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Abstract 15 

Particles from Gas-Saturated Solutions (PGSS)-drying has been used as a green 16 

alternative to encapsulate omega–3 polyunsaturated fatty acids (n–3 PUFAs) at mild, 17 

non-oxidative conditions. PGSS-dried particles have been compared to those obtained 18 

by conventional drying methods such as spray-drying and freeze-drying, finding 19 

encapsulation efficiencies (EE) up to 98 % and spherical morphology for PGSS- and 20 

spray-dried particles. Freeze-dried powders showed irregular morphology and EE from 21 

95.8 to 98.6 %, depending on the freezing method. Differential scanning calorimetry 22 

(DSC) analysis revealed glass-transition and melting peaks of OSA-starch and a cold-23 

crystallization peak corresponding to the encapsulated n–3 PUFA concentrate. 24 

Compared to conventionally dried powders, PGSS-dried microparticles showed lower 25 

primary and secondary oxidation after 28 days of storage at 4 ºC. Ascorbic acid addition 26 

combined with the mild processing conditions of PGSS-drying yielded particles with a 27 

maximum peroxide value of 2.5 meq O2/kg oil after 28 days of storage at 4 ºC. 28 

  29 
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1. Introduction 30 

An adequate intake of omega–3 polyunsaturated fatty acids (n–3 PUFAs) is 31 

recommended in healthy diet guidelines due to their important benefits (Ruxton, Reed, 32 

Simpson, & Millington, 2004). Long-chain n–3 PUFAs, mainly eicosapentaenoic (EPA, 33 

20:5 n–3) and docosahexaenoic (DHA, 22:6 n–3) acids are eicosanoid precursors, which 34 

are immunomodulatory molecules with a key role in the inflammatory response. EPA 35 

and DHA are claimed to contribute to the normal brain, eye and cardiovascular 36 

functions in adults and help in the normal development of the eyes, the brain and the 37 

nervous system in children (EFSA, 2010). 38 

The perceived health benefits of these compounds have created a strong demand for 39 

EPA and DHA concentrates in the pharmaceutical and food industries. However, n–3 40 

PUFAs are unstable and very prone to oxidation, easily generating lipid hydroperoxides 41 

and free radicals under oxidative conditions. These species negatively affect sensory 42 

properties, since they can decompose into low-molecular-weight volatile compounds 43 

that are perceived as rancid, and what is more, they present potentially cytotoxic, 44 

carcinogenic and mutagenic effects (Niki, 2009; Uluata, McClements, & Decker, 2015) 45 

For these reasons, n–3 PUFA concentrates are often encapsulated in order to protect 46 

them from light and oxygen during shelf life; and natural antioxidants such as 47 

tocopherols, phospholipids, ascorbic acid, or their mixtures are usually added (Baik et 48 

al., 2004; Löliger & Saucy, 1994). 49 

Materials of different nature can be used as n–3 PUFA encapsulating agents: proteins 50 

such as whey protein isolate, sodium caseinate or gelatin, phospholipids such as 51 

lecithin, or polysaccharides such as gum Arabic, carboxymethyl cellulose, maltodextrin, 52 

chitosan, or modified starch are some examples of carrier materials for 53 

microencapsulation of oils rich in n–3 PUFAs (Encina, Vergara, Giménez, Oyarzún-54 
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Ampuero, & Robert, 2016). Among them, n-octenyl-succinic-anhydride modified starch 55 

(OSA-starch) has been chosen in this work because it presents good emulsifying 56 

properties and is suitable to encapsulate oils rich in n–3 PUFAs, as well as other 57 

bioactive compounds such as essential oils and hydrophobic compounds (Carneiro, 58 

Tonon, Grosso, & Hubinger, 2013; de Paz, Martín, Bartolomé, Largo, & Cocero, 2014; 59 

Drusch, Serfert, Scampicchio, Schmidt-Hansberg, & Schwarz, 2007; Jafari, Assadpoor, 60 

He, & Bhandari, 2008; Varona, Martín, & Cocero, 2011). 61 

Different encapsulation techniques can be used to encapsulate n–3 PUFAs, such as 62 

emulsification, spray-drying, freeze-drying, coacervation, in situ polymerization, 63 

extrusion, or fluidized-bed coating (Bakry et al., 2016). Among these, the most widely 64 

used technique in the food and pharmaceutical industries is spray-drying, followed by 65 

freeze-drying. Freeze-drying is often applied to thermolabile and easily oxidizable 66 

compounds due to the protective low temperatures and vacuum conditions involved in 67 

the process. Its main drawback is the energy consumption, linked to the low temperature 68 

and high vacuum conditions as well as the long residence times required to completely 69 

dry the product, which in turn translate into high processing costs. On the contrary, 70 

spray-drying is a low-cost microencapsulation technology which operates in a relatively 71 

simple and continuous way, thus it is commonly used at industrial scale (Bakry et al., 72 

2016).  73 

Prior to the drying step, the non-soluble n–3 PUFAs need to be dispersed into the 74 

encapsulating agent solution, obtaining an oil-in-water (O/W) emulsion. Several 75 

methods can be used to prepare O/W emulsions, such as conventional emulsification 76 

(colloid milling, high speed blending and high-pressure homogenization), ultrasound 77 

(US) assisted emulsification, membrane emulsification, and micro-channel 78 

emulsification (Chatterjee & Judeh, 2015). Among them, US-assisted emulsification has 79 
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grown in importance among the pharmaceutical, cosmetic, and food industries, thanks 80 

to its versatility and the possibility of obtaining high quality food products with 81 

enhanced functional properties (Abbas, Hayat, Karangwa, Bashari, & Zhang, 2013). 82 

US-assisted emulsification can be applied to improve stability and bioavailability of the 83 

dispersed bioactive compounds and, in particular, it can be used to obtain O/W 84 

emulsions with nanometric droplet size and narrow size distribution. Typically, US-85 

assisted emulsification consists on applying low-frequency sound waves of 20-100 kHz 86 

through a metallic sonotrode immersed in the liquid medium, in order to generate 87 

disruptive forces that break down the macroscopic phases to nanosize droplets. The 88 

nano-scale emulsions obtained present interesting functional properties and enhanced 89 

stability against oxidation (Abbas et al., 2013). 90 

Supercritical fluids, and particularly supercritical carbon dioxide (SC-CO2), are a 91 

convenient medium to produce particles loaded with bioactive compounds. Carbon 92 

dioxide is an inert, non-toxic solvent, and is completely released from the product as a 93 

gas once back to atmospheric conditions. Besides, the accessibility of the supercritical 94 

state of carbon dioxide (TC = 31.1 °C; pC = 73.8 bar) and its advantageous physical 95 

properties (high density and diffusivity, and low viscosity) make SC-CO2 the solvent of 96 

choice in many particle formation processes. (Türk, 2014). Among the several available 97 

techniques, the Particles from Gas Saturated Solutions (PGSS) process overcomes the 98 

problems of solubility limitations and high gas consumption of other particle formation 99 

methods using SC-CO2 (Türk, 2014). This technique can be used for drying aqueous 100 

solutions, dispersions or, as in this work, O/W emulsions, in the so-called PGSS-drying 101 

process (Türk, 2014). 102 

Basically, the PGSS-drying technique consists on mixing an aqueous solution with 103 

supercritical carbon dioxide upon saturation, and subsequently expanding the gas-104 
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saturated solution down to atmospheric pressure through a nozzle. This technique can 105 

be used as an alternative to conventional spray-drying, achieving a more efficient 106 

atomization due to the sudden vaporization of the dissolved CO2 and the expansion of 107 

gas bubbles in the solution during depressurization from supercritical to atmospheric 108 

conditions. Both effects improve the atomization of the sprayed solution forming small 109 

droplets, thus reducing the particle size of the dried powder and enhancing the drying 110 

process (Martín & Weidner, 2010; Weidner, 2009). Besides, and because of the intense 111 

and deep cooling caused by the Joule-Thomson effect, it is possible to dry the product at 112 

low temperature (40-80 ºC) (de Paz, Martín, & Cocero, 2012; Weidner, 2009). The 113 

mild-temperature conditions, combined with the intrinsically inert atmosphere due to 114 

oxygen displacement, prevent, or at least delay, oxidative degradation of the 115 

encapsulated bioactive compounds (de Paz et al., 2012; Weidner, 2009). Operating 116 

conditions in the spray tower, particularly temperature and gas-to-product ratio (GPR), 117 

must be taken into account in order to operate above the dew line of the carbon dioxide–118 

water system (Martín & Weidner, 2010), and ensure the complete drying of particles. 119 

In this work, an n–3 PUFA enriched fish oil has been encapsulated by the alternative 120 

and green technology Particles from Gas Saturated Solutions (PGSS)-drying. The main 121 

hypothesis of the study is to explore whether or not the potential benefits of 122 

supercritical carbon dioxide technologies applied to particle formulation and 123 

encapsulation may affect particle properties and oxidative stability of heat-sensitive and 124 

easily oxidizable compounds such as n–3 PUFAs, compared to other conventional 125 

drying methods. This way, the PGSS-dried particles have been compared to those 126 

obtained by spray-drying and freeze-drying, which are commonly applied in the 127 

pharmaceutical, cosmetic, and food industries to dry aqueous solutions and dispersions. 128 

Characterization of the particles obtained by the different drying methods has been 129 
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performed in terms of particle morphology, residual humidity, and particle size 130 

distribution of the reconstituted particles. Besides, encapsulation efficiency and 131 

oxidative stability (primary and secondary oxidation) of the encapsulated n–3 PUFA 132 

concentrate have been monitored over time in the particles formulated with each of the 133 

drying methods. Additionally, an antioxidant (ascorbic acid) has been added to some of 134 

the formulations as a strategy to potentially enhance the oxidative stability of the 135 

encapsulated n–3 PUFA concentrate. 136 

 137 

2. Materials and methods 138 

2.1. Materials 139 

n–3 PUFA concentrate from fish oil, AlgatriumTM Plus, was kindly donated by Brudy 140 

Technology S.L. (Spain). It has been stored at 4 ºC in darkness and N2 atmosphere. Hi-141 

CapTM 100, an octenyl-succinic-anhydride modified starch (OSA-starch) derived from 142 

waxy maize, was provided by Ingredion Inc. (Germany). Carbon dioxide (99.9%) was 143 

provided by Air Liquide S.A. (Spain). Ascorbic acid (L(+)-Ascorbic acid, AA) was 144 

purchased from Panreac AppliChem (Spain). 145 

37% hydrochloric acid (HCl), diethyl ether, 1-butanol, 2-propanol, methanol, 2-146 

thiobarbituric acid (TBA), and trichloroacetic acid (TCA) were provided by VWR 147 

Chemicals (Germany). Hexane, absolute ethanol, Iron(II) sulphate heptahydrate, and 148 

ammonium thiocyanate were purchased from Merck KGaA (Germany). 2,2,4-149 

trimethylpentane (isooctane) and barium chloride dihydrate were supplied by Macron 150 

Fine Chemicals (France) and Panreac AppliChem (Spain), respectively. Cumene 151 

hydroperoxide and 1,1,3,3-tetraethoxypropane (TEP) standards were purchased from 152 

Sigma Aldrich (USA). 153 
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 154 

2.2. Characterization of the n–3 PUFA concentrate 155 

Neutral lipid profile of the n–3 PUFA concentrate has been analyzed by normal-phase 156 

HPLC (NP-HPLC). Separation was carried out at room temperature in a Lichrospher 157 

Diol column (5 mm, 4 mm×250 mm) and detection was performed by evaporative light 158 

scattering (ELSD) (Agilent Technologies 1200 Series, USA) at 35 ºC and 3.5 bar. 159 

Solvent gradient and calibration procedure have been reported elsewhere (Solaesa, 160 

Sanz, Falkeborg, Beltrán, & Guo, 2016). 161 

Fatty acid profile of the n–3 PUFA concentrate has been determined according to the 162 

AOAC Official Method (AOAC International, 2012) in a Hewlett Packard gas 163 

chromatograph (6890N Network GC System) equipped with an auto-sampler (7683B 164 

series) and a flame ionization detector (FID). The separation was carried out in a fused 165 

silica capillary column (Omegawax-320, 30 m×0.32 mm i.d.) with helium (1.8 mL/min) 166 

as carrier gas. Injection and detection temperatures, as well as ramp conditions have 167 

been previously reported (Rebolleda, Rubio, Beltrán, Sanz, & González-San José, 168 

2012). Most of the fatty acids were identified by comparison of their retention times 169 

with those of chromatographic standards (Sigma Aldrich). As indicated by the AOAC 170 

Official Method (AOAC International, 2012), an internal standard (methyl-tricosanoate, 171 

C23:0) was used for quantification purposes.  172 

HPLC with diode array detection (HPLC-DAD) of the n–3 PUFA concentrate was 173 

carried out in order to detect tocopherol isomeric forms and other vitamin E analogs 174 

added to the n–3 PUFA concentrate, as their presence was reported by the provider. The 175 

analytical method is based on the IUPAC official method (Pocklington & 176 

Dieffenbacher, 1988) with slight modifications, as reported in Rebolleda et al., (2012). 177 
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Separation was performed in an ACE 5 silica 250 mm × 4.6 mm column with 1 mL/min 178 

of hexane:2- propanol (99:1) as the mobile phase. An isocratic gradient was used, and 179 

the total run time was 15 min. α-, β-, γ-, and δ-tocopherols were monitored at λ = 296 180 

nm. For identification and quantification of each tocopherol isomer, a calibration curve 181 

with different amounts of the respective standard compound (Sigma Aldrich) was 182 

constructed. 183 

 184 

2.3. Ultrasound-assisted emulsification 185 

O/W emulsions were formulated in a weigh proportion of 70:24:6 (water:carrier:n–3 186 

PUFA concentrate), which in preliminary experiments was found to be the optimal in 187 

terms of obtaining the smallest droplet size. First, an aqueous solution of the 188 

encapsulating agent was prepared by dissolving 24.0 g of Hi-Cap™ 100 in 70.0 mL of 189 

distilled water. Subsequently, 6.0 g of n–3 PUFA concentrate were added drop by drop 190 

to the carrier solution under continuous stirring. Then, the mixture was stirred for 191 

5 minutes to obtain a pre-emulsion, which was subsequently processed in a 20 kHz 750 192 

W ultrasonic liquid processor Vibra-Cell 75043 (Sonics & Materials Inc.) with a 193 

Ø13 mm titanium alloy sonotrode. Based on previous studies, amplitude was set at 100 194 

% and sound waves were delivered in pulses (5 s On/5 s Off) in order to avoid excessive 195 

heating of the sample, for a total processing time of 180 s. O/W emulsions were 196 

produced in batches of 100 g. 197 

 198 

2.4. PGSS-drying 199 

O/W emulsions were processed using the PGSS-drying technique in order to remove 200 

water and obtain a solid powder with the encapsulated n–3 PUFA concentrate loaded 201 
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into the OSA-starch microparticles. Fig. 1 presents the schematic flow diagram of the 202 

PGSS-drying apparatus, in which CO2 was fed by a membrane pump (LEWA) and 203 

preheated using a silicone bath before injection into the static mixer, where it was mixed 204 

with the O/W emulsion at the selected pressure and temperature. The CO2 mass flow 205 

rate was measured with a Coriolis flow meter (Danfoss) with an accuracy of ± 0.1 kg 206 

CO2/h. Temperature before and after the static mixer was measured by means of Pt100 207 

thermoresistances (accuracy of ± 0.1 K), being the later under PID control. Pressure in 208 

the CO2 line and after the static mixer was measured with pressure transmitters (DESIN 209 

Instruments) with an accuracy of ± 0.05 MPa. Bourdon manometers (Nuova Firma) 210 

were installed to provide secondary lectures of the operating pressure.  211 

The O/W emulsion was pumped into the static mixer by a GILSON 305 piston pump 212 

(max. flow rate: 25 ± 0.1 mL/min). The gas-saturated emulsion was then expanded into 213 

the spraying tower through a capillary nozzle with an internal diameter of 400 µm 214 

(Spraying Systems Co., Ref.: PF1650-SS). The spraying tower was made of PVC and 215 

heated by electrical resistances. Temperature in the spray tower was also measured with 216 

a Pt100 probe and controlled using a PID. CO2 was vented off the spraying tower and 217 

passed through a water vapor condenser before final release. As security elements, a 218 

rupture disk, check valves, and a relief valve were installed at different points in the 219 

high-pressure circuit. 220 

Typically, a PGSS-drying experiment began with the preheating of the system up to the 221 

desired temperature in the static mixer, fixed at 110 ºC, and in the spraying tower, 222 

which was set at 55 ºC. When temperature was achieved, CO2 was pumped up to the 223 

desired pressure, which was fixed at 10.0 MPa. Pressure in the static mixer and 224 

temperatures in the static mixer and the spraying tower were selected based on previous 225 

studies (Varona et al., 2011). Once temperature and pressure conditions were stable, the 226 
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emulsion pump was started at a flow rate such that the desired GPR, which was selected 227 

at 30 g/g, was obtained. After all the O/W emulsion was processed, CO2 was allowed to 228 

flow through the system at the same pressure and temperature conditions during 15 229 

minutes in order to completely dry the particles. After that, the system was 230 

depressurized and particles were collected from the walls and bottom of the spraying 231 

tower and stored in darkness and refrigeration at 4 ºC for subsequent analyses. 232 

 233 

2.5. Spray-drying 234 

Spray-drying is a conventional, well-known drying technique which is widely used in 235 

the pharmaceutical, cosmetic and food industries; thus, it was chosen to compare the 236 

characteristics of the powder that may be obtained conventionally to those of the 237 

powder obtained by the alternative PGSS-drying process. The spray-drying process was 238 

carried out in a commercial Buchi B-290 mini Spray-dryer. The O/W emulsion, 239 

obtained as described in section 2.3, was fed into the spray-drying apparatus at an inlet 240 

temperature of 155 ºC, and %pump of 8 %, which was equivalent to a mass flow of 241 

emulsion of 3.0 g/min. Outlet temperature was 100 ºC. The emulsion was sprayed 242 

through a nozzle with 1.5 mm diameter and dried under a N2 flow of 360 L/h. 243 

 244 

2.6. Freeze-drying 245 

O/W emulsions obtained by the US-assisted method described in section 2.3 were 246 

submitted to two different freezing methods: (1) conventional at -20 ºC overnight, and 247 

(2) freezing with liquid nitrogen (-196 ºC). Samples were then equilibrated at -80 ºC for 248 

2 h and submitted to freeze-drying in a Labconco Freeze Dry System at 1.5·10-4 mbar 249 

during 48 h. These two different freezing methods were chosen in order to evaluate the 250 
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effect of the freezing step, since the slower conventional freezing process is more likely 251 

to form large crystals of water, which could adversely affect the emulsion stability and 252 

structure, whereas the rapid freezing achieved with liquid nitrogen could better preserve 253 

the physical structure of the emulsion. 254 

 255 

2.7. Characterization of the O/W emulsion 256 

2.7.1. Droplet size analysis of the O/W emulsions 257 

The droplet size distribution of the O/W emulsions (original and reconstituted) was 258 

measured by a Laser Diffraction (LD) equipment (Malvern Mastersizer 2000). A small 259 

amount of sample was suspended in the suspension container filled with distilled water 260 

under gentle agitation. In the case of the reconstituted O/W emulsions, the dried 261 

powders were firstly dissolved in distilled water, maintaining the original ratio of 262 

70:24:6 wt. (water:carrier:n–3 PUFA concentrate). 263 

Droplet size measurements are reported as relative volume distribution and defined by 264 

the mean diameter over volume (DeBroukere mean, D[4,3]) and the volume/surface 265 

mean diameter (Sauter mean, D[3,2]), calculated as in Eqs. 1 and 2, respectively. 266 
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where Di is the diameter of the ith particle. 269 
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The median particle size (d0.5), defined as the maximum particle diameter below which 270 

50 % of the sample volume exists, is also reported. The span value, defined in Eq. 3, 271 

was also calculated. 272 

0.9 0.1

0.5

span = d d
d
−          (3) 273 

where dx is the maximum particle diameter below which x% of the sample volume 274 

exists. Span values near to 1 indicate a narrow particle size distribution (PSD). 275 

 276 

2.7.2. Emulsion stability 277 

Physical stability of the O/W emulsion was analyzed by static multiple scattering in a 278 

vertical scan analyzer Turbiscan Lab Expert (Formulaction Inc.) with ageing station 279 

AGS. By means of two optical sensors, the instrument measures the light transmitted 280 

through the emulsion (180º from the incident light, transmission, T) and the light 281 

backscattered by the emulsion droplets (45º from the incident light, backscattering, BS). 282 

The scanning process is made vertically along the glass cell from bottom to top, and the 283 

T/BS are each plotted as a function of the emulsion height in the glass cell. By 284 

monitoring the T/BS profiles at different time intervals, physical changes in the 285 

emulsion can be followed over time, which gives a detailed overview of dispersion 286 

stability or instability. In the current work, the stability of the original emulsion was 287 

monitored at 4 h intervals during 24 days. Emulsion samples were kept in the ageing 288 

station at a constant temperature of 25 ºC. As variations in T profiles were lower than 289 

2%, only BS profiles at different storage times were analyzed in this study.  290 

 291 
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2.7.3. Density of the O/W emulsions 292 

Density of the O/W emulsions was measured in an Anton Paar DMA 5000 instrument at 293 

25 ºC. Measurements were carried out in triplicate. 294 

 295 

2.8. Characterization of the dried powders 296 

2.8.1. Yield, moisture, encapsulation efficiency and bioactive loading 297 

Yield of particles was calculated as the ratio between the mass of collected particles 298 

(mcollected particles) and the theoretical mass fed to the PGSS-drying, spray-drying, or 299 

freeze-drying apparatus minitial feed, expressed as weight percentage (Eq. 4). 300 

( ) collected particles

initial feed

m   
Yield % 100

m
= ⋅        (4) 301 

Moisture content of the dried particles was determined gravimetrically. Samples (ca. 302 

0.5 g) of particles obtained by the different methods used in this work were weighed 303 

before and after drying in an oven at 120 ºC until constant weight.  304 

Encapsulation efficiency (EE) was determined according to the method described by 305 

Wang et al. (Y. Wang, Liu, Dong, & Selomulya, 2016) with some modifications. For 306 

the non-encapsulated oil determination, samples (ca. 1.0 g) of particles obtained by the 307 

different methods used in this work were suspended with 25 mL of hexane in a Falcon 308 

centrifuge tube, which was vortexed for 15 s at room temperature and centrifuged at 309 

3000 rpm during 20 min. Immediately afterwards, the supernatant was taken and 310 

filtered, and its oil content was measured spectrophotometrically at λ = 286 nm. The 311 

same procedure was repeated two additional times to extract the potentially remaining 312 

non-encapsulated oil. A calibration curve was previously constructed with known 313 

quantities of n–3 PUFA concentrate dissolved in hexane. 314 
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Total oil in the dried particles obtained by the different methods used in this work was 315 

determined by acid digestion of approximately 1.0 g of powder with 37% HCl, and 316 

subsequent extraction with diethyl ether and petroleum ether, following the AOAC 317 

Official Method (AOAC International, 2005). After centrifugation at 3000 rpm during 318 

20 min, the solvent phase with the extracted oil was taken and transferred to tared 319 

round-bottom flasks in order to evaporate the solvent under vacuum (Heidolph rotary 320 

evaporator). Total oil in the samples was determined by mass difference of the initial 321 

clean round-bottom flask and that containing the extracted oil residue. As a blank, the 322 

same procedure was also followed with known quantities (ca. 1.0 g) of the carrier alone 323 

(Hi-Cap™ 100). The fat traces found in the carrier were subtracted from the total oil 324 

content of the powders. 325 

Encapsulation efficiency (EE) was calculated from Eq. 5. 326 

( ) TO nEOEE %  = 100
TO
−

⋅         (5) 327 

where TO is the total oil content and nEO is the non-encapsulated oil.  328 

The bioactive loading, which is also an important parameter of microencapsulated 329 

bioactive compounds (Encina et al., 2016), has been also calculated. It can be referred 330 

as to the total oil content (TO), expressed as mg oil/g sample. 331 

 332 

2.8.2. Particle size analysis of the dried powders 333 

Particle size analysis of the dried powders was carried out in a Malvern Mastersizer 334 

2000 equipment, following the same procedure as in the original O/W emulsion (see 335 

section 2.7.1), yet dispersing the particles in absolute ethanol to avoid dissolution of the 336 

encapsulating agent. 337 
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 338 

2.8.3. Scanning electron microscopy (SEM) 339 

Morphology of the dried particles was observed in a Scanning Electron Detector 340 

microscope JEOL JSM-6460LV with Energy Dispersive X-ray (JEOL Ltd. Japan) 341 

operating at 20 kV. Samples were gold-sputtered and observed with magnifications of 342 

1500, 5000 and 10000x for PGSS- and spray-dried particles, and 50, 400 and 2000 or 343 

3000x for the freeze-dried powders. 344 

 345 

2.8.4. Differential scanning calorimetry (DSC) 346 

A TA Instruments Q200 differential scanning calorimeter with refrigerated cooling 347 

system (RCS90) and nitrogen purge gas was used. Melting point and enthalpies of 348 

indium were used for temperature and heat capacity calibration. Samples (ca. 10 mg) 349 

were placed in TA Tzero 40-μL aluminum pans and closed with hermetic aluminum lids 350 

with a pinhole. An empty pan closed with pinholed lid was used as a reference. Starting 351 

temperature of the DSC analysis was set at 40 ºC, and held for 30 min. Then, the system 352 

was cooled down to -80ºC at 10ºC·min-1. After an isothermal period of 30 min, samples 353 

were heated from -80 ºC to 350 ºC at a constant heating rate of 10ºC·min-1. DSC 354 

thermograms were recorded and analyzed with the Advantage v. 5.5.20 software (TA 355 

Instruments). 356 

 357 

2.9. Measurement of lipid oxidation 358 

Oxidative status of the dried powders was determined in terms of primary oxidation 359 

(peroxide value, PV) and secondary oxidation (Thiobarbituric Acid Reactive 360 

Substances, TBARS). To observe the effect of each drying method, PV and TBARS 361 
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were determined in the n–3 PUFA concentrate, as well as in the O/W emulsions before 362 

drying. 363 

For the dried powders, PV and TBARS were measured right after each drying method 364 

(PGSS-drying, spray-drying, and freeze-drying) and monitored over a 28-day storage 365 

period. Dried powders were placed in closed containers and stored at 4 ºC in darkness. 366 

Samples were withdrawn at 7-day intervals and dissolved in distilled water to obtain 367 

reconstituted emulsions with the original water:carrier:n–3 PUFA concentrate 368 

proportion (70:24:6 wt.). PV and TBARS analyses were carried out as described below. 369 

 370 

2.9.1. Peroxide Value 371 

PV was measured spectrophotometrically with a Hitachi U-2000 apparatus and 372 

following the method described by Shanta et al. (Shantha & Decker, 1994) with slight 373 

modifications. In brief, 10-50 mg of oil or 0.025-1.0 mL of emulsion, depending on the 374 

expected PV, were taken in a centrifuge tube and mixed with 1.5 mL of isooctane:2-375 

propanol (3:1 v/v). The tube was vortexed for 15 s and centrifuged at 5000 rpm during 376 

10 min. Immediately afterwards, 0.2 mL of the supernatant were transferred to a new 377 

centrifuge tube and 2.8 mL of methanol:1-butanol (2:1 v/v) were added. After vortexing 378 

for 15 s, 15 μL of 3.94 M ammonium thiocyanate and 15 μL of a Fe2+ solution were 379 

added. The Fe2+ solution was obtained by mixing 0.132 M barium chloride in 0.4 M 380 

HCl and 0.144 M Iron(II) sulphate heptahydrate (1:1 v/v), centrifuging at 5000 rpm for 381 

10 min, and taking the supernatant. Samples were vortexed again for 15 s and kept in 382 

darkness for 20 min. Blanks were prepared the same as above with 0.3 mL of distilled 383 

water instead of the oil or emulsion sample. Hydroperoxyde concentration was 384 

determined spectrophotometrically at λ = 510 nm. A calibration curve was constructed 385 
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using known concentrations of cumene hydroperoxide, ranging from 0.13 to 3.28 mM. 386 

Results were expressed in milliequivalents of oxygen per kg of n–3 PUFA concentrate 387 

(meq O2/kg oil). 388 

 389 

2.9.2. TBARS analysis 390 

TBARS present in the n–3 PUFA concentrate were determined following the method 391 

described by Ke and Woyewoda (Ke & Woyewoda, 1979). Briefly, 10 mg of n–3 PUFA 392 

concentrate were weighed in a screw-capped glass test tube. 5 mL of TBA work 393 

solution, which was prepared by mixing 0.04 M 2-thiobarbituric acid in glacial acetic 394 

acid, chloroform, and 0.3M sodium sulphite (12:8:1 v/v), were also added to the screw-395 

capped glass test tube. The mixture was vortexed for 15 s and incubated in a water bath 396 

at 95 ºC during 45 min. After cooling down the test tubes under running cold water, 2.5 397 

mL of 0.28 M trichloroacetic acid were added to the samples, which were then mixed 398 

by inversion. Samples were then centrifuged at 2500 rpm for 10 min in order to separate 399 

the pink aqueous phase from the chloroform phase. Absorbance of the aqueous phase 400 

was measured at λ = 538 nm in a Hitachi U-2000 spectrophotometer. Blanks were 401 

prepared the same as above, yet without the oil, and subtracted from the absorbance 402 

measurement.  403 

TBARS analysis of the original and reconstituted O/W emulsions was carried out 404 

following the method described by Mei et al. (Mei, McClements, Wu, & Decker, 1998) 405 

with slight modifications. Briefly, 0.025-1.0 mL of emulsion, depending on the 406 

expected oxidative status, were taken in screw-capped glass test tubes. Distilled water 407 

was used to complete to 1.0 mL if necessary. Subsequently, 2 mL of a TCA/TBA 408 

mixture – which was prepared by dissolving 7.5 g of TCA into 10 mL of 0.25M HCl, 409 
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adding this solution to 0.1875 g of TBA and completing to volume with 0.25M HCl in a 410 

50 mL volumetric flask – were added and the glass test tube was tightly closed, 411 

vortexed for 15 s and immersed in a water bath at 95 ºC during 15 min. Then the vials 412 

were cooled down under running cold water and centrifuged at 5000 rpm during 10 min. 413 

Immediately afterwards, the supernatant was collected and its absorbance measured in a 414 

Hitachi U-2000 spectrophotometer at λ = 538 nm. Blank runs were also performed the 415 

same as above, but without adding the emulsion, and its absorbance subtracted from the 416 

measurements. 417 

TBARS concentration in the emulsion and the n–3 PUFA concentrate samples was 418 

determined using a TEP standard curve with concentrations ranging from 2.5 to 20 nM. 419 

Results were expressed in mg malondialdehyde equivalents (MW = 72.06 g/mol) per kg 420 

of n–3 PUFA concentrate (mg MDA/kg oil). 421 

 422 

2.10. Statistical analysis 423 

All results reported in this work represent the average of at least three independent 424 

measurements. Drying experiments performed in this work have been duplicated. 425 

Statistical analyses were performed using Statgraphics Centurion XVII software. 426 

Statistical significance was determined by analysis of variance (ANOVA) using the 427 

Fisher’s least significant difference test. Results were deemed as statistically significant 428 

when p < 0.05. 429 

 430 
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3. Results and discussion 431 

3.1. Characterization of the n–3 PUFA concentrate 432 

Results obtained in the characterization analysis are summarized in Table S-1 of the 433 

provided supplementary material. As it can be seen from Table S-1a, the fatty acid 434 

profile of the n–3 PUFA concentrate is constituted by more than 90 % n–3 PUFAs, 435 

being 73.49 % identified as DHA. Neutral lipid profile of the n–3 PUFA concentrate 436 

(Table S-1b) showed that more than the 75 % of the neutral lipids in the n–3 PUFA 437 

concentrate are in the form of triacylglycerides, with 21.6 % being in the form of fatty 438 

acid ethyl-esters. Traces of diacylglycerides and monoacylglycerides (1.2% and 0.7 %, 439 

respectively) were also found. The high content of triacylglycerides is an important 440 

feature of the n–3 PUFA concentrate, since these compounds are the natural form of 441 

food lipids and they may present better bioavailability and stability against oxidation 442 

(Rubio-Rodríguez et al., 2010). Tocopherol analysis by HPLC-DAD revealed a racemic 443 

mixture of tocopherol added as antioxidant (again, this is in consonance with 444 

consumer’s preference for natural sources). α-, β-, γ-, and δ-tocopherol isomers were 445 

identified and quantified. Results are showed in Table S-1c. 446 

 447 

3.2. Characterization of the O/W emulsion 448 

3.2.1. Droplet size of the O/W emulsions 449 

Results from the analysis of droplet size distribution are reported in Table 1 for the 450 

original and reconstituted O/W emulsions. In general, similar values for D[4,3] and 451 

D[3,2] were found in all samples, with the exception of the conventionally freeze-dried 452 

powder that showed significantly higher values for both D[4,3] and D[3,2], which 453 
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means that the reconstituted emulsion from the conventionally freeze-dried powder 454 

presented larger mean diameters both in volumetric and surface basis, respectively.  455 

Median droplet size by volume (d0.5) of the emulsion is sub-micrometric, with d0.5 = 456 

0.114 µm and a D[4,3] and D[3,2] of 0.144 µm and 0.114 µm, respectively. On the 457 

other hand, the drying methods proposed in this work significantly increased d0.5 after 458 

reconstitution, with the exception being the freeze-dried particles with liquid N2, in 459 

which no statistically significant differences were found with the original emulsion (p < 460 

0.05). Still, most droplet populations were around 0.130 μm for particles obtained by 461 

PGSS-drying, freeze-drying and spray-drying methods, which demonstrates that the 462 

proposed drying methods do not produce aggregation of oil droplets. The span values 463 

followed the same trend as d0.5, with original emulsion < freeze-drying (liq N2) < spray-464 

drying ≈ freeze-drying (-20 ºC) < PGSS-drying. The higher span values in the 465 

reconstituted emulsions may be due to higher polydispersity.  466 

 467 

3.2.2. Emulsion stability 468 

Physical stability of the US-assisted O/W emulsion was analyzed by static multiple 469 

scattering. Changes in the backscattering profile (ΔBS) of the O/W emulsion sample 470 

were recorded every 4 h during 24 days of storage at 25 ºC and plotted vs. time. Results 471 

are provided as supplementary material in Fig. S-1. As shown in this figure, ΔBS in the 472 

top-section reached 5% increment on day 2 and started to decrease in the lower section 473 

(|ΔBS| > 2%) on day 5, indicating creaming destabilization due to phase separation and 474 

migration of the lighter oil droplets to the top zone. Moreover, a slight BS increase over 475 

time in the middle section of the glass cell can be seen (Fig. S-1), indicating emulsion 476 

droplet size slightly increased over the 24-day storage period.  477 
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 478 

3.2.3. Density of the O/W emulsions 479 

Density measurements were carried out for the original emulsion as well as for the 480 

reconstituted dried powders. Results obtained are shown in Table 1. 481 

No statistical difference (p < 0.05) was found between the densities of the original and 482 

reconstituted emulsions, being those the means of three independent measurements. 483 

Thus, the average value of 1.091281 g·cm-3 was used for the volume-to-mass 484 

transformations necessary in the PV and TBARS calculations. 485 

 486 

3.3. Characterization of the dried powders 487 

3.3.1. Yield and bioactive loading 488 

Calculated yield of particles and loading of fish oil concentrate of each of the proposed 489 

drying methods is showed in Table 1. The spray-drying method exhibits the lowest 490 

yield, which is because the particles deposited on the wall of the spraying tower were 491 

collected separately and finally not considered due to its low oxidative quality (results 492 

not shown). In the PGSS-drying method, some of the finer particles were blown away 493 

by the vented CO2 and deposited in the condenser. This wet powder was not collected, 494 

slightly reducing the final yield. In the case of the freeze-dried particles, the observed 495 

yield is very close to unity. This trend was also observed by other authors (Lévai et al., 496 

2017) and may be attributed to the one-pot processing and the preservation of the 497 

emulsion structure during freezing. 498 

Regarding the bioactive loading, it is close to the maximum theoretical loading of 499 

200 mg/g sample in all cases, and no statistical differences (p < 0.05) are observed no 500 

matter the drying method used to obtain the particles. Nevertheless, the spray-dried 501 
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particles present a slightly lower average value, which may be attributed to the higher 502 

moisture content that will be discussed next. On the other hand, the freeze-dried 503 

particles present the highest fish oil concentrate loading, which is possibly linked to the 504 

aforementioned preservation of the emulsion integrity. 505 

 506 

3.3.2. Moisture content 507 

The moisture content of the particles prepared with different drying methods is showed 508 

in Table 1. The spray-dried particles showed the highest residual humidity, whereas the 509 

PGSS-drying technique gave the lowest moisture value. Humidity values for the spray-510 

dried particles found in this work are higher than those reported in the literature, which 511 

are usually around 1-3 % (Carneiro et al., 2013; Hogan, McNamee, O’Riordan, & 512 

O’Sullivan, 2001). In the case of the freeze-dried particles, no significant difference in 513 

the final humidity was found (p < 0.05), no matter the freezing method used 514 

(conventional at -20 ºC or with liquid nitrogen). 515 

 516 

3.3.3. Encapsulation efficiency 517 

Encapsulation efficiency is one of the most important quality parameters in 518 

encapsulated fish oil and n–3 PUFA concentrates. The presence of free oil may 519 

adversely affect the physical properties of the final product, such as flowability and bulk 520 

density, and would also enhance lipid oxidation (Y. Wang et al., 2016). Table 1 shows 521 

the initial encapsulation efficiency of the drying methods proposed in this work. 522 

In general, high initial encapsulation efficiencies, no matter the drying method used, 523 

were obtained. It can be noticed that the powder obtained by freeze-drying with 524 

conventional -20ºC freezing presents a significantly lower (p < 0.05) initial 525 
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encapsulation efficiency, with EE = 95.8 ± 0.2 % (Table 1). As it has been previously 526 

mentioned, it is likely that partial destabilization of the emulsion and release of small 527 

amounts of n–3 PUFA concentrate may have happened, probably due to the mechanical 528 

and hygroscopic forces caused by the growing of large water crystals during the slow 529 

freezing process. By comparison, freeze-dried particles obtained with liquid nitrogen 530 

present the highest encapsulation efficiency with 98.6 ± 0.1 % (Table 1), which reflects 531 

that the emulsion casting is preserved with a rapid and deep freezing step. Similar 532 

results have been also obtained by Lévai et al. (Lévai et al., 2017) dealing with freeze-533 

dried quercetin encapsulated in soybean lecithin. Still, more than 95 % of the total n–3 534 

PUFA concentrate loading was encapsulated by conventional freeze-drying, and almost 535 

98 % encapsulation efficiency was obtained by PGSS-drying (97.9 ± 0.3 %), which is 536 

similar to the EE value of the spray-dried microparticles (97.5 ± 0.1 %). Carneiro et al. 537 

(Carneiro et al., 2013) compared combinations of maltodextrin and Hi-Cap and other 538 

wall materials to encapsulate flaxseed oil by spray-drying, finding Hi-Cap as the best in 539 

terms of EE, with 95.7 %. Results obtained in this work are slightly higher in all cases 540 

except for conventionally freeze-dried particles, which may be attributed to the 541 

optimized US-assisted emulsification process. 542 

Surface oil of the dried particles has been analyzed over time during 28 days of storage 543 

at 4ºC in darkness and ambient oxygen concentration to check if some of the n–3 PUFA 544 

concentrate could have been released. Results obtained are summarized in Fig. S-2 of 545 

the supplementary material. As Fig. S-2 shows, spray-dried particles released around 546 

2% of the total encapsulated n–3 PUFA concentrate during the first 7 days and then the 547 

release continued at a lower rate, down to 94 % encapsulated oil after 28 days. In the 548 

case of the conventionally freeze-dried particles, a slight decrease in the encapsulated 549 

oil can be seen after the second week of storage; whereas for the PGSS- and freeze-550 
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dried particles frozen with liquid N2, no significant changes in the encapsulation 551 

efficiency were noted during the first 21 days and only a slight decrease started to occur 552 

after the fourth week of storage. 553 

 554 

3.3.4. Particle Size Analysis 555 

The particle size distribution plot of PGSS-dried and spray dried particles is provided in 556 

Fig. 2. Particle mean diameters (d0.5) varied from 28.605 µm for PGSS-dried particles to 557 

35.375 µm for the spray-dried particles. The span value of the PGSS-dried particles 558 

(1.663) was also lower than that of the spray-dried particles (6.082). 559 

The microparticles produced by spray drying showed a bimodal distribution with a 560 

group of particles centered around 30 µm and a second population around 250 µm. This 561 

justifies the high span value and may be linked to particle swelling during drying as 562 

well as to agglomeration due to the higher moisture content. This agglomerated clusters 563 

are also visible in the SEM images showed in Fig. 3b and discussed in the next section.  564 

On the other hand, the PGSS-dried particles show a monomodal particle size 565 

distribution with smaller mean diameter. As it has been reported in previous works (de 566 

Paz et al., 2012), the effective atomization caused by CO2 vaporization may have led to 567 

the production of smaller and monodisperse particles.  568 

 569 

3.3.5. Particle morphology (SEM) 570 

Visual morphology of the dried powders can be observed in the SEM micrographs 571 

(Fig. 3). Both PGSS- and spray-dried particles present spherical morphology. For the 572 

PGSS-dried particles, small spheres with diameters ranging from 2 µm to 5 µm can be 573 
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observed together with some larger agglomerates around 10-20 µm diameter (Fig. 3a). 574 

Fractured particles are also seen in some micrographs, showing a porous internal 575 

structure in which the n–3 PUFA concentrate is probably encapsulated. As it has been 576 

also observed in the particle size analysis, spray-dried particles show more variance in 577 

size. A small population of microparticles around 2 µm was detected together with 578 

some specimens larger than 20 µm and particle clusters around 150 µm (Fig. 3b), which 579 

is also in accordance with the results obtained in the particle size analysis (section 580 

3.3.4). This variety in size has been also reported in the literature (Carneiro et al., 2013), 581 

and seems to be a typical characteristic of particles produced by spray drying. Spray-582 

dried particles also showed a rougher surface than PGSS-dried samples, with more 583 

imperfections or ‘teeth’. These surface depressions are associated to the collapse of the 584 

particle hollow core once the crust is formed during the initial stages of drying. Similar 585 

morphological characteristics have been also found in the literature, either with OSA-586 

starch as encapsulating agent (Carneiro et al., 2013), or with other materialas such as β-587 

glucans (Salgado, Rodríguez-Rojo, Alves-Santos & Cocero, 2015). 588 

In the case of the freeze-dried particles, larger and more irregular particles have been 589 

produced. Conventionally freeze-dried powder presents a flakey or scaly appearance, 590 

forming planar structures with some dimensions being larger than 100 µm (Fig. 3c). 591 

Some dents can be seen in the surface of several particles, probably corresponding to 592 

the voids left by water crystals after sublimation. In larger magnifications (3000x) a 593 

porous internal structure can be also appreciated, being the n–3 PUFA concentrate 594 

likely encapsulated inside these vesicles. In the case of the freeze-dried powder frozen 595 

with liquid N2 (Fig. 3d), a powder finer than the conventionally frozen (Fig. 3c) has 596 

been obtained. Some particles show an alveolar structure, which may have been formed 597 
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by liquid nitrogen boiling during freezing of the O/W emulsion. These alveolar holes 598 

present diameters around 5-7.5 µm. 599 

 600 

3.3.6. Differential Scanning Calorimetry (DSC) 601 

DSC runs of PGSS-dried particles, modified OSA-starch (Hi-Cap 100) used as a carrier, 602 

and n–3 PUFA concentrate revealed cold-crystallization, glass-transition (gelatinization) 603 

and melting peaks. The peak temperatures of these thermal events are summarized in 604 

Table 2. Endothermic peaks near 80 ºC were observed in the PGSS-dried and Hi-Cap 605 

100 samples, which probably correspond to the glass transition (gelatinization) of OSA-606 

starch. A second endothermic peak was found around 220 ºC in both PGSS-dried 607 

particles and Hi-Cap 100, which may be linked to the melting of OSA-starch. Similar 608 

glass-transition and melting temperatures have been reported in the literature for this 609 

polymer (Yu & Christie, 2001). 610 

In the lower temperature range, an exothermic cold-crystallization peak was noticeable 611 

for the n–3 PUFA concentrate and for the PGSS-dried particles, which may correspond 612 

to some lipid compound of the n–3 PUFA concentrate transitioning from liquid to solid 613 

state. This assumption can be corroborated by the studies of Tolstorebrov et al. 614 

(Tolstorebrov, Eikevik, & Bantle, 2014), in which cold-crystallization peaks in the 615 

range -75 to -55 ºC have been reported for some olein-, linolenin-, and linolein-616 

containing tryacylglycerides, which are minoritary constituents of the n–3 PUFA 617 

concentrate (Table S-1a). The slightly lower crystallization temperature observed in the 618 

PGSS-dried particles compared to the n–3 PUFA concentrate alone (Algatrium™ Plus) 619 

is probably linked to the particle shell offering heat transfer resistance to the 620 

encapsulated oil, and thus delaying the cold crystallization event. 621 
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 622 

3.4. Oxidative stability of the dried powders 623 

Peroxide value (PV) and thiobarbituric acid reactive substances (TBARS) have been 624 

systematically determined in the PGSS-dried powders with and without ascorbic acid 625 

(AA) during 28 days of storage at 4 ºC and dark conditions. In order to determine the 626 

initial oxidative status, PV and TBARS were measured in the n–3 PUFA concentrate 627 

and in the original emulsion right after US-assisted emulsification. With the purpose of 628 

comparing the different drying methods used in this work, PV and TBARS of the spray-629 

dried and the freeze-dried particles were measured after formulation of the powders 630 

(day 0) and after 28 days of storage under the same conditions as the PGSS-dried 631 

particles (4ºC, darkness). Results obtained are summarized in Fig. 4. 632 

Fig. 4a shows that PV increases from 1.64 ± 0.05 meq O2/kg oil in the n–3 PUFA 633 

concentrate up to 5.6 ± 0.3 meq O2/kg oil during the US-assisted emulsification process, 634 

which slightly surpasses the maximum limit of 5 meq O2/kg oil for fish oil concentrates 635 

intended for direct human consumption (Codex Alimentarius Comission, 2017). It is 636 

likely that the high energy input involved in the ultrasonication process promoted a 637 

temperature increase that may negatively affect the oxidative status of the n–3 PUFA 638 

concentrate (Abbas et al., 2013). As a strategy to prevent primary oxidation during US-639 

assisted emulsification, 20 mM ascorbic acid (AA) was added to the emulsion 640 

formulation. AA concentration was selected based on Uluata et al. (Uluata et al., 2015) 641 

studies on lipid oxidation in O/W emulsions.  642 

As it can be seen in Fig. 4a inset (O/W emulsion), the antioxidant successfully protected 643 

the n–3 PUFA concentrate and even reduced the PV of the emulsion down to 0.19 ± 644 

0.03 meq O2/kg oil. This behaviour has been also observed by Uluata et al. in O/W 645 

emulsions with AA (Uluata et al., 2015) and it is likely related to AA’s ability to 646 
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inactivate free radicals such as lipid hydroperoxides. Other mechanisms can be also 647 

involved in the observed antioxidant activity, since AA can act as an oxygen scavenger 648 

thanks to the enediol group in carbons 2 and 3 (Johnson, 1995; Liao & Seib, 1988), or 649 

even play a synergistic role by means of regenerating other antioxidants such as the 650 

tocopherol originally present in the n–3 PUFA concentrate (Reische, Lillard, & 651 

Eitenmiller, 2008). However, it is not easy to determine which of these pathways is 652 

taking place in any given food system (Uluata et al., 2015) and it is likely that all of 653 

them occur simultaneously. 654 

If we focus on the PV results obtained after formulation of the dried particles (Fig. 4a 655 

day 0), it can be seen that PGSS-drying promoted a slight PV increase up to 5.9 ± 1.5 656 

meq O2/kg oil in the emulsion without AA, although this value is not significantly 657 

different (p < 0.05) from the PV of the original emulsion. Furthermore, AA addition had 658 

a significant (p < 0.05) effect on the PV of the PGSS-dried particles, since only a slight 659 

increase from 0.19 ± 0.03 to 0.5 ± 0.1 meq O2/kg oil was observed in the PGSS-dried 660 

particles with antioxidant (Fig. 4a day 0). On the other hand, the spray-drying process 661 

yielded particles with much lower oxidative quality (PV = 28.0 ±1.6 meq O2/kg oil). As 662 

some authors have pointed out for the spray-drying process (Drusch & Berg, 2008; H. 663 

Wang et al., 2011), it is likely that the rapid formation of the particle shell increased the 664 

resistance to evaporation of water trapped inside the particle core, promoting a rapid 665 

temperature increase in the particles and prolonging the n–3 PUFA exposure to high 666 

temperatures, thus promoting oxidation and increasing the PV after spray-drying 667 

formulation. The freeze-drying process with liquid nitrogen achieved good results, with 668 

PV = 4.6 ± 1.8 meq O2/kg oil, which is not statistically different (p < 0.05) from that of 669 

the original emulsion (Fig. 4a day 0). This result can be related to the freeze-drying 670 

process being a degradation-free technology, since the samples are not submitted to 671 
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high processing temperatures and processed in absence of light and in an almost inert 672 

atmosphere due to vacuum conditions. Unexpectedly, the conventionally frozen 673 

emulsion did overcome oxidation despite the favourable processing conditions, showing 674 

a PV = 12.4 ± 1.5 meq O2/kg oil (Fig. 4a day 0). This is likely due to oxygen contact 675 

during the conventional freezing step, in which the samples were held overnight at -676 

20ºC under ambient oxygen concentration. 677 

In view of the results (Fig. 4a day 0), we can infer that PGSS-drying is a suitable 678 

method to formulate dried particles loaded with n–3 PUFAs, more so if we combine the 679 

mild processing conditions with the addition of an antioxidant such as AA. As it has 680 

been previously stated, the short residence time of the O/W emulsion in the PGSS-681 

drying system as well as the inert CO2 atmosphere prevent the loaded bioactive 682 

compounds from degradation (Weidner, 2009) and as such, the n–3 PUFA concentrate 683 

can be successfully protected from oxidation.  684 

Oxidative stability of the PGSS-dried particles was monitored during 28 days of storage 685 

in darkness at 4 ºC (Fig. 4a days 1-28). Results obtained showed a sustained increase of 686 

primary oxidation, reaching values of PV = 25.2 ± 0.7 meq O2/kg oil after 28 days of 687 

storage (Fig. 4a). On the other hand, AA successfully protected the PGSS-dried 688 

particles from primary oxidation during storage, being the values found significantly 689 

lower (p < 0.05) than those of the PGSS-dried particles without antioxidant. The highest 690 

PV was found after 14 days of storage and was 2.5 ± 0.5 meq O2/kg oil, still below the 691 

maximum allowable limit according to legislation, and remained with no significant 692 

changes (p < 0.05) during the rest of the 28-day storage period, reaching a final value of 693 

2.2 ± 0.3 meq O2/kg oil (Fig. 4a). 694 
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Comparing the primary oxidation of the particles obtained by the different drying 695 

methods after 28 days of storage, we can see the same trend as in the PV analysis after 696 

formulation, although PV increased in all samples (Fig. 4a days 1-28). Freeze-dried 697 

particles frozen with liquid nitrogen maintained a relatively low PV of 16.9 ± 0.8 meq 698 

O2/kg oil, which is likely linked to the good encapsulation efficiency and the 699 

preservation of the physical structure of the emulsion thanks to the fast and deep-700 

cooling effect of liquid nitrogen. The same was not true for the conventionally freeze-701 

dried particles, with PV = 37.7 ± 3.7 meq O2/kg oil after 28 days of storage. Spray-dried 702 

particles showed the highest PV with 66.0 ± 0.4 meq O2/kg oil after 28 days of storage. 703 

The higher oxidation rates of these two samples (spray-drying and conventional freeze-704 

drying) are probably due to the high starting PV (day 0) as well as their lower 705 

encapsulation efficiency, which implies more oil in the particle surface susceptible to 706 

oxidation. A similar encapsulation efficiency vs. oxidation rate inverse relationship has 707 

been observed by other authors (Yang & Ciftci, 2017). However, PGSS-dried and 708 

freeze-dried particles with liquid nitrogen exhibited high encapsulation efficiencies (up 709 

to 98%), and still encapsulated n–3 PUFA concentrate was not fully protected against 710 

primary oxidation (PV after 28 days = 25.2 ± 2.2 and 16.9 ± 0.8 meq O2/kg oil, 711 

respectively). This trend can be explained by taking into account not only the oxidation 712 

of the oil present in the particle surface, but also oxygen diffusion through the 713 

encapsulating material. It must be also pointed out that the fish oil concentrate used in 714 

this work is extremely rich in n–3 PUFAs, which are highly prone to oxidation. This 715 

highly sensitive-to-oxidation fatty acid profile may also offer an explanation to the 716 

higher oxidation rates obtained in this work compared to other studies, even with no 717 

accelerated storage (Carneiro et al., 2013; Yang & Ciftci, 2017). 718 
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TBARS analysis results are summarized in Fig. 4b. Although there is no legal 719 

maximum limit for this parameter in food products, we can take the values of 10 µmol 720 

MDA equiv/kg fish and 1-2 µmol MDA equiv/g fat given in the FAO guidelines (Huss, 721 

1995) as an orientative basis to evaluate rancidity of the n–3 PUFA concentrate (1 µmol 722 

MDA equiv/g fat corresponds to 72.06 mg MDA/kg oil). From Fig. 4b we can see that 723 

initial TBARS of the n–3 PUFA concentrate lay below this rancidity limit (TBARS = 724 

41.1 ± 2.7 mg MDA/kg oil). US-assisted emulsification slightly increased the TBARS 725 

value up to 54.8 ± 0.6 mg MDA/kg oil in the formulation without AA, whereas the 726 

addition of AA yielded particles with TBARS = 42.8 ± 1 mg MDA/kg oil (Fig. 4b day 727 

0). In view of the results, AA addition slowed down secondary oxidation during the 728 

ultrasonication step since no significant difference (p <0.05) between the AA-added 729 

emulsion and the n–3 PUFA concentrate was found (Fig. 3b inset).  730 

Among the dried powders (Fig. 4b, day 0), spray-dried particles showed the highest 731 

secondary oxidative status with a TBARS value of 88.5 ± 6.0 mg MDA/kg oil, which is 732 

above the FAO rancidity limit (Huss, 1995). PGSS-drying process slightly increased 733 

TBARS up to 59.4 ± 4.4 mg MDA/kg oil, whereas the addition of AA did not make any 734 

statistically significant difference (p < 0.05). Both PGSS-drying with and without AA, 735 

and freeze-dried powder with liquid N2 showed no statistically significant differences 736 

with the original emulsion, which gives an idea of the protective effect of these drying 737 

techniques against secondary oxidation. On the contrary, the conventionally frozen 738 

particles were not successfully protected, and TBARS increased up to 74.5 ± 3.5 mg 739 

MDA/kg oil after the conventional freeze-drying process. 740 

Secondary oxidation products were also monitored in the PGSS-dried particles during 741 

the 28-day storage period. In Fig. 4b (days 1-28), we can see that TBARS in the PGSS-742 

dried particles without AA did not significantly increase (p < 0.05) up to the second 743 
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week of storage, when TBARS value raised from 69.2 ± 1.4 up to 110.9 ± 1.8 mg 744 

MDA/kg oil, reaching a final value of 141.0 ± 1.9 mg MDA/kg oil after 28 days of 745 

storage. On the other hand, AA addition delayed secondary oxidation for the first 14 746 

days of storage, obtaining significantly lower (p < 0.05) TBARS values than those of 747 

the control sample without antioxidant, yet increasing thereafter and even exceeding the 748 

control after 28 days of storage (TBARS = 141.0 ±1.9 mg MDA/kg oil). As previously 749 

mentioned, this behavior has been observed by other authors when studying the effect 750 

of ascorbic acid on lipid oxidation in O/W emulsions, especially in presence of 751 

transition metals such as iron and copper (Mei et al., 1998; Uluata et al., 2015). Uluata 752 

et al. (Uluata et al., 2015) provide an explanation related to the ability of AA to reduce 753 

metal ions, making them more reactive towards peroxides and hydroperoxides. 754 

According to this proposed mechanism, reduced metallic species would decompose 755 

peroxides and hydroperoxides into secondary oxidation products, increasing the 756 

observed TBARS and preventing the accumulation of primary oxidation intermediaries 757 

(Uluata et al., 2015). This behavior has been also observed in this work, although no 758 

metals were added to the O/W emulsion. However, and according to inductively 759 

coupled plasma mass spectrometry (ICP-MS) analysis (Table S-2), metal traces are 760 

present in the encapsulating material, enabling this hypothesis.  761 

Additionally, it has been found that spray-dried and conventionally freeze-dried 762 

particles underwent secondary oxidation during the 28-day storage period, with final 763 

TBARS values of 137.2 ± 4.7 mg MDA/kg oil and 166.6 ± 0.3 mg MDA/kg oil, 764 

respectively (Fig. 4b days 1-28). Again, this high secondary oxidation status might be 765 

linked to the poorer encapsulation efficiency of those methods. On the other hand, 766 

freeze-dried particles frozen with liquid N2 showed good stability against secondary 767 
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oxidation during storage, maintaining a TBARS value of 79.6 ± 2.4 during 28 days of 768 

storage at 4ºC. 769 

 770 

4. Conclusion 771 

Particles from Gas-Saturated Solutions (PGSS)-drying has been used to encapsulate 772 

omega–3 polyunsaturated fatty acids (n–3 PUFAs) into octenyl-succinic-anhydride 773 

(OSA) starch, obtaining a solid powder with high bioactive load. 774 

Similar encapsulation efficiencies (EE) and spherical morphologies have been obtained 775 

by PGSS and spray-drying.  776 

Freeze-dried particles showed irregular morphology. Slow conventional freezing 777 

destabilizes the O/W emulsion and negatively affects EE. DSC analysis of the PGSS-778 

dried particles successfully identified cold crystallization of the n–3 PUFA concentrate 779 

as well as gelatinization and melting peaks of OSA-starch.  780 

PGSS-drying method offers low drying temperature and an intrinsically inert 781 

atmosphere, which avoid oxidative degradation of n–3 PUFAs during processing, as 782 

demonstrated by the oxidative stability analyses. Conventional freeze-drying method 783 

yielded particles with low oxidative stability, whereas freezing with liquid N2 resulted 784 

in a powder with oxidative stability comparable to PGSS-dried particles. Combined 785 

with the addition of natural antioxidants such as ascorbic acid, the PGSS-drying 786 

technique rises as a suitable method to formulate n–3 PUFAs in solid form and protect 787 

them against oxidation during shelf life. 788 

 789 
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Table 1. Summary of experimental results. 939 

Emulsion 
/drying method 

 
Density 
(g·cm-3) 

 
Yield 
(%) 

 
EE (day 0) 

(%) 

 
Bioactive loading 

(mg/g) 

 
Moisture 

(%) 

 Droplet size analysis 

 
   

  D[4,3] D[3,2] 
d0.5 
(μm) span 

Original  

1.091281* 

 --    --  --  0.144a 0.114a 0.114a 1.150a 

PGSS-drying   61 ± 1  97.9b ± 0.3  191 ± 8  3.3 ± 0.3a  0.227b 0.116a 0.134b 2.197d 

Spray-drying   30 ± 1  97.5b ± 0.1  187 ± 3  5.6 ± 0.2c  0.197b 0.112a 0.129b 1.636c 

Freeze-drying (-20ºC)   99 ± 1  95.8c ± 0.2  192 ± 2  4.66 ± 0.05b  0.567c 0.121b 0.131b 1.772c 

Freeze-drying) (liq N2)   99 ± 1  98.6a ± 0.1  192 ± 2  4.7 ± 0.1b  0.146a 0.107a 0.118a 1.291b 
* Standard uncertainty is u(ρ) = ± 0.000002 g·cm-3 
a,b,c,d Different upper-scripts in the same column denote statistically significant differences at p < 0.05 

 940 

 941 

 942 
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Table 2. Peak temperatures of the thermal events observed in the PGSS-dried powder loaded with n–3 943 
PUFA concentrate (PGSS-drying), the carrier alone (Hi-Cap™ 100), and the n–3 PUFA concentrate alone 944 
(Algatrium™ Plus). 945 

Sample 

Peak temperature (ºC) 

Cold crystallization Glass transition Melting 

PGSS-dried particles -72.99 76.57 223.55 

Hi-Cap™ 100 n.d. 78.83 217.05 

Algatrium™ Plus -71.42 n.d. n.d. 

n.d.: not detected 
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 946 

 947 

Figure 1. Schematic diagram of the PGSS-drying apparatus. VE-1: O/W emulsion vessel, VE-2: static 948 
mixer, VE-3: a) spraying tower, b) condenser, VE-4: CO2 vessel, P-1: O/W emulsion pump, P-2: CO2 949 
pump, V-: process valve, E-: heat exchanger, R-: electrical resistance, PI: pressure indicator, TI(C): 950 

temperature indicator (and controller). 951 

  952 
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 953 
Figure 2. Particle size distribution plot of the particles obtained by PGSS-drying and by spray-drying. 954 

  955 
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 956 
Figure 3. SEM micrographs of the dried powders. a) powder obtained by PGSS-drying, b) powder obtained by 957 

spray-drying; from left to right, 1500, 5000 and 10000x magnifications. c) powder obtained by conventional freeze-958 
drying (50, 400 and 3000x). d) powder obtained by freeze-drying with liquid N2; (50, 400 and 2000x). 959 

 960 

 961 

a) 

   
b) 

   
c) 

   
d) 
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Figure 4. a) Peroxide Value (PV) and b) Thiobarbituric acid reactive substances (TBARS) content of the powders obtained by the different drying methods right after drying 
(day 0) and during storage at 4ºC in darkness and ambient oxygen conditions (days 1-28). Samples were reconstituted the day of analysis keeping the water:carrier:n–3 PUFA 
concentrate proportion the same as the original (70:24:6 wt.). Different letters denote statistically significant differences at p < 0.05. Insets: PV and TBARS of the n–3 PUFA 

concentrate (Algatrium™ Plus), and the original US-assisted O/W emulsions without and with ascorbic acid (AA). 
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