused their efforts on adapting instance selection methods to regression that were
initially designed for classification. In [35] CNN and ENN were adapted to work with
regression problems (more details are given in section 2.2.2), and in [44] the method
Class Conditional Instance Selection (CCIS) [42] is adapted to reduce the variance in
genetic fuzzy systems (GFSs) [3]. Recently, ensembles of instance selection has revealed
its benefits in classification [21]. The adaptation of ensembles of instance selection to
regression was made by [8] who combined their own algorithms using bagging, achieving
better performance and higher compression.

In this paper, we have conducted an experimental study in which the proposed method
have been tested against two state of the art instance selection algorithms for regression.
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2.2.1. Instance Selection Using Mutual Information

The use of mutual information (MI) for feature selection, based on the k-nearest
neighbours, was presented by [29]. Later on, it has been used for instance selection
giving good results for filtering, with emphasis in noise reduction [23]. Algorithm 2
shows the pseudo code, where n is the number of instances of the original dataset, α is a
threshold that indicates the difference of the MI to select or discard an instance and k is
the number of neighbours of the neighbourhood. The α value determines the specificity
of the algorithm and must be set manually.

Algorithm 2: Algorithm based on mutual information

Data: Training set {X,Y } = {(x1, y1, . . .xn, yn}, the number k of neighbours
Result: Edited set S ⊆ {X,Y }

1 S = ∅
2 for i = 1 . . . n do
3 Calculate NN[xi, j], the k nearest neighbours (j = 1 . . . k) in the input space

end
4 for i = 1 . . . n do
5 Calculate the value of mutual information I(X,Y )i when xi is eliminated from

X
end

6 Normalize I(X,Y )i in [0, 1]
7 for i = 1 . . . n do
8 Cdiff = 0
9 for j = 1 . . . k do

10 diff = I(X,Y )i − I(X,Y )NN [xi,j]

11 if diff > α then Cdiff = Cdiff + 1

end
12 if Cdiff < k then add xi, yi to S

end
13 return S

The mutual information of two variables (i.e. the value of attributes of two instances)
is a quantity that measures their dependency, in other words, how much the uncertainty
in the value of a variable can be reduced by knowing the value of the other, that is, it
quantifies the amount of information that the variables share [50]. It may be defined as

I(X,Y ) =

∫
µX,Y (x, y) log(µx,y(x, y)/(µX(x)µY (y)))dxdy

where µY (y) is defined as
∫
µX,Y (x, y)dx using the joint-density function µX,Y . But in

[23], the mutual information is estimated on the basis of the nearest neighbours, defining
the space Z = {X,Y } and using the maximum norm (although any other norm could
have been used) for each pair of points z = (x, y) y z′ = (x′, y′).

||z − z′|| = max{||x− x′||, ||y − y′||} (1)

The distance from one point zi to its k-th nearest neighbours is expressed as ε(i), while
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εx(i) and εy(i) represent the distances between the same points projected onto subspaces
X and Y , respectively. Having defined the above, nx(i) is defined as the number of points
xj at a distance from xi which is strictly inferior to ε(i), and the same may be said of
ny(i). And the formula for the calculation of mutual information is defined as

Î1(X,Y ) = ψ(k)− 1

N

N∑

i=1

[ψ(nx(i) + 1) + ψ(ny(i) + 1)] + ψ(N)

where ψ is the digamma function

ψ(t) =
Γ′(t)
Γ(t)

=
d

dt
lnΓ(t)

with

Γ(t) =

∫ ∞

0

ut−1e−udu (2)

The digamma Function Γ(t) satisfies the recurrence relation ψ(x+1) = ψ(x)+1/x which
starts with ψ(1) = 0.57721... the Euler-Mascheroni constant.

2.2.2. Instance Selection Using Threshold

Unlike classification tasks which have a discrete class, instance selection algorithms
for regression can not determine, using only the target value, if an instance is needed
or not. [35] use an adaptive threshold to compare the output attribute value with its
neighbourhood and determine if it belongs to the same class. This concept is similar to
soft-class used by [37], but the novelty of this approach is that the threshold is adaptive
to the standard deviation of its neighbours.

In Algorithm 3 we show the pseudo code, where Model(T\xi,xi) gives the target
value calculated by a regressor trained using T without xi; R contains the k-nearest
neighbours of the instance xi on the subset T . The threshold θ is a multiple of the
standard deviation of the outputs of the instances in R, whose value depends on the
parameter α that is given as parameter to the algorithm. The α value determines the
performance of the algorithm, if its value is large, an instance will be considered as noise,
and therefore removed from the dataset, only if its output value is very different from
the predicted by the model trained with its neighbourhood. If it is small, to keep the
instance in the dataset, its output value must be very similar to the value predicted by
the model.

3. Instance selection by means of discretization

The idea that we propose in this article is the possibility of applying to regression
datasets, instance selection methods designed for classification tasks. To do so, the
output variable is previously discretized in such a way that the dataset is turned into a
classification problem. Having completed the selection of instances, the numerical value
of the output variable is recovered for the selected instances.

This proposal is presented in Algorithm 4, and can be considered a meta-algorithm,
as it allows to use in regression any previously existing classification method for instance
selection, for example:
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Algorithm 3: RegENN: Edited Nearest Neighbour for regression using a threshold

Data: Training set T = {(x1, y1), . . . (xn, yn)}, parameter α to control how the
threshold is calculated from the standard deviation, the number of
neighbours k to train the model

Result: Instance set S ⊆ T
1 for i = 1...n do
2 Ȳ (xi) = Model(T\xi,xi)
3 R = kNN(T,xi)

4 θ = α · std
(
Y (XR)

)

5 if |Y (xi)− Ȳ (xi)| > θ then
6 T ← T\xi

end

end
7 S ← T
return S

• Edition: ENN [57], ENRBF [30], RNGE [47], etc.

• Condensation: CNN [27], MSS [6], POP [48], ICF [10], DROP [58], ATISA [12],
etc.

Algorithm 4: Proposed meta-model based on discretization of the output variable

Data: Training set {X,Y } = {(x1, y1), . . . (xn, yn)}, Discretization algorithm and
all the parameter that it needs

Result: Instance set S ⊆ {X,Y }
1 YD = Discretization of the numerical target Y
2 Apply classification-based instance selection algorithm over {X,YD} to obtain

subset S
3 Restore the numerical value of the output variable in S
return S

3.1. Main features of the proposed method

The main advantages of the proposed method are its simplicity and its adaptability.
The method is simple since the discretization stage is quite straightforward. On the
other hand, it can be easily applied to any instance selection algorithm for classifica-
tion, no changes are needed in the algorithms as they are used as black boxes and the
discretization is completely independent of the chosen algorithm.

The keystone of our proposal is the discretization stage since it decisively influences
instance selection. Traditionally, algorithms of discretization have been applied to input
variables and divided into two families: supervised, when the output variable is taken
into account, and unsupervised (or class-blind), when the output variable is not taken
into account. In the proposal, the discretization is applied to the output variable, so only
unsupervised algorithms can be used.
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The method based on threshold (see Algorithm 3) has a totally different approach
to the adaptation to regression of instance selection methods for classification. The
decision to consider an instance ‘out of class’ is a local decision, which considers the
neighbourhood of the instance to calculate a ‘soft’ class around the average output value
of its neighbours (being the radius of this class a magnitude calculated from the standard
deviation of the output values of its neighbours). In contrast, our method makes a global
discretization of the output variable for the whole dataset, which makes it easier, faster
and more general, since it is not necessary to modified the implementation of the adapted
instance selection algorithm.

Compared with the method based on mutual information, our method, besides show-
ing better performance (see the experimental study below), is much faster, as there is
not need to compute the complex calculations of mutual information.

4. Experimental Study

In the experimental study, we have followed the methodology used by [23], adding
noise to the original datasets to assess the performance of the algorithms as a filter noise.

4.1. Datasets

In the experiments, 29 datasets from the Keel repository [4] have been used. Table 1
shows some of the characteristics of these datasets: number of attributes and instances,
and root mean squared error (RMSE) achieved by the regressors (using cross-validation):
kNN (k nearest neighbours), RBF (radial basis function networks) and REPTree (reduced
error-pruning tree) [59].

The only transformation performed on the datasets has been the normalization of all
the attributes, excluding the output variable, to ensure that attributes with high variance
do not distort the results of nearest neighbours calculations.

4.2. Experimental Setup

With the intention of evaluating the capability of the proposed model, it was com-
pared with the techniques presented by [23] and [35]. Their methods are referred to
as MI and RegENN in the following section. We have not considered any evolutionary
algorithms because they are very time-consuming. The methods are presented as noise
filters. As Guillen et al. the output variable was modified, by adding or subtracting a
random value between its minimum and maximum values.

With the aim of evaluating the performance of the algorithms as noise filters, the
selection process was evaluated as f it were a binary classification problem. After filtering,
the resultant dataset returned by the algorithms was evaluated [16], counting how many
actual and noisy instances were retained, to fill a confusion matrix (see the Table 2).
The confusion matrix give us four rates:

• True positive (TP): an instance whose output value has been modified is correctly
classified as noise.

• False positive (FP): an unmodified instance is classified as noise.

• True negative (TN): an unmodified instance is correctly classified as not modified.
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Table 1: Datasets for experiments. The RMSE column shows the root mean squared error achieved by
kNN regressor, radial basis function network regressor (RBF) and regressor tree (REPTree).

Dataset # Insts. # Attrs
RMSE

kNN RBF REPTree

machineCPU 209 6 73.3861 54.9182 74.1478
baseball 337 16 681.9675 694.5271 784.2473
dee 365 6 0.4136 0.4024 0.4886
autoMPG8 392 7 2.9245 2.6252 3.2893
autoMPG6 392 5 2.7766 2.9610 3.2841
ele-1 495 2 647.7872 637.9696 709.1737
stock 950 9 0.7816 1.0196 1.1843
laser 993 4 10.2126 7.4007 14.0605
concrete 1030 8 9.3890 7.2785 7.4055
treasury 1049 15 0.2423 0.2265 0.3214
mortgage 1049 15 0.1917 0.1063 0.2562
ele-2 1056 4 271.1403 123.7133 185.0631
friedman 1200 5 1.7855 1.5425 2.7496
wizmir 1461 9 1.7195 1.1542 1.7374
wankara 1609 9 1.9401 1.2973 2.0441
plastic 1650 2 1.6412 1.5113 1.7518
quake 2178 3 0.1954 0.1887 0.1887
ANACALT 4052 7 0.1188 0.1889 0.0709
abalone 4177 8 2.2223 2.0983 2.3359
delta-ail 7129 5 0.0002 0.0002 0.0002
compactiv 8192 21 3.0811 3.5825 3.2458
puma32h 8192 32 0.0273 0.0232 0.0089
delta-elv 9517 6 0.0015 0.0014 0.0015
ailerons 13750 40 0.0002 0.0002 0.0002
pole 14998 26 8.2376 16.7730 7.1492
elevators 16599 18 0.0036 0.0022 0.0036
california 20640 8 61915.5979 62456.4909 58826.3442
house 22784 16 38444.1767 38512.3930 38854.6220
mv 40768 10 1.8591 0.6156 0.3047
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Table 2: Confusion matrix of the noise filter.

Predicted Actual

Noise No noise

Noise TP FP
No noise FN TN

• False negative (FN): an instance whose output value has been modified is wrongly
classified as not modified.

Over the confusion matrix we calculated F1 score [55]. This measure is the harmonic
mean of precision and recall:

F1 = 2 · precision · recall
precision + recall

(3)

where precision = TP/(TP + FP ) and recall = TP/(TP + FN).
And G mean [39]:

Gmean =
√
specifity · recall (4)

where specifity = TN/(TN + FP ).
To achieve a better understanding of the effect of noise, we train the model on the

distorted dataset and evaluate the learnt model using a clean dataset, following the
experimental setup used in other works [9, 29, 60].

The experimental process was as follows (see Figure 1): beginning with the dataset
with no noise, a cross-validation with 10 folds was performed, a percentage of noise was
added to each of the training datasets and the regressor was trained with the dataset
resulting from the filtering with the instance selection algorithm. In other words, the
training is done over the training set from the instance-selection process, which was
applied to the dataset after adding noise, and the test was performed on the original
dataset. The process was set this way to ensure that the noise in the test phase would
not distort the results of the regressor. At the same time, the aim was to test whether
the noise filtering of the instance selection algorithm was sufficient so that a regressor
trained with the filtered dataset achieve a good generalization. The noise configurations
were tested at 10, 20, 30 and 40% adding or subtracting a random value to the target
attribute (i.e. class noise).

The algorithms were implemented in Weka [24] and experimentation was done with
the Weka experimenter, version 3.7.11. Radial basis function (RBF), k-Nearest Neigh-
bours (kNN) and a tree-generation algorithm (REPTree, reduced error-pruning tree [59])
were used as regressors with the default values that appear in Weka, to ensure that any
modification would not be advantageous to one method over another. We only changed
the number of functions used by RBF because the default value is two, we increased to
five as used by Guillen et al. in their experimentation. The initial centers for the func-
tions are found using KMeans clustering algorithm. For kNN, with the aim of finding
the best k value, we launched eleven experiments (from k = 1 to k = 11) over the 29
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Figure 1: Configuration of the experiments.
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Figure 2: Average ranks over RMSE for regressor kNN varying k value from one to eleven. The best
result was achieved for k = 8.

datasets (see Figure 2). The best results was achieved with (k = 8, in classification even
values of k are discarded to avoid ties, but in regression this is not a problem).

The experiments were executed with the parameters recommended by authors:

• Mutual Information (MI): k = 6 as number of nearest neighbours and α = 0.05.

• ENN based on threshold (RegENN): k = 9 as number of nearest neighbours and
α = 5.

Given that these algorithms are designed to filter noise, the Wilson edition with k = 9
was used in the proposed meta-model, hereinafter DiscENN.

The unsupervised filter incorporated in Weka was used for discretization. The equal-
width option was selected, so all bins in which the target attribute was split had the same
size. The number of bins is selected from one to ten by the Weka filter using leave-one-out
cross-validation to select the best way of separating the numerical output variable, i.e.
the one that maximizes the entropy.

4.3. Results

Average ranks were used to compare the methods and were computed as follows: for
each dataset, the methods were sorted from best to worst by assigning a rank of 1 to the
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Figure 3: Average ranks over F1 score (a) and G mean (b).

best, 2 to the second, and 3 to the third. Finally, the ranks of the different datasets were
averaged for each instance selection method [14].

The root mean squared error (RMSE), the F1 score and the G mean were used for
the evaluation of the models.

Figure 3 presents the average rank over F1 score and the G mean for the configuration
tested. The margin between DiscENN and the others two methods enlarges as the noise
rate increases.

Figure 4 shows the heatmaps of F1 scores for each dataset [16]. In these tables,
each column is an instance selection method, each row is a dataset and in each cell the
F1 score is represented numerically and by means of a grayscale color. The darker the
color, the higher the F1 score. When noise percentage is low, i.e. 10%, the differences
between instance selection algorithms is no clear. However, as noise increases the first
column (DiscENN) darkens while the columns for the others methods lightens. The same
representation is used in Figure 5 for the G mean. The results of the proposed method
in these figures are better than the previous one, DiscENN achieved higher values for
all levels of noise. For both F1 score and G mean, the proposed method shows a much
better behaviour than the other two methods when the noise level is higher than 10%.

To check if differences between the algorithms are statistically significant, Hochberg
procedure [18] have been used.

As shown in Table 3, the proposed method is not the best for a noise level of 10%,
but is not significantly worse than the best method, RegENN, for this level of noise.
Note that RegENN is the only method that is not significantly worse than the method
proposed for noise levels of 20% when RBF and REPTree are used as regressors.

For noise levels of 20, 30 and 40%, the proposed method is always the best regardless
of the regressor being used (kNN, RBF and REPTree). In the case of using kNN as
regressor, the proposed method is a noise filter significantly better than the method
based on MI and the RegENN method. As might be expected, in all cases, the noise
filtering gets best results than to train the regressor directly to the noisy dataset.

As shown in Table 4, the proposed algorithm is the best method according to com-
pression (i.e. it always achieves smaller datasets than the other methods) and differences

52



DiscENN MI RegENN

mv
house
california
elevators
pole
ailerons
delta-elv
puma32h
compactiv
delta-ail
abalone
ANACALT
quake
plastic
wankara
wizmir
friedman
ele-2
mortgage
treasury
concrete
laser
stock
ele-1
autoMPG6
autoMPG8
dee
baseball
machineCPU

0.4025 0.3115 0.4653
0.4676 0.0186 0.5548
0.2745 0.0864 0.2730
0.3632 0.2163 0.5483
0.5836 0.4179 0.5939
0.3852 0.0347 0.5277
0.3851 0.3609 0.4375
0.2132 0.0387 0.0219
0.7272 0.0643 0.6397
0.4709 0.4728 0.5630
0.3163 0.1060 0.3838
0.1221 0.0151 0.0207
0.8636 0.0803 0.5946
0.1885 0.2304 0.1329
0.4610 0.5460 0.5526
0.4963 0.5651 0.5343
0.2774 0.3323 0.2289
0.1306 0.0101 0.0235
0.6759 0.4751 0.6703
0.7260 0.4736 0.6930
0.2412 0.2151 0.1624
0.5631 0.5512 0.6356
0.6582 0.4841 0.6616
0.2904 0.1637 0.3979
0.2944 0.3964 0.3697
0.2957 0.3732 0.3818
0.2691 0.2643 0.2224
0.3219 0.2551 0.4104
0.4658 0.1863 0.5246

(a) Noise 10%

DiscENN MI RegENN

mv
house
california
elevators
pole
ailerons
delta-elv
puma32h
compactiv
delta-ail
abalone
ANACALT
quake
plastic
wankara
wizmir
friedman
ele-2
mortgage
treasury
concrete
laser
stock
ele-1
autoMPG6
autoMPG8
dee
baseball
machineCPU

0.5764 0.1907 0.2830
0.6476 0.0188 0.3639
0.4484 0.0565 0.1749
0.5419 0.1749 0.3563
0.7400 0.2695 0.3705
0.5746 0.0242 0.3409
0.5742 0.3628 0.2680
0.3681 0.0398 0.0137
0.7558 0.0399 0.4229
0.6458 0.4596 0.3539
0.4996 0.0548 0.2543
0.2141 0.0143 0.0158
0.8685 0.0925 0.2585
0.3275 0.1988 0.0805
0.6449 0.4759 0.3607
0.6859 0.4726 0.3399
0.4492 0.2889 0.1477
0.2433 0.0122 0.0216
0.7928 0.2940 0.4441
0.8330 0.2688 0.4371
0.4064 0.1920 0.0982
0.7170 0.4829 0.4081
0.8189 0.3225 0.3734
0.4738 0.1713 0.2783
0.4815 0.3599 0.2209
0.4878 0.2818 0.2261
0.4501 0.2412 0.1491
0.5059 0.2469 0.2309
0.6091 0.1681 0.2926

(b) Noise 20%

DiscENN MI RegENN

mv
house
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elevators
pole
ailerons
delta-elv
puma32h
compactiv
delta-ail
abalone
ANACALT
quake
plastic
wankara
wizmir
friedman
ele-2
mortgage
treasury
concrete
laser
stock
ele-1
autoMPG6
autoMPG8
dee
baseball
machineCPU

0.6722 0.1060 0.1558
0.7393 0.0195 0.1985
0.5669 0.0375 0.0997
0.6387 0.1417 0.2059
0.8092 0.1375 0.1928
0.6790 0.0185 0.1978
0.6766 0.3159 0.1451
0.4829 0.0383 0.0085
0.7710 0.0217 0.2350
0.7267 0.3903 0.1914
0.6140 0.0340 0.1418
0.3144 0.0133 0.0098
0.7841 0.0860 0.0806
0.4336 0.1363 0.0466
0.7349 0.3923 0.1996
0.7532 0.3649 0.1869
0.5646 0.2412 0.0944
0.3425 0.0243 0.0178
0.8430 0.1311 0.2427
0.8691 0.1196 0.2545
0.5193 0.1699 0.0616
0.7590 0.4016 0.2264
0.8573 0.2160 0.1605
0.5883 0.1752 0.1529
0.5902 0.2969 0.1303
0.5840 0.2275 0.1224
0.5524 0.1677 0.0872
0.6232 0.2016 0.1355
0.6949 0.1839 0.1617

(c) Noise 30%
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autoMPG8
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0.7306 0.0589 0.0781
0.7936 0.0200 0.0975
0.6508 0.0247 0.0526
0.6875 0.1161 0.1085
0.8461 0.0582 0.0865
0.7465 0.0140 0.1030
0.7421 0.2725 0.0692
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(d) Noise 40%

Figure 4: F1 score for each dataset. The darker the color is, the higher is the score (i.e. black color
represents F1 = 1 and white color F1 = 0.
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(a) Noise 10%
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(b) Noise 20%
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(c) Noise 30%
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(d) Noise 40%

Figure 5: G mean for each dataset. The darker the color is, the higher is the score (i.e. black color
represents G = 1 and white color G = 0.
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Table 3: Average ranks and Hochberg procedure over RMSE. The 6 means that the result of the
algorithm is significantly worse than the best (the first of the ranking is highlighted in bold) at a
confidence level of 0.95, we included NoFilter that shows the performance of the regressor trained over
noisy datasets.

kNN

IS Alg.
% noise

10 20 30 40

DiscENN 2.172 1.465 1.172 1.207
MI 2.534 2.638 6 2.207 6 2.086 6
RegENN 1.776 2.224 6 3.965 6 3.965 6
NoFilter 3.517 6 3.672 6 2.655 6 2.741 6

RBF

IS Alg.
% noise

10 20 30 40

DiscENN 2.327 1.672 1.431 1.465
MI 2.483 2.603 6 2.707 6 2.758 6
RegENN 1.983 2.121 2.327 6 2.379 6
NoFilter 3.207 6 3.603 6 3.534 6 3.396 6

REPTree

IS Alg.
% noise

10 20 30 40

DiscENN 2.172 1.638 1.431 1.396
MI 2.621 2.862 6 2.810 6 2.931 6
RegENN 2.000 2.034 2.172 6 2.293 6
NoFilter 3.207 6 3.465 6 3.586 6 3.379 6
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Table 4: Average ranks and Hochberg procedure over compression. The 6 means that the result of the
algorithm is worse than the best (the first of the ranking is highlighted in bold) at a confidence level of
0.95.

IS Alg.
% noise

10 20 30 40

DiscENN 1.000 1.000 1.000 1.000
MI 2.414 6 2.414 6 2.345 6 2.345 6
RegENN 2.586 6 2.586 6 2.655 6 2.655 6

are significant at a confidence level of 0.95.
Finally, with the aim to evaluate how well the instance selection works, average

ranks over the three regressors were made. Table 5 shows the average ranks, the dashed
line indicates that the difference between the first method and the others below the
line is significant at a confidence level of 0.95. The table provides an indication of
the performance of the different methods with different levels of noise: 10, 20, 30 and
40%. For all noise levels, the lowest error is achieved by RBF. When the noise level
is only 10%, the selection done by RegENN outperforms the one done by DiscENN.
However, as the noise level increases, the performance of the proposed method pays off,
and the selection achieved by this method gives better results than the others. When
the noise level is only 10%, the selection done by RegENN outperforms the one done by
DiscENN. Also note that for noise levels of 30% and 40% the proposed method improves
the results for all base regressor. As might be expected, kNN is the worst regressor
in noisy environments, so it ranks low in all cases, however it is very noticeable that
its rank improves remarkably when it is trained with the selection performed by the
proposed method. This improvement is achieved even in the cases with high noise levels
(30% and 40%), up to the point that it ranks second. Thus, the algorithm proposed in
this paper allows to use regressors, which are not able to deal well with noise, in noisy
environments.

5. Conclusions and future work

The construction of expert and intelligent systems requires the elicitation of the
knowledge that they are going to use. Although in the past this required the inter-
vention of experts in the subject matter of automation, today with the abundance of
data, it is most frequent to obtain knowledge using data mining algorithms. However,
there are two circumstances that may affect the use of these algorithms. On the one
hand, some are very sensitive to noise. On the other hand, the presence of noise in the
process of obtaining data is almost inevitable (for example, measurements in industrial
environments).

Although there are numerous algorithms for instance selection in classification (the
value to predict is discrete), it does not happen the same for problems in which the
value to predict is continuous. The main contribution of this paper is a new approach
to the problem of instance selection in regression. The approach is simple, even naive,
the output variable is discretized to make use of an instance selection algorithm for
classification. Besides simplicity, another major advantage of the method is that we now
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Table 5: Average ranks and Hochberg procedure over RMSE for all regressors. The dashed line indicates
the point at which the differences with regard to the first method were significant at a confidence level
of 0.95. NoFilter shows the performance of the three regressors trained using noisy datasets.

Noise Algorithm Rank

10 %

RBF RegENN 3.6379
RBF DiscENN 3.9655
RBF MI 4.5517
RBF (NoFilter) 5.5862

kNN RegENN 6.1897
kNN DiscENN 6.2414
REP RegENN 6.6552
REP DiscENN 6.9655
kNN MI 7.8448
REP MI 8.0345
REP (NoFilter) 8.9483
kNN (NoFilter) 9.3793

20 %

RBF DiscENN 2.6897
RBF RegENN 3.8966
kNN DiscENN 4.3621

RBF MI 5.0690
REP DiscENN 5.1379
RBF (NoFilter) 6.4138
REP RegENN 6.7931
kNN RegENN 7.6207
REP MI 8.2414
kNN MI 8.4828
REP (NoFilter) 9.1897
kNN (NoFilter) 10.1034

Noise Algorithm Rank

30 %

RBF DiscENN 2.3793
kNN DiscENN 3.2069
REP DiscENN 4.2759
RBF RegENN 4.5690

RBF MI 4.9828
RBF (NoFilter) 6.1897
REP RegENN 6.3448
REP MI 7.6552
kNN MI 8.5172
REP (NoFilter) 8.7759
kNN (NoFilter) 9.2069
kNN RegENN 11.8966

40 %

RBF DiscENN 2.5172
kNN DiscENN 3.0517
REP DiscENN 4.0172
RBF RegENN 4.6207

RBF MI 5.1207
RBF (NoFilter) 6.0517
REP RegENN 6.6207
REP MI 7.7069
REP (NoFilter) 8.3966
kNN MI 8.5000
kNN (NoFilter) 9.5000
kNN RegENN 11.8966
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have at our disposal all the algorithms of instance selection for classification existing
in the literature. The utility of the approach has been proved experimentally, it offers
competitive results when compare to the few existing methods of instance selection for
noise removal in regression [23, 35], despite that the latter propose a more complex and
sophisticated approaches to the problem. More specifically, its performance as a noise
filter has been compared i) taking as reference the values of: the RMSE, the F1 score, the
G mean and the compression; ii) with different base regressors: k-nearest neighbours,
RBF networks and REPTree, and iii) using 29 data set to which several levels of noise
were added.

The main criticism that can be made to the proposal is the lack of theoretical justifica-
tion. But the idea to address a continuous problem by means of a previous discretization
step is a classical approach, perhaps the most representative example are the Rienmann
sums to approximate the area under a curve and solve the problem of numerical integra-
tion. In any case, the discretization that is being done at the current implementation is
too crude. We suspect that a discretization step more adjusted to the specific nature of
the data could improve the method. The combination of results obtained with different
discretizations could be beneficial as well (following a similar approach to the one used by
ensemble methods). It may also be interesting to investigate whether the way in which
the discretization is done affects the performance of the proposed approach. We hope to
incorporate all these ideas in future research.

Another preprocessing operation that helps in the design of expert and intelligent
systems is the selection of features [54, 7]. Some authors have successfully adapted to
feature selection ideas originally designed for instance selection [26]. This makes us think
that we too could do the same with our idea. In classification, simultaneous selection of
instances and features has also proved to be beneficial [15], so perhaps our method can
be also extended to this simultaneous selection. Finally, although our method has shown
good results in a large set of standard datasets for benchmarking, it would be interesting
to check its performance on specific domains, especially in industrial problems and in
time series forecasting.
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If we had access to a classifier with perfect
generalization performance, there would
be no need to resort to ensemble
techniques.
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FUSION OF INSTANCE SELECTION METHODS IN REGRESSION TASKS

This journal paper presents the advantages of using a combination of instance selection

methods in regression. The combination of multiple learners into an ensemble that has

greater power than the sum of any one of its members is nothing new in itself. However,

combinations of instance selection methods applied to regression tasks is a novel aspect that has

not previously been tested.

Four instance selection methods, two edition algorithms and two condensation algorithms,

were combined in homogeneous ensembles. Their superior performance supported the underlying

principle of general ensembles: they work better than each method by itself alone
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aUniversity of Burgos, Spain
bSilesian University of Technology, Poland

cUniversity of Bielsko-Biala, Poland

Abstract

Data pre-processing is a very important aspect of data mining. In this paper we discuss
instance selection used for prediction algorithms, which is one of the pre-processing ap-
proaches. The purpose of instance selection is to improve the data quality by data size
reduction and noise elimination.

Until recently, instance selection has been applied mainly to classification problems.
Very few recent papers address instance selection for regression tasks.

This paper proposes fusion of instance selection algorithms for regression tasks to
improve the selection performance. As the members of the ensemble two different families
of instance selection methods are evaluated: one based on distance threshold and the
other one on converting the regression task into a multiple class classification task.

Extensive experimental evaluation performed on the two regression versions of the
Edited Nearest Neighbor (ENN) and Condensed Nearest Neighbor (CNN) methods showed
that the best performance measured by the error value and data size reduction are in
most cases obtained for the ensemble methods.

Keywords: instance selection, regression, ensemble models

1. Introduction

In real-world problems, we are often faced with regression tasks, aimed at predicting
some real-value numbers. The quality of the prediction is often limited not by

the learning algorithm, but by the quality of the data itself. There are various ways
of improving the quality of the data on which the learning model is built. One of them is
instance selection, in which we reject the training instances that are either not expected
to improve or are expected to worsen prediction results.

In this paper, we use ‘edited’ or ‘filtered’ dataset interchangeably to refer to a dataset
produced by an instance selection process.

Traditionally, instance selection methods are divided in two groups according to the
approach used by algorithms to select an instance [29]:
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• Wrappers: the algorithms of this family use the accuracy obtained by the classifier
(usually the same that will be used after instance selection stage). Some of them
are CNN [17], ENN [41], DROP1. . . 5 [40], ICF [8], MSS [4]. . .

• Filters: as opposed to wrappers, the instance selection or rejection criterion is not
based on a classifier. For example POP [32].

A large number of instance selection algorithms designed for classification tasks have
been published in the scientific literature and new ones continue to appear. An up-to-date
taxonomy can be found in [13].

However, two issues still require prompt attention: extending instance selection
methodologies into regression tasks and applying the fusion of various sources to ob-
tain better results. Regarding the first issue, we have already obtained some results
in [21] and in this paper we propose a new approach based on the discretization of the
output variable. The second issue has proven to be an effective approach in other do-
mains [24], but to the best of our knowledge, no one has yet tried to apply ensembles to
the combination of instance selection methods for regression.

The presence of noise is a common problem in Data Mining applications and noise
filters are widely used to cope with this problem [35]. The usefulness and efficiency of
instance selection methods for low quality and noisy data was confirmed in [23], which
presented an experimental evaluation of several approaches to noise-resistant training of
multilayer perceptron neural networks for classification and regression problems. Differ-
ent noise reduction methods were evaluated with different noise levels in the data. For
regression tasks, in most cases the solution that used the threshold-based ENN instance
selection (in the following sections, we describe threshold-based ENN, short of Edited
Nearest Neighbor, in detail) achieved the lowest mean-square error (MSE) on the test set
for various levels of noise added to the data. The only exception was when the noise level
was extremely high and for that case the lowest MSE was obtained by a combination of
the threshold-based ENN with modification of the error function.

This paper is structured as follows: Section 2 is a brief review of instance selection
methods for classification; Section 3 explains the problems of applying them to regres-
sion tasks; Subsection 3.1 presents the threshold-based approach, while Subsection 3.2
suggests another idea based on numerical target discretization; Section 4 shows the pos-
sibility of applying the idea of ensembles to the instance selection paradigm. Then, in
Section 5 an experimental study is performed to compare both approaches and the im-
provements achieved when they are used within an ensemble, and how, in this case, we
can outperform the regressor trained with the whole dataset. Finally, Section 6 sum-
marizes the most important conclusions, and Section 7 presents some future lines of
research.

2. Instance Selection for Classification

In general, instance selection algorithms can be classified into three types: noise filters,
condensation algorithms and prototype selection algorithms [19]. Noise filters remove
instances that show extreme differences with their neighbors, as they are considered
noise. In the Edited Nearest Neighbor (ENN) algorithm [41] used for classification tasks,
an instance is removed if it belongs to a different class than that predicted by the k
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Nearest Neighbors algorithm (kNN), using the k nearest neighbors of the instance of
interest. The condensation methods serve to reduce the number of instances in the
dataset by removing instances that are overly similar to their neighbors. The Condensed
Nearest Neighbor algorithm (CNN) [17] removes the instances in classification problems
that are correctly predicted by kNN, as it is assumed that they do not bring any new
information to build the classifier. Prototype selection methods do not select relevant
instances, but rather transform the whole dataset into a few instances, each covering an
area corresponding to the Voronoi cell1 defined by each instance. An example of such
methods is Learning Vectors Quantization (LVQ) [20].

The decisions about instance selection or rejection are very straightforward in instance
selection for classification problems. They are based on the classification results obtained
with an algorithm that is almost always kNN. The instance can either belong to the same
class or to another that is different from the majority of its neighbors. The difference
between the predicted and the real class of the instance determines the decision on its
acceptance/rejection.

3. Instance Selection for Regression

There are very few papers that address the problem of instance selection for regression.
The proposed methods fall into two categories: evolutionary-based and nearest neighbor-
based (which includes our methods). The evolutionary based methods have very high
computational cost, about 3 to 4 order of magnitude higher than the nearest neighbor-
based methods for medium size datasets (according to the experiments and the data
reported in [2]). For bigger datasets the difference is even larger, what makes the methods
impractical in many applications.

However, we did not find in a literature any work on instance selection for regression
tasks in a general setting, where the authors reported the improvements in terms of
compression rate and classification accuracy even for a single arbitrary point, not to
mention even the Pareto front, which we have examined in our work, so we were not able
to use those methods for comparison.

Tolvi [39] presented the use of genetic algorithms for outlier detection. That approach
does not rely on the dataset properties and purpose, so it can be used both for classifica-
tion and regression problems. However they presented the results of only two very small
datasets (35 instances with 2 features and 21 instances with 3 features).

In [2] Antoneli et al. also presented a genetic approach using quite complex multiob-
jective evolutionary algorithms with up to 300,000 evaluations of the fitness function.

In [15] Guillen et al. presented the use of mutual information for instance selection
in time series prediction. Their idea was similar to k-NN based prediction, thus they
determined the nearest neighbors of a given point and then instead of using k-NN to
predict the output value, they calculated the mutual information (MI) between that
point and each of their neighbors. Then they considered the loss of MI with respect to
its neighbors in so that if the loss was similar to the vectors near the examined vector, this

1A Voronoi diagram (also known as Thiessen polygons or Dirichlet tessellation) is a geometrical
construction to partition the Euclidean space. It divides the space into several polygons, Voronoi cells,
each of them associated with a point, the seed. Each Voronoi cell defines a region of the space closer to
its seed than to any other point, that is, the division is made according to the nearest neighbor rule [3].
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vector was included in the filtered dataset. They evaluated their methods on artificially
generated data with one and two input features. Later on, Stojanović et. al [37] extended
the previous idea to instance selection in time series prediction.

In [33] a Class Conditional Instance Selection for Regression (CCISR) is proposed.
The method is based on CCIS for classification [27]. CCIS builds two graphs: one for
the nearest neighbors of the same class as a given instance and another for other class
instances. Then a scoring function based on the distances in graphs is used to evaluate the
instances. In the regression version (CCISR), instead of using only the nearest instances
to construct these graphs, the neighborhood is defined based on the probability density
function of the examples. The authors provided results on several real-world datasets for
fuzzy rule based systems in terms of MSE and the number of extracted rules.

In the following subsections, we present our approaches two instance selection for
regression.

3.1. Threshold-based Instance Selection for Regression

Instance selection methods developed for classification are based on the analysis of
class labels of neighbor instances to determine the rejection/acceptance of a test instance.
It usually takes the form of if statements where the condition of the if statement com-
pares labels of the actual test instance with its neighbors. In the case of regression, label
comparison is not possible since output values are not nominal but continuous. Thus,
rather than labels, another quantity must be compared. An intuitive approach proposed
in [21] is to use a similarity-based error measure such as:

Error = |Yreal − Ȳpredicted| (1)

and to compare the error to the predefined threshold, to determine whether the instance
should be accepted or rejected:

if (Error > θ) then . . . . (2)

where (. . . ), as the consequence of the if, can denote either instance acceptance or re-
jection, depending on a given algorithm. To improve the performance of this method,
the threshold can depend on the local properties of the dataset. When the standard
deviation of the adjacent cases (to the test case) is high, the condition should be less
sensitive to the value of error shown in Equation (1). In other cases, when the local
standard deviation is small, the condition should be more sensitive. This leads to the
following modification of the previous formula:

if
(
Error > α·std(k)

)
then . . . (3)

where std(k) is the standard deviation of the outputs of the k-nearest neighbors of the
instance.

This approach was used to adapt the ENN [41] and CNN [17] algorithms to meet the
regression requirements. Moreover, it can also be easily introduced into other instance
selection algorithms.

The pseudo-code of threshold-based regression ENN (T-ENN) is shown in Algo-
rithm 1. It starts by iterating over the instances of the training set and in each iteration
one instance xi is examined, so it is temporally removed from the training set. Then, the
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remaining training set (T\xi) is used to predict the output value, Y (xi), of the instance
xi with kNN (line 2). If the error (defined as the difference between the predicted and
the actual value) is greater than the predefined threshold θ, the instance xi is marked
for rejection. Otherwise, it is marked for acceptance. Then the instance xi is returned
to the original dataset and the procedure is repeated with all the other instances, one
at a time. The new selected dataset consists of all the instances marked for acceptance.
Thus, T-ENN tends to reject the outliers and can be used as a noise filter (like the ENN
algorithm for classification, from which it is derived).

Algorithm 1: Edited Nearest Neighbor for regression using a threshold (T-ENN)

Data: Training set T = {(x1, y1), . . . (xn, yn)}, parameter α to control how the
threshold is calculated from the standard deviation

Result: Instance set P ⊆ T
1 for i = 1...n do
2 Ȳ (xi) = Model(T\xi,xi)
3 S = kNN(T,xi)

4 θ = α · std
(
Y (XS)

)

5 if |Y (xi)− Ȳ (xi)| > θ then
6 T ← T\xi

end

end
7 P ← T

return P

In Algorithm 1, Model is the method used for prediction (any regression algorithm can
be used), Y (xi) is the actual target value of instance xi; Model(T\xi,xi) is the predicted
value of the target output given by the model trained with dataset T without xi; and, S
contains the k-nearest neighbors of the instance xi. The threshold θ is a multiple of the
standard deviation of the outputs of the instances in S, the magnitude of this multiple
depends on the parameter α that is given as input to the algorithm.

The pseudo-code of threshold-based regression CNN (T-CNN) is presented in Algo-
rithm 2. Initially T-CNN starts with an empty dataset of selected instances. T-CNN uses
a threshold θ defined in the same way as in T-ENN. The difference is that in the iteration
when the remaining training set predicts the output value, Y (xi), of the instance xi, the
instance is marked for acceptance if the error is greater than the predefined threshold θ.
As in T-ENN the new selected dataset consists of all the instances marked for acceptance.
Instances are removed if they are too similar to their neighbors. Thus, the main purpose
of T-CNN is to compress the dataset. However, the threshold θ for T-CNN must be much
lower than for T-ENN. It is actually lower by about one order of magnitude. Generally,
higher θ in T-ENN leads to the acceptance of more instances, while θ in T-CNN leads
to the rejection of more instances.

Several parameters in both the T-CNN and the T-ENN algorithms can be tuned,as
the θ value and various prediction methods (Model) can be used. We use kNN as a
Model because of its simplicity and excellent performance with correctly selected param-
eters [22]. The most important parameter in kNN is the k value.

There are areas of naturally lower and higher densities in the data. In higher density
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Algorithm 2: Condensed Nearest Neighbor for regression using a threshold (T-
CNN)

Data: Training set T = {(x1, y1), . . . (xn, yn)}, parameter α to control how the
threshold is calculated from the standard deviation

Result: Instance set P ⊆ T
1 P = ∅
2 P ← P ∪ x1

3 for i = 2...n do
4 Ȳ (xi) = Model(P,xi)
5 S = kNN(T,xi)

6 θ = α · std
(
Y (XS)

)

7 if |Y (xi)− Ȳ (xi)| > θ then
8 P ← P ∪ xi

9 T ← T\xi

end

end
return P

areas, even the slightest deviation from the value predicted by kNN can mean that an
instance is an outlier and should be rejected by T-ENN. While in lower density areas,
such deviations can be normal. For that purpose, we made the threshold θ proportional
to the standard deviation of the output values of k-nearest neighbors of the instance.

3.2. Discretization-based Instance Selection for Regression

The other approach entails the direct usage of instance selection algorithms for clas-
sification tasks on regression datasets. For that purpose the output variable is first
discretized and thus the problem is converted into a classification task. When instance
selection is complete, the numerical value of the output variable is recovered for the
selected instances.

This approach is a kind of meta-algorithm as it allows the use of the classification-
based instance selection methods for different purposes: as noise filters (e.g. ENN [41],
ENRBF [19], RNGE [36], . . . ) or as data size reduction methods (e.g. CNN [17], MSS [4],
POP [32], ICF [8], DROP [40], . . . ).

The whole process is comprised of the following steps (see Algorithm 3):

1. Discretize the value of the numerical target variable of the training dataset.

2. Apply a classification-based instance selection algorithm to the discretized dataset
to obtain the edited subset S.

3. Restore the numerical value of the target variable in S.

Discretization is the key step of this method, and it decisively influences instance
selection, as the boundary between classes determines the instance selection or rejection
in the edited dataset. Discretization algorithms can be divided into two families: su-
pervised, when the class value is taken into account, and unsupervised (or class-blind),
when the class value is not taken into account. Since it is the target attribute that is
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Algorithm 3: The proposed meta-model based on discretization of the output
variable

Data: Training set {X,Y } = {(x1, y1), . . . (xn, yn)}
Result: Instance set S ⊆ {X,Y }

1 YD = Discretization of the numerical target Y
2 Apply classification-based instance selection algorithm over {X,YD} to obtain

subset S
3 Restore the numerical value of the output variable in S

return S

discretized, we must use the unsupervised algorithm. Two well-known unsupervised al-
gorithms are equal-frequency and equal-width [12]. Nevertheless, this paper is not aimed
at studying how discretization influences instance selection (and anyway this influence
decreases when the method is used as the base block in the construction of an ensemble).

In the experiment section, we used two well-known instance selection methods for
classification tasks: ENN and CNN. To adapt the meta-model to those methods, we
replaced line 2 of Algorithm 3 by Apply ENN or Apply CNN respectively. The algorithms
were selected in the experimental study, because we compared them to T-ENN and T-
CNN threshold-based algorithms inspired by ENN and CNN respectively.

The discretization method used on the experiment was the Weka unsupervised filter
invoked from RapidMiner. It optimizes the number of bins in the target variable by equal
width binning using leave-one-out estimated entropy. The number of bins is varied in
the bagging process up to a maximum value that is given as a parameter.

The details of the discretization process are given in Algorithm 4. Where b is the
maximum number of bins to be created, T is the original dataset and D is the new
dataset in which only the output variable was changed by discretizing its value. First of
all, LOWEstimatedEntropy calculates the best entropy (the lowest one) trying different
number of bins from 1 to the maximum value b. When the best number of bins is found,
the function CalcCutPoints calculates cut points of the variable to be discretized, and
finally, DiscretizeClass generates a new dataset D with all instances of the original
dataset T but the original continuous output value is replaced by the class attribute
obtained from the discretization process.

4. Information Fusion

The advantages of information fusion for instance selection comprise:

1. Improvement of results. As our experiments showed, in most cases (see Table 4),
the ensemble methods allow for obtaining better results than single methods.

2. Better possibility of model parametrization. Without retraining the model, we
are able to balance compression and prediction accuracy by changing only the
acceptance threshold of the ensemble (this is how many ensemble members must
vote the instance to make it finally accepted).

3. Possibility of process parallelization. Especially in case of big data, splitting the
big dataset into many small subsets and performing the operations on the subsets
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Algorithm 4: Equal-width binning using leave-one-out estimated entropy.

Data: Training set T = {(x1, y1), . . . (xn, yn)}
Maximum number of bins b
Result: Discretized set D = {(x1, y1), . . . (xn, yn)}

1 bestEntropy ←MAX V ALUE
2 for i = 1...b do
3 entropy = LOUEstimatedEntropy(T, i)
4 if entropy < bestEntropy then
5 bestEntropy ← entropy
6 bestNumBins← i

end

end
7 cutPoints = CalcCutPoints(T, i)
8 D = DiscretizeClass(T, cutPoints)

return D

on a computational cluster can accelerate the instance selection process, since the
cost of ENN is O(n2) and of CNN is O(n3) [19].

The details of the first and second point are further discussed in the following subsections.
Analysis of the third advantage is out of the scope of the paper.

4.1. Ensemble models

An ensemble (or committee) model is a predictive model composed of several simple
models that work in parallel [34]. The final prediction of an ensemble is obtained by
averaging the predictions of its member models.

The aim of ensemble methods is to combine several classifiers to obtain better predic-
tive performance than could be obtained by any of them separately [31]. The idea behind
the ensembles is that the combination of several weak-learners usually achieves better
results than any of them alone [28]. Each member of the ensemble usually has areas in
which it performs poorly and other areas in which it performs especially well. Given
that poor performance areas differ for individuals, prediction averaging yields higher ac-
curacy than that of any single model. To obtain this, each of the members contained in
the ensemble has to be as different from the others as possible [9]. The diversity can be
obtained in two different ways: by using heterogeneous classifiers and/or by training each
member on a different subset of the dataset [42]. For example, if the prediction accuracy
of each single model is 0.80 and the areas where different models make prediction errors
are different, then averaging the single model predictions gives correct prediction in most
cases. Only in the cases where the wrong prediction areas of most ensemble members
overlap the final prediction will be incorrect. This is illustrated in the Figure 1.

An important aspect of ensembles is the strategy to combine the decisions of the
different members. The purpose of this step is to amplify the correct decisions and
shrink the incorrect ones. Many strategies can be followed. Frequently they can be
grouped into: i) trainable vs. non-trainable combination rules or ii) combination rules
that apply to class labels vs. to class-specific continuous outputs. A good analysis of
committee models was presented in [31].
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✓ ✗ ✓ ✓ ✗ ✓

✓ ✓ ✗ ✓ ✗ ✓

✓ ✓ ✓ ✓ ✓ ✓

✓ ✓ ✗ ✓ ✓ ✓

✗ ✓ ✓ ✗ ✓ ✓

✓ ✗ ✓ ✓ ✓ ✓

✓ ✓ ✗ ✓ ✓ ✓

✗ ✗ ✗ ✓ ✗ ✗

✓ ✗ ✓ ✓ ✓ ✓

✓ ✓ ✓ ✓ ✗ ✓

✓ ✗ ✓ ✗ ✓ ✓

✓ ✓ ✓ ✗ ✓ ✓

✓ ✓ ✗ ✓ ✓ ✓

✓ ✗ ✓ ✓ ✓ ✓

✗ ✓ ✓ ✓ ✗ ✓

✗ ✓ ✓ ✓ ✗ ✓

✗ ✓ ✗ ✓ ✓ ✓

✓ ✗ ✓ ✗ ✓ ✓

✗ ✓ ✓ ✗ ✓ ✓

✗ ✓ ✗ ✓ ✓ ✓

Figure 1: Example of ensemble classifier. Where 3 represents a correct prediction for a given instance by
a given model and 7 a wrong prediction. The last column represents the final prediction of the ensemble
obtained by the five models voting. The result row at the bottom contains the number of correctly
predicted instances by each model and by the ensemble.

One of the earliest ensemble algorithms is bagging (bootstrap aggregating) which,
despite its simplicity, shows quite excellent performance [6]. In bagging each model is
trained on a random subset of the original dataset to ensure diversity of the ensemble
(of models). The subsets are obtained by drawing instances with replacement from the
original dataset. Bagging selects different bootstrap subsets that are independent of one
another. Thus, the models operating on the subsets can run in parallel, accelerating the
bagging process.

4.2. Bagging for Instance Selection

We have extended the idea of bagging into instance selection [5]. Each individual
instance selection algorithm within the ensemble returns an array of binary votes; one
vote for each instance in the subset. A (positive) vote for each instance indicates that
the instance has been selected by the algorithm. Then all the votes that a given instance
received from each algorithm are summed. The importance of an instance in the training
set is considered proportional to the number of accumulated votes. To perform the final
instance selection, an accept/reject threshold is defined. The threshold determines the
percentage of votes an instance must accumulate to be included in the resultant filtered
dataset.

The pseudo-code for the Instance Selection Bagging is given in Algorithm 5. Where
ISAlg is an instance selection algorithm, t is an integer that indicates the number of
member-algorithms in the bagging, p is the percentage of instances from the original
dataset that will be drawn into each subset and z is a threshold of votes to select or
discard an instance. The function Bootstrap(T, p) returns the bootstrapped subset St

by randomly drawing p percent instances of S, the function CollectVotes(P, v) adds the
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votes that a given instance receives from each member algorithm in Pt and the function
SelectInstancesByVotes(T, v, z) returns the final selected dataset. To sum up, on each
round the new bootstrapped subsets St is generated, and an instance selection algorithm
is executed on the St return selected dataset Pt. The votes for the selected instances
are added in v. And finally all the instances stored in each Pt, which altogether receives
more than threshold z votes, are selected and stored in the dataset P .

Algorithm 5: ISBagging. Instance Selection Bagging

Data: Training set T = {(x1, y1), . . . (xn, yn)}
Instance selection algorithm ISAlg

Number of member instance selection algorithms t
Percent of instances in the bootstrapped training subsets p
Threshold z
Result: Instance set P ⊆ T

1 for i = 1...t do
2 St = Bootstrap(T, p)
3 Pt = ISAlg(St)
4 v = CollectVotes(Pt, v)

end
5 P = SelectInstancesByVotes(T, v, z)

return P

Modifying the parameters of the model we can adjust the trade-off between the pre-
diction accuracy and the dataset compression. In the approach based on data discretiza-
tion and then transformation of regression task into multi-class classification task, the
discretization method influences the results, for example by determining the different
number of bins and the boundaries between them. It is also highly probable that the
prediction of the data points, situated close to the boundaries, will be poor. The most
important parameter is the percentage of ensemble members that must select the in-
stance, to have the instance included in the final dataset. Changing this parameter gives
more priority to accuracy or dataset size reduction.

In the Ensemble-CNN the problem may be that CNN usually has good compression.
This means that a small subset of samples is selected by each individual algorithm. So,
it is less likely that instances selected by different committee members will overlap. This
observation may lead to the conclusion that Ensemble CNN provides a compression worse
than pure CNN.

5. Experimental Evaluation

In the experimental evaluation we performed simulations to compare the eight in-
stance selection methods for regression (four single methods and four ensembles) on 28
datasets.

5.1. Purpose and Scope

The purpose of the experimental evaluation was to assess how individual instance
selection methods perform in terms of the accuracy obtained at a given compression level.
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Figure 2: The process of bagging instance selection.

Based on the results, we hoped to provide recommendations for choosing the proper
instance selection methods for regression problems. The evaluated instance selection
methods were2:

• T-ENN: threshold-based ENN.

• T-CNN: threshold-based CNN.

• D-ENN: discretization-based ENN.

• D-CNN: discretization-based CNN.

• TE-ENN: ensemble of threshold-based ENN.

• TE-CNN: ensemble of threshold-based CNN.

• DE-ENN: ensemble of discretization-based ENN.

• DE-CNN: ensemble of discretization-based CNN.

2We also evaluated the CCISR method [33] (the adaption to regression of CCIS [27]) on some datasets.
Because of very high computational time and memory demand, especially for bigger datasets, including
CCISR in the full study was out of our resources. The results obtained with CCISR for the datasets:
autoMPG6, autoMPG8, baseball, dee, ele-1, laser and machineCPU, confirm the general trend observed
in the study; the use of CCISR within an ensemble generally improves the performance of the method
used alone. The interested reader can check the folder ccisr/Plots in http://prules.org/is/ where
there are several plots showing the results with this method.
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Based on the data of the experiment, we obtained a Pareto front representing the
best accuracy for a given compression level for each of the evaluated methods and for
each of the tested datasets. Pareto optimality is a state of allocation of resources or
parametrization of the process (compression and accuracy) in which it is impossible to
make any individual one better without making another one worse. The Pareto front
is a set of parametrizations that are all Pareto optimal (compression is best for a given
accuracy level and accuracy is best for a given compression level) [26]. The trade-off
between accuracy and compression was adjusted to some parameters of the instance
selection methods, as described in detail in the section below.

We performed the ranking of the methods over all the datasets, which allowed us to
draw clear conclusions on the properties and the efficiency of each evaluated instance
selection method.

5.2. Datasets

In the experiments, we used 28 regression datasets from the KEEL repository [1]. The
datasets are summarized in Table 1, where a total number of attributes is given for each
dataset: real (R), integer (I) and nominal (N) attributes and the number of instances.

5.3. Process and Environment

We implemented all instance selection methods in Java as RapidMiner plug-ins [18].
At the discretization stage, we used an unsupervised Weka filter [16] invoked from Rapid-
Miner. This filter performs all the equal-width divisions of the target value from two
intervals to the number of intervals passed as parameter, and then it selects the division
with better estimated entropy. So the number of intervals (and hence classes) in the final
discretization could be lower than the value passed to the filter.

The process started by loading one dataset and performing attribute standardization.
Then, the whole process was run in a 10-fold cross-validation. The validation process of
ensemble instance selection methods contained a bagging inside, and one of the proposed
instance selection algorithms was used to build the members of the bagging ensemble.
In the validation of non-ensemble methods, one of the instance selection algorithms was
directly used. The bagging ensemble was set to 30 members, each of them was an instance
selection algorithm which operated on a different subset of the training dataset. Each
subset was created by randomly drawing instances without replacement from the training
set. The number of instances in the subset was 80% of the instances in the training set.
The final decision on accepting or rejecting each instance was then made. An instance
was accepted if at least z% of the bagging members accepted the instance, otherwise it
was rejected. Changing the z% parameter, we can change the behavior of the ensemble
so that it prefers rather small resultant datasets (high compression), when z is close to
100%, or it prefers high prediction accuracy, for lower values of z.

The experiments were performed with various values of the following parameters of
the algorithms:

• Number of k-nearest neighbors used by kNN: from 1 to 13 in steps of 2.

• Number of k-nearest neighbors used by instance selection algorithms: from 1 to 13
in steps of 2.

• Threshold controlled by α: from 0.1 to 1 in steps of 0.1.
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Table 1: Datasets for experiments. The number of real (R), integer (I) and nominal (N) attributes are
shown in last column.

Dataset Instances
Attributes

Total R I N

diabetes 43 2 2 0 0
machineCPU 209 6 0 6 0
baseball 337 16 2 14 0
dee 365 6 6 0 0
autoMPG8 392 7 2 5 0
autoMPG6 392 5 2 3 0
ele-1 495 2 1 1 0
forestFires 517 12 7 5 0
stock 950 9 9 0 0
laser 993 4 4 0 0
concrete 1030 8 7 1 0
treasury 1049 15 15 0 0
mortgage 1049 15 15 0 0
ele-2 1056 4 4 0 0
friedman 1200 5 5 0 0
wizmir 1461 9 9 0 0
wankara 1609 9 9 0 0
plastic 1650 2 2 0 0
quake 2178 3 2 1 0
ANACALT 4052 7 7 0 0
abalone 4177 8 7 1 0
compactiv 8192 21 21 0 0
tic 9822 85 0 85 0
ailerons 13750 40 36 4 0
pole 14998 26 26 0 0
elevators 16599 18 14 4 0
california 20640 8 3 5 0
house 22784 16 10 6 0
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Figure 3: The experiment process setup.

• Maximum number of bins D: from 5 to 15 in steps of 1.

• Percentage of votes to select an instance z: from 0.1 to 0.9 in steps of 0.1.

The α parameter was only used for threshold algorithms, while the D parameter was
only used for discretization based algorithms. The z parameter was used on the ensemble
process.

It was shown in [22] that for most datasets (as well for regression as for classification)
the optimal k in the kNN algorithm is about 9. However, the differences between k=5,
k=9 and k=13 were only minimal. The biggest drop in accuracy was observed for the
smallest values of k, especially when k was below 3. While k, being an even number,
may not be the best choice for classification tasks, because of the high chance of a tie
between two classes, it is fully acceptable for regression tasks. In our experiments in
the kNN used for instance selection we used k = [1, 3, 5, 7, 9, 11, 13]. The choice of the
optimal k in the kNN used for the final prediction depended on the compression ratio of
the dataset obtained by instance selection.

After the instances were selected, they were used as the training set to predict the
output of the test set instances using kNN with k varying from 1 to 13, evaluating the
performance in terms of R2 and compression. The process is presented in Figure 3.

5.4. Selected Detailed Results

In this section, we present graphical presentations of two kinds of results are shown:
the detailed results for four selected datasets and the average results for all the 28 re-
gression datasets The detailed results for the remaining datasets have similar proper-
ties as for the four selected, and they can be downloaded from the project website at
http://prules.org/is/. The website also contains the RapidMiner process and the
links to download our RapidMiner instance selection extension.

Figure 4 presents the Pareto fronts of the four selected datasets obtained with all
the regression instance selection algorithms. The vertical axis shows prediction error,
with larger values representing higher error and the horizontal axis shows compression
with larger values representing weaker compression. BL-min and BL-max indicate the
minimum and maximum baselines as the error values obtained by kNN on the original
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dataset (without any instance selection). BL-min is the lower and BL-max is the higher
error obtained, while changing k in kNN from 1 to 13 (with step 2).

In the experiments we repeatedly changed the algorithm parameters, such as k in
kNN used for instance selection, the threshold θ in T-ENN and T-CNN, the number of
discretization bins in D-ENN and D-CNN and the threshold z in the ensemble methods.
The Pareto plots were obtained by connecting the best points (with the lowest error for
a given accuracy) for each algorithm.

We define the compression Cx as:

Cx =
# instances after selection

# instances before selection
(4)

Thus, lower compression values mean stronger compression.
The accuracy can be defined in three ways; either MSE (mean square error), RMSE

(root mean square error) or R2 (the coefficient of determination) [11], among others.
R2 expresses the squared correlation between the predicted and the actual value. When
the RMSE is small in relation to the variation in the data, the R2 is close to 1. Since
our data is standardized, choosing one of the accuracy representations only influences
the result presentation to a very small degree. We use R2 in the analysis of the results,
because it is independent of the data standardization.

The four datasets presented in Figure 4 were chosen as examples from the 28 datasets
on which we were running the experiments. Three of them show the typical tendency
that is confirmed by the analysis in the next subsection: ensemble methods tends to
perform better than single instance selection algorithms. While the last subfigure, for the
Concrete dataset, shows that in some rare cases the single algorithms (here T-ENN and
D-ENN) can also perform very well; even better than the ensembles. When compression
equals one (no compression) then we have the performance of kNN.

In classification tasks, CNN removes most of the instances that are situated far from
the class boundaries, because such instances are not required for correct classification. In
big datasets over 90% of instances can be removed. In regression, on the other hand, the
meaningful instances are located in the whole feature space and only those located very
close to one another can be removed without the loss of prediction quality. As it can be
seen from Figure 4, the CNN-based algorithms in regression tasks were unable to remove
more than 20% of the instances without causing a noticeable increase in error. In the
case of ENN, which removes outliers, the reduction rate in classification and regression
can be comparable, because it depends on the degree of noise in the data and not on
the prediction task. Thus on average in classification CNN removes more instances than
ENN, while in regression, on the contrary, the ENN-based methods can provide better
compression than the CNN-based (see the green and purple vs. blue and orange lines in
Figure 4).

5.5. Aggregation of All Results

The graphical presentation shows the average of the final results over all the datasets,
allowing us to notice the tendencies and the properties of particular instance selection
algorithms.

Figures 5 and 6 combine data reduction and prediction accuracy into a single perfor-
mance measure called benefit function (BF). BF is computed using the following equa-
tion [25]:
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(a) House

(b) Wizmir

(c) Elevators

(d) Concrete

Figure 4: Error against compression for four datasets. Lower values in horizontal axis mean higher
compression while lower values in vertical axis mean lower error. BL max represent the poorest precision
of kNN on the entire original dataset, i.e. the worst k value, while BL min represents the better precision
achieved with the best k. Each point of the plot represents the result of one specific configuration.
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Figure 5: Ranking of all methods. The baseline (BL) represents the result of the kNN prediction on the
original dataset.

BF = γ ·Accuracy + (1− γ) · Compression (5)

where Accuracy is represented as the coefficient of determination (R2) and Compression
as the inverse of the Equation 4 (1−Cx), where gamma is a parameter (γ ∈ [0, 1]) that
allows trade-off balancing between data size reduction and prediction accuracy. Higher
values of BF indicate better results for a given γ.

Figure 5 shows the ranking of all algorithms based on their benefit function for γ
values within the interval [0, 1].

Thin lines (colored in green and blue) show the results for methods with single in-
stance selection algorithms, while thick lines (colored in orange and purple) show the
results for bagging ensembles. The methods based on CNN algorithm are shown in blue
and orange, and methods based on ENN in green and purple. We can see that even for
γ = 1, that is, considering only the accuracy and not the compression, the best method
is DE-CNN, outperforming all the others, including the baseline method. On the other
hand, considering only the size-reduction of the filtered dataset, the best method is TE-
ENN. For a better comprehension of the rankings, we zoomed it in for gamma values
from 0.85 to 1 in Figure 6. The ensemble methods performed better than the individ-
ual methods for all the γ values, except T-ENN which surpassed the ensemble version
TE-ENN for gamma values from 0.903 to 0.966.

In Table 2 we show the results of the Hochberg test [14] taking into account only the
precision (that is for γ = 1), while in Table 3 we show the results taking into account
only the compression (that is for γ = 0). The line in the middle of the tables indicates
the statistical significance, i.e. the methods below the line are statistically worse, with a
significance level of α = 0.05, than the best method.

The graph in Figure 7 shows the percentage of datasets in which one method is the
best option based on the benefit function. As can be seen, the chart is mainly filled by
ensemble methods (on the top).

Figure 8 shows the average of the benefit function over all datasets for each of the
proposed methods and the result of kNN prediction on the original dataset (BL).
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Figure 6: Zoom of the ranking for gamma values from 0.85 to 1. The baseline represents the result of
the kNN prediction on the original dataset.

Table 2: Ranking and Hochberg procedure over precision. The methods considered statistically worse
than the best method are below the line. The baseline represents the result of the kNN prediction on
the original dataset.

IS algorithm Ranking p Hoch.

DE-CNN 3.04
TE-ENN 3.46 0.577
Baseline 3.50 0.577
DE-ENN 3.65 0.577
TE-CNN 3.88 0.577

T-ENN 5.69 2.38E-3
T-CNN 6.80 4.17E-6
D-ENN 7.38 7.37E-8
D-CNN 7.57 1.84E-8

Table 3: Ranking and Hochberg procedure over compression. The methods considered statistically worse
than the best method are below the line.

IS algorithm Ranking p Hoch.

TE-ENN 1.81
TE-CNN 2.58 0.257
DE-ENN 2.65 0.257

DE-CNN 4.00 3.75E-3
T-CNN 5.62 8.34E-8
T-ENN 5.77 2.75E-8
D-ENN 6.04 2.84E-9
D-CNN 7.54 2.31E-16
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82



Table 4: Comparison by Wilcoxon test: ensemble method against base method. The Table shows
wins/losses (w/l), according to the benefit function, and the result of Wilcoxon test: 3 indicates the
ensemble method is better than the base method (for a confidence level of 95 %).

Algorithms
γ

0.0 0.25 0.50 0.70 0.80 0.90 1.00

TE-ENN vs. T-ENN 26 / 0 3 22 / 4 3 18 / 8 3 17 / 9 3 16 / 10 = 13 / 13 = 22 / 4 3

TE-CNN vs. T-CNN 25 / 1 3 26 / 0 3 25 / 1 3 25 / 1 3 23 / 3 3 21 / 5 3 25 / 1 3

DE-ENN vs. D-ENN 26 / 0 3 22 / 4 3 22 / 4 3 15 / 11 3 15 / 11 3 16 / 10 = 24 / 2 3

DE-CNN vs. D-CNN 26 / 0 3 26 / 0 3 25 / 1 3 25 / 1 3 24 / 2 3 24 / 2 3 25 / 1 3

The figures clearly show that the ensemble methods are at the top of the charts above
the single algorithm methods. It is a bit surprising that for some datasets the errors do
not increase in spite of the dataset being strongly compressed.

To summarize the benefits obtained from ensembles, we compared the ensemble meth-
ods to their base methods. Table 4 shows the results of this comparison for different values
of γ for the benefit function. It also shows the wins/losses and the result of the Wilcoxon
test. When the ensemble is significantly better than its base method, the results appear
marked with 3. When there is no significant differences, the character ‘=’ is used. The
reported γ values are 0.0, 0.1, 0.25, 0.5, 0.7, 0.8, 0.9 and 1.0. Usually more accuracy
is desired rather than very high compression. For this reason we showed more γ values
close to 1.

6. Conclusions

We discussed and tested some instances selection algorithms adapted to regression
problems. The analysed algorithms are derived from two well known instance selection
methods for classification, ENN and CNN, based on two different adaptation approaches.

We also compared them with one another and with their ensembles. As it could be
expected, the best results were obtained for the ensembles. To the best of our knowledge
this is the first time such a comparison is done for the methods of instance selection for
regression problems.

Another advantage of combining instance selection algorithms into an ensemble is
that the decision about the exact values of their parameters (number of nearest neigh-
bors, number of discretization bins, α value) is less relevant, given that, in general, the
ensembles give better results than the base method, even if the base method has its
parameters specifically fine-tuned [10].

7. Future Work

The topic of our study was to evaluate the ensembles of instance selection algorithms.
While working on that topic, also some other interesting issues appeared, which can be
developed in the future works. In this section we shortly present these issues:
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1. We extended to regression tasks and evaluated the ensembles of CNN and ENN —
two of the base instance selection algorithms. It is likely that in an analogical way
other instance selection algorithms known for classification tasks can be extended to
regression using the same strategies proposed in this paper, as well, their adaptation
can be combined in ensembles. It is worth examining how the regression extensions
of particular instance selection methods perform and if any of them is especially
well suited for regression tasks and for building ensembles.

2. Also two or more instance selection method can be used sequentially on the same
data, what could help in simultaneously removing the noise (ENN) and reduce the
dataset size (CNN) as in [38], or in parallel within one voting ensemble. In this
case there would be no need to use bagging to differentiate the ensemble members,
but different instance selection methods can provide the required diversity. This
topic is however getting very complex, because of a high number of methods of
different combinations that can be used, and the experimental evaluation will be
able to comprise only several different combinations.

3. The way in which different levels of compression of the datasets affect the evolution
of the error could be used as a measure of how ‘good’ the datasets are, and if we
have enough samples in the dataset or if we should collect some more, or if collecting
some more would entail any benefits. This is especially important in cases where
collecting and labeling data is expensive.

4. The counterpart of instance selection in unsupervised learning is often called anomaly
detection. The approach of combining several base methods within an ensemble
could be also fruitful in the anomaly detection context. For example, as base meth-
ods Local Outlier Factor (LOF) [7] or Local Correlation Integral (LOCI) [30] could
be used. The use of these methods within an ensemble could also lead to an increase
in their performance and make them less sensitive to parameter tuning.
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feature weights for decision tree ensemble construction. Information Fusion, 13(1):20 – 30, 2012.
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This journal paper adapts the DROP family of instance selection methods for classification

to regression. The DROP family was chosen, because it comprises some of the best instance

selection methods to date. In particular, the focus of the paper is on the adaptation of the

DROP2 and the DROP3 algorithms.

The keystone of this adaptation is its approach to the computation of the with and without

variables that are used by the algorithm to decide whether or not an instance should be removed.

The paper presents two different approaches to adapt DROP to regression. The usefulness and
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Abstract

Machine Learning has two central processes of interest that captivate the scientific com-
munity: classification and regression. Although instance selection for classification has
shown its usefulness and has been researched in depth, instance selection for regression
has not followed the same path and there are few published algorithms on the subject.
In this paper, we propose that various adaptations of DROP, a well-known family of
instance selection methods for classification, be applied to regression. Their behaviour
is analysed using a broad range of datasets. The results are presented of the analysis of
four new proposals for the reduction of dataset size, the effect on error when several clas-
sifiers are trained with the reduced dataset, and their robustness against noise. This last
aspect is especially important, since in real life, it is frequent that the registered data
be inexact and present distortions due to different causes: errors in the measurement
tools, typos when writing results, existence of outliers and spurious readings, corruption
in files, . . . When the datasets are small it is possible to manually correct this problems,
but for big and huge datasets is better to have automatic methods to deal with these
problems. In the experimental part, the proposed methods are found to be quite robust
to noise.

Keywords: Machine Learning, regression, instance selection, DROP, noise filtering

1. Introduction

Automated Machine Learning is a discipline that is concerned with the design of
algorithms for building models that are able to generalize the underlying behaviour of
datasets composed of instances (also known as examples). It also covers the evaluation
and the use of the models that are obtained. Depending on the nature of the datasets,
learning processes can be divided into two groups: supervised, when there is a value that
needs to be predicted (if the value is discrete, the learning process is called classification, if
it is continuous, regression); and unsupervised, when the target is to discover the relations
between instances (cluster analysis, outlier detection and association rule learning are
some examples in this group) and the instances are a set of unlabeled values [26]. The
present work centres on supervised learning, more specifically the task of regression.
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Nowadays, a major challenge of Machine Learning algorithms is their application to
increasingly massive datasets, such as insurance company data, banking transactions,
telecommunications companies, financial markets and digital image processing. . . and
more recently those needed in fields such as Bioinformatics [11]. One way to facilitate
the learning process when applied to these huge datasets is the reduction of training
dataset size by applying some instance selection techniques. Instance selection methods
try to find a subset S in the same space as original training set T , such that |S| < |T |
and that, if S is used as a set to train a regressor, its predictive capability will be similar
to T [28]. The reduction of the size of the training set accelerates the learning process,
or the testing process in the case of instance-based learning (IBL) [7, 31]. But it also
means that certain methods, which are not capable of working on very large datasets,
can work with the selected subset to obtain an usable model [15].

The main contributions of the paper are:

• The proposal of new methods of instance selection for regression.

• The new methods were obtained by adapting to regression a method initially de-
signed for classification using two approaches: one based on error accumulation
and the other using an adaptive threshold.

• All methods have been evaluated following a multi-objective approach, where the
two objectives of interest are: the reduction of the size of the selected subset, the
increase of accuracy.

• Finally, the performance and robustness of the methods with noisy datasets have
been measured.

This paper is structured in the following way: Section 2 begins with a description of
instance selection, paying special attention to the DROP (Decremental Reduction Opti-
mization Procedure) family of methods [40, 42]. In Section 3, the proposed approaches
for adapting these methods to regression are explained. The experimental validation and
discussion of the results may be found in Section 4, and the conclusions in Section 5.
Finally, Section 6 summarizes the further work.

2. Instance selection

Instance selection is a technique that aims to reduce the size of the original training
data, while retaining the predictive capability of the obtained models, or even improving
them (if in the process of reducing the size, the noise instances may also be removed). It
retains those examples in the filtered set that are relevant for the prediction of output
variables, eliminating superfluous instances [33]. The elimination of instances is not
always guided by the reduction of size, on occasions what is desired is to filter the noise
out of the original dataset. Although the expectation is to obtain an accuracy equal to
or better than the original dataset, in practice it is not usually achieved and a certain
loss of accuracy is inevitable [9].

Depending on how the selected subset is constructed, these techniques may be clas-
sified as: incremental, decremental, and batch [40]. Incremental methods start with an
empty set and continue adding instances to it. The order of the instances in the original

89



set is important in these methods and will determine their effectiveness. A contrary ap-
proach is followed by the so-called decremental algorithms, which begins with the initial
dataset and removes the instances that they consider “discardable”. Again, the order is
important, but not as much as in the case of incremental algorithms, as the whole sample
is there right from the start to take the decision. The batch methods mark the instances
that are candidates to be eliminated, and once they have all been analysed, they are re-
moved from the dataset. This technique ensures that the impact on the complete subset
of the elimination of one instance is known [42].

There are a wide variety of instance selection methods for classification tasks [4, 7,
8, 21, 31, 34, 40, 41], as well as various surveys [14, 33] that present the state-of-the-art
techniques. On the contrary, the selection of instances for regression problems has not
been widely investigated [36], one of the reasons for that is its difficulty [25]. As the
authors analysed in [6], there are two issues associated to regression task that makes
it more complex: the rejection criterion (of an instance) and the class boundaries. In
classification, many algorithms evaluate the utility of an instance according to the clas-
sification of its nearest neighbours. In regression, the correct or wrong classification of
an instance according to its neighbours is not so straightforward. On the other hand,
the correct identification of class boundaries in classification is the aim of many instance
selection algorithms but, in regression, there are not boundaries in the strict sense of
the term, which it makes harder to know which instances must be kept. In spite of its
difficulty, the need for methods for this type of learning data has led to the appearance
of some algorithms over recent years. Zhang [44] presented a new method (k-SN: k
surrounding neighbours) for function prediction in lazy learning algorithms. Although,
under a strict definition of the term, his method is not an instance selection method, it
could be considered a first proposal of this kind of algorithm in regression task. Years
later, Tolvi [38] presented a genetic algorithm [18] for outlier detection and feature se-
lection in linear regression models. More recently, Antonelli et al. [3], also following
a genetic approach, addressed the problem in the framework of MOEL (multiobjective
evolutionary learning) of fuzzy rule-based systems (FRBs [22]). Regarding regression
in time series, an interesting approach based on mutual information was introduced by
Guillen et al. [20] for outlier detection achieving good results in both artificial and real
time series. Afterwards, the same approach was generalized for dataset reduction in time
series [37]. Finally, some other authors have focused their efforts on adapting instance
selection methods to regression that were initially designed for classification. In [25]
CNN and ENN are adapted to work with regression problems (as these methods are
quite relevant for the work presented here, more details are given in next section), and
in [36] the method Class Conditional Instance Selection (CCIS) [30] is adapted to reduce
the variance in genetic fuzzy systems (GFSs) [1].

2.1. DROP algorithms

The family of methods known as DROPn (DROP1. . . 5) [40] contains some of the
methods that yield the best results in classification [8, 32, 35]. They belong to the
category of decremental methods and the removal criteria is defined in terms of nearest
neighbours and associates:

• Nearest neighbours. Given an instance p, the nearest neighbours are those instances
in the neighbourhood of p. The expression p.N1,...k, or simply p.N denotes the
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list of k nearest neighbours of p ordered from closest to furthest.

• Associates. Those instances that have p as one of their k nearest neighbours
are called associates of p and are denoted as p.A1,...a, where a is the number of
associates of p that are considered. It is the inverse relation of nearest neighbours.

The differences between the variants of DROP methods [42] are as follows:

• DROP1 eliminates an instance p of S, if its associates in S are correctly classified
without p, that is, if the elimination of p does not affect the classification results.

• The DROP2 algorithm verifies the effect that causes the removal of an instance
on the original sample1; in other words, DROP2 removes an instance p of S if
the associates that p has in the original set, T , are correctly classified without p.
Before starting the selection, it sorts the instances in descending order from their
distance to their nearest enemy2. In this way, instances are processed in an order
that is the reverse of theirs distance to the class boundary, the furthest instance is
processed first, then the second furthest, and so on.

• The DROP3 algorithm, applies a noise filter similar to Wilson editing or ENN
[41] before starting the instance selection process. The filtering state removes all
instances that are not correctly classified by their k nearest neighbours.

• DROP4 is identical to DROP3 but applies a slightly different noise filter, involving
the removal of an instance only if it is misclassified by its k nearest neighbours and
its removal does not mean that another instance is badly classified. This avoids
the removal of too many instances in the the filtering stage.

• The DROP5 algorithm is similar to DROP2, but it begins to analyse the instances
that are found close to its nearest enemy (those on the class boundary). To do so,
it changes the initial order of processing from the shortest to the longest distance
to its nearest enemy. Processing instances in this order has the effect of smoothing
the class boundaries, the same effect that in DROP3 and DROP4 it is achieved
with a noise filter, that is the why the filtering stage is not necessary in DROP5.

The reason behind the initial noise filtering of algorithms DROP3 to DROP5 becomes
apparent after understanding the effect that noisy instances have on DROP1 and DROP2.
Noisy instances have a profound impact on how instances are ordered at the beginning
of these algorithms. A noise instance means that its neighbours are considered part of
the class boundary, and they can be kept in the selected set that has been filtered even
after the noisy instance has been removed [39].

In Algorithm 1 the pseudocode of DROP1 is shown, which is the foundation for
the other DROP variants. The nearest neighbours and associates list are both built
the same way in all variants of DROP. Then, instances are processed and the values
of two variables, ‘with’ and ‘without’ are calculated. For each instance, the variable
with counts how many of its associates are correctly classified when the instance is

1DROP3, DROP4 and DROP5 also verify the effect on the original sample.
2The nearest enemy of an instance is the closest instance of different class.
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Algorithm 1: Decremental Reduction Optimization Procedure 1 (DROP1)

Input: Training set T = {(x1, y1), ..., (xn, yn)}
Output: Instance set S ⊆ T

1 Let S = T
2 foreach instance x ∈ S do
3 Find x.N1...k+1, the k + 1 nearest neighbours of x in S
4 Add x to each of its neighbours’ lists of associates

5 foreach instance x ∈ S do
6 Let with = # of associates of x classified correctly with x as a neighbour
7 Let without = # of associates of x classified correctly without x as a

neighbour
8 if without ≥ with then
9 Remove x from S

10 foreach associate a of x do
11 Remove x from a’s list of nearest neighbours
12 Find a new nearest neighbour for a
13 Add a to its new neighbour’s list of associates

14 foreach neighbour n of x do
15 Remove x from n’s list of associates

16 return S

kept in the dataset, while the variable without records the count of correctly classified
associates when the instance is removed from the dataset. If the value of without is
greater than or equal to the value of with the instance is not helping in the classification
of its associates, and hence, it can be removed from the dataset. When an instance
is removed, it is necessary to update the nearest neighbours list of all its associates (a
new nearest neighbour is needed). As shown in line 3, the nearest neighbours lists have
actually k + 1 neighbours, this makes the calculation of the variable faster, since it is
possible to postpone the search of a new nearest neighbour until the elimination of the
instance effectively takes place.

DROP2 only differs from DROP1 because of the initial sorting done in DROP2,
and because DROP2 eliminates lines 14 and 15. This modification means that DROP2
considers the whole initial dataset, instead of only the selected subset.

3. Proposed methods

In this section four new approaches to instance selection for regression are analysed.
All of them are based on DROP but they change the way the values of with and without

are calculated, which will determine the behaviour of the algorithms.
In classification, as we explained earlier, the calculation of with and without is

straightforward. To cope with regression tasks, ie numeric class, we proposed two ideas:
to compare the accumulated error that occurs when an instance is included and when it
is discarded, and to use in regression an approximation to the concept of class used in
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classification (something like a soft class). Both ideas were used to adapt DROP2 and
DROP3 to regression and the four resultant algorithms were tested in the experimental
section.

3.1. DROP using error accumulation

As indicated in [42], algorithm DROP1 is identical to the RNN [17] method, with the
exception that accuracy is tested on the edited set S instead of on the original set T .
Thus, what we are trying to obtain with this adaptation for regression is that the removal
of instance x only takes place if its elimination does not increase the prediction error of
its associates. The idea consists in substituting the accounting of misclassified instances
by the accumulation of the errors produced in the prediction of the output variables (the
difference between the known value and the value given by the base regressor). For each
instance x that is a candidate to be eliminated, its associates a are considered. The
error from predicting the output variable is calculated for each associate a of x by means
of a regressor trained with the nearest neighbours of a including x and the error if the
instance x was not in the dataset (and another instance would therefore enter the set of
nearest neighbours of a). The errors of all associates of x are accumulated in eWith and
eWithout respectively. Only the instance x will be removed, in case the accumulated
error (the sum of the errors for each of their associates) that is obtained when it is
excluded from the dataset is less than or equal to what is obtained when it is considered
part of the dataset.

What has been explained above is presented in Algorithm 2, which we will refer to
hereafter as DROP2-RE, where Y (a) is the value of the output variable for instance a
and Model(a.N\x,a) is the prediction for instance a given by a regressor trained with
the nearest neighbours of a excluding the instance x.

This first proposed method is based on DROP2, but without the initial sorting (in
preliminary experiments the results with sorting were worse). DROP2 was selected as
the base algorithm for this approach instead of DROP1, as the results of the latter were
far from optimal in [19].

On the basis of DROP2, the second proposed method, DROP3 (referred to hereafter
as DROP3-RE), is the result of including a noise filter at the beginning of Algorithm 2
and, subsequently, performing the initial sorting that characterizes DROP3. The noise
filtering is done with the Wilson edition adapted to regression (RegENN shown in Algo-
rithm 3) and the details of the sorting process are given in Section 3.2.1.

3.2. DROP using thresholding

In [25], the authors proposed an adaptation for regression of ENN [41] and CNN [21]
instance selection algorithms that they called RegENN (see Algorithm 3) and RegCNN
respectively. The first step they proposed was the need to find an alternative to the
criterion of correct/incorrect prediction of a particular instance, through a measure that,
on the basis of the numerical value of the output variable and a particular threshold,
establishes whether that instance is far from the average of the output values of its
neighbours (ie the instance has a different “class” than its neighbours). This concept of
similarity, which allows an approximation to the concept of class in regression problems,
is what in [27] is called soft class as opposed to the hard class of classification.

In Algorithm 3, Y (xi) is the value of the output variable for instance xi, Model(P\xi,xi)
is the prediction for instance xi given by a regressor trained with the dataset P excluding
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Algorithm 2: DROP2-RE: adaptation to regression of DROP2 by using error
accumulation.
Input: Training set T = {(x1, y1), ..., (xn, yn)}
Output: Instance set S ⊆ T

1 Let S = T
2 foreach instance x ∈ S do
3 Find x.N1...k+1, the k + 1 nearest neighbours of x in S
4 Add x to each of its lists of the associates of the neighbours

5 foreach instance x ∈ S do
6 Let eWith = 0
7 Let eWithout = 0
8 foreach associate a of x do
9 Add |Y (a)− Model(a.N\x,a)| to eWithout

10 Add |Y (a)− Model(a.N,a)| to eWith

11 if eWithout ≤ eWith then
12 Remove x from S
13 foreach associate a of x do
14 Remove x from a list of nearest neighbours
15 Find a new nearest neighbour for a
16 Add a to its new neighbour’s list of associates

17 return S

Algorithm 3: RegENN: adaptation to regression of Wilson filtering [25].

Input: Training set T = {(x1, y1), ..., (xn, yn)}
Output: Instance set P ⊆ T

1 P ← T
2 for i = 1...n do
3 N = kNN(P,xi)
4 θE = αE · std(Y (XN ))
5 if |Y (xi)− Model(P\xi,xi)| > θE then
6 P ← P\xi

7 return P
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xi, N is the set of k nearest neighbours of xi, std(Y (XN )) is the standard deviation of
the output variable for the nearest neighbours of xi and hence θE is the threshold for
rejection/acceptance of instances calculated as the product of the standard deviation by
a coefficient αE . The parameter αE makes it possible to adjust the radius of the soft
class and therefore the specificity of the algorithm. Thus, an instance is removed from
the set as long as the difference between the prediction given by a regressor trained with
the dataset, without that instance, and the real value of the numerical output variable
for that instance exceeds the threshold θE (in other words, if the prediction is outside its
soft class). The value of θE is variable for each instance, as it is calculated for each of
the instances. This characteristic allows the most appropriate radius to be adjusted to
each instance according to its neighbourhood.

3.2.1. DROP2-RT

The threshold approach explained above was also used to adapt the DROP2 algorithm
to regression (hereafter DROP2-RT), as shown in Algorithm 4. Where, as in the previous
examples, Y (a) is the value of the output variable for instance a, Model(a.N\x,a) is the
prediction for instance a given by a regressor trained with the nearest neighbours of a
excluding x, and Model(a.N,a) is the prediction of the output variable for instance a
given by a regressor trained with all the nearest neighbours of instance a including x.

The initial sorting stage of DROP2-RT is, like in DROP2, according to the distance to
the closest enemy, but now the closest enemy of an instance xi if defined as the instance
xj closest to xi such that |Y (xi) − Y (xj)| > θD. The previous sorting performed by
DROP3-RE is of the same nature that is explained here.

3.2.2. DROP3-RT

DROP3-RT is similar to DROP2-RT but, as in DROP3, before the sorting stage, a
noise filter is applied to the dataset. We used the Wilson edition adapted to regression
(RegENN) shown in Algorithm 3 as the noise filter.

3.2.3. Combination of approaches

As shown in the experimental section, the use of error accumulation gets selected
subsets with more accuracy whereas the use of threshold produces smaller selected
subsets. For this reason, both ideas can be combined to get two new algorithm vari-
ants. In one of them instances are removed only if simultaneously without ≥ with and
eWithout ≤ eWith, this is the and-combination; in the other, instances are removed if any
of the conditions are true, this is the or-combination. In the case of the and-combination
the results were only a bit more accurate than DROPx-RE, but not significantly bet-
ter. The or-combination shows results slightly worse than DROPx-RT, that is the worst
method, again the difference was no statistically significant. As both algorithms are more
complex, since more conditions need to be evaluated, we have not included in the paper
a detailed study of these variants.

3.3. Similarities and differences between DROP and DROP-Rx

As explained earlier, the methods presented in this paper are based on the DROP
family of instance selection methods for classification, whose basic structure consists in
four steps: i) an initial ordering and/or filtering of the instances, ii) calculation of the
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Algorithm 4: DROP2-RT: adaptation to regression of DROP2 using thresholding

Input: Training set T = {(x1, y1), ..., (xn, yn)}
Output: Instance set S ⊆ T

1 Let S = T
2 Sort the instances in S by the distance to their nearest enemy
3 foreach instance x ∈ S do
4 Find x.N1...k+1, the k + 1 nearest neighbours of x in S
5 Add x to each of its neighbours’ lists of associates

6 foreach instance x ∈ S do
7 Let with = 0
8 Let without = 0
9 foreach a associate of x do

10 θD = αD · std(Y (a.N))
11 if |Y (a)− Model(a.N\x,a)| ≤ θD then
12 Add 1 to without

13 if |Y (a)− Model(a.N,a)| ≤ θD then
14 Add 1 to with

15 if without ≥ with then
16 Remove x from S
17 foreach associate a of x do
18 Remove x from a list of nearest neighbours
19 Find a new nearest neighbour for a
20 Add a to its new neighbour’s list of associates

21 return S
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neighbours and associates of each instance, iii) calculation of the values of variable with

and without, iv) using the values of these variables a decision is made of accepting or
rejecting the instances as part of the selected subset.

The proposed methods use the neighbour and associate sets of each instance to cal-
culate the values of variables with and without (or the variables eWith and eWithout

with a similar role in the algorithm), as the methods on which they are based, and hence
they have the same algorithmic complexity of the DROP family for classification.

The main difference is in how the variables with and without are calculated:

• Using Error accumulation: variables accumulate the error produced by the regressor
(Model) on each of the instances, and therefore, they have real values.

• Using thresholding: variables are counters that increase their values depending on
whether the difference of the regressor prediction (Model) and the actual value
exceeds a threshold θD.

Besides the way these variables are calculated, the initial sorting and noise filtering
of instances have had to be adapted to regression. Sorting was done as explained in
Section 3.2.1, and for noise filtering, the algorithm RegENN (see Algorithm 3) has been
used.

4. Experiments and results

This section evaluates the performance of the four methods proposed in the preceding
section. They were compared between each other, against an instance selection algorithm
for regression called RegCNN [25] and against the baseline of training the regressor
without filtering. Finally, the robustness to noise of the new algorithms was tested.

4.1. Experimental setup

Experiments were performed using several datasets, several instance selection meth-
ods and several regressors. For each combination of these 3 elements, we applied a 10-fold
cross validation [13]. The 10-fold cross validation was as following, each dataset was split
into 10 subsets, the union of 9 of the subsets was reduced using instance selection and
the resultant subset was used to train a regressor. The accuracy was calculated using
the 10-th subset that was not used in the training phase.

Instance selection can be thought of as a multi-objective problem: on the one hand,
it attempts to reduce the size of the resulting dataset and, on the other, to minimize the
error [29]. Therefore, if we want a fair comparison of the results, considering accuracy
only would not be the best approach. We have used the same idea as in [28] to combine
both the retention rate and the error in a single index:

Iω = ω · ε+ (1− ω) ·m (1)

where ε is the error (calculated as 1−R2), ω is a value in the interval [0, 1] that assigns
greater importance to the accuracy or to the reduction of storage space, and m is the
retention ratio, expressed as:

m =
|S|
|T | (2)
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where, |S| is the number of instances retained by the instance selection algorithm, and
|T | is the number of instances in the original dataset. The smaller the value of Iω, the
more favourable the results, as high values represent little reduction (higher retention
ratio) and/or high error, however, lower values indicate greater reduction in the filtered
dataset (lower retention ratio) and/or greater accuracy.

To measure the accuracy, we have chosen the correlation coefficient (R2) [10] since
its value is in the interval [0, 1] and we can use it directly in the Equation 1.

4.2. Configurations

The experiments were performed in Weka [43], implementing the instance selection
methods as Weka filters. The regressors used were:

• nearest neighbours (with k = 8).

• multilayer perceptron (trained with backpropagation with the following parameters:
learning rate = 0.3, momentum = 0.2, number of hidden neurons = #attr+1

2 ).

• REPTrees (with Weka default parameters).

Nevertheless, the exact regressors are not of extreme relevance to the study, as what
we want to compare is the improvement or deterioration of the predictive ability when
instance selection is applied.

The parameters of the instance selection methods were the following. The kNN
nearest neighbour regressor was used as Model, with k = 9 (the value suggested in [25]).
In the threshold-based methods (DROP2-RT and DROP3-RT), the value of αD was 0.5
(the value that gave the best results in previous analyses). The best values of αE were
chosen after testing the values 1, 2, 3, 4 and 5. Table 1 shows the optimal values for the
different adaptations to regression of DROP, the various regressors, and different levels
of noise (see Section 4.5 for details of the analysis of robustness to noise).

Note that RegENN is a kind of noise filter so θE should be larger than the standard
deviation of the output value of the neighbours, as only the outliers should be rejected,
which is why αE is bigger than 1, with αE < 1 the noise filtering would be too aggressive
[25]. This is not the case for DROP algorithms and the value of αD. If αD > 1, θD would
be too large and it would be harder to detect the effect of removing an instance from
the dataset (the conditions in lines 11 and 13 would almost always be false, the variables
with and without would not be adapted, and the instances would be systematically
removed from the dataset. In other words, the instance selection process would be too
aggressive at removing instances).

RegCNN is influenced by two parameters α and k. With the aim to use reasonable
values for these parameters, we first launched several experiments with different values:
0.25, 0.5, 0.75 and 1 for α; and 3, 5, 7 and 9 for k. The best results, for all regressors, were
achieved using α = 0.25. Whereas the optimal values for k depended on the regressor
and the level of noise of the datasets, they are shown in Table 2.

4.3. Datasets

The datasets used for experimentation were obtained from the KEEL repository [2].
They are described in Table 3, which details the number of attributes, the number of
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Table 1: Value of αE which has achieved lower errors for the different regressors and noise levels (see
Section 4.5 on noise tolerance).

Noise IS algorithm kNN MLP REPTree

0 %
DROP3-RE 5 5 3
DROP2-RT 4 2 1
DROP3-RT 4 5 2

10 %
DROP3-RE 3 2 2
DROP2-RT 3 5 2
DROP3-RT 3 2 3

20 %
DROP3-RE 2 2 2
DROP2-RT 3 1 3
DROP3-RT 4 2 1

30 %
DROP3-RE 2 1 1
DROP2-RT 1 3 5
DROP3-RT 4 1 1

Table 2: Value of k for RegCNN which has achieved lower errors for the different regressors and noise
levels (see Section 4.5 on noise tolerance).

Noise kNN MLP REPTree

0 % 9 9 9
10 % 3 7 3
20 % 9 7 9
30 % 7 7 7
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Table 3: Datasets used in the experiments

Dataset # attributes # instances
Correlation coefficient

kNN MLP REPTree

1 MachineCPU 6 209 0.9335 0.9433 0.8127
2 Baseball 16 337 0.8291 0.7350 0.7775
3 DEE 6 365 0.9013 0.9061 0.8631
4 AutoMPG8 7 392 0.9276 0.9330 0.9133
5 AutoMPG6 5 392 0.9345 0.9277 0.9081
6 Ele-1 2 495 0.8321 0.8402 0.7969
7 Stock 9 950 0.9927 0.9864 0.9832
8 Laser 4 993 0.9725 0.9873 0.9527
9 Concrete 8 1 030 0.8296 0.9103 0.8978

10 Treasury 15 1 049 0.9974 0.9981 0.9955
11 Mortgage 15 1 049 0.9981 0.9995 0.9965
12 Ele-2 4 1 056 0.9904 0.9969 0.9950
13 Friedman 5 1 200 0.9425 0.9135 0.8495
14 Wizmir 9 1 461 0.9930 0.9967 0.9926
15 Wankara 9 1 609 0.9924 0.9964 0.9912
16 Plastic 2 1 650 0.8773 0.9024 0.8606
17 Quake 3 2 178 0.1074 0.0808 0.0699
18 ANACALT 7 4 052 0.9755 0.9890 0.9898
19 Abalone 8 4 177 0.7253 0.7516 0.6918
20 Delta-ail 5 7 129 0.8267 0.8314 0.8035
21 Compactiv 21 8 192 0.9860 0.9903 0.9839
22 Puma32h 32 8 192 0.4286 0.3200 0.9562
23 Delta-elv 6 9 517 0.7768 0.7913 0.7760
24 Ailerons 40 13 750 0.8966 0.8947 0.8728
25 Pole 26 14 998 0.9807 0.9491 0.9851
26 Elevators 18 16 599 0.8487 0.9499 0.8448
27 California 8 20 640 0.8438 0.8468 0.8612
28 House 16 22 784 0.6863 0.6736 0.6827
29 Mv 10 40 768 0.9853 0.9999 0.9995

instances and the correlation coefficient (R2) [10] for the regressors used in the experi-
ments: nearest neighbour (kNN), multilayer perceptron (MLP) and REPTree (Reduced
Error-Pruning Tree) [43]. The only transformation performed on the data was the nor-
malization of all the input attributes so that they appear in the range [0, 1]. This trans-
formation is intended to prevent certain attributes with a lot of variance from distorting
the results in the calculation of the nearest neighbour.

4.4. Results and discussion

In the experiments, besides the proposed methods, we have included the method
RegCNN, a state-of-the-art method explained earlier, and the regressor trained with the
unfiltered dataset. The obtained results are compared using the Iω index for different
values of ω.
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Figure 1: Comparison of the instance selection methods. In x axis the value of Iω (see Eq. 1) is shown for
ω values in the range [0, 1]. On the y axis, a percentage of datasets are represented in which a method
is better than all the other approaches according to the evaluation index Iω . The extreme left-hand-side
of figures, (ω = 0) corresponds to the results when only the reduction of the dataset is considered; the
extreme right-hand-side, (ω = 1) corresponds to the results for which only accuracy is considered of
relevance and, on the middle (ω = 0.5), the same relevance is given to accuracy and reduction. The
method called ‘Original’ refers to the regressor trained with the original dataset.
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Figure 2: Comparison of average ranks for the instance selection methods (and the regressor without
instance selection, shown as ‘Original’ in the legend) for all ω values in the range [0, 1] (axis x). Axis y
plots the average rank (according to the evaluation index Iω), low values are best, high values are worse.

Figure 1 shows the percentage of datasets for which a method is better than the rest.
For ω = 1, that is, considering accuracy alone, it is observed that the best value of the
index is for the regressor trained with the original dataset (irrespective of the regressor).
From that value, as greater importance is assigned to the reduction, the instance selection
algorithms compete between each other. Thus, for ω < 1, as the dataset reduction
increases its weight in the index, DROP3-RT and DROP2-RT dominate the results for
kNN and MLP, and DROP3-RT dominates for REPTree.

Average ranks [12] were used for comparing all the methods and were calculated in the
following way: the results for each dataset were sorted according to their performance,
assigning rank 1 to the best, rank 2 to the second best, and so on. In the case of a tie,
the range is divided between all the tied methods. The average rank for each method
is the mean value of all the datasets. Figure 2 shows the average ranks on the y axis
plotted against the different values of ω on the x axis.

DROP3-RE for kNN and DROP2-RE for MLP and REPTree are the more conser-
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Table 4: Average retention ratio (m). m is calculated as |S|/|T |, where |S| is the number of instances
retained by the instance selection algorithm, and |T | is the number of instances in the original set.

IS algorithms Average m

DROP2-RT 0.471
DROP3-RT 0.468
DROP2-RE 0.634
DROP3-RE 0.631
RegCNN 0.787

vative algorithms. If only accuracy is taken into account, these methods are the ones
that comes closest to the result of the regressor trained on the original dataset. Ac-
cording to the ranking, RegCNN is in the middle between the regressor trained on the
original dataset and the regressor trained with the selected subsets obtained with the
proposed algorithms, again if compression is not taken into account. On the other hand,
threshold-based approaches, DROP2-RT and DROP3-RT, yield good results for ω values
lower than 0.9 or 0.95. Of these two, DROP3-RT is clearly better when the regressor is
MLP or REPTree.

On the extreme left-hand-side of figures, (ω = 0) corresponds to the results when
considering only the reduction of the dataset; on the extreme right-hand-side, (ω = 1)
corresponds to the results for which only accuracy is considered of relevance. In each
of these cases, the test of significance through the Hochberg procedure [23] has been
calculated (Tables 5, 6, 7 and 8). The algorithm with best result (the one with lowest
rank) is significantly better than the others when the value in column ‘p Hoch.’ is less
than 0.1 (significance level: 0.9) or less than 0.05 (significance level: 0.95).

Since mean ranking only offers an order between the methods, Table 4 shows the aver-
age retention ratio of the different instance selection methods tested in the experiments.
Whereas threshold methods have around 0.47 retention ratio, ie 53% of compression,
methods based on error accumulation have around 0.63. On the other hand, RegCNN
achieves the highest retention ratio, around 15% more than the most conservative of our
algorithms (DROPx-RE). As it was expected, DROP2-Rx algorithms are more conserva-
tive than DROP3-Rx algorithms because DROP3-Rx algorithms have an initial filtering
stage that reduces the dataset.

As explained in [24], instance selection techniques are computationally expensive.
Both, CNN and DROP for classification, share a complexity of O(n3), and the adaptation
of these methods to regression inherits this complexity. If the average rank of the methods
according to their filtering time is obtained for all datasets, RegCNN is the best and
significant better than all DROPx-Rx. This can be explained by the fact that incremental
methods are faster than decremental ones [42], also the calculations of DROP are more
elaborated than those made in CNN. We have also compared the four proposed methods
between each other. The fastest was DROP2-RE, this was expected since this method
has not initial sorting, as DROP2-RT, nor initial noise filtering, as DROP3-Rx.

However, the aim of instance selection is to reduce the dataset that will be used to
train. The reduction of training dataset implies, in lazy learning algorithms like kNN,
the decrease in testing time. Whereas the training phase is executed only once and can
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be made batch, the speed in the testing phase is crucial because it is executed multiple
times and, in many applications, the execution time should be as low as possible. If
the methods are ranked according to their execution time in the testing phase for all
datasets, DROP3-RT ranks the first followed by DROP3-RE and the others. Moreover
the differences between DROP3-RT and DROP2-Rx, RegCNN and kNN are significant
at 95% of confidence.

4.5. Noise tolerance

Real datasets contain noise [15] and their presence reduces the predictive capability
of the learning algorithms. The instance selection methods may also be sensitive to the
presence of noise and atypical values (outliers) [5]. In fact, in addition to the reduction
of the training set, one of the great benefits that the selection methods present is their
capability to reduce noise, and the elimination of outliers. Hence, it was considered of
interest to perform a study of the robustness of these methods in the face of noise.

In classification, the characterization of the different types of noise, and how to in-
troduce them in experimental validation have been investigated in depth (ie [45, 46]).
On the contrary, in regression, what is considered noise and how to properly introduce
it in the experimental validation is not that clear. In the experiments that were carried
out, the noise was introduced by exchanging the output values of two randomly selected
instances. This way, the distribution of the sample, both for the input variables and for
the output variables was not modified.

Experiments were performed with 10%, 20% and 30% noise. Figures 3 and 4 show
the robustness of the proposed methods. DROP3-RE performs an excellent task as a
noise filter. For all the classifiers, the precision that is obtained was better when the
filtered set was used than when the totality of the dataset was used. This behaviour was
repeated as the noise that was introduced increased: 20% in figures 5 and 6, and 30% in
figures 7 and 8.

Besides, DROP2-RT, for levels of noise of 20% and 30%, showed poor behaviour when
only accuracy was considered (ω = 1), because as may be observed, the classifiers trained
with the original noisy set yielded better values than when they were trained with the
reduced set that was obtained by DROP2-RT. Nevertheless, this behaviour may be due
to a more aggressive reduction of the dataset in DROP2-RT, because as may be seen from
the figures, DROP2-RT is, together with DROP3-RT, the algorithm that shows the best
behaviour, if we look only at the reduction of the datasets (ω = 0). It is interesting to
highlight that DROP3-RT for the values of ω ≤ 0.9 is the one which, in general, obtained
better results, both for the original datasets and for the noisy datasets (DROP2-RT only
appears to be at its same level for the k-NN classifier and for a noise of 10%).

As previously explained, Table 5 shows the ranking and the results of the Hochberg
procedure for each of the methods taking into account only the reduction in size of the set
of instances that were selected. Both in the original sets and in the tests completed with
noise, DROP3-RT was, at a confidence level of 95%, significantly better than the error-
based methods (DROP2-RE and DROP3-RE) and RegCNN. No significant differences
were observed between DROP3-RT and DROP2-RT.

Tables 6, 7 and 8 show the ranking calculated over the accuracy (ω = 1) of kNN,
MLP and REPTree trained with the set returned by the instance selection algorithms.
The result of training the regressor without previous filtering (Original) is included in
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Figure 3: Experiments with a noise level of 10%, the proposed methods are compared against RegCNN
for all ω values in the range [0, 1] (axis x). The y axis shows the percentage of datasets for which a
method is better than the rest according to the evaluation index Iω .
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Figure 4: Experiments with a noise level of 10%, the proposed methods are compared against RegCNN
for all ω values in the range [0, 1] (axis x). The y axis shows the average rank (according to the evaluation
index Iω), low values are better, high values are worse.
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Figure 5: Experiments with a noise level of 20%, the proposed methods are compared against RegCNN
for all ω values in the range [0, 1] (axis x). The y axis show the percentage of datasets for which a
method is better than the rest according to the evaluation index Iω .
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Figure 6: Experiments with a noise level of 20%, the proposed methods are compared against RegCNN
for all ω values in the range [0, 1] (axis x). The y axis shows the average rank (according to the evaluation
index Iω), low values are better, high values are worse.
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Figure 7: Experiments with a noise level of 30%, the proposed methods are compared against RegCNN
for all ω values in the range [0, 1] (axis x). The y axis shows the percentage of datasets for which a
method is better than the rest according to the evaluation index Iω .
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Figure 8: Experiments with a noise level of 30%, the proposed methods are compared against RegCNN
for all ω values in the range [0, 1] (axis x). The average rank (according to the evaluation index Iω) is
shown on the y axis, low values are better, high values are worse.
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Table 5: Ranking and Hochberg procedure over compression.

Noise IS algorithm Rank p Hoch.

0 %

DROP3-RT 1.2931
DROP2-RT 1.7069 0.3189
DROP3-RE 3.4483 4.1981E-7
DROP2-RE 3.8276 3.1064E-9
RegCNN 4.7241 5.6810E-16

10 %

DROP2-RT 1.4138
DROP3-RT 2.3793 0.0201
DROP3-RE 2.6552 0.0056
DROP2-RE 3.6896 1.2688E-7
RegCNN 4.8621 4.0080E-16

20 %

DROP3-RT 1.2759
DROP2-RT 1.7586 0.2449
DROP3-RE 2.9655 9.4338E-5
DROP2-RE 3.9999 1.6078E-10
RegCNN 5.0000 1.1978E-18

30 %

DROP3-RT 1.2759
DROP2-RT 1.7931 0.2129
DROP3-RE 2.9310 1.3429E-4
DROP2-RE 3.9999 1.6078E-10
RegCNN 5.0000 1.1978E-18

106



Table 6: Ranking and Hochberg procedure over accuracy: kNN.

Noise IS algorithm Ranking p Hoch.

0 %

Original 2.0172
RegCNN 2.5862 0.2468
DROP3-RE 2.8276 0.1981
DROP2-RE 3.0172 0.1254
DROP2-RT 5.2414 2.1177E-10
DROP3-RT 5.3103 1.0224E-10

10 %

DROP3-RE 2.0517
DROP2-RE 2.1207 0.8884
Original 3.7586 0.0010
DROP3-RT 3.9655 2.9419E-4
DROP2-RT 4.4827 2.9972E-6
RegCNN 4.6207 8.5272E-7

20 %

DROP3-RE 1.8275
DROP2-RE 2.5172 0.1604
DROP3-RT 3.1896 0.0111
DROP2-RT 3.8793 8.8972E-5
Original 4.5517 1.1777E-7
RegCNN 5.0345 3.3478E-10

30 %

DROP3-RE 1.9655
DROP2-RE 2.3793 0.3996
DROP3-RT 3.1724 0.0281
DROP2-RT 3.7586 7.8769E-4
Original 4.4482 1.7360E-6
RegCNN 5.2759 8.0358E-11

the comparison. In the experiments without noise, the regressor trained with the original
dataset was significantly better for MLP and REPTree, over a 95% confidence level, on
the contrary, as noise was added, it was observed that the instance selection improved
the results. For all levels of noise and all base regressors, DROP3-RE is the best method
(see Tables 6, 7 and 8) and significantly better than Original (for a confidence level of
95%).

It can also be observed that the accuracy of RegCNN method decreases as the noise
level increases. This is because it is an adaptation to regression of CNN which is very
sensitive to noise in classification [42], as all condensation methods [29].

In all noise configurations, DROP3-Rx works better than the DROP2-Rx since the
initial noise filtering allows the selection to be conducted on a cleaner set. With the aim
of evaluating this behaviour we just compared our methods one vs. one by Wilcoxon test,
ie DROP3-RT against DROP2-RT and DROP3-RE against DROP2-RE, the results of
this comparison are shown in Table 9. On the table, 3 means that DROP3-Rx is better
than DROP2-Rx at a confidence level of 0.95, so we can conclude that DROP3-Rx has
a better performance in noisy datasets than DROP2-Rx.
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Table 7: Ranking and Hochberg procedure over accuracy: Multilayer Perceptron.

Noise IS algorithm Ranking p Hoch.

0 %

Original 2.1724
RegCNN 2.8793 0.793
DROP3-RE 3.4999 0.0051
DROP2-RE 3.5172 0.0051
DROP3-RT 4.5517 1.1990E-6
DROP2-RT 4.5349 1.1990E-6

10 %

DROP3-RE 2.4310
DROP2-RE 3.1035 0.1711
DROP3-RT 3.3449 0.1258
Original 3.7241 0.0255
DROP2-RT 4.1896 0.0014
RegCNN 4.2069 0.0014

20 %

DROP3-RE 2.2759
DROP2-RE 2.9483 0.2328
DROP3-RT 3.6034 0.0230
Original 3.8621 0.0068
DROP2-RT 3.9655 0.0043
RegCNN 4.2586 5.6637E-4

30 %

DROP3-RE 2.3276
DROP3-RT 2.6724 0.4828
DROP2-RE 2.9655 0.3883
DROP2-RT 4.2069 3.9208E-4
Original 4.2069 9.9208E-4
RegCNN 4.6207 1.5253E-5
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Table 8: Ranking and Hochberg procedure over accuracy: REPTree.

Noise IS algorithm Ranking p Hoch.

0 %

Original 1.3793
RegCNN 2.7759 0.0045
DROP2-RE 3.3103 1.6959E-4
DROP3-RE 3.7414 4.5790E-6
DROP3-RT 4.6207 1.6725E-10
DROP2-RT 5.1724 5.7943E-14

10 %

DROP3-RE 2.0862
DROP2-RE 2.9655 0.0735
Original 3.3793 0.0170
DROP3-RT 3.8103 0.0013
RegCNN 4.2414 4.6046E-5
DROP2-RT 4.5172 3.7465E-6

20 %

DROP3-RE 1.9138
DROP2-RE 2.9310 0.0384
Original 3.3793 0.0057
DROP3-RT 3.7069 7.8769E-4
RegCNN 4.1724 1.7128E-5
DROP2-RT 4.8965 6.3515E-9

30 %

DROP3-RE 2.1379
DROP3-RT 3.1724 0.0352
DROP2-RE 3.3103 0.0340
Original 3.7069 0.0042
DROP2-RT 4.1207 2.1775E-4
RegCNN 4.5517 4.4838E-6

Table 9: Wilcoxon test over accuracy (ω = 1) in noisy datasets. 3 indicates that DROP3-Rx is better
than DROP2-Rx at a confidence level of 95% and “-” means no significant difference.

Noise DROP3-RT vs DROP2-RT DROP3-RE vs DROP2-RE

10 % 3 3

20 % 3 3

30 % 3 3
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4.6. Benefits of using the proposed methods

Some remarkable observations can be made from the results, in this section we dis-
cuss the main advantages and disadvantages of instance selection methods for regression.
First, in contrast to instance selection for classification, the application of instance selec-
tion methods in regression are not able to improve the accuracy of the original dataset,
neither the proposed methods nor RegCNN. Second, the different approaches proposed
to cope with regression have different characteristics: error accumulation (DROPx-RE)
achieves lower reduction and consequently more accuracy whilst thresholding (DROPx-
RT) achieves better reduction rate and lower accuracy. RegCNN achieves a good accu-
racy at expense of the lowest retention rate. In addition, when RegCNN was applied over
noisy datasets, the instance selection method was strongly penalised. Nevertheless, the
methods proposed based on DROP dealt with noise in a better way, outperforming the
accuracy achieved by the regressor trained over the whole noisy dataset. The robustness
in noisy environments is due to the filtering noise stage of DROP3-Rx, as DROP3 for
classification does.

5. Conclusions

In the paper, two new approaches have been introduced to adapt the family of DROP
instance selection methods, so successfully used for classification, to regression. Using
these approaches four new algorithms for instance selection for regression have been pro-
posed. It is an interesting contribution given that currently there are no many instance
selection methods for regression. The proposed methods have been subjected to bench-
mark testing, where they were compared against each other, against RegCNN, one of the
few methods for this kind of Machine Learning task, and against the result obtained from
a regressor trained with the original dataset. The regressors used were: a method based
on instances (kNN), a multilayer perceptron, and a method for constructing regression
trees (REPTree).

We have discussed two approaches to adapt the DROP algorithms: using the error
for the calculation of the variables with and without, and using the concept of soft class
defined by means of an adaptive threshold. The results are of interest as, although, in
all methods, to a greater or lesser extent the predictive power is reduced, this reduction
is low in comparison with the reduction of dataset size.

In addition, a comparison has been drawn with a dual approach of reduction and
accuracy to see how both objectives are related, as greater importance is given to one
rather than another. In this way, the best algorithms is DROP3-RE in most cases
if accuracy is to be maximised, as these methods are designed to minimize the loss
of predictive capability of the resulting dataset. On the one hand, if the aim is to
minimize the size of the datasets after selection, the best method is DROP3-RT both in
the experimentation with the original and with the noisy datasets.

A remarkable property of the proposed adaptations of DROP for regression is their
robustness in the presence of noise. The experiments carried out with noise levels of
10%, 20% and 30% have shown that the proposed instance selection algorithms are not
only able to reduce the size of the training dataset, but they are also able to reduce the
noise and significantly improve the accuracy achieved by different regressors.
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6. Future lines

New instance selection methods for classification are still emerging, the use of thresh-
olding makes it possible to adapt them directly to regression task. In future works we
intend to adapt other promising instance selection methods with this idea, as for exam-
ple [29].

In addition, the ideas presented in the paper can be applied to other fields like, for
example, feature selection. Feature selection is related with instance selection [16] but,
unlike instance selection, algorithms try to find the best subset of features, not instances.
The similarities between both techniques suggest that these ideas could be achieve good
results too.
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Big data marks the beginning of a major
transformation.
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two passes.
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Abstract

Over recent decades, database sizes have grown considerably. Larger sizes present
new challenges, because machine learning algorithms are not prepared to process such
large volumes of information. Instance selection methods can alleviate this problem when
the size of the data set is medium to large. However, even these methods face similar
problems with very large-to-massive data sets.

In this paper, two new algorithms with linear complexity for instance selection pur-
poses are presented. Both algorithms use locality-sensitive hashing to �nd similarities
between instances. While the complexity of conventional methods (usually quadratic,
O(n2), or log-linear, O(n log n)) means that they are unable to process large-sized data
sets, the new proposal shows competitive results in terms of accuracy. Even more re-
markably, it shortens execution time, as the proposal manages to reduce complexity and
make it linear with respect to the data set size. The new proposal has been compared
with some of the best known instance selection methods for testing and has also been
evaluated on large data sets (up to a million instances).

Keywords: nearest neighbor, data reduction, instance selection, hashing, big data

1. Introduction

The k nearest neighbor classi�er (kNN) [11], despite its age, is still widely used in
machine learning problems [9, 17, 20]. Its simplicity, straightforward implementation
and good performance in many domains means that it is still in use, despite of some of
its �aws [37]. The kNN algorithm is included in the family of instance based learning,
in particular within the lazy learners, as it does not build a classi�cation model but just
stores all the training set [8]. Its classi�cation rule is simple: for each new instance,
assign the class according to the majority vote of its k nearest neighbors in the training
set, if k = 1, the algorithm only takes the nearest neighbor into account [45]. This
feature means that it requires a lot of memory and processing time in the classi�cation
phase [48]. Traditionally, two paths have been followed to speed up the process: either
accelerate the calculation of the closest neighbors [3, 4], or decrease training set size by
strategically selecting only a small portion of instances or features [38].
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Regarding the acceleration of algorithms, perhaps one of the most representative
approaches is to approximate nearest neighbors, a broadly researched technique in which
the nearest neighbor search is done over a sub-sample of the whole data set [56]. In this
�eld, many algorithms have been proposed for approximate nearest neighbor problems [3,
4, 30, 34, 39].

The focus of this paper is on the second path, the reduction of data set size. The
reason is that this reduction is bene�cial for most methods rather than only those based
on nearest neighbors. Although we will only consider the reduction of instances (instance
selection) in this paper, the reduction could also be applied to attributes (feature selec-
tion), or even both at the same time [51]. The problem is that the fastest conventional
instance selection algorithms have a computational complexity of at least O(n log n) and
others are of even greater complexity.

The need for rapid methods for instance selection is even more relevant nowadays,
given the growing sizes of data sets in all �elds of machine learning applications (such
as medicine, marketing or �nance [43]), and the fact that the most commonly used data
mining algorithms for any data mining task were developed when the common databases
contained at most a few thousands of records. Currently, millions of records are the
most common scenario. So, most data mining algorithms �nd many serious di�culties in
their application. Thus, a new term has emerged, �Big Data�, in reference to those data
sets that, by volume, variability and speed, make the application of classical algorithms
di�cult [44]. With regard to instance selection, the solutions that have appeared so far
to deal with big data problems adopt the `divide and conquer' approach [13, 22]. The
algorithms proposed in the present paper o�er a di�erent approach, just a sequential but
very quick and simple processing of each instance in the data set.

In particular, the major contribution of this paper is the use of Locality-Sensitive
Hashing (LSH) to design two new algorithms, which o�ers two main advantages:

• Linear complexity: the use of LSH means a dramatic reduction in the execution
time of the instance selection process. Moreover, these methods are able to deal
with huge data sets due to their linear complexity.

• On-the-�y processing: one of the new methods is able to tackle the instances in
one step. It is not necessary for all instances �t in memory: a characteristic that
o�ers a remarkable advantage in relation to big data.

The paper is organized as follows: Section 2 presents the reduction techniques back-
ground, with special emphasis on the instance selection methods used in the experimental
validation; Section 3 introduces the concept of locality-sensitive hashing, the basis of the
proposed methods which are presented in Section 4; Section 5 presents and analyzes the
results of the experiments and, �nally, sections 6 and 7 set out the conclusions and
future research, respectively.

2. Reduction techniques

Available data sets are progressively becoming larger in size. As a consequence, many
systems have di�culties processing such data sets to obtain exploitable knowledge [23].
The high execution times and storage requirements of the current classi�cation algorithms
make them unusable when dealing with these huge data sets [28]. These problems can
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be decisive, if a lazy learning algorithm such as the nearest neighbor rule is used, and
can even prevent results from being obtained. However, reducing the size of the data
set by selecting a representative subset has two main advantages: it reduces the memory
required to store the data and it accelerates the classi�cation algorithms [19].

In the scienti�c literature, the term �reduction techniques� includes [61]: prototype
generation [32]; prototype selection [52] (when the classi�er is based on kNN); and (for
other classi�ers) instance selection [8]. While prototype generation replaces the original
instances with new arti�cial ones, instance selection and prototype selection attempt to
�nd a representative subset of the initial training set that does not lessen the predic-
tive power of the algorithms trained with such a subset [45]. In the paper, prototype
generation is not addressed, however a complete review on it can be found in [57].

2.1. Instance selection

The aforementioned term �instance selection� brings together di�erent procedures
and algorithms that target the selection of a representative subset of the initial train-
ing set. There are numerous instance selection methods for classi�cation, a complete
review of which may be found in [21]. Instance selection has also been applied to both
regression [2, 33] and time series prediction [26, 55].

According to the order in which instances are processed, instance selection methods
can be classi�ed into �ve categories [21]. If they begin with an empty set and they add
instances to the selected subset, by means of analyzing the instances in the training set,
they are called incremental. The decremental methods, on the contrary, start with the
original training data set and they remove those instances that are considered super�uous
or unnecessary. Batch methods are those in which no instance is removed until all of
them have been analyzed, instances are simply marked from removal if the algorithm
determines that they are not needed, and at the end of the process only the unmarked
instances are kept. Mixed algorithms start with a preselected set of instances. The
process then decides either to add or to delete the instances. Finally, �xed methods are
a sub-family of mixed ones, in which the number of additions and removals are the same.
This approach allows them to maintain a �xed number of instances (more frequent in
prototype generation).

Considering the type of selection, three categories may be distinguished. This crite-
rion is mainly correlated with the points that they remove: either border points, central
points, or otherwise. Condensation techniques try to retain border points. Their underly-
ing idea is that internal points do not a�ect classi�cation, because the boundaries between
classes are the keystone of the classi�cation process. Edition methods may be considered
the opposite of condensation techniques, as their aim is to remove those instances that
are not well-classi�ed by their nearest neighbors. The edition process achieves smoother
boundaries as well as noise removal. In the middle of those approaches are hybrid algo-
rithms, which try to maintain or even to increase the accuracy capability of the data set,
by removing both: internal and border points [21].

Evolutionary approaches for instance selection have shown remarkable results in both
reduction and accuracy. A complete survey of them can be found in [16]. However, the
main limitation of those methods is their computational complexity [36]. This drawback
is the reason why they are not taken into account in this study, because the methods it
proposes are oriented towards large data sets.
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Table 1: Summary of state-of-the-art instance selection methods used in the experimental setup (taxon-
omy from [21]; computational complexity from [31] and authors' papers).

Strategy Direction Algorithm Complexity Year Reference

Condensation Incremental CNN O(n3) 1968 [27]
Incremental PSC O(n logn) 2010 [46]
Decremental RNN O(n3) 1972 [25]
Decremental MSS O(n2) 2002 [6]

Hybrid Decremental DROP1-5 O(n3) 2000 [60]
Batch ICF O(n2) 2002 [8]
Batch HMN-EI O(n2) 2008 [41]
Batch LSBo O(n2) 2015 [37]

In the remaining part of this section, we give further details of the most representative
methods used in the experimental setup. A summary of the methods considered in the
study can be seen in Table 1.

2.1.1. Condensation

The algorithm of Hart, Condensed Nearest Neighbor (CNN) [27] is considered the
�rst formal proposal of instance selection for the nearest neighbor rule. The concept of
training set consistency is important in this algorithm and is de�ned as follows: given
a non empty set X (X 6= ∅), a subset S of X (S ⊆ X) is consistent with respect to
X if, using the subset S as training set, the nearest neighbor rule can correctly classify
all instances in X. Following this de�nition of consistency, if we consider the set X as
the training set, a condensed subset should have the properties of being consistent and,
ideally, smaller than X. After CNN appeared, other condensation methods emerged with
the aim of decreasing the size of the condensed data set, e.g.: Reduced Nearest Neighbor
(RNN) [25]. One of the latest is the Prototype Selection by Clustering (PSC) [46], which
uses clustering to speed up the selection process. So, the use of clustering gives a high
e�ciency to PSC, if compared against state-of-the-art methods, and better accuracy than
other clustering-based methods such as CLU [40].

In [6], the authors proposed a modi�cation to the de�nition of a selective subset [54],
for a better approximation to decision borders. The selective subset can be thought of as
similar to the idea of the condensed algorithm of Hart, but applying a condition stronger
than the condition of consistency. The aim is to �nd the selected instances in an easier
way, which is less sensitive to the random initialization of S and the order of exploration
of X in Harts' algorithm. The subset obtained in this way is called the selective subset
(SS ).

A subset S of the training set X is a selective subset (SS ), if it satis�es the following
conditions:

1. S is consistent (as in Harts' algorithm).
2. All instances in the original training set, X, are closer to a selective neighbor (a

member of S) of the same class than to any instance of a di�erent class in X.

Then, the authors present a greedy algorithm which attempts to �nd selective in-
stances starting with those instances of the training set that are close to the decision
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boundary of the nearest neighbor classi�er. The algorithm presented is an e�cient al-
ternative to the Selective algorithm [54] and it is usually able to select better instances
(the ones closer to the boundaries).

2.1.2. Hybrid

One problem that arises when condensation methods are used is their noise sensitivity,
while hybrid methods have speci�c mechanisms to make them more robust to noise [37].

The DROP (Decremental Reduction Optimization Procedure) [60] family of algo-
rithms comprises some of the best instance selection methods for classi�cation [8, 47, 50].
The instance removal criteria is based on two relations: associates and nearest neigh-
bors. The relation of associate is the inverse of nearest neighbors: those instances p that
have q as one of their nearest neighbors are called associates of q. The set of nearest
neighbors of one instance is called the neighborhood of the instance. For all instances,
its list of associates is a list with all instances that have that particular instance in their
neighborhood.

Marchiori proposed a new graph-based representation of the data set called Hit Miss
Networks (HMN) [41]. The graph has a directed edge from each instance to its near-
est neighbor on the di�erent classes, with one edge per class. The information in the
graph was used to de�ne three new hybrid algorithms: HMN-E, HMN-C and HMN-EI.
A couple of years later, HMNs were used to de�ne a new information-theoretic instance
scoring method to de�ne a new instance selection method called Class Conditional Near-
est Neighbor (CCIS) [42]. According to [21], HMN-EI is able to achieve more accurate
data sets than CCIS which is the reason why HMN-EI was used in experimental setup.

The local-set (LS) concept, proposed for the very �rst time in [7], is a powerful tool
for some machine learning tasks, including instance selection. A local-set of an instance
x contains all those instances which are closer to x than its nearest neighbor of di�erent
class, its nearest enemy. The selection rule of the Iterative Case Filtering algorithm
(ICF) [7] uses local sets to build two sets: coverage and reachability. These two concepts
are closely related to the neighborhood and associate list used in DROP algorithms. The
coverage of an instance is its LS, that can be seen as a neighborhood of the instance that,
instead of considering a �xed number k of neighbor, includes all instances closer to the
instance than its closest enemy. The reachable set of an instance is its set of associates.
The coverage set of an instance is its neighborhood. The deletion rule is as follows: an
instance is removed from the data set if its reachable set (its set of associates) is bigger
than its coverage (its `neighborhood'). This rule means that the algorithm removes an
instance if other object exists that generalizes its information. To address the problem of
noisy data sets, both ICF and DROP3, begin with a noise-�lter stage. Recently, Leyva
et al [37] presented three new instance selection methods based on LSs. Their hybrid
approach, which o�ers a good balance between reduction and accuracy, is called Local Set
Border Selector (LSBo) and it uses a heuristic criterion: the instances in the boundaries
between classes tend to have greater LSs. As is usual in hybrid methods, LSBo starts
with a noise �ltering algorithm which was presented in the same paper called LSSm.

2.2. Scaling up instance selection

The main drawback of instance selection methods is their complexity that is quadratic
O(n2), where n is the number of instances [22] or, at best, log-linear O(n log n); thus, the
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majority of them are not applicable in data sets with hundreds or even many thousands
of instances [15]. Table 1 summarizes the computational complexity of the instance
selection methods used in the experimental section.

One approach to deal with massive data sets, is to divide the original problem into
smaller subsets of instances; known as strati�cation. The underlying idea of these meth-
ods is to split the original data set into disjointed subsets, then an instance selection
algorithm is applied to each subset [10, 13, 22, 24]. This approach is used in [22] where a
method was proposed that addressed the splitting process, using Grand Tour [5] theory,
to achieve linear complexity.

The problem known as big data refers to the challenges and di�culties that arise when
huge amounts of data are processed. One way to accelerate instance selection methods
and to be able to cope with massive data sets is adapt them to parallel environments [49].
To do so, the way that algorithms work has to be redesigned. The MapReduce paradigm
o�ers a robust framework with which to process huge data sets over clusters of machines.
Following up on this idea, a new proposal was presented recently by Triguero et al. [58].

3. Locality-sensitive hashing

The locality-sensitive hashing (LSH ) is an e�cient method for checking similarity
between elements. It makes a particular use of hash functions that, unlike those used in
other applications of hashing1, seeks to allocate similar items to the same bucket with
a high probability, and at the same time to greatly reduce the probability of assigning
dissimilar items to the same bucket [35].

LSH use is common to increase the e�ciency of nearest neighbors calculation [3,
21]. An indirect bene�t of LSH for instance selection algorithms is the speeding up of
nearest neighbor calculation, required in most of these sorts of algorithms. However, the
complexity of the algorithms remain unchanged, since the loop nesting and structures of
the algorithms remain the same. It is only the kNN step that is improved.

What we propose in this paper is a novel use of LSH, not merely as support for the
calculation of nearest neighbors, but as an operation that de�nes the nature of the new
instances selection algorithm. Basically, the idea is to make the instance selection on
each of the buckets that will be obtained by LSH when applied to all instances. This
process permits the selection of instances using a unique processing loop of the data set,
thereby giving it linear complexity. So a reasonable question arises; when a classi�er is
trained with a selected subset obtained by this approach, will its prediction capabilities
decrease? This article o�ers an experimental response to this question2. But before
giving the details of our proposal, let us look at a brief introduction to the underlying
theory of LSH.

1The aim of conventional cryptographic hash functions is to avoid the collision of items in the same
bucket.

2In any case, note that even a certain degradation of classi�er performance would be acceptable, if
the new algorithm achieved a substantial acceleration or reduction in storage [9], it is often better to
gain a quick approximation within a reasonable time than an optimal solution when it is too late to use
it.
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p1

p2

d1 d2

Figure 1: Expected behavior of the probabilities of a (d1, d2, p1, p2)-sensitive function. The function will
assign the same value to two instances with a probability greater than p1, if their distance is shorter
than d1. The function will assign the same value to two instances with a probability lower than p2, if
their distance is greater than d2. For distances between d2 and d1, there is no restriction regarding that
the values the function can assign to the instances.

3.1. Locality-sensitive functions

In this section we follow [35], to formally de�ne the concept of local sensitivity and
the process of amplifying a locality-sensitive family of functions.

Given a set of objects S and a distance measure D, a family of hash functions H =
{h : S → U} is said to be (d1, d2, p1, p2)-sensitive, if the following properties hold for all
functions of h in the family H:

• For all x, y in S, if D(x, y) ≤ d1, then the probability that h(x) = h(y) is at least
p1.

• For all x, y in S, if D(x, y) > d2, then the probability that h(x) = h(y) is at most
p2.

In this de�nition, nothing refers to what happens when the distance of the objects is
between d1 and d2 (see the representation in Figure 1). However, distances d1 and d2
can be as close as possible, but the cost will be that p1 and p2 are also closer. However,
as shown below, it is possible to combine families of hash functions that separate the
probabilities p1 and p2 without modifying the distances d1 and d2.

Given a (d1, d2, p1, p2)-sensitive family of hash functions H, it is possible to obtain a
new family H′ using the following ampli�cation operations

AND-construction The functions h in H′ are obtained by combining a �xed number
r of functions {h1, h2, . . . , hr} in H. Now, h(x) = h(y), if and only if hi(x) = hi(y)
for all i. If the independence of functions in H can be guaranteed, the new family
of functions H′ will be (d1, d2, (p1)

r, (p2)
r)-sensitive.

OR-construction The functions h in H′ are obtained by combining a �xed number b of
functions {h1, h2, . . . , hb} in H. Now, h(x) = h(y), if and only if hi(x) = hi(y) for
any i. If the independence of functions in H can be guaranteed, the new family of
functions H′ will be (d1, d2, 1− (1− p1)b, 1− (1− p2)b)-sensitive.
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θ

d cos θ

A

B

D(A,B) = d

bucket
width w

Figure 2: Two points (A, B) at distance d� w have a small chance of being hashed to the same bucket.

The AND-construction decreases the probabilities and the OR-construction increases
them. However, if r and b are properly chosen and with the chaining of constructions the
probability p1 may be brought closer to 1, while the probability p2 will stay reasonably
close to 0.

In the experimental setup, the hash functions in the base family were obtained using
the following equation [12].

h~a,b(~x) =

⌊
~a · ~x+ b

w

⌋
(1)

where ~a is a random vector (Gaussian distribution with mean 0 and standard deviation
1), b is a random real value from the interval [0, w] and w is the width of each bucket in
the hash table.

This equation gives a (w/2, 2w, 1/2, 1/3)-sensitive family. The reason for these num-
bers is as follows (suppose, for simplicity, a 2-dimensional Euclidean space), if the distance
d between two points is exactly w/2 (half the width of the buckets) the smallest prob-
ability for the two points falling in the same segment would happen for θ = 0, and in
this case the probability would be 0.5, since d is exactly w/2. For angles greater than
0, this probability will be even higher; in fact, it will be 1 for θ = 90. And for shorter
distances than w/2, the probability will equally increase. So the lower boundary for this
probability is 1/2. If the distance d is exactly 2w (twice the width of the bucket), the only
chance for both points to fall in the same bucket is that their distances, once projected
in the segment, are lower than w, what means that cos θ must be lower than 0.5, since
the projected distance is d cos θ and d is exactly 2w. For θ in the interval 0 to 60, cos θ
is greater than 0.5, so the only chance of cos θ being lower than 0.5 is that θ is in the
interval [60, 90], and the chance of that happening is at most 1/3. For distances greater
than 2w, the probabilities are even lower. So the upper boundary of this probability is
1/3. This reasoning is re�ected in Figure 2.

By using the (w/2, 2w, 1/2, 1/3)-sensitive family previously described, we have com-
puted the probabilities p1 and p2 for the AND-OR construction with a number of func-
tions from 1 to 10. Figure 3 shows the probabilities p1 (a) and p2 (b) for the case of the
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Figure 3: Probabilities p1 and p2 and the di�erence between them. The darker the color the higher
the value. Each cell gives the value for the chaining of an OR-construction (number of combined basic
functions on the x-axis) after an AND-construction (on the y-axis the number of combined functions).

chaining of an OR-construction just after an AND-construction, and the di�erence be-
tween these two probabilities (c). The row number indicates the number of functions used
in the AND-construction, while the column number indicates the number of functions
used in the OR-construction.

4. New instance selection algorithms based on hashing

This section presents the algorithms proposed in this work: LSH-IS-S and LSH-IS-
F. The �rst completes the selection process in a single pass, analyzing each instance
consecutively. It processes instances in one pass, so not all instances need to �t in
memory. The second performs two passes: in the initial one, it counts the instances in
each bucket, in the second, it completes the instance selection with this information. The
complexity of both algorithms is linear, O(n) (note that this is even true for the second
algorithm, i.e. although two passes are performed).

Both algorithms can be seen as incremental methods, due to the fact that the selected
data set is formed by successive additions to the empty set. However, the second one
conforms more closely to batch processing because it analyzes the impact of the removal
on the whole data set.

The main advantage of the presented methods is the drastic reduction in execution
time. The experimental results show a signi�cant di�erence when they are compared
against state-of-the-art instance selection algorithms.

4.1. LSH-IS-S: One-pass processing

As shown in Algorithm 1, the inputs of the LSH-IS-S method are: a set of instances
to select and a set of families of hash functions. The loop processes each instance x of X,
using the function families to determine the bucket u to which the instance belongs3. If
in the bucket u assigned to the instance there is no other instance of the same class of x,

3The bucket identi�er u given to an instance by a family g ∈ G can be thought of as the concatenation
of all bucket identi�ers given by the hash functions in g, since the function families in G are obtained
by using an AND-construction on base functions obtained using Equation 1. The OR-construction is
implemented in the foreach loop at line 3 of Algorithm 1.
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x is selected and added to S and to the bucket u. The algorithm ends when all instances
in X have been processed. Note that each instance is processed only once, which grants
an extremely fast performance at the expense of not analyzing the instances that are
selected in each bucket in detail. Instances are analyzed in sequence without needing
information on other instances. This process means that the method may be used in a
single-pass process, without requiring the whole dataset to �t in the memory.

Algorithm 1: LSH-IS-S � Instance selection algorithm by hashing in one pass.

Input: A training set X = {(x1, y1), ..., (xn, yn)}, set G of hash function families
Output: The set of selected instances S ⊆ X

1 S = ∅
2 foreach instance x ∈ X do

3 foreach function family g ∈ G do
4 u← bucket assigned to x by family g
5 if there is no other instance of the same class of x in u then
6 Add x to S
7 Add x to u

8 return S

4.2. LSH-IS-F: A more informed selection

The algorithm explained in the previous section is remarkably fast and allows in-
stances to be processed as they arrive, in one pass. On the other hand, because of how it
works, it is not using all information that may be relevant to decide which instances to
choose. For example, the algorithm has no control over the number of instances of each
class that go to each bucket, because once an instance of a class is selected, it discards
other instances of the same class that may come later.

LSH-IS-F (see Algorithm 2) is an evolution of the LSH-IS-S. In this method, one-pass
processing is replaced by a more informed selection. The �rst loop is similar to LSH-
IS-S but, instead of directly selecting instances, it �rst records the bucket to which each
instance belongs. When there is only one instance of a class, the instance is rejected,
otherwise, if two or more instances of the same class are present, one of them is randomly
chosen. The idea here is to give the algorithm some tolerance of the presence of noise in
the input data set.

The execution time of this method is not much larger than in the previous method,
since the number of buckets is much lower than the number of instances. Although, the
di�erences in execution time increase with the increase in the number of OR functions.

4.3. Behavior of proposed methods

The aim of this section is to try to shed some light on the behavior of the new al-
gorithms proposed in the paper. As previously stated, LSH-IS-S makes the selection
of instances in one pass, selecting one instance of each class in each bucket. On the
other hand, LSH-IS-F tries to avoid retaining noisy instances. The more informed se-
lection criterion of LSH-IS-F allows it to remove instances that can be harmful for the
classi�cation.
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Algorithm 2: LSH-IS-F � Instance selection algorithm by hashing with two passes.

Input: A training set X = {(x1, y1), ..., (xn, yn)}, set G of hash function families
Output: The set of selected instances S ⊆ X

1 S = ∅
2 foreach instance x ∈ X do

3 foreach function family g ∈ G do
4 u← bucket assigned to x by family g
5 Add x to u

6 foreach function family g ∈ G do
7 foreach bucket u of g do
8 foreach class y with some instance in u do
9 Iy ← all instances of class y in u
10 if |Iy| > 1 then
11 Add to S one random instance of Iy

12 return S

(a) Original (b) LSH-IS-S (c) LSH-IS-F

Figure 4: Example to illustrate the behavior of both algorithms. (a) Initial instances, two buckets are
identi�ed by LSH and the line shows the boundary. (b) Instances selected by LSH-IS-S. (c) Instances
selected by LSH-IS-F.

In Figure 4 we show an example with nine instances: four of one class (crosses) and
�ve of the other (circles). The LSH algorithm is using two buckets, the line represents
the boundary between them. LSH-IS-S selects one instance of each class in each bucket
(b), while LSH-IS-F does not select the instance of class cross because it is identi�ed as
noise.

Figure 5 illustrates the e�ect of the algorithms in the XOR data set [42] formed by
400 instances, 200 per class. An outlier was added and highlighted with a gray square.
As indicated above, LSH-IS-S retains the instance, while LSH-IS-F removes it.

With the aim of illustrating the behavior of the proposed instance selection methods
when the number of hash functions increases, we used the Banana data set. It has
two numeric features and two classes, the size of the data set is 5300 instances (see
Table 3). Figure 6(a) shows the original data set. Despite the fact that two clusters can
be easily identi�ed, a high overlap exists between the two classes in some regions [21].
Table 2 summarizes the number of instances selected by both algorithms when only one
OR function is used and the number of AND functions changes. LSH-IS-F retains less
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(a) Original (b) LSH-IS-S (c) LSH-IS-F

Figure 5: (a) Original XOR example, an outlier is highlighted in gray. (b) LSH-IS-S selection maintains
the outlier. (c) LSH-IS-F removes the outlier.

Table 2: Number of Banana data set instances that the proposed algorithms retain by the number of
AND functions.

Algorithm Number of AND functions

2 4 6 8 10

LSH-IS-S 25 123 249 466 684
LSH-IS-F 24 110 225 423 627

instances, because those instances of one class isolated in one bucket with instances of
the other class are ident�ed as noise and therefore deleted.

Figures 6 and 7 show the instances retained by both algorithms, LSH-IS-S and LSH-
IS-F respectively, when only one OR function is used and di�erent numbers of AND
functions: 2, 4, 6, 8 and 10. The number of retained instances increases with the number
of functions. This behavior is quite interesting, because it enables the user to choose
whether more or fewer instances are retained, by varying the number of functions that
are used.

5. Experimental study

This section presents the experimental study performed to evaluate the new proposed
methods. We compared them against seven well-known state-of-the-art instance selection
algorithms in a study performed in Weka [62]. The instance selection methods included
in the experiments were: CNN, ICF, MSS, DROP3, PSC, HMN-EI, LSBo and the two
approaches based on hashing. The parameters selected for the algorithms were those
recommended by the authors: the number of nearest neighbors used on ICF and DROP3
were set to k = 3, the number of clusters for PSC was set to 6r (where r is the number of
classes of the data set). Evolutionary algorithms were not included in the experiments,
due to their high computational cost.

For the experiments, we used 30 data sets from the Keel repository [1] that have
at least 1000 instances. Table 3 summarizes the data sets: name, number of features,
number of instances and the accuracy given by two classi�ers (using ten fold cross-
validation): the nearest neighbor classi�er with k = 1 and the J48, a classi�er tree (the
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Figure 6: The number of instances selected by LSH-IS-S as the number of functions increases.
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Figure 7: The number of instances selected by LSH-IS-F as the number of functions increases.

128



Weka implementation of C4.5 [53]). The last �ve data sets are huge (below dashed line),
with more than 299 000 instances, the traditional instance selection methods are unable
to address them. The only transformation carried out was the normalization of all input
features, to set their values at between 0 and 1.

We used the nearest neighbor classi�er (1NN), as most instance selection methods
have been designed for that classi�er (k = 1 in kNN) [37, 51]. Moreover, we used the J48
classi�er tree, to evaluate the extent to which the instances selected by the algorithms
were suitable for training other classi�ers.

As shown in Section 3, there are ways of combining the hash functions families that
appear more promising than others (see Figure 3). However, it is unclear which of them
will achieve the best results in combination with the proposed algorithms. Therefore,
we conducted a study with 60 combinations: AND-constructions, combining between 1
to 10 hash functions, and OR-constructions, combining 1 to 6 functions, obtained by
the previous AND-construction, avoiding constructions with too many functions and,
consequently, reducing the computational cost.

The subsets selected by the algorithms were used to build a classi�er (1NN), the
average rank [14] of which was performed over the accuracy of all 60 combinations.
Average ranks were calculated as follows: the results of the experiments were sorted, one
for the best method, two for the second, and so on. In the case of a tie, values of the ranks
were added up and divided into the number of methods that tied. When the ranking of
each data set was calculated, the average for each method was computed. Better methods
had rankings closer to one. The results of the rankings are shown in Figure 8. Each cell
represents the ranking value for a speci�c combination of AND-OR-constructions, where
the number of functions in the OR-constructions is shown by the x-axis and the number
of functions in the AND-constructions is shown by the y-axis number. The darker the
cell the higher its ranking (lower values are better). The best con�guration is di�erent
for each algorithm:

• LSH-IS-S: the best con�guration is one that uses OR-constructions of 6 functions
obtained using an AND-construction on 10 functions of the base family (functions
obtained using Equation 1).

• LSH-IS-F: the best results were obtained using OR-constructions of 5 functions
obtained by combining by AND-construction 10 functions of the base family.

Figure 9 shows how the time execution increases, on average, for the proposed algo-
rithms: LSH-IS-S (gray) and LSH-IS-F (black). The higher the number of AND func-
tions, the bigger the gap between LSH-IS-S and LSH-IS-F. This behavior is explained
because LSH-IS-F has one loop more than LSH-IS-S (see pseudocodes 1 and 2) that is
used to go through all the buckets counting the number of instances of each class. The
number of buckets searched increases with the number of hash functions.

Ten fold cross-validation was applied to the instance selection methods under study.
The performances were as follows:

• accuracy achieved by 1NN and J48 classi�ers trained with the selected subset;

• �ltering time by instance selection;

• reduction achieved by instance selection methods (size of the selected subset).
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Table 3: Summary of data sets characteristics: name, number of features, number of instances and
accuracy (1NN). Last �ve data sets, below dashed line, are huge problems.

Data sets # attributes # instances Accuracy

Continuous Nominal 1NN J48

1 German 7 13 1 000 72.90 71.80
2 Flare 0 11 1 066 73.26 73.55
3 Contraceptive 9 0 1 473 42.97 53.22
4 Yeast 8 0 1 484 52.22 56.74
5 Wine-quality-red 11 0 1 599 64.85 62.04
6 Car 0 6 1 728 93.52 92.36
7 Titanic 3 0 2 201 79.06 79.06
8 Segment 19 0 2 310 97.23 96.62
9 Splice 0 60 3 190 74.86 94.17
10 Chess 0 35 3 196 72.12 81.85
11 Abalone 7 1 4 174 19.84 20.72
12 Spam 0 57 4 597 91.04 92.97
13 Wine-quality-white 11 0 4 898 65.40 58.23
14 Banana 2 0 5 300 87.21 89.04
15 Phoneme 5 0 5 404 90.19 86.42
16 Page-blocks 10 0 5 472 95.91 97.09
17 Texture 40 0 5 500 99.04 93.13
18 Optdigits 63 0 5 620 98.61 90.69
19 Mushroom 0 22 5 644 100.00 100.00
20 Satimage 37 0 6 435 90.18 86.28
21 Marketing 13 0 6 876 28.74 31.06
22 Thyroid 21 0 7 200 92.35 99.71
23 Ring 20 0 7 400 75.11 90.95
24 Twonorm 20 0 7 400 94.81 85.12
25 Coil 2000 85 0 9 822 90.62 93.95
26 Penbased 16 0 10 992 99.39 96.53
27 Nursery 0 8 12 960 98.13 97.13
28 Magic 10 0 19 020 80.95 85.01
29 Letter 16 0 20 000 96.04 87.98
30 KR vs. K 0 6 28 058 73.05 56.58

31 Census 7 30 299 285 92.70 95.42
32 KDDCup99 33 7 494 021 99.95 99.95
33 CovType 54 0 581 012 94.48 94.64
34 KDDCup991M 33 7 1 000 000 99.98 99.98
35 Poker 5 5 1 025 010 50.61 68.25
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(b) LSH-IS-F

Figure 8: Average rank over accuracy of the proposed methods for the di�erent con�gurations of AND-
OR constructions. The darker the cell, the higher the ranking (lower is better). Each cell represents an
AND-OR-construction where the column is the number of functions in the OR-construction and the row
is the number of functions in the AND-construction.
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Figure 9: Average execution time of the proposed algorithms as the number of AND-functions increases.
LSH-IS-S is represented in gray and LSH-IS-F in black with di�erent lines and marks for the di�erent
numbers of OR-functions.
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Table 4: Average ranks and Hochberg procedure
over accuracy: 1NN.

Algorithm Ranking p Hoch.

HMN-EI 2.92
LSBo 3.85 0.1869
LSH-IS-F 4.45 0.0602
MSS 4.58 0.0553
LSH-IS-S 4.98 0.0139
DROP3 5.03 0.0138
CNN 5.17 0.0088
ICF 5.75 0.0004
PSC 8.27 0.0000

Table 5: Average ranks and Hochberg procedure
over accuracy: J48.

Algorithm Ranking p Hoch.

LSH-IS-F 3.63
LSH-IS-S 3.88 0.7237
HMN-EI 4.10 0.7237
LSBo 4.57 0.5606
MSS 5.03 0.1909
CNN 5.28 0.0981
ICF 5.67 0.0242
DROP3 5.90 0.0094
PSC 6.93 0.0000

Table 6: Average ranks and Hochberg procedure over storage reduction, and average reduction rate.

Algorithm Ranking p Hoch. Reduction rate

DROP3 1.67 0.896
ICF 3.10 0.0427 0.813
LSBo 3.70 0.0081 0.737
PSC 4.70 0.0001 0.762
CNN 5.43 0.0000 0.658
MSS 6.00 0.0000 0.665
HMN-EI 6.10 0.0000 0.577
LSH-IS-F 6.62 0.0000 0.455
LSH-IS-S 7.68 0.0000 0.405

According to the accuracy of 1NN classi�er (see Table 4), the best four algorithms
were HMN-EI followed by LSBo, LSH-IS-F and MSS. According to the Hochberg pro-
cedure [29], di�erences between them were not signi�cant at a 0.05 signi�cance level.
However, di�erences between LSBo and the other methods were signi�cant. When J48
was used as the classi�er (see Table 5), the best six algorithms were LSH-IS-F followed
by LSH-IS-S, HMN-EI, LSBo, MSS and CNN; the di�erences between them were not
signi�cant at 0.05. Furthermore, as can be seen, the least accurate model is PSC for
both classi�ers.

Table 6 shows the average ranks over compression. DROP3 is the best method at a
0.05 signi�cance level. Furthermore, the average reduction rate for each method is also
shown. The proposed methods are the most conservative, although, as previously stated,
a higher compression could have been achieved using fewer functions in the LSH process.

The third relevant feature of instance selection methods is the time required by the
algorithms to calculate the selected subset. Table 7 shows the average rank over execution
time of the instance selection algorithms. The three fastest methods were LSH-IS-F, LSH-
IS-S and PSC, between them di�erences were not signi�cant at a 0.05 signi�cance level.
The di�erences were signi�cant from MSS and the following methods; the slowest was
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Table 7: Average ranks and Hochberg procedure over �ltering time.

Algorithm Ranking p Hoch.

LSH-IS-F 1.53
LSH-IS-S 1.57 0.9624
PSC 3.00 0.0761
MSS 4.20 0.0005
ICF 5.33 0.0000
LSBo 6.73 0.0000
HMN-EI 6.70 0.0000
DROP3 7.67 0.0000
CNN 8.27 0.0000

CNN. It is worth noting that PSC achieved, according to the signi�cance tests, a really
competitive execution time. Nevertheless the shortcoming of PSC was its poor accuracy,
as it obtained the worst results of all of the methods under analysis, as noted in Tables 4
and 5.

It might be surprising that LSH-IS-F was faster than LSH-IS-S, because this contra-
dicts Figure 9. The reason for this was the number of functions used by the algorithms;
as commented on at the beginning of this section, LSH-IS-S was launched using 6 OR
functions, while LSH-IS-F was launched with only 5.

Figure 10 shows the �ltering time as a function of the number of instances. The
results obtained with the data sets of the experiments were used to draw these �gures.
Since there were no results available for all possible values of numbers of instances, the
available results were used to draw Bezier lines and to show the general trend of the
algorithms. Although other methods (CNN, HMN-EI, LSBo, DROP3, MSS and ICF)
have an execution time that increases swiftly, our algorithms based on hashing are at the
bottom of the �gures together with PSC. However, in the logarithmic scale, the growth
of PSC is visibly greater.

As a summary of the experimentation with medium size data sets, we can highlight
that the proposed methods achieved competitive results in terms of accuracy. Considering
the reduction rate, DROP3 achieved the maximum compression, while our methods were
the worst in terms of compression. Finally, considering execution time, the methods
presented in the paper were able to compute the selected subset much faster than the
other algorithms in the state of the art. Exceptionally, PSC worked surprisingly fast,
although slower than the speed of our proposals, and with the shortcoming of the poor
accuracy when its selected subsets were used for training the classi�ers.

5.1. Huge problems

Due to the fact that instance selection methods are not able to face huge problems,
the experimental study performed over Census, CovType, KDDCup99, KDDCup991M4

4We divided the original KDDCup 1999 data set into two sets with di�erent number of instances:
KDDCup99 has 10% of the original instances and KDDCup991M has a million.
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Figure 10: Computational cost of tested methods, in linear (a) and logarithmic scale (b) on the y axis.
In (a) the CNN was not plotted because its growth was so high that it was not possible to appreciate
the di�erences between the other methods. The dots are the results on the available data sets, lines
(denoted by �-b� in the legend) are the Bezier lines built with these dots to show the general trend of
the algorithms.
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Table 8: Average ranks over accuracy for huge
problems.

Algorithm Ranking

LSH-IS-F 2.0
DIS.RNN 2.2
LSH-IS-S 2.6
DIS.DROP3 3.6
DIS.ICF 4.6

Table 9: Average ranks over storage reduction for
huge problems.

Algorithm Ranking

DIS.RNN 1.8
DIS.DROP3 2.4
LSH-IS-F 3.2
DIS.ICF 3.4
LSH-IS-S 4.2

and Poker (see Table 3), the algorithms proposed were tested against the Democratic
Instance Selection (DIS) [22]. Although PSC showed a competitive results in terms of
execution time, it was not included in the study of huge problems, because of its poor
accuracy.

As in the previous experiments, ten fold cross-validation was performed on LSH-IS-
S and LSH-IS-F in Weka. Testing error, using 1-NN classi�er, and storage reduction
were reported and compared against results published in [22]. Execution times were not
compared because di�erent implementations and machines would not have allowed a fair
comparison.

The main conclusion of the experiments was that our methods can face huge problems.
Results of average ranks over the accuracy are shown in Table 8. The accuracy of the
methods under study is similar to DIS, though the most accurate method is LSH-IS-F.
As in the medium size experiment, LSH-IS-F improved the accuracy with regard to LSH-
IS-S. On the other hand, the Table 9 shows the average ranks over storage reduction.
In terms of compression, the best method was DIS.RNN, as proved in medium size data
sets, while the methods based on hashing were too conservative. However, the number
of instances that they retain can be adjusted by the number of functions used. The
success of the proposed methods is even more remarkable when compared against scalable
approaches. The simple idea of using LSH overcomes the democratization methods and
opens the way to their use in huge data sets and big data.

6. Conclusions

The paper has introduced a novel approach to the use of families of locality sensitive
functions (LSH) for instance selection. Using this approach, two new algorithms of linear
complexity have been designed. In one approach, the data are processed in one pass,
which allows the algorithm to make the selection without requiring that the whole data
set to �t in memory. The other approach needs two passes: one processes each instance
of the data set, and the second processes the buckets of the families of hash functions.
Their speed and low memory consumption mean that they are suitable for big data
processing.

The experiments have shown that the strength of our methods is the speed, which is
achieved through a small decrease in accuracy and, more remarkably, the reduction rate.
Although the best methods according to accuracy di�er depending on the classi�er that
is used, the proposed methods o�er a competitive performance. Moreover, the reduction
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rate can be adjusted by increasing or by decreasing the number of hash functions that
are used.

Furthermore, the proposed methods were evaluated on huge problems and compared
against Democratic Instance Selection, a linear complexity method. Experimental results
on accuracy showed how our methods outperformed DIS, even though our methods were
conceptually much simpler.

7. Future work

In their current version, the way the algorithms make the instance selection is very
simple and quite �naive�. The selected subset could be improved using additional infor-
mation about the instances assigned to each bucket, and not just the count of instances
of each class. A future research line could be to store additional information of the in-
stances assigned to each bucket: for example, simple statistics such as the incremental
average of instances in the bucket, or the percentage of instances of each class in the
bucket. This information might mean that the instance selection process would be bet-
ter informed, without excessively penalizing run-time. Although prototype generation
has not been analyzed in the paper, the generation of a new instance, or group of them,
for each bucket is one of the future lines of research. This idea can be developed using
LSH-IS-F, seeking each of the buckets to build or to create a new set of instances, by
selecting the medoids or centroids of the instances in the buckets.

According to [63], one of the most challenging problems in data mining research is
mining data streams in extremely large databases. Accurate and fast processes able to
work on stream are required, without any assumption that information can be stored
in large databases and repeatedly accessed. One of the problems that arises in those
environments is called concept drift, which appears when changes in the context take
place. In the management of concept drift, three basic approaches can be distinguished:
ensemble learning, instance weighting and instance selection [59]. A comparison of the
proposed method in a streaming benchmark would be made to test whether LSH-IS-S
can beat the state-of-the-art algorithms that are able to deal in streaming data [18].

Many more research approaches can be considered, but the principal one for us is to
adapt the new methods to a big data environment. We are working on the adaptation
of this idea to a MapReduce framework, which o�ers a robust environment to face up to
the processing of huge data sets over clusters of machines [58].
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