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Abstract: The load–deflection curve acquired from the Small Punch Test (SPT) is used to obtain the
mechanical properties of materials using different correlation methods. The scattering level of these
regressions tends to be high when a wide set of materials is analyzed. In this study, a correlation
method based on a specific slope of the SPT curve was proposed to reduce scattering. Assuming
the Ramberg–Osgood hardening law, the dependence of the SPT curve slope on the yield strength
and the hardening coefficient is demonstrated by numerical simulations (FEM). Considering that
the ultimate tensile strength could be obtained from the hardening coefficient, a response surface of
the ultimate tensile strength with the yield strength and SPT curve slope, along with its equation,
is presented for steel alloys. A summary of steel mechanical properties, based on the Boiler and
Pressure Vessel Code (BPVC) and limited to yield strengths lower than 1300 MPa, is shown to
select a set of experimental tests (tensile tests and SPTs) for which the range is completely covered.
This experimental analysis validates the previous FEM analyses and the validity of the proposed
correlation method, which shows more accurate correlations compared to the current methods.

Keywords: Small Punch Test; SPT; ultimate tensile strength; strain-hardening

1. Introduction

The Small Punch Test (SPT) was initially developed in the 1980s as a cost-effective method
to test post-irradiated materials [1,2]. The applicability of this test has been extended to other
applications where miniaturization has made it possible to estimate the mechanical properties of
small amounts of materials. Widespread and uninterrupted research using the SPT has led to a
complete family of methods to characterize mechanical properties such as Young’s modulus, the yield
strength and ultimate tensile strength [3–5], a ductile–brittle transition [6], fracture properties [7–10],
etc. The development of a CEN Code of Practice [11] and the effort invested to publish an European
standard in 2019 [12] for the application and use of the Small Punch Test method for metallic materials
shows the aim to standardize the SPTs performed by each lab, and will lead to the comparability of
research in different places and sectors.

Figure 1 shows a schematic representation of the SPT. A specimen with a thickness of 0.5 mm and
a diameter ≥8.0 mm is clamped between two dies and punched until failure with a spherical punch.
The main geometry data of the SPT are: Rp = 1.25 mm, Rd = 2.0 mm, and r = 0.5 mm.

The resulting data recorded during the SPT are the load/displacement curves (see Figure 1),
from which different data are extracted. For the ultimate tensile stress σu, the most widely used method
for the estimation of this mechanical property is the maximum load Pm of the SPT curve (see Figure 1).
Mao and Takahashi [7] developed the method for estimating σu with Equation (1):
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σu = β1·
Pm

t2 + β2 (1)

where β1 and β2 are the correlation coefficients, Pm is the maximum load of the SPT curve, and t is the
specimen thickness.
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Figure 1. Small Punch Test (SPT) setup (a) and experimental load–displacement curve (b).

Garcia et al. [13] recommended the use of Pm/(t·um) instead of Pm/t2 (see Figure 1 for um

calculation), and other researchers developed alternatives that have the use of the maximum load Pm

of the SPT curve [14] in common. Kumar et al. [15] showed in their research that the SPT specimen,
in the proximity of the maximum load Pm, had initial cracks. Thus, material damage is initiated before
reaching the maximum load of the SPT curve. The ultimate tensile strength is obtained from the
uniaxial tensile test when damage or cracks have yet to be initiated. Thus, the maximum load Pm

does not seem to be a good parameter to be correlated with σu, because it is influenced by the damage
properties of the material. This was pointed out by Campitelli [16] using a finite element analysis,
and concluded that the stress–strain state of the SPT specimen at maximum load Pm is completely
different from that at necking in a standard tensile test.

Based on these previous considerations, Altstadt et al. [17] proposed an alternative parameter
obtained from the SPT curve: the Fi load. This data was the force at a fixed punch displacement of
0.645 mm. This method was based on the shape of the SPT curves obtained by the finite element
analyses of hypothetical materials. When the elastic mechanical properties, yield strength, and ultimate
tensile strength were fixed, and the strain for this ultimate tensile strength was modified, SPT curves
showed pseudo-intersections at a punch displacement of around 0.645 mm. For other fixed ultimate
tensile strengths, the pseudo-intersections were found in a punch displacement close to the same
displacement of 0.645 mm. This was investigated for hypothetical materials with an elastic modulus
of E = 212,000 MPa and an initial flow stress of σy0 = 570 MPa. Different elastic modulus or initial
flow stresses would give different punch displacements for the pseudo-intersections. An experimental
comparison between the widely used method of Pm correlation (Fm in their paper) with the ultimate
tensile strength and their new Fi method was performed with the coefficient of determination R2 of
both correlations:

R2{Fi } = 0.870 (2)

R2{Pm } = 0.747 (3)

where the Fi method showed lower deviations than the Pm method.
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The present research was initiated taking into consideration the same fact exposed previously
by Kumar et al. [15] and followed by Altstadt et al.: points prior to the Pm are more suitable for the
estimation of ultimate tensile strength σu.

This article is focused on steel alloys and the obtaining of a new and more reliable correlation
method for the ultimate tensile strength. The following steps were taken:

(a) Summary of steel mechanical properties. The aim of this review was to obtain a delimited
surface of hardening coefficient versus yield strength for steel alloys. A specific selection of steels
was considered to cover this entire surface for the experimental tests, with a maximum limit of
1300 MPa in the yield strength.

(b) SPT behavior analysis. A preliminary FEM analysis was performed to understand the behavior
of the SPT specimen during the test. Based on this, a new correlation method for the ultimate
tensile strength of the material was proposed.

(c) Hypothetical material analysis. A second FEM analysis was performed to obtain the correlation
equations for the proposed method in the analysis indicated in the previous point (b).

(d) Finally, an experimental analysis was performed to verify the numerical study previously seen
and the proposed correlation method. This experimental analysis covered a wide range of steel
alloy properties with yield strengths lower than 1300 MPa.

2. Materials and Methods

The aim of this research was to obtain a correlation method for finding the ultimate tensile strength
with the SPT in steel alloys. This investigation was experimentally limited to yield strengths lower
than 1300 MPa.

In order to define the range of applicability of the correlation equation, the ample steel data
collection published by ASME in its Boiler and Pressure Vessel Code (BPVC) [18] was used. Figure 2
shows the ultimate tensile strength versus the yield strength for steels contained in the BPVC-IIA-2017.
The experimental steels used in this research are marked as red squares in the same graph. The objective
was to include the experimental tests throughout the range of the surface covered by the steel database.
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In addition, an estimation of the hardening coefficients of the same database was done.
A Ramberg–Osgood law [19] was used in this analysis following Equations (4) and (5).

ε =
σ

E
+ εo f f set

(
σ

σy

)n
(4)
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n =
ln
(

εm−σm /E
εo f f set

)
ln
(

σm
σy

) (5)

where εoffset = 0.002.
Kamaya developed a method to estimate the Ramberg–Osgood law coefficients using yield and

ultimate tensile strengths of the material [20]. For εoffset = 0.002, the relation obtained by Kamaya was:

n = 3.93
{

ln
(

σu

σy

)}−0.754
(6)

Once the strain hardening coefficient n of the material was obtained from Equation (6),
the previous steel database presented in Figure 2 was changed to show the relationship between
the hardening coefficient n and the yield strength (see Figure 3). A boundary limit for the steel database
is represented in Figure 3. The hardening coefficient n was limited to a minimum value between n = 3
and n = 4, and the upper limit was set to levels of n = 37. The lower limit of n increases with the yield
strength, and the same behavior is shown for the upper limit.
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Figure 3. Steel database obtained from ASME BPVC-IIA and experimental data selection (hardening
coefficient n vs. yield strength).

The selected experimental steels did not cover the higher values of n. High values of the n
coefficient corresponded to materials with low strain hardening, so deviations in these high n values
generate no significant changes in the strain-hardening curve.

For the “SPT behavior analysis”, a FEM simulation of the SPT was performed with a simplified
linear hardening model to make the search for correlation easier. The specific material properties of
this hypothetical material were: E = 200,000 MPa, ν = 0.3, σy = 400 MPa, Ep = 413 MPa, where Ep is the
plastic tangent modulus.

For the “Hypothetical material analysis”, 30 hypothetical materials were analyzed with an FEM
simulation of the SPT. The hardening behavior applied in this analysis followed the Ramberg–Osgood
Equations (4) and (5) with an isotropic hardening model.

The mechanical properties assigned for these hypothetical materials were fixed for their elastic
behavior (E = 200,000 MPa and ν = 0.3), and were established as shown in Table 1 for their
plastic behavior.
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Table 1. Plastic properties of the hypothetical materials.

Material σy (MPa) n 1 Material σy (MPa) n 1

M1.1 100 5 M3.4 750 20
M1.2 100 10 M3.5 750 25
M1.3 100 15 M3.6 750 30
M1.4 100 20 M4.1 1075 5
M1.5 100 25 M4.2 1075 10
M1.6 100 30 M4.3 1075 15
M2.1 425 5 M4.4 1075 20
M2.2 425 10 M4.5 1075 25
M2.3 425 15 M4.6 1075 30
M2.4 425 20 M5.1 1400 5
M2.5 425 25 M5.2 1400 10
M2.6 425 30 M5.3 1400 15
M3.1 750 5 M5.4 1400 20
M3.2 750 10 M5.5 1400 25
M3.3 750 15 M5.6 1400 30

1 Ramberg–Osgood parameter.

The SPT dimensions used in this numerical analysis were: Rd = 2.0 mm, Rp = 1.25 mm, r = 0.5 mm,
and t = 0.5 mm (see Figure 1).

Nine steel alloys were used in the experimental procedure, and their mechanical properties were
obtained with tensile tests following ASTM E8M [21] (see Table 2). Some of these experimental data
were obtained in previous research [22].

Table 2. Mechanical properties of the experimental materials.

Material E (MPa) σy (MPa) σu_eng (MPa) εfract (mm/mm)

DC04 (1.0338) 203,000 160.0 288.0 0.47
HC300LA (1.0489) 206,000 322.0 411.0 0.31

DC01 (1.0330) 208,000 229.0 353.0 0.35
F1110 (1.0401) 216,430 550.6 615.6 0.19
F1140 (1.1191) 204,910 745.0 922.7 0.10

15-5PH H900 (1.4545) 194,926 1215.0 1310.0 0.16
CR-700-980-DP (1.0997) 207,000 782.0 1017.0 0.11

USIBOR 1500 P 209,000 433.0 599.0 0.18
DOCOL 1800 200,451 807.24 889.07 0.05

3. Results

3.1. Numerical Analyses

The SPT simulations (Figure 4 shows a view of the numerical model) were done in a similar way
as used in previous research [22]. The mechanical properties used in these analyses are shown in
Table 1.
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3.1.1. SPT Behavior Analysis

An FEM analysis was performed to understand the behavior of the SPT specimen during the test
and the contribution of the material properties with respect to this behavior.

Figure 5 shows the SPT curve for the bilinear hypothetical material described in the previous
section. Some punch displacements are indicated in this figure, and point 6 shows the punch
displacement where the minimum slope of the SPT curve is located. Figures 6 and 7 show bicolor
images of the specimen where red is the material in the plastic regime, and blue is the material in the
elastic regime. The volume of the specimen under the plastic regime grew until point 6, where the
majority of the specimen that was not gripped between the dies was in the plastic regime.

The simplified material model used in this study guaranteed two rigidities: elastic stiffness
controlled by the elastic modulus E, and plastic stiffness controlled by the plastic tangent modulus
Ep. The SPT curve is a load versus displacement curve that shows the global stiffness of the specimen
in its slope. This global stiffness is a combination of two factors: the geometry of the test and the
material stiffness distribution. The geometry of the test changes during the test because of changes in
the contact surface area between the punch and the upper surface of the specimen. At greater punch
displacements, the contact area is greater and the dependence on the geometry of the SPT’s stiffness
increases. The material stiffness is obtained as a combination of two rigidities: the elastic stiffness and
the plastic stiffness. An increase in the volume percentage of the specimen affected by plastic strain
generates a decrease in the global specimen stiffness.
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Thus, there are two factors for the changes in the slope of the SPT curve in the analyzed zones:

1. Non-linear contact stiffness originated by geometry changes. This rigidity grows during the test.
2. Material stiffness contribution. This rigidity diminishes during the test due to the growth of the

yielded volume of the specimen (Ep dominates over E). This diminishing in the rigidity reaches
the minimum value when the entire specimen outside the gripped zone is yielded.

When the entire specimen is yielded, changes in the non-linear contact stiffness dominate the
SPT curve slope. The slope reaches a minimum and begins to grow. This inflection point is shown in
Figure 5 at point 6.

3.1.2. Hypothetical Material Analysis

Thirty hypothetical materials, M1.1 to M5.6 (see Table 1 for the mechanical properties of these
materials), were simulated with the finite element model used in the previous section. Figures 8 and 9
show the load versus displacement SPT curves for these hypothetical materials.
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The Slopemin for all of the hypothetical materials is shown in Table 3 and Figure 10, where a
dependency of the Slopemin with both the hardening factor n and the yield strength is shown. For each
value of yield strength, a correlation following Equation (7) seems to show a good fit. To determine
the functions ϕ1 and ϕ2 of this equation, the Matlab® Curve Fitting ToolTM [23] was used with the
non-linear least squares method.

n =
ϕ1
(
σy
)

Slopemin − ϕ2
(
σy
) (7)

Table 3. Slopemin of the SPT curves.

Material Slopemin (N/mm) Material Slopemin (N/mm) Material Slopemin (N/mm)

M1.1 187.09 M2.5 321.08 M4.3 1151.59
M1.2 107.50 M2.6 303.82 M4.4 1036.66
M1.3 86.30 M3.1 1525.35 M4.5 969.11
M1.4 76.49 M3.2 917.65 M4.6 924.92
M1.5 70.81 M3.3 749.22 M5.1 3015.43
M1.6 67.08 M3.4 669.63 M5.2 1906.80
M2.1 830.73 M3.5 622.76 M5.3 1590.57
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M2.4 347.22 M4.2 1394.13 M5.6 1293.41
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Figure 11 and Equation (8) show the results obtained from the Curve Fitting ToolTM.
The coefficient of determination of this regression was R2 = 0.993.

n =
6.645σy

Slopemin −
(

2.222× 10−4σ2
y + 0.412σy

) (8)
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Table 4 shows the comparative results of the hardening factor n obtained from Equation (8) (ncalc)
and the value introduced in the FEM simulation (nFEM). This method showed less accuracy for low
values of the hardening factor n. It is important to clarify that deviations in the lowest values of the
hardening coefficient n generate significant deviations in the strain hardening. In addition, high values
of the n coefficient correspond to materials with low strain hardening, so deviations in these high n
values generate lower changes in the strain hardening. This is demonstrated in Table 5, which shows
the calculated ultimate tensile strength (σu_calc) using the ncalc values and Equation (6). Figure 12
shows a comparison of the deviations in the hardening coefficient n and the ultimate tensile strength
obtained from ncalc. Deviations of the ultimate tensile strength are only high for the lowest value of the
hardening coefficient n.

Table 4. Deviations between ncalc and nFEM.

Material nFEM ncalc Deviation (%) Material nFEM ncalc Deviation (%)

M1.1 5 4.57 8.66 M3.4 20 20.18 0.90
M1.2 10 10.06 0.62 M3.5 25 24.93 0.28
M1.3 15 15.11 0.72 M3.6 30 29.52 1.60
M1.4 20 19.80 1.00 M4.1 5 4.50 9.93
M1.5 25 24.17 3.30 M4.2 10 9.91 0.88
M1.6 30 28.27 5.76 M4.3 15 14.99 0.09
M2.1 5 4.51 9.79 M4.4 20 19.77 1.13
M2.2 10 10.17 1.66 M4.5 25 24.31 2.77
M2.3 15 15.67 4.44 M4.6 30 28.64 4.53
M2.4 20 21.08 5.41 M5.1 5 4.58 8.40
M2.5 25 26.42 5.67 M5.2 10 10.07 0.70
M2.6 30 31.75 5.82 M5.3 15 15.34 2.28
M3.1 5 4.48 10.42 M5.4 20 20.41 2.06
M3.2 10 9.99 0.14 M5.5 25 25.31 1.24
M3.3 15 15.20 1.34 M5.6 30 30.09 0.29
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Table 5. Deviations between σu_calc and σu_FEM.

Material σu_FEM σu_calc Deviation (%) Material σu_FEM σu_calc Deviation (%)

M1.1 206.8 226.9 9.72 M3.4 841.9 840.7 0.14
M1.2 133.6 133.3 0.24 M3.5 817.3 817.6 0.03
M1.3 118.4 118.3 0.16 M3.6 802.4 803.5 0.15
M1.4 112.3 112.4 0.15 M4.1 2223.2 2476.9 11.41
M1.5 109.0 109.4 0.39 M4.2 1436.3 1441.2 0.34
M1.6 107.0 107.6 0.55 M4.3 1273.2 1273.5 0.02
M2.1 878.9 977.6 11.23 M4.4 1206.7 1208.8 0.18
M2.2 567.9 564.3 0.62 M4.5 1171.5 1175.3 0.33
M2.3 503.4 498.6 0.94 M4.6 1150.1 1155.0 0.43
M2.4 477.1 473.4 0.78 M5.1 2895.3 3166.9 9.38
M2.5 463.1 460.3 0.60 M5.2 1870.6 1865.6 0.27
M2.6 454.7 452.5 0.49 M5.3 1658.2 1649.9 0.50
M3.1 1551.0 1738.7 12.10 M5.4 1571.5 1566.7 0.31
M3.2 1002.1 1002.6 0.05 M5.5 1525.7 1523.5 0.14
M3.3 888.3 885.7 0.30 M5.6 1497.8 1497.4 0.03
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To improve these results, the non-linear least squares method of the Matlab® Curve Fitting ToolTM

was used to directly obtain the ultimate tensile strength. Thus, the coefficients of Equation (8) were
assumed as A, B and C variables, as shown in Equation (9):

n =
Aσy

Slopemin −
(

Bσ2
y + Cσy

) (9)

and Equation (9) was introduced in Equation (6):

ln
[

σu

σy

]
= 6.142

Slopemin −
(

Bσ2
y + Cσy

)
Aσy

1.326

(10)

The non-linear least squares method was applied in Equation (10) with FEM data, obtaining the
following Equation (11) with R2 = 0.9997 (see Figure 13).
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ln
[

σu

σy

]
= 6.142

Slopemin −
(

1.973·10−4σ2
y + 0.377σy

)
7.63σy

1.326

(11)

The obtained surface in Figure 13 was cut off in two locations: values with hardening coefficient
lower than n = 4, and values with a yield strength higher than the ultimate tensile strength.
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3.2. Experimental Tests

Nine steels—DC01, DC04, HC300LA, F1110, F1140, 15-5PH H900, USIBOR 1500 P, CR-700-980-DP,
and DOCOL 1800 CR—were tested using standard tensile tests (ASTM E8M) and SPTs to verify the
numerical results previously shown. Table 2 shows the mechanical properties for all of the tested
materials, and Figure 14 shows the SPT curves obtained from the experimental tests. The geometry
and the setup of the SPTs were the same as the ones analyzed in the previous numerical calculations.
These experimental data were partially obtained in a previous study [22].
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The parameters obtained from these SPT curves are shown in Table 6.

Table 6. Experimental SPT parameters.

Materials Slopeini (N/mm) Slopemin (N/mm) Pm (N) Fi (N) um (mm)

DC04 (1.0338) 4188.04 416.88 1060.34 416.81 1.869
HC300LA (1.0489) 6016.37 472.06 1228.69 582.82 1.733

DC01 (1.0330) 4889.10 504.12 1100.86 510.99 1.712
F1110 (1.0401) 7419.10 702.63 1407.42 769.95 1.537
F1140 (1.1191) 8200.76 1126.32 1378.22 1176.23 0.805

15-5PH H900 (1.4545) 9782.01 1513.27 2773.47 1622.88 1.513
CR-700-980-DP (1.0997) 8354.51 1516.08 1814.09 1449.30 0.924

USIBOR 1500 P 6861.36 822.61 1652.49 845.65 1.660
DOCOL 1800 6134.37 857.49 1105.43 1019.39 0.915

In order to calculate the experimental correlation equation between the ultimate tensile strength
and Slopemin, all of the numerical parameters were calculated again with Equation (10). The yield
strength used in Equation (10) was the value obtained from the SPT curve via the Slopeini method
(Equation (12)) [22].

σy = 37.437·e1.7995·10 −4·Slopeini/t (12)

The following Figure 15 and Equation (13) show the results obtained from the Matlab® Curve
Fitting ToolTM. The coefficient of determination of this regression was R2 = 0.997.

ln
[

σu

σy

]
= 6.142

Slopemin −
(

6.88× 10−4σ2
y − 0.028σy

)
14.68σy

1.326

(13)
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The use of the Slopeini method allows for avoiding the need of the tensile tests to obtain the yield 
strength of the material. 
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Table 7 shows the ultimate tensile strength obtained using Equation (13). As commented on
previously, the yield strength used for this calculation is derived from the Slopeini of the SPT curve.
The use of the Slopeini method allows for avoiding the need of the tensile tests to obtain the yield
strength of the material.
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Table 7. Yield strength and ultimate tensile strength obtained by Slopeini and Slopemin methods.

Materials σy Obtained with Slopeini
Method (MPa)

σult Obtained with Slopemin
Method (MPa)

DC04 (1.0338) 169.01 292.86
HC300LA (1.0489) 326.34 412.49

DC01 (1.0330) 217.51 356.68
F1110 (1.0401) 540.66 637.07
F1140 (1.1191) 716.31 874.52

15-5PH H900 (1.4545) 1265.48 1322.19
CR-700-980-DP (1.0997) 757.06 1022.86

USIBOR 1500 P 442.33 609.48
DOCOL 1800 805.22 869.48

4. Discussion

In the following Figure 16, a comparison between the ultimate tensile strengths obtained from
tensile tests and the ultimate tensile strengths derived from the calculated hardening factors via the
Slopemin of the SPT curve is shown in the (a) graph. The rest of the graphs (b to d) shown in Figure 16
represent the results obtained from the most common methods used to correlate the ultimate tensile
strength via the Pm parameter (Pm/t2 and Pm/tum), and the most recent alternative method via the Fi
parameter. Figure 17 shows the deviations between the calculated ultimate tensile strengths from the
experimental correlation equations and the ultimate tensile strengths obtained from the tensile tests.
The most precise and reliable method was the proposed Slopemin method.
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5. Conclusions 

After these FEM and experimental analyses, the following conclusions were obtained: 
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4. The experimental tests were done with an analysis of a steel database to guarantee that the 
obtained correlation equation is applicable to steel alloys with yield strengths lower than 1300 
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Figure 17. Deviations of the ultimate tensile strength calculation.

5. Conclusions

After these FEM and experimental analyses, the following conclusions were obtained:

1. The dependency of the minimum slope of the SPT curve (Slopemin) with the yield strength and a
hardening factor n (using the Ramberg–Osgood law) was analyzed and quantified.

2. A novel method to correlate the ultimate tensile strength, via the Slopemin, was obtained showing
a good fit (mean deviations of 1.9%). The comparison of this new method with Pm methods
(Pm/t2 and Pm/tum) and the Fi method showed that the greatest level of fit is reached using the
Slopemin method.

3. The Slopemin method combined with the Slopeini method [22] was shown to be a good methodology
for obtaining the yield strength and the ultimate tensile strength using the SPT curve data punch
displacements under 0.5 mm. Brittle materials, which show premature failures in the SPT and
where a common correlation method fails, could be characterized by these methods (Slopeini
and Slopemin).

4. The experimental tests were done with an analysis of a steel database to guarantee that the
obtained correlation equation is applicable to steel alloys with yield strengths lower than
1300 MPa. Taking into consideration that only nine steel alloys were evaluated, a wider set
of experimental tests would show more accurate values for the parameters of the equation.
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