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Introduction 
Parallel programing is widely used to solve complex computational problems by making the most 

of a limited number of hardware resources. Several paradigms have been proposed:  

• Shared memory (OpenMP) 

• Distributed memory (MPI) 

• Heterogeneous computation (CUDA) 

• Hybrid: mixing at least two of the previous ones 

These alternatives can be seen as “mid-level” programming approaches. Not too high so you still 

take control of most of what’s been done underneath, not too low so you don’t get involved in a 

daunting task. 

Most of the above-mentioned options are usually presented as extensions to high level 

programming languages, and those languages are often those more adequate when efficient 

computation comes at stake. One of them is C/C++. 

Applications making use of these parallelization techniques are usually hidden to the common 

users and, in many cases unknown to programmers. However, in the last years parallel hardware 

has become available to all users so it makes sense to take advantage of it within a single 

application. Writing multithreaded code at a lower level makes it tedious and prone to mistakes in 

the form of race conditions, deadlock and more. 

In this manual we try to give an example of how parallel programming paradigms can be included 

in most application easily and with high improvement on overall system performance. In this 

particular case we aim to explain how to insert shared memory OpenMP sections within Visual C++ 

code. Our development tool will be MS Visual Studio 2017 Community version and we will use 

Windows Forms templates for simplicity. It aims to help either those who are used to writing 

desktop applications and want to embed parallel code within or those who are used to 

parallelization but don't know how to insert it into a desktop application. 
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Chapter 1: Solution settings 
Before we can create multithreaded application, we have to make some settings: 

1. Create a Visual C++ project using MS Visual Studio 2017 (File->New->Project). If the 

Windows Forms template does not show up, you’ll probably need to install the software 

highlighted in Figure 1. 

 

Figure 1 

2. Find the Windows Forms template as shown in Figure 2. 

 

Figure 2 

3. In Project->Settings enable OpenMP compatibility as depicted in Figure 3. 
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Figure 3 

4. Since we will use some of the controls available in the tool box, type Ctl+Alt+X to gain 

access to them. The controls will be visible when the designer window is selected only. 

Now, we are ready to build our firs program. Let’s do it in the next chapter. 
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Chapter 2: A simple multithreaded program 
In this chapter we will see how to construct the simplest multithreaded program. On that simply 

counts the number of threads issued by the user. 

Let’s find in the tool box, the controls we are about to use in this chapter: 

Label 
 

Text box  
Combo box  
Button  

Drag them onto the Form 1 canvas so it looks similar to Figure 4. 

 

Figure 4 

Controls take always a default name and those that include text, may have a default message as 

well. You will find out that the button you inserted takes default name “button 1” and the same 

default text. On the design view you just have to click on the control to get access to its properties 

on the left down window of your screen. Change these values if you will. You can change button 1 

text property to “Go” for instance, as shown in Figure 5. It will then look exactly as in Figure 4. 

 

Figure 5 
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You can do the same with label 1 text property.  

The combo box works a bit different. It is supposed to contain a list of items so the user can select 

the desired one.  Figure 6 shows the properties window for this control and the “Items” property 

among them. Select the collection of items so you can include as many as you want; one per line. 

 

Figure 6 

We are using this control to set the number of threads to be issue. It normally makes sense to 

launch as many as the number of cores in your processor. So the list would span from 1 to that 

number. 

In this particular case we have a few controls but, when the number of controls of the same kind 

may increase it is a good practice to change their default names as well. You can always do it later 

but you will probably need to change them in several places within your code. 

So far, we have the user interface but, it does nothing at all. Let’s write the code then. We have 

already seen how to modify certain properties from the design window. This can also be done 

from the code window or by your program at run time. To switch to the code window, you just 

have to right click on Form1.h in the solution explorer or type “F7”.  

Apart from properties, controls have associated events. In the same properties window, you can 

click on the  icon to see the events for the selected control.  

But before you program the actions, some preliminary adjustments must be done. 

1. Include the OpenMP header. This is done at the beginning of form1.h: 

#pragma once 
#include "omp.h" 

2. Declare global variables. In this example we need only two of them. An integer number 

that represents the number of threads to be issued, and a string pointer to a message to 

be built: 

private: 
  int nThreads; 
  String^ message; 
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  /// <summary> 
  /// Erforderliche Designervariable. 

 

3. Initialize them. We will launch one thread by default: 

public: 
  Form1(void) 
  { 
   InitializeComponent(); 
   nThreads = 1; 
  } 

 

Now let us tackle the code issue. In this simple example only two methods need to be 

programmed. The easiest of them is the response to the selection of a concrete number of threads 

in the combo box by the user. Select the events for the combo box and then you will display 

something like Figure 7 . 

 

Figure 7 

If you go to the code window, you will find the “comboBox1_SelecdIndexChanged” method 

preprogramed. You just have to add the code of the action to be taken, between the brackets. The 

action will be to update the number of threads: 

private: System::Void comboBox1_SelectedIndexChanged(System::Object^  sender, 
System::EventArgs^  e) { 
  nThreads = int::Parse(Nhilos->Text); 
 } 
 

The second action is a bit more complex and it is the heart of the program, since it includes the 
parallel part of it. Now select the “Go” button to display its events tab. Among them, the mouse 
Click event. In the drop down list you can select the “Go_click” event (Figure 8). 
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Figure 8 

If you go to the code window, you will find the “Go_click” method preprogramed. Then again, you 

just have to add your code between the brackets. The code will be this: 

private: System::Void Go_Click(System::Object^  sender, System::EventArgs^  e) { 
 int sum=0; 
#pragma omp parallel num_threads(nThreads)  
 { 
 #pragma omp parallel reduction(+:sum) 
  sum = 1; 
 } 
message = String::Concat("Hello World from nthreads ", Convert::ToString(sum)); 
textBox1->Text = message; 
} 

 

¿What does it mean? 

• Variable “sum” holds the number of threads. We already know them on nThreads ; now 

we are going to calculate them again but in parallel. 

• #pragma omp parallel declares that what is within the brackets will be executed in 

parallel. As many as “nThreads” threads will be launched in parallel. The code is the same 

for all of them and varaibles declared outside this “Parallel region” are shared by default. 

• #pragma omp parallel reduction(+:sum) starts a reduction operation, this meaning 

that an operation will be performed on values all threads put in the variable. The 

operation is a sum and the variable has the same name. Since all the threads put a “1” in 

“sum”, and all the values of sum are added, the result must be equal to the number of 

threads.   

• To check that out a message is printed on the text box. 

for the shake of clarity, we do a horrible and senseless use of the variables and threads in this 

example. If you run it you will see how a hello message is displayed on behalf of all the threads the 

user decided to launch. 
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Don’t expect to be able to write messages from the threads individually. This would be all but 

easy. Not impossible but mostly meaningless. Think of the parallel regions as sections of code 

where complex calculation is performed efficiently. Keep user interface single threaded. 
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Chapter 3: Background workers 
In the previous chapter we saw how to build up a parallel application. That structure works for 

most applications we may need to design but it has a problem. Parallel processing makes sense 

when lots of operations must be performed. In such situation our previous solution can do the job 

but, for so long as the program is calculating, the user interface will be “frozen”.  

So, it works but it doesn’t make sense since we have decided to design a desktop application for a 

reason, otherwise we could go back to the more common console application for heavy 

computational problems. 

How do we keep our user interface active while intensively processing calculation on all available 

cores? This is when background workers come along. Background workers behave as independent 

threads that execute in background, so they don’t interfere with the main thread: the user 

interface.  

The background worker is in the tool box:    

When you drag it on the design window, it will immediately move downwards, since it is not a 

visible part of the user interface (Figure 9). 

 

Figure 9 

Now, double click on the backgroundWorker1 icon and see what the code looks like. There is a 

default method called backgroundWorker1_DoWork that allows you to state what the worker 

must do.  The Go_Click method becomes extremely simple. It just starts the worker: 

private: System::Void Go_Click(System::Object^  sender, System::EventArgs^  e) { 
  backgroundWorker1->RunWorkerAsync(); 
 } 
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And all the work is done by the DoWork method: 

private: System::Void backgroundWorker1_DoWork(System::Object^  sender, 
System::ComponentModel::DoWorkEventArgs^  e) { 
 int sum = 0; 
#pragma omp parallel num_threads(nThreads)  
 { 
#pragma omp parallel reduction(+:sum) 
  sum = 1; 
 } 
message = String::Concat("Hello World from nthreads ", Convert::ToString(sum)); 
 textBox1->Text = message; 
} 

 

 But there is a problem! If you try to debug the new code, an exception will pop up. The 

reason: the textBox1 control is being called from a thread other than its creator. This is 

unsafe and may lead to many issues. We must implement a safe access to this control. 

Let us create a new method that serves as a safe interface to textBox1. Below, we can see both 

together so it is easy to see their combined work: 

private: System::Void backgroundWorker1_DoWork(System::Object^  sender, 
System::ComponentModel::DoWorkEventArgs^  e) { 
 int sum = 0; 
#pragma omp parallel num_threads(nThreads)  
 { 
#pragma omp parallel reduction(+:sum) 
  sum = 1; 
 } 
 message = String::Concat("Hello World from nthreads ", 
Convert::ToString(sum)); 
 SetText(message); 
} 
 
private: void SetText(String^ texto){ 
 if (this->textBox1->InvokeRequired) { 
  SetTextDelegate^ d = gcnew SetTextDelegate(this, &Form1::SetText); 
  this->Invoke(d, gcnew array<Object^> {texto}); 
 } 
 else{ 
  this->textBox1->Text = texto; 
 } 
} 

 

Set text must be used to access textBox1 in a safe manner, either from the background worker or 

by the main thread. It will decide when to invoke the delegate. 
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Chapter 4: matrix multiply 
So far we have learned how to get everything ready for a parallel application but no real 

parallelization has been introduced. We need a calculation intensive problem to solve and one of 

the most typical is the matrix multiplication problem. 

Everyone knows how matrices are multiplied (we will multiply square matrices for simplicity). This 

is a good start but, apart from that this is a problem that presents fantastic scalability, it is easy to 

program and can be applied in many more complex applications. 

What do we need to multiply matrices? First, the matrices. These matrices are two-dimensional 

arrays of float numbers (could be any other type but float is a good choice).  Let’s declare the new 

variables to be used in this program: 

 private: 
  int nThreads; 
  String^ message; 
  int rows; 
  float** matrixA; 
  float** matrixB; 
  float** matrixR; 

 

Along with the three matrices R = (A x B), we have also declared an integer variable representing 

the number of rows (also columns) for each one. We have to give it a default value: 

public: 
  Form1(void) 
  { 
   InitializeComponent(); 
   nThreads = 1; 
   rows = 4; 
  } 

Matrices of this size (4x4) are tiny for our purposes but we will give the user the opportunity to 

change that. To do so we need a second label and a second combo box. Set the label text to 

something like “Size” and provide a collection of values to the combo box ranging from 5 to 8000 

with the intermediate values you wish. 

private: System::Void comboBox1_SelectedIndexChanged_1(System::Object^  sender, 
System::EventArgs^  e) { 
 rows = int::Parse(comboBox1->Text); 
} 

 

If we want to visualize the contents of the matrices, we will need some text boxes where the 

program can show their contents. We will attach their correspondent labels too. Text boxes are 

single lined by default but we can switch their “multiline” property to “true” and make them as 

long and high as we want (Figure 10). 
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Figure 10 

Once we have the text box and a label, we can copy paste them twice to make room for the two 

remaining matrices. 

We are going to add a new button called “Initialize”. A click on it will trigger two actions: 

1. Allocate memory space for the three matrices. 

2. Fill the space with numbers. 

This is what it should look like: 

private: System::Void Initialize_Click(System::Object^  sender, System::EventArgs^  
e) { 
 matrixA = new float*[rows]; 
 matrixB = new float*[rows]; 
 matrixR = new float*[rows]; 
 for (int i = 0; i < rows; i++) 
  matrixA[i] = new float[rows]; 
 
 for (int i = 0; i < rows; i++) 
  matrixB[i] = new float[rows]; 
 
 for (int i = 0; i < rows; i++) 
  matrixR[i] = new float[rows]; 
 
 for (int i = 0; i < rows; i++) 
  for (int j = 0; j < rows; j++) { 
   matrixA[i][j] = matrixB[i][j] = i + j; 
   matrixR[i][j] = 0; 
  } 
 Amatrix->ResetText(); 
 Bmatrix->ResetText(); 
 Rmatrix->ResetText(); 
 if (rows<20) { 
  for (int i = 0; i < rows; i++) { 
   for (int j = 0; j < rows; j++) { 
 Amatrix->AppendText(String::Concat(Convert::ToString(matrixA[i][j]), " ")); 
 Bmatrix->AppendText(String::Concat(Convert::ToString(matrixB[i][j]), " ")); 
 Rmatrix->AppendText(String::Concat(Convert::ToString(matrixR[i][j]), " ")); 
   } 
   Amatrix->AppendText("\n"); 
   Bmatrix->AppendText("\n"); 
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   Rmatrix->AppendText("\n"); 
  } 
 } 

} 

The user interface so far should look similar to Figure 11. 

 

Figure 11 

We have added the condition for the matrices to be smaller than 20 rows to print then for 

otherwise we will see nothing clear on the boxes. The numerical contents of the matrices A and B 

are determined according to the coordinates of each element within the matrix. It is just a simple 

way to fill the matrices and then check that the calculations are correct. 

If we try a 5x5 matrix initialization, we can check whether it is correct. If so we should be watching 

Figure 12 on our computer. 

 

Figure 12 



 

 16 

Now we only must program the calculations. They must be performed by the background worker 

and start when the “Go” button is clicked. A matrix multiplication process consists of three nested 

for loops. We will parallelize in this case the outermost of them: 

#pragma omp parallel num_threads(nThreads)  
 { 
#pragma omp for 
  for (int i = 0; i < rows; i++) 
   for (int j = 0; j < rows; j++) 
    for (int k = 0; k < rows; k++) { 
     matrixR[i][j] += matrixA[i][k] * matrixB[k][j]; 
    } 
 } 

The number of iterations (rows) will split up among the “nThreads” launched so each one of them 

will execute only a fraction of the calculations. 

It would be good to see the results. For this purpose, we can add some extra code to Go_Click 

method: 

if (rows < 20) { 
 Rmatrix->ResetText(); 
 for (int i = 0; i < rows; i++) { 
  for (int j = 0; j < rows; j++) { 
 Rmatrix->AppendText(String::Concat(Convert::ToString(matrixR[i][j]), " ")); 
  } 
  Rmatrix->AppendText("\n"); 
 } 
} 

 

Then, for small matrices we can check the results as depicted in Figure 13. 

 

Figure 13 

 You may find that, in some cases, the first elements of Matrix R are set to “0”. This is not a 

calculation mistake. They are cero because the main thread keeps going while the 
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calculations are still in progress. Therefore, the results are not available yet. We could try 

to synchronize the two but it is not particularly important at this moment since the results 

are only meant to check that calculations are correct and are not displayed in real 

operations. 
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Chapter 5: timers and counters 
Now it works but, how fine? We need some extra information to determine whether these 

programming techniques really improve performance or not. First thing we need to do it measure 

time taken to resolve the calculations. To do so we just need a small modification in 

backgroundWorker1_DoWork method: 

double stime = omp_get_wtime(); 
#pragma omp parallel num_threads(nThreads)  
 { 
#pragma omp for 
  for (int i = 0; i < rows; i++) 
   for (int j = 0; j < rows; j++) 
    for (int k = 0; k < rows; k++) { 
     matrixR[i][j] += matrixA[i][k] * matrixB[k][j]; 
    } 
 } 
 stime = omp_get_wtime() - stime; 
 message = String::Concat("Elapsed time: ", Convert::ToString(stime), " 
seconds"); 
 SetText(message); 

We start a timer before the calculations begin, take time when they finish and display de elapsed 

time. What you should obtained is depicted in Figure 14. 

 

Figure 14 

The elapsed time gives you a good idea on how your parallelization is doing. Nevertheless, you 

may be interested in some more data about system performance. This is when performance 

counters come into play. But, what are performance counters in the first place? 

Performance counters. 
According to Microsoft Web Site: 

“Counters are used to provide information as to how well the operating system or an application, 

service, or driver is performing. The counter data can help determine system bottlenecks and fine-

https://msdn.microsoft.com/es-es/library/windows/desktop/aa373083(v=vs.85).aspx
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tune system and application performance. The operating system, network, and devices provide 

counter data that an application can consume to provide users with a graphical view of how well 

the system is performing.” 

 

The .NET Framework we are using 
includes the System.Diagnostics 
namespace that provides access to the 
counters available in the system. The 
Server Explorer, usually on the left side of 
the screen, gives you a list of the counters 
available to your system (Figure 16). 
 
To use any of them you will need to drag 
the Performance Counter control from 
the toolbox: 

 
 
Most of the counters are platform 
dependant so make sure that the 
counters to be used are available for your 
platform. In our case we will to monitor 
the overall percentage of CPU used: 
 

 
Figure 15 

 
 

 
Figure 16 

 

We will display the CPU usage on a text box so we will add a label and a box to do so. 
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Figure 17 

Performance counters provide information when they are told to do so. We could do it manually 

by clicking a button but this is too tedious for the user so we will do it on a timer tick. 

 The API is available to developers so application programs can make use of this information. 

https://www.codeproject.com/Articles/8590/An-Introduction-To-Performance-Counters 

https://www.developer.com/net/net/article.php/3356561/Reading-and-Publishing-Performance-

Counters-in-NET.htm 

Timers. 
Timers are clocks that tick at a preconfigured pace. We can use one of them to trigger counter 

updates. We can find them on the tool box: . 

On the properties window we can set the interval. Set this parameter to 500 for 0,5s. Then double 

click the timer icon to switch to the timer1_Tick method: 

private: System::Void timer1_Tick(System::Object^  sender, System::EventArgs^  e) { 
 this->textBox5->Text = Convert::ToString(performanceCounter1->NextValue()); 
}  

It is as simple as moving the value returned by the counter to the text box. 

The final interface could be: 

 

We have just added but not explained the “exit” button. It is always nice to have one but we rely 

on the student’s abilities to program it.  

https://www.codeproject.com/Articles/8590/An-Introduction-To-Performance-Counters
https://www.developer.com/net/net/article.php/3356561/Reading-and-Publishing-Performance-Counters-in-NET.htm
https://www.developer.com/net/net/article.php/3356561/Reading-and-Publishing-Performance-Counters-in-NET.htm
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Chapter 6: student’s work 
At this this point we hopefully have our matrix multiply up and running. What to do next? 

The student is meant to try some changes on the application in order to optimize its performance.  

In chapter 4 we saw how to parallelize the for loop using the default distribution of the overall 

number of iterations among the available number of threads. It is done by the system before 

execution and we have no control over it. 

We can explicitly split the number of iterations into chunks of a certain size and assign them to 

threads either statically or dynamically. 

Static scheduling (chunks of 10 iterations) Dynamic scheduling (chunks of 10 iterations) 
#pragma omp parallel num_threads (N)  
{ 

 #pragma omp for schedule(static,10) 

 

  for(i=0;i<n;i++){ 

   Operations to be 

performed on variable j 

  } 

} 

#pragma omp parallel num_threads (N)  

{ 

 #pragma omp for 

schedule(dynamic,10) 

 

  for(i=0;i<n;i++){ 

   Operations to 

be performed on variable j 

  } 

} 
 

The omp_get_wtime() function will provide useful data to compare the performance of the 

different options. The % CPU counter may provide an explanation to the results. 

The student will try to find and document the best possible settings along with a reasonable 

explanation for the results obtained. 

 

 


