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ABSTRACT: The cross-coupling reaction of alkenyl bromides with thiols catalyzed by palladium complexes derived from inex-

pensive dppf ligand is reported. These reactions occur under low catalyst loading, in high yields and display wide scope, including 

the coupling of bulky thiols and trisubstituted bromoolefins, and functional group tolerance. In addition, the thioetherification of 

less reactive chloroalkenes and, for the first time, alkenyl tosylates was accomplished using a catalyst generated from CyPFtBu 

alkylbisphosphine ligand. 

Alkenyl sulfides are valuable building blocks widely used as 

enolate surrogates, Michael acceptors or as intermediates to 4- 

and 5-membered cyclic compounds.
1
 They have found appli-

cations in total synthesis
2
 and material science

3
 and are also 

frequently found in natural products, pharmaceuticals and 

biologically active compounds.
4
 Consequently, great effort has 

been made in the last decade for the development of general 

synthetic methodologies to access alkenyl sulfides.
5
 Among all 

the established strategies, the addition of thiols to alkynes is 

the most straightforward approach. Nevertheless, the regio- 

and steroselectivity of the process is difficult to control in an 

efficient way, even under metal-catalyzed conditions,
5,6

 and 

the scope displays restrictions that include the addition of 

branched aliphatic thiols
5d

 and the formation of fully substitut-

ed alkenyl sulfides. Alternatively, access to alkenyl sulfides 

from the corresponding alkenyl halides is also feasible by 

halogen-lithium exchange reactions followed by treatment 

with disulfides, although this protocol presents important 

drawbacks associated with the low functional group tolerance 

of organolithiums. 

To overcome these limitations, the metal-catalyzed CS 

cross-coupling reactions of haloalkenes appear as the best 

alternative for the preparation of alkenyl thioethers. In this 

sense, several copper-catalyzed protocols have been reported.
7 

However, these processes require high temperatures and/or 

high catalyst loadings and are typically restricted to 

iodoalkenes or -bromostyrenes, whose reactions could be 

attributable to a non-catalyzed thiolate addition followed by 

bromide elimination.
7a,8

 In contrast to related reactions with 

aryl halides,
5b,c

 palladium-catalyzed couplings of haloalkenes
9
 

with thiols have been poorly explored and the reported studies 

are limited to particular examples
10

 or to intramolecular reac-

tions to produce benzo[b]thiophenes.
11

 These drawbacks have 

restrained the use of this methodology for the synthesis of 

relevant alkenyl thioethers. Therefore, the development of a 

general and scalable cross-coupling procedure for the CS 

alkenylation is highly desirable. 

To this aim, the coupling of α-bromostyrene 1a with a slight 

excess of 1-decanethiol 2a (1.1 equiv) was selected as model 

reaction, and the most significant results are summarized in 

Table 1. Using Pd2(dba)3 as palladium source, several ligands 

were tested. Initial results with 1.0 mol % of catalyst indicated 

that ferrocenyl phosphines L2 and L3 were the most efficient 

ligands, achieving total conversion to the desired alkenyl 

sulfide 3a after 14 h (entries 1–3). Reactions in the absence of 

palladium or with catalysts derived from biaryl phosphine 

ligands, such as Sphos, RuPhos, BrettPhos or XPhos, led to < 

5% conversion to the coupled product accompanied with thiol 

oxidation to disulfide.
12

 Encouraged by the results with 

bisphosphine ligands L2 and L3, the catalyst loading was 

considerably decreased (entries 4–6). At very low catalyst 

amounts (0.01 mol %) CyPFtBu ligand (L3) failed to promote 

the reaction to full conversion (entry 5), whereas by using 

dppf as ligand (L2) 3a was obtained in 93% yield that corre-

sponds to a remarkable turnover number of 9300 (entry 4). 

Not surprisingly, reduced reaction time of less than 2 h was 

achieved by just using 0.1 mol % of the latter catalyst system 

(entry 6). Reactions employing other palladium sources such 

as Pd(OAc)2, Pd[P(o-tol)3]2 or [allylPdCl]2 were not or less 

efficient under the same conditions.
12

 Next, the dependence on 
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the reaction temperature was studied. When the transformation 

was performed at 90 ºC (entries 7–9), 70 ºC (entry 13) or even 

at 25 ºC (entry 14) full conversion was achieved just by in-

creasing the catalyst loading up to 2.5 mol %. Furthermore, 

the use of 1,2-DME as solvent (entry 9) or bases different 

from LiHMDS such as NaOtBu, Cs2CO3 or K3PO4 was unpro-

ductive under the reported conditions (entries 10–12). 

Table 1. Optimization of reaction conditions. 

 
entry base cat. (mol %) temp (ºC) conv. (%)a 

1 LiHMDS Pd2(dba)3/L1 (1.0) 110 < 50 

2 LiHMDS Pd2(dba)3/L2 (1.0) 110 100 

3 LiHMDS Pd2(dba)3/L3 (1.0) 110 100 

4 LiHMDS Pd2(dba)3/L2 (0.01) 110 100 (93) 

5 LiHMDS Pd2(dba)3/L3 (0.01) 110 52 

6b LiHMDS Pd2(dba)3/L2 (0.1) 110 100 (94) 

7 LiHMDS Pd2(dba)3/L2 (0.01) 90 46 

8 LiHMDS Pd2(dba)3/L2 (0.05) 90 100 (90) 

9c LiHMDS Pd2(dba)3/L2 (0.05) 90 < 5 

10 NaOtBu Pd2(dba)3/L2 (0.05) 90 < 5 

11 Cs2CO3 Pd2(dba)3/L2 (0.05) 90 < 5 

12 K3PO4 Pd2(dba)3/L2 (0.05) 90 < 5 

13 LiHMDS Pd2(dba)3/L2 (0.1) 70 100 (94) 

14 LiHMDS Pd2(dba)3/L2 (2.5) 25 100 (93) 
a Conversion and yield (in brackets) estimated by 1H NMR 

(300 Hz) employing CH2Br2 as internal standard. b Reaction 

completed in less than 2 h. c Reaction conducted in DME. 

Having identified the combination Pd2(dba)3/dppf as the op-

timal catalytic system for the alkenyl thioetherification under 

low catalyst loading, the scope of this reaction was explored 

varying first the thiol counterpart (Scheme 1). Reaction condi-

tions employing 0.1 mol % of catalyst were selected to ensure 

complete conversions in short reaction times (< 4 h). Thus, 

primary (2a), secondary (2b), tertiary alkyl thiols (2c) and 

even the bulky HSTIPS (2d) were successfully coupled under 

these conditions with -bromostyrene in high to excellent 

yields. The efficiency of the formation of alkenyl thioethers 

3b-d derived from branched secondary and tertiary aliphatic 

thiols 2b-d is highly remarkable because, as mentioned in the 

introduction, their access via the addition of the branched thiol 

to an alkyne is challenging. Moreover, this methodology could 

be efficiently applied to synthesize alkenyl sulfides from aryl 

thiols bearing neutral (3e) and both electron-donating (3f-i,m) 

and electron-withdrawing groups (3j-l). Furthermore, ortho 

substitution on the parent aryl thiol is well-tolerated providing 

access to the desired compounds also in high yields. Even the 

reaction with a di-ortho-substituted thiol occurred in excellent 

yield without the need of increasing the catalyst loading (3m). 

Not surprisingly, considering the established faster oxidative 

addition of alkenyl over aryl halides,
13

 thioetherification of o-

bromobenzenethiol (2l) took place selectively on the alkenyl 

position of 1a over the bromide on 2l. This result enhances the 

synthetic utility of the developed methodology allowing the 

preparation of alkenyl sulfides bearing bromine atoms in their 

structure amenable for further derivatizations. Finally, the 

developed catalytic system is also capable of coupling π-

deficient (2n) or π-excessive (2o) heteroaromatic thiols. 

Although the scope of the thiol coupling was surveyed em-

ploying 0.1 mol % of catalyst, overnight reactions of selected 

substrates in the presence of just 100 ppm of Pd/ligand oc-

curred to completion and with comparable or slightly de-

creased yields (see compounds 3a,e,f,h,l). A limitation was 

found with sterically hindered tertiary alkyl thiols that pro-

duced the corresponding sulfides (3c,d) in lesser extent with 

100 ppm of catalyst and, therefore, the catalyst loading could 

not be lowered from 0.1 mol %. 

On the other hand, the demonstrated high efficiency of 

Pd2(dba)3/dppf as catalytic system makes this methodology 

amenable for scale up. Gratifyingly, reaction of -

bromostyrene 1a with decanethiol or o-bromobenzenethiol at 

7 mmol scale provided 1.86 g (95% yield) and 1.78 g (87% 

yield) of the alkenyl thioethers 3a and 3l, respectively 

(Scheme 2).  

Scheme 1. Pd-catalyzed coupling of -bromostyrene 1a 

with alkyl and aryl thiols 2. 

 
Isolated yields of reactions performed using 0.4 mmol of 1a. a. 

Reaction conducted overnight with 0.01 mol % of catalyst. b 

Reaction performed at 7 mmol scale. 

Next, the thioetherification of a collection of diverse 

bromoalkenes was accomplished in short reaction times (typi-

cally < 4 h) using just 0.25 mol % of catalyst system (Scheme 

2). Under these conditions, β-bromostyrene, used as a mixture 

of geometrical isomers, successfully reacted with a variety of 

alkyl and aryl thiols, including challenging sterically hindered 

ones, affording the corresponding alkenyl sulfides (4a-d) in 

high to excellent yields. It should be noted that reactions of β-

bromostyrene without catalyst, gave mostly rise to disulfides 

and less than 5% of the desired alkenyl sulfides, thus ruling 

out the addition-elimination mechanism described in copper-

catalyzed related couplings.
7a

 Notably, the functional group 

tolerance of the methodology is not restricted to halogens, 

alcoxy or free amino groups, showed in scheme 1, and has 

been extended to more demanding functionalities. Thus, 

alkenyl bromides bearing a nitro or a nitrile coupled with 

thiophenol to form the corresponding sulfides (4e-f) in good 
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yields. Moreover, reactions of substrates having ketone or 

ester groups, unsuccessful under the standard conditions, 

occurred in the presence of CyPFtBu ligand (1.0 mol %) and 

the weaker Cs2CO3 base (4g-h). Regarding the substitution 

degree of the resultant sulfide, the method is also competent in 

the preparation of disubstituted (acyclic 4h and cyclic 4i) and 

trisubstituted alkenyl sulfides (4j-l) using catalyst loadings up 

to 1.0 mol % and reaction times between 4 and 24 h. Remark-

ably, the latter fully substituted alkenyl thioethers (4j-l) are 

inherently not accessible by the thiol addition to alkynes strat-

egy. 

Scheme 2. Pd-catalyzed coupling of diverse alkenyl bro-

mides 1 with representative thiols 2. 

 

Isolated yields of reactions performed at 0.4 mmol scale. a Re-

action conducted with 1.1 equiv of base. b Reaction performed 

with CyPFtBu as ligand and Cs2CO3 as base. c Reaction conduct-

ed with 1.0 mol % of catalyst system.  

Once the generalization of the alkenyl thioetherification 

process with a wide range of alkenyl bromides was demon-

strated, we decided to evaluate other haloalkenes as potential 

coupling partners with 1-decanethiol (1a) and thiophenol (1e) 

(Table 2). Whereas more reactive iodoalkenes performed 

similarly to their parent bromoalkenes (entries 1–2), less reac-

tive chloroalkenes failed to react with the catalyst derived 

from dppf ligand, even at higher loadings (1.0 mol %). Never-

theless, as it was demonstrated for related thioetherifications 

of aryl chlorides,
14

 bis-phosphine CyPFtBu was revealed as 

the ligand of choice for the coupling of chloroalkenes enabling 

the synthesis of alkenyl sulfides 3a and 3e by simply using 

0.5–1.0 mol % of this catalytic system (entries 3–4). Reactions 

of 1-chlorocyclopentene also occurred with the model thiols 

under the same reaction conditions (entries 5–6). 

Table 2. Pd-catalyzed coupling of alkenyl iodides and chlo-

rides with decanethiol and thiophenol. 

 

entry halide thiol L (x mol %) product 
Yield 

(%)a 

1 

 
 

dppf (0.05) 3a 91 

2  dppf (0.01) 3e 72 

3 

 
 

CyPFtBu (1.0) 3a 75 

4  CyPFtBu (0.5) 3e 80 

5 

 

 
CyPFtBu (0.5) 

 

75 

6  CyPFtBu (0.5) 

 

55 

a Isolated yields of reactions performed at 0.4 mmol scale. 

Alkenyl sulfonates are attractive alternatives to halides, as 

they are easily synthesized from abundantly available ketones 

increasing the range of available substitution patterns. Among 

sulfonates, alkenyl tosylates are more convenient counterparts 

than the corresponding triflates because of the lower cost of 

the sulfonating reagents used for their preparation, as well as 

their greater crystallinity and stability to water, which allows 

their storage.
15

 However, this stability makes the oxidative 

addition to Pd(0) more challenging and, therefore, alkenyl 

tosylates are less reactive in palladium-catalyzed processes.
16

 

Consequently, couplings of alkenyl tosylates with thiols are 

unknown. Interestingly, a 5 mol % of the combination 

Pd2(dba)3/CyPFtBu ligand, catalyzed the coupling of -(p-

toluenesulfonyl)styrene with both decanothiol and thiophenol 

in high yields (Scheme 3, 3a,e). The usefulness of this reaction 

was further demonstrated with the efficient couplings of 

alkenyl tosylates derived from branched aliphatic, alkyl 

disubstituted, cyclic or functionalized ketones (Scheme 3, 4n-

r), for which corresponding bromoalkenes are not easily avail-

able. 

Scheme 3. Pd-catalyzed coupling of alkenyl tosylates 5 with 

representative thiols 2. 

 

Isolated yields of reactions performed at 0.4 mmol scale. a 

Cs2CO3 (2.0 equiv.) used as base. 

In conclusion, a general, selective and scalable methodology 

for the synthesis of alkenyl sulfides through palladium-

catalyzed C–S bond cross-coupling has been developed based 

on the use of inexpensive bisphosphine dppf ligand. This 

synthetic approach is capable of coupling a wide variety of 

aliphatic and (hetero)aromatic thiols to alkenyl bromides with 

diverse substitution patterns and functionalities under very low 

catalyst loading (generally 0.01–0.25 mol %) in high yields. 

The scope of the process is broad and includes the employ-

ment of sterically hindered alkyl and aryl thiols and the access 

to fully substituted alkene derivatives, overcoming the main 

synthetic limitations of the metal-catalyzed direct reaction of 

thiols with alkynes. In addition, catalytic species generated 

from Pd2(dba)3 and CyPFtBu ligand allowed less reactive 

chloroalkenes and, for the first time, readily available 

tosyloxyalkenes to be also active coupling counterparts for the 

alkenyl thioetherification with both alkyl and aryl thiols. 
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