
UNIVERSIDAD DE BURGOS
ESCUELA POLITÉCNICA SUPERIOR

PROGRAMA DE DOCTORADO
«INVESTIGACIÓN EN INGENIERÍA»

Estudio de métodos de construcción
de ensembles de clasificadores

y aplicaciones

José Francisco Diez Pastor
BURGOS, 15 de Junio de 2015

La investigación realizada en esta tesis doctoral ha sido parcialmente sub-
vencionada por el Ministerio de Economía y Competitividad, proyecto
TIN-2011-24046.

iii

Agradecimientos

Esta memoria de tesis está dedicada a todos aquellos que la han hecho
posible.

Un agradecimiento muy especial a mis dos tutores César y Juanjo, sin
cuya ayuda, consejos y visión no habría podido llevar a cabo esta tesis.
Agradezco especialmente el interés en las revisiones de los contenidos de
esta tesis y los artículos que la componen, porque sin estas revisiones mi
inglés no lo entendería ni yo.

Otro agradecimiento muy importante es para Lucy Kuncheva, con quien
tuve el placer de colaborar en dos ocasiones, en la preciosa ciudad de Bangor.
No solo es una investigadora brillante, es una bellísima persona que trata
a sus doctorandos e investigadores visitantes con mucho cariño. De mi
primera estancia en Bangor también quiero recordar a Ramón Mollineda y
su familia, que compartieron su sentido del humor y su tiempo con nosotros.
De mi segunda estancia quiero recordar a toda la pandilla de españoles que
nos juntamos, que hicieron mi estancia mucho más feliz.

De mis compañeros de universidad quiero dar las gracias a Jesús Maudes
por las ideas tan buenas que tiene y sus chistes, a Carlos Pardo porque tiene
soluciones para todo y conocimientos ancestrales que solo conoce él, a
Lolo y Andrés que con discusiones de matrimonio amenizan el despacho, a
Carlos López por su tiempo dedicado en resolver cualquier duda y porque
es un placer colaborar con él, a Raúl Marticorena por todo lo aprendido
en la dirección de proyectos, a Julián Luengo y Ángel Arroyo con quienes
compartí mi primer año de docencia, a Álvar Arnaiz que me ha ayudado a
soltar estrés con sus visitas al despacho. Y a todos los demás con los que
todavía no he tenido la ocasión de colaborar por los cafés. También recordar
a otros que ahora no están en el área, pero me ayudaron en su momento
como José Miguel Robledo y Pedro Santos.

Quiero agradecer también a los alumnos que he tenido hasta ahora, por
ayudarme a darme cuenta que lo que quiero es dedicarme a la universidad.

Lógicamente tengo que agradecer y reconocer el esfuerzo de todos
aquellos que trabajan para hacer posible la investigación de otros: a los
desarrolladores de Weka, de ImageJ, de Keel, los mantenedores de reposito-
rios como el de la UCI y todos aquellos que colaboran en herramientas y
bibliotecas Open Source.

Por último, quiero agradecer los ánimos a mi familia y amigos. A mi

iv

padre, mi madre, mi hermana, mi sobrina, mis primos y mis tios. A mis
amigos de Burgos por las cañas de los viernes y los sábados y a mis amigos
de Ciruelos de Cervera que después de varios años llamándome “Doctor”,
por fin podrán hacerlo con motivo. Y también a mis compañeros y amigos
de la Escuela de Idiomas y el Drink in English, porque si pensáis que mi
inglés es malo, deberíais haberlo visto antes.

Fin del comunicado.

v

Acknowledgements

I would like to thank Lucy Kuncheva for her collaboration. She is not only
a brilliant researcher, she is a beautiful person who treats her PhD students
and visiting researchers with love.

Acknowledge the work of the reviewers, their interesting comments have
improved enormously the papers of the thesis.

Thanks to Weka, Keel, ImageJ, LATEX and Ubuntu developers. Thanks to
the UCI Repository’s maintainers.

vi

vii

UNIVERSIDAD DE BURGOS

Estudio de métodos de construcción de
ensembles de clasificadores y aplicaciones

La tesis «Estudio de métodos de construcción de ensembles de clasificadores
y aplicaciones», que presenta D. José Francisco Díez Pastor para optar al
título de doctor, ha sido realizada dentro del programa de «Investigación en
Ingeniería», en el Área de Lenguajes y Sistemas Informáticos perteneciente
al Departamento de Ingeniería Civil de la Universidad de Burgos bajo
la dirección de los doctores D. César Ignacio García Osorio y Juan José
Rodríguez Diez.

Los directores autorizan la presentación del presente documento como
memoria para optar al grado de Doctor por la Universidad de Burgos.

Vo. Bo. del Director:

Dr. D. César Ignacio
García Osorio

Vo. Bo. del Director:

Dr. D. Juan José
Rodríguez Díez

El doctorando:

D. José Francisco
Diez Pastor

Burgos, Tuesday 2nd June, 2015

viii

ix

UNIVERSIDAD DE BURGOS
ESCUELA POLITÉCNICA SUPERIOR

Programa de doctorado «Investigación en Ingeniería»
Tesis

TÍTULO:
Estudio de métodos de construcción de ensembles de clasificadores y apli-
caciones

AUTOR: José Francisco Diez Pastor

DIRECTORES: Dr. D. César Ignacio García Osorio y Dr. D. Juan José
Rodríguez Diez

RESUMEN:
La inteligencia artificial es el área de conocimiento que se dedica a la crea-
ción de sistemas informáticos con un comportamiento inteligente. Dentro
de este área se puede considerar que el aprendizaje computacional estudia
la creación de sistemas que aprenden por sí mismos. En el aprendizaje
supervisado se le proporcionan al sistema tanto las entradas como la salida
esperada, cuando la salida es de tipo categórico, se trata de un clasificador
y cuando la salida es numérica, se trata de un regresor. En ocasiones en
ciertos problemas ocurre que el número de ejemplos de un tipo es mucho
mayor que el número de ejemplos de otro tipo, cuando esto ocurre se habla
de conjuntos desequilibrados. La combinación de varios clasificadores o
regresores es lo que se denomina ensemble, y a menudo ofrece mejores
resultados que cualquiera de los miembros que lo forman.

Esta tesis, se centra en el desarrollo de nuevos algoritmos de construcción
de ensembles, sobre todo haciendo hincapié a las técnicas de incremento de
la diversidad en ensembles homogéneos (cuando todos los miembros están
construidos usando la misma técnica).

En la primera parte de la tesis, se presenta un breve estudio de los

x

métodos más representativos de las distintas técnicas de construcción de en-
sembles, aprendizaje en conjuntos desequilibrados y breves nociones sobre
validación experimental. En la segunda, aparecen todas las publicaciones
que han sido realizadas en el contexto de esta tesis. Esta segunda parte
puede ser dividida en tres bloques.

En un primer bloque, se explora la utilización de la fase constructiva
de la metaheurística GRASP como una manera de inyectar aleatoriedad en
algoritmos de construcción de árboles. Inyectar aleatoriedad en el propio al-
goritmo del clasificador base es una de las técnicas usadas para incrementar
la diversidad de un ensemble. Esta técnica, que ha sido llamada “GRASP
Forest” ha sido utilizada con éxito en árboles de clasificación y árboles de
regresión.

La diversidad es clave en los ensembles, pero se quiere incrementar la
diversidad sin afectar gravemente a la precisión de los clasificadores base.
Profundizando en la idea anterior, se ha desarrollado un segundo método
“GAR-Forest” GRASP with annealed randomness.

En este método se parte de la idea intuitiva de que los nodos que más
influencia tienen en la correcta clasificación de las instancias son los nodos
inferiores y hojas, mientras que los nodos que más afectan la estructura
global del árbol (y por lo tanto la diversidad) son la raíz y los nodos
superiores. Partiendo de esa idea se ha diseñado un método que utiliza la
metaheurística GRASP, para controlar el nivel de aleatoriedad en cada uno
de los niveles en el árbol. Creando árboles en donde la raíz es completamente
aleatoria y el nivel de aleatoriedad que disminuye según se construye el
árbol.

En un segundo bloque se aborda el problema de los ensembles para
conjuntos desequilibrados. Existen varias estrategias para lidiar con el
problema del desequilibrio, una de ellas es utilizar distintos métodos de
preprocesado como Undersampling o SMOTE, los parámetros óptimos de
estos métodos son dependientes del problema y a menudo son difíciles
de encontrar. En este bloque se presenta un método llamado “Random
Balance”, basado en la idea de variar aleatoriamente las proporciones entre
las clases, confiando en esta heurística, se elimina la necesidad de ajustar
parámetros, a la vez que se aumenta la diversidad del ensemble.

Como se ha mencionado previamente, cuando se aborda el problema del
desequilibrio, las técnicas más comúnmente usadas son aquellas que afectan
la proporción entre las clases (re-pesado, sobremuestreo y submuestreo,

xi

etc.). En otro trabajo de este bloque se estudia el efecto de distintas técnicas
(Random Oracles, Random Feature Weights, Rotation Forest y Disturbing
Neighbours), originalmente destinadas a aumentar la diversidad en ensem-
bles no desequilibrados. Se realizan varios análisis sobre el impacto del
tamaño del ensemble en el rendimiento del ensemble, se estudia en qué
ocasiones estas técnicas mejoran a los ensembles del estado del arte para
desequilibrados y qué combinación de ensemble y técnica de diversidad
es la que ofrece mejores resultados para distintas medidas. También se
realiza un estudio que trata de predecir en qué ocasiones es más apropia-
do utilizar técnicas de incremento de la diversidad basándose en distintas
meta-características propias del conjunto de datos.

Finalmente, se aplican algunas de estas técnicas a la solución de varias
aplicaciones reales. Se han aplicado ensembles para la predicción de la
calidad superficial en procesos de mecanizado y para el desarrollo de un
sistema de detección de defectos en piezas metálicas mediante imágenes de
radiografía.

PALABRAS CLAVE:
Minería de datos, ensembles, diversidad, GRASP, Random Balance, Boost-
ing projections, boosting, conjuntos de datos desequilibrados, análisis de
radiografía

xii

xiii

ABSTRACT:
Artificial intelligence is the knowledge area devoted to the creation of
computer systems with intelligent behavior. Within this area, Machine
Learning can be defined as the area that studies the creation of systems that
learn by themselves. In supervised learning, the system receives both the
inputs and the expected output, when the output is categorical, it is named
classifier and when the output is numeric, it is named regressor. Sometimes
it happens that the number of examples belonging to a class is much greater
than the number of examples belonging to other, when this happens in
a certain problem, it is called unbalanced problem. The combination of
multiple classifiers or regressors is called ensemble, and often provides
better results than any of the members which comprise it.

This thesis focuses on the development of new ensemble building al-
gorithms, especially emphasizing the techniques of increasing diversity in
homogeneous ensembles (those ensembles whose members are all built
using the same technique).

In the first part of the thesis, a brief survey of the most representative
ensemble building techniques is presented, some theory about imbalanced
learning is shown and brief notions on experimental validation are described.
In the second part, all publications that have been produced in the context of
this thesis are included. This second part can be divided into three blocks.

In the first block, the use of the construction phase of GRASP meta-
heuristic as a way to inject randomness into tree construction algorithms is
explored. Injecting randomness directly into the base classifier algorithm
is one of the most commonly used techniques to increase the diversity of
an ensemble. This technique, which has been called “GRASP Forest” has
been successfully applied to classification and regression trees.

Diversity is essential in the ensembles, but one wants to increase the
diversity without seriously affecting the accuracy of the base classifiers.
Expanding on the above idea, it has been developed a second method
“GAR-Forest” (GRASP with annealed randomness). This method is based
on one intuitive idea: nodes that have the most influence on the correct
classification of the instances are the lower nodes and leaves, while nodes
that affect the overall structure of the tree (and hence diversity) are the root
and the upper nodes. Starting from this idea, it has been developed a method
that uses GRASP metaheuristic to control the level of randomness in each
levels of the tree. Creating trees where the root is totally random and the

xiv

level of randomness decreases as the tree is constructed.
In a second block of publications the problem of using ensembles for

imbalanced learning is tackled. There are several strategies for dealing with
the problem of imbalance, one is to use preprocessing methods such as
Undersampling or SMOTE, the optimum parameters of these methods are
problem dependent and often difficult to find. In this block it is presented a
method called “Random Balance”, which is based on the idea of randomly
vary the proportions between classes, by doing that, the need to adjust
parameters is eliminated, while the diversity of the ensemble is increased.

As previously mentioned, the problem of imbalance is frequently ad-
dressed with techniques that affect the ratio between classes (reweighing,
oversampling and undersampling, etc.). In another paper belonging to this
block, it is studied the effect on different techniques (Random Oracles,
Random Feature Weights, Rotation Forest and Disturbing Neighbours),
originally designed to increase diversity in balanced ensembles on imbal-
anced problems. In this paper , several analyzes have been carried out: on
the impact of how the size of an ensemble affects its performance, on the
suitability of diversity enhancing techniques in imbalanced classification,
to contrast which combination between ensemble learning and diversity
scheme has the best overall results for different metrics of performance,
to extract rules based on data complexity metrics to find when it is more
suitable to combine ensemble methods with diversity techniques.

Finally, some of the ensemble techniques studied in the previous two
blocks are applied to the solution of several real-world applications. En-
sembles have been applied to the prediction of surface quality in machining
processes and for developing a defect detection system in metal pieces using
X-ray images.

KEYWORDS:
Data mining, ensembles, diversity, GRASP, Random Balance, Boosting
projections, boosting, imbalanced learning, radiography analysis.

Contents

1 Introduction 1
1.1 Introduction to ensemble based systems 1
1.2 Reasons for using ensembles based systems 3

1.2.1 Statistical reasons 3
1.2.2 Computational reasons 4
1.2.3 Representational reasons 4
1.2.4 Big Data . 5
1.2.5 Too few data . 5
1.2.6 Divide and conquer 6
1.2.7 Data fusion . 6

1.3 Ensembles: Taxonomy and most common techniques . . . 7
1.3.1 Methods of generating diverse classifiers 7

1.3.1.1 Manipulating the training set vertically . 8
1.3.1.2 Manipulating the training set horizontally 14
1.3.1.3 Manipulating the class representation. . 15
1.3.1.4 Manipulating the behavior of the learn-

ing algorithm. 17
1.3.1.5 Hybrid methods 18

1.3.2 Methods of combining multiple classifiers 18
1.3.2.1 Methods without learned combination

rules. 18
1.3.2.2 Methods in which the combination rules

are learned. 19
1.3.3 Introduction to imbalanced learning 20
1.3.4 Classification methods for imbalanced problems . 22

1.3.4.1 Random Undersampling. 22
1.3.4.2 Oversampling 22
1.3.4.3 SMOTE 22
1.3.4.4 SMOTEBagging 23

xv

xvi CONTENTS

1.3.4.5 SMOTEBoost and RUSBoost 23
1.3.4.6 Partitioning 23

1.4 Experimental methodology 24
1.4.1 Performance measures 24
1.4.2 Training and test datasets 26
1.4.3 Method comparison 28

1.4.3.1 Student’s t-test 29
1.4.3.2 Comparison of 2 models on several datasets 29
1.4.3.3 Comparison of various models over mul-

tiple datasets 30
1.5 Applications . 31
1.6 Motivations and objectives 32
1.7 Discussion of results . 34

1.7.1 GRASP Forest: A New Ensemble Method for Trees 36
1.7.2 GRASP Forest for regression: GRASP metaheuris-

tic applied to the construction of ensembles of re-
gression trees . 37

1.7.3 Tree ensemble construction using a GRASP-based
heuristic and annealed randomness 37

1.7.4 Random Balance: Ensembles of Variable Priors
Classifiers for Imbalanced Data 38

1.7.5 Diversity techniques improve the performance of
the best imbalance learning ensembles 40

1.7.6 Boosting Projections to improve surface roughness
prediction in high-torque milling operations 42

1.7.7 Imbalanced Learning Ensembles for Defect Detec-
tion in X-ray Images 42

1.7.8 Segmentación de defectos en piezas de fundido us-
ando umbrales adaptativos y ensembles (Segmenta-
tion of defects in castings using adaptive thresholds
and ensembles) 43

1.8 Conclusions . 44
1.8.1 Standard classification 44
1.8.2 Regression . 44
1.8.3 Imbalance classification 45
1.8.4 Applications . 47

1.9 Future lines . 47

CONTENTS xvii

1.9.1 Multiclass classification 47
1.9.2 Imbalance classification 47
1.9.3 Applications . 48

2 GRASP Forest: A New Ensemble Method for Trees 51
2.1 Introduction . 52
2.2 Method . 53
2.3 Results . 56
2.4 Conclusion and future lines 61

3 GRASP Forest for regression: GRASP metaheuristic applied
to the construction of ensembles of regression trees 65
3.1 Introduction . 67
3.2 The GRASP metaheuristic applied to the construction of

regression trees . 68
3.2.1 Method . 70

3.3 Results . 72
3.4 Conclusion and future lines 76

4 Tree ensemble construction using a GRASP-based heuristic and
annealed randomness 79
4.1 Introduction . 81
4.2 Decision trees and their use as ensembles members 85

4.2.1 The use of the GRASP metaheuristic as a means of
increasing diversity in the tree construction 87

4.3 Experimental setup and results 90
4.3.1 Noise Robustness 97
4.3.2 Optimized version 98

4.4 Kappa-error diagrams . 99
4.5 Influence of the parameter 107
4.6 Conclusion and future lines 108

5 Random Balance 115
5.1 Introduction . 117
5.2 Measures of performance for imbalanced data 119
5.3 Classification methods for imbalanced problems 119
5.4 Random Balance and RB-Boost ensembles 121

5.4.1 Random Balance 122

xviii CONTENTS

5.4.1.1 Instance inclusion probability 124
5.4.1.2 Intuition behind the method 125

5.4.2 RB-Boost . 126
5.5 A simulation experiment 127
5.6 Experimental setup and results 131

5.6.1 Fusion Rules . 144
5.6.2 Base Classifiers 146
5.6.3 Ensemble Size 148

5.7 Conclusion . 149

6 Diversity techniques improve the performance of the best im-
balance learning ensembles 155
6.1 Introduction . 157
6.2 Ensemble learning for imbalanced problems 159

6.2.1 Ensembles of classifiers 159
6.2.2 Preprocessing techniques for imbalance learning . 160
6.2.3 Ensemble methods specially designed for imbalance 161
6.2.4 Diversity-enhancing techniques 163

6.3 Experimental Set-up and Results 165
6.3.1 Ensemble methods tested in the experimental set-up 166
6.3.2 Datasets and Tools 169
6.3.3 Comparison between basic and enhanced ensembles 171

6.3.3.1 Basic ensembles versus enhanced vari-
ants and enhanced variants among them-
selves. 172

6.3.3.2 The overall winner. 178
6.3.4 Ensemble size. 179
6.3.5 Trying to predict when to apply diversity techniques 180
6.3.6 The impact of noisy and borderline examples . . . 184

6.4 Lessons learned . 186
6.5 Concluding remarks . 188
6.6 Future research directions 188

7 Boosting Projections to improve surface roughness prediction
in high-torque milling operations 195
7.1 Introduction . 197
7.2 Experimental procedure and data set description 201
7.3 Introduction to ensembles 203

CONTENTS xix

7.4 Introduction to boosting projections 207
7.4.1 Linear Supervised Projections 208

7.4.1.1 Linear Discriminant Analysis 208
7.4.1.2 Hybrid Discriminant Analysis 209

7.5 Ordinal Classification . 210
7.6 Results and discussion 211
7.7 Conclusions . 213
7.8 Acknowledgements . 214

8 Imbalanced Learning Ensembles for Defect Detection in X-ray
Images 219
8.1 Introduction . 220
8.2 Problem description and methodology 220

8.2.1 Sliding Window 222
8.2.2 Features . 223
8.2.3 Atribute selection 224
8.2.4 Ensemble learning for inbalanced datasets 225
8.2.5 Experimental setup 226
8.2.6 Results . 227

8.3 Conclusions and future lines 229

9 Segmentación de defectos en piezas de fundido usando umbrales
adaptativos y ensembles 233
9.1 Introducción . 235
9.2 Descripción del método 236

9.2.1 Umbrales locales para la detección de regiones can-
didatas . 236

9.2.2 Clasificación de regiones candidatas en defecto/no-
defecto . 237

9.3 Metodología experimental y resultados 239
9.4 Conclusiones y líneas futuras 240

xx CONTENTS

List of Tables

1.1 Confusion matrix in binary problems 25
1.2 Class sizes for certain datasets in the Keel repository . . . 28
1.3 Minimum number of wins to be significantly superior . . . 29
1.4 Average Ranks example. 30

2.1 Backpack problem . 54
2.2 Summary of the data sets used in the experiments. 57
2.3 Comparison of the ensembles with binary and with non-

binary trees . 58
2.4 Average ranks . 59

3.1 Backpack problem . 69
3.2 Summary of the data sets used in the experiments. 74
3.3 Ensemble methods sorted by average rank (U: unpruned, P:

pruned trees). 75

4.1 Knapsack problem . 83
4.2 Datasets used in the experiments 93
4.3 Average ranks for the different algorithms (Unpruned and

Pruned trees). 95
4.4 Rankings by algorithm families 96
4.5 Comparison of the best method in each algorithm family. . 97
4.6 Average rank (10% class noise) 98
4.7 Average rank by algorithm families (10% class noise) . . . 99
4.8 Average ranks (20% class noise) 100
4.9 Average Ranks by families 20% class noise 101
4.10 Scores of the selected methods for datasets without added

noise . 102
4.11 Scores of the selected methods for datasets (10% class noise)103
4.12 Scores of the selected methods for datasets (20% class noise)104

xxi

xxii LIST OF TABLES

4.13 Ranks of the three methods for different levels of noise . . 105

5.1 Comparison of Random Balance and Bagging ensembles. . 130
5.2 Characteristics of the data sets from the HDDT collection. 132
5.3 Characteristics of the data sets from the KEEL collection. . 133
5.4 Algorithms used in the experimental study: Data-processing

family . 134
5.5 Algorithms used in the experimental study: Bagging family 135
5.6 Algorithms used in the experimental study: Boosting family 135
5.7 Scores of the proposed methods 136
5.7 Scores of the proposed methods 137
5.8 Average ranks (AUC) . 140
5.9 Average ranks (F-Measure) 141
5.10 Average ranks (Geometric Mean) 142
5.11 Average ranks (accuracy) 143
5.12 Average ranks (combined) 144
5.13 Average ranks (Best algorithms) 145
5.14 Average ranks for Ensemble-RB Fusion Rules. 146
5.15 Average ranks for Bagging-RB Fusion Rules. 146
5.16 Average ranks of base classifiers for Ensemble-RB. 147
5.17 Average ranks of base classifiers for Bagging-RB. 147
5.18 Average ranks of base classifiers for RB-Boost. 147

6.1 Characteristics of the 20 data sets from the HDDT collection.169
6.2 Characteristics of the data sets from the KEEL collection. . 170
6.3 Confusion matrix in binary problems 171
6.4 Average ranks for best methods. 178
6.5 Meta-features . 181
6.6 Success percentage of the three classifiers evaluated on

three meta-learning datasets (the symbol ◦ indicates the
cases where there strong classifier is statistically better than
the mode) . 182

6.7 Average ranks (noisy and borderline instances) 185

7.1 Roughness levels according to ISO Standard 4288:1996. . 198
7.2 Cutting conditions selected for the experimental tests. . . . 202
7.3 Ranges of the input and output variables and relationship

between them . 204
7.4 Accuracy for the different base classifiers 212

LIST OF TABLES xxiii

7.5 Results of the different ensembles in terms of its accuracy . 213

8.1 Features used in the experiments. 223
8.2 Features selected characteristics of each type 224
8.3 Instances of the datasets 226

9.1 Media geométrica de la predicción para cada imagen . . . 240

xxiv LIST OF TABLES

List of Figures

1.1 The statistical reason for using ensembles. 4
1.2 The computational reason for using ensembles. 5
1.3 The representational reason for using ensembles. 6
1.4 Bagging pseudocode. 9
1.5 AdaBoost.M1 pseudocode. 10
1.6 How the algorithm mixture of experts works. 13
1.7 Example of how ECOC works 17
1.8 How the algorithm stacking works 20
1.9 Grading table and comparison with Stacking 20
1.10 ROC Curve . 27

2.1 Average ranks in function of α and size 60

3.1 Average ranks in function of α 76

4.1 Evolution of α . 89
4.2 Kappa-error diagrams for the car data set. 105
4.3 Kappa-error diagrams for the krk data set. 106
4.4 Kappa-error relative movement diagrams 106
4.5 Influence of the exponent in the error 109

5.1 Example of data sets used to train a Random Balance ensemble123
5.2 Pseudocode for the Random Balance ensemble method. . . 124
5.3 Probabilities of including an instance in the transformed

dataset . 125
5.4 Intuition behind the method 126
5.5 Pseudocode for the RB-Boost ensemble method. 128
5.6 A simulation experiment 129
5.7 Kappa-error diagrams for the two ensemble methods. . . . 131
5.8 Optimized versions . 134

xxv

xxvi LIST OF FIGURES

5.9 Average ranks for the ensemble methods (AUC and F-
Measure) . 141

5.10 Performance measures as a function of the ensemble size. . 148
5.11 Comparison of methods as a function of the ensemble size. 149

6.1 Ensemble diversifying heuristics based on data manipulation.166
6.2 Ensemble methods compared in this study. 167
6.3 Comparison of the basic ensemble methods with their com-

binations with Disturbing Neighbors and Rotation Forest. . 173
6.4 Average scores in terms of the AUC. 174
6.5 Average Ranks (AUC) 175
6.6 Average Ranks (F-Measure) 176
6.7 Average Ranks (G-Mean) 177
6.8 Average ranks for different ensemble sizes. 180

7.1 PCA fails when the class labels are not used. 209

8.1 Image alignment . 221
8.2 Differences between images used in previous works and in

this work . 222
8.3 Sliding window . 223
8.4 AUC vs. Window Size for Bagging and J48 classifiers . . . 227
8.5 AUC Difference of between J48 and the other classifiers . 228
8.6 Results of the detection process 228

9.1 Proceso de detección de defectos 238

Chapter 1

Introduction

1.1 Introduction to ensemble based systems

This chapter will review the basics of Data Mining, classification and
ensemble based systems.

In recent years, technological advances have led to an exponential in-
crease in the amount of data available for processing. Unfortunately, this
unmanageable data overflow has no increased our knowledge, we are being
inundated with data, but we are unable to extract all the knowledge that it
conveys.

Data mining emerges in this context of necessity of knowledge extraction
in a world where data increases exponentially. [23].

The major tasks in Data Mining are:

• Prediction

– Clasification.

– Regression.

• Association rule learning.

• Clustering.

This thesis focuses on the study and proposal of new methods of classifi-
cation and regression, using ensembles, a concept explained later.

Classification is a process through which a group of items (or instances)
is categorized as belonging to certain subsets, called classes. The classifica-
tion is used in many areas, for example in medical diagnosis, a possible use
of classification could be the diagnosis of whether a patient has a particular
disease or not, using data obtained through specific analyses. In the analysis

1

2 1.1. Introduction to ensemble based systems

of banking data, using data from different sources, a classification algorithm
could forecast if a client can deal with a mortgage or will fall into default.
Ultimately, classification can be understood as the process that takes as
input a set of data, that can be of any nature, defining a particular instance
of an object or situation and the process output is the class to which the
object or situation belongs. The class can be a binary class (grant mort-
gage / deny mortgage) or it can have multiple values (flu / pneumonia /
cold / . . .). If, instead of discrete, the value to predict is continuous, the
data mining task is a regression problem. Ensembles are combinations
of classifiers or regressors, that use different techniques to obtain better
predictive performance than could be obtained from any of the constituent
learning algorithms [59]. The intuitive idea behind these new algorithms
is the same as that in real life when one is faced with a difficult decision,
a second or third opinion is sought. When important decisions need to be
taken, it is usual to consult third parties about their opinion, in the case of
medical diagnosis, it is usual that doctors consult with other specialists to
see whether they have the same opinion or disagree. Speaking in a formal
way, an ensemble of size T has a set of T hypothesis, H = {h1, . . . ,hT}
where each one of them is the output of a predictor. The hypothesis of the
ensemble is the combination of the hypothesis of each of its constituent
base predictors (classifiers or regressors)1. This is a new philosophy when
it comes to seek to improve the accuracy in pattern recognition. Instead of
looking for the best set of features and the best classification method, now
the idea is to find the best set of predictors and the best combination method
[37]. Ensembles based algorithms have proven to be the best technique to
solve complicated problems of classification and regression [19, 59, 10].
Although the ensembles have been studied mainly applied to classification
problems, their origin is linked to the decomposition of generalization error
in regression.

If the output of an ensemble of regressors is defined as a weighted
average of its members

f̄ (x) =
T

∑
k=1

wk fk(x) (1.1)

where fk(x) represents the k-th regressor of the ensemble and the weigths
1The combination may be realized in many ways: voting, weighted voting, using a referee, using a meta-

classifier having as inputs the outputs of the first level classifiers, etc.

1. Introduction 3

wk sum 1. The generalized error of the ensemble

ε(x) = (y(x))− f̄ (x))2 (1.2)

can be decomposed as
ε(x) = ē(x)− ā(x) (1.3)

Where the first term ē(x), is the average error of the base regressors of the
ensemble

ē(x) =
T

∑
k=1

wk(y(x)− fk(x))2 (1.4)

And the second ā(x), is the diversity of the ensemble.

ā(x) =
T

∑
k=1

wk(f (x)− f̄ (x))2 (1.5)

Therefore, according to the equation 1.3, to reduce the error of an ensemble
we can proceed in two ways, reducing the average error of the members of
the ensemble or increasing their diversity. In general, both for classification
and regression, the total error of an ensemble is the sum of the error of the
individual classifiers/regressors (also called bias) and the error variance.

1.2 Reasons for using ensembles based systems

In [19], Dietterich indicates the three main reasons why a set of classifiers
can be better than a single classifier. According to Dietterich these reasons
are: statistical, computational and representational.

More recently, in [59] Robi Polikar completes and extends this list of
reasons with four reason more that ar listed below.

1.2.1 Statistical reasons

A learning algorithm can be seen as the search for the best hypothesis h,
within the space H of hypotheses, that best fits the data. The statistical
problem arises when the training set is very small compared to the set
of hypotheses. This means that the learning algorithm can find several
hypothesis h, that are different, but achieve the same accuracy on the
training dataset.

4 1.2. Reasons for using ensembles based systems

D2

Classifier space

D3

D1

D*

D4

"Good" classifiers

Figure 1.1: The statistical reason. D∗ is the best classifier for one particular problem.
The outer curve represents the set of hypotheses, the inner curve represents the set of
hypotheses with the best accuracy on the training set. It can be seen that the average of the
best hypothesis is more successful than any of them individually. Figure extracted from
[45].

1.2.2 Computational reasons

Many Machine Learning algorithms operate in a way that can make them
get stuck in local optima. For example, neural networks use gradient descent
to minimize the error on the training set, and decision trees use a greedy
algorithm to build the tree. In these cases, it is computationally very hard to
find the best hypothesis. To find the optimal neural network or the optimal
decision tree is a NP problem [40, 6].

An ensemble constructed from classifiers that have started their training
at different points provides a better approximation than any of the individual
classifiers.

1.2.3 Representational reasons

In many learning methods, the function F that correctly classifies the data
can not be represented by any h of the hypotheses set H of the learning
method. However, forming a new hypothesis based on the combination of
the set of hypotheses H it is possible to expand the space of functions and
it is possible that a set of classifiers approximates the function much better
than any of the individual classifiers separately.

1. Introduction 5

D2

Classifier space

D3

D1

D*

D4

Figure 1.2: The computational reason. D∗ is the best classifier for one particular problem.
The outer curve represents the set of hypotheses, the dotted lines show hypothetical paths
during training of the classifiers, it is observed that many of them get stuck in local minima
during training. Figure extracted from [45].

1.2.4 Big Data

In certain applications the amount of data to be analyzed is too large to
be handled by a single classifier. Training a classifier with a huge amount
of data is often a bad idea. Partitioning the data into subsets and training
different classifiers with different portions of data, and then combining
the outputs of these classifiers is a much more efficient solution. In [29]
García-Pedrajas presents a review of data mining algorithms that have been
adapted to handle large volumes of data using ensembles and partitioning.

1.2.5 Too few data

This is the opposite case. In order to make a data mining algorithm ade-
quately learn the data distribution, the data used for its training must be suf-
ficiently representative. In the absence of an appropriate data, re-sampling
techniques can be employed to produce overlapping random subsets of the
available data that can be used to train different classifiers, whose predic-
tions will be combined to get the final prediction. This approach has proven
to be very effective.

6 1.2. Reasons for using ensembles based systems

D2

Classifier space

D3

D1

D*

D4

Figure 1.3: The representational reason. D∗ is the best classifier for one particular problem,
it is located outside the set of hypotheses that can be used by a certain classifier, but it can
be obtained by combining classifiers. Figure extracted from [45].

1.2.6 Divide and conquer

This is a version of the representational reason presented by Dietterich in
[19]. Regardless of the amount of available data, certain problems are too
difficult to solve with a single classifier. The decision boundary may be
too complex or outside the range of functions that can be implemented
by the chosen classifier, for example a linear classifier can not separate
groups that are not linearly separable. However, the combination of several
simple classifiers can provide the flexibility needed to represent complex
boundaries.

1.2.7 Data fusion

If we have several datasets obtained from multiple sources with features of
different nature (heterogeneous features), it is possible that a single classi-
fier cannot be used to learn the information contained in the combination
of sources. For example, in Medicine, the evidences about the cause of an
illness may come from several diagnostic test, for example a patient scan, a
blood test, each of these generate data with different number of characteris-
tics and of different types. Due to the different nature of the input sources, a
single classifier may have problems to combine them, making the learning
process impossible. On the other hand, in an ensemble, each classifier can
be trained on different data and then the results combined (note that, in this

1. Introduction 7

case, is not the data, but the predictions which are combined).

1.3 Ensembles: Taxonomy and most common techniques

This section will briefly present the different ensemble learning algorithms,
depending on the techniques used to create the base classifiers or accord-
ing to the methods of combining the outputs of classifiers. All ensemble
learning algorithms are based on the use of two strategies. The first one is
designed to build a set of classifiers as different as possible. The second
one is designed to combine the outputs of the individual classifiers to make
the final output of the ensemble as accurate as possible.

1.3.1 Methods of generating diverse classifiers

As several authors claim [45, 63], diversity is a fundamental requirement to
achieve good performance ensembles. A formal explanation of why this is
so, for the case of ensembles of regresors, was shown in formulas 1.2 to 1.5.
Many methods have been used to enforce diversity between the classifiers
forming an ensemble, Dietterich and Kuncheva [19, 44] identified four basic
approaches to increase diversity in ensembles:

1. Using different combination schemes.

2. Using different base classifiers.

3. Using different feature subsets

4. Using different data sub-sets.

This thesis will follow a taxonomy based on Rokach [63] that tries to
cover previous works. The different ensemble construction algorithms
are classified, according to the strategies used to enforce diversity, in the
following categories:

1. Heterogeneous. Those ensembles that use more than one learning
algorithms to construct its members. For example, using an classifier
belonging to each of the most popular super-families (combining
neural networks with decision trees, SVMs, nearest neighbors, ...).

2. Homogeneous. When all the base classifiers of the ensemble are
generated using the same learning algorithm.

8 1.3. Ensembles: Taxonomy and most common techniques

(a) Manipulating the training set vertically (that is, using different
instances for each base classifier, or modifying the way they are
used).

(b) Manipulating the training set horizontally (that is, using different
attributes for each base classifier, or modifying the way they are
used).

(c) Manipulating the class representation (Using a differant class
representation for each base classifier.).

(d) Manipulating the behavior of the learning algorithm (for example,
using different values for the parameters of the algorithm).

(e) Hybrid (several of the above strategies are used at the same time).

1.3.1.1 Manipulating the training set vertically

The strategy of manipulating the training set, either vertically or horizontally
(Secc. 1.3.1.2) is very useful when the classifiers that compose the ensemble
are unstable, that is to say, small variations in the training set cause large
variations in the trained classifier. An example of unstable classifier are
decision trees.

In these methods the diversity is achieved by training each classifier with
a different variation of the dataset. This variation is obtained by creating,
deleting, or resampling instances from the original data set.

Popular ensemble construction methods such as bagging [7] and boosting
[64] belong to this category.

1.3.1.1.1 Resampling and reweighing based methods

A common strategy to achieve diversity is to train each base classifier with
a different set of data, however, on many occasions the amount of training
data is limited and to split this small number of instances in even smaller
different subsets for each classifier, can lead to biased classifiers.

One possible solution to this problem are resampling methods. These
methods train each base classifiers with different samples St taken from the
original dataset S.

The resample extraction may be completely random and with replace-
ment as Bagging. Or it may be pseudo-random giving more probabilities
of being in sampling t to those instances more erroneously classified by
classifiers 1 to t−1, as Boosting.

1. Introduction 9

Some of these methods implement the resampling by reweighing.

Bagging Bagging [7] is the best known ensemble method based on resam-
pling. This method tries to increase the diversity between base classifiers
by training each one of them with different samples of the dataset, and
also it outperforms the precision of any base classifiers by combining the
outputs of all of them. The training set for each classifier is the same size as
the original dataset, but obtained from it by resampling with replacement.
To classify a new instance each classifier returns its prediction and these
predictions are combined using the average of probabilities for each class.

Ensemble-based classifiers 11

...

Unlabeled
Tuples

Predicted
Labels

Inducer 1 Inducer 2 Inducer T

Dataset
Manipulator

Dataset
Manipulator

Dataset
Manipulator

Dataset 1 Dataset 2 Dataset T

Classifier 1 Classifier 2 Classifier T

Training Set

Classifiers Composer

Fig. 6 Independent methods

Fig. 7 The bagging algorithm

2.2.1 Bagging

The most well-known independent method is bagging (bootstrap aggregating). The method
aims to increase accuracy by creating an improved composite classifier, I ∗, by amalgamating
the various outputs of learned classifiers into a single prediction.

Figure 7 presents the pseudo-code of the bagging algorithm (Breiman 1996). Each classi-
fier is trained on a sample of instances taken with a replacement from the training set. Each
sample size is equal to the size of the original training set.

Note that since sampling with replacement is used, some of the original instances of S
may appear more than once in St and some may not be included at all.

So while the training sets in St may be different from each other, they are certainly not
independent from a statistical point of view. To classify a new instance, each classifier returns
the class prediction for the unknown instance. The composite bagged classifier, I ∗, returns the
class that has been predicted most often (voting method). The result is that bagging produces
a combined model that often performs better than the single model built from the original
single data. Breiman (1996) notes that this is true especially for unstable inducers because
bagging can eliminate their instability. In this context, an inducer is considered unstable if
perturbing the learning set can cause significant changes in the constructed classifier.

123

Figure 1.4: Bagging pseudocode. Extracted from [63]

Wagging Wagging [4] is a variant of Bagging. In this case each classifier is
not trained with a resampling of the dataset, but is trained using the original
dataset where each instance has associated a weight which value has been
randomly assigned. Bagging can be considered a particular case of Wagging
where the weights follow a Poisson distribution.

AdaBoost Boosting family methods have their origin in 1990, Schapire
[64] demonstrated that it is possible to obtain a strong classifier from the
combination of weak classifiers2.

Of all ensemble methods, Adaboost [24] is certainly the one that has
received more attention. AdaBoost is the original version, which has been
revised successively resulting in new variants: AdaBoost.M1, which is
able to deal with multiclass datasets or AdaBoost.R [25] which is able to
deal with regression datasets. AdaBoost, unlike Bagging, is a dependent
method, this means that a classifier i needs information obtained from the
classifier i− 1 and other previous classifiers. The principal idea of this
algorithm is to focus on the most difficult to classify instances, initially,

2A weak classifier is a classifier good enough to get a better performance than a totally random classifier

10 1.3. Ensembles: Taxonomy and most common techniques

all instances have associated the same weight, but in each iteration, the
weight of incorrectly classified instances is increased, while the weight of
correctly classified instances is decremented. As a result of this change in
the weights, each classifier is forced to pay more attention to instances that
have offered more difficulties to previous classifiers. In addition, a weight
βt , based on their performance, is assigned to each classifier, classifiers
with better performance are associated with a higher weight. Finally, when
classifying a new instance, the weight associated with each classifier is used
following formula.

H(x) = argmax
y∈dom(y)

(
∑

t:Mt(x)=y
log

1
βt

)
(1.6)

Where βt is calculated according to the following formula.

βt =
εt

1− εt
(1.7)

Being εt the resubstitution error 3.

Algorithm AdaBoost.M1
Input: sequence of � examples

�����
1 ��� 1 ���
	�	�	�� ���� ��� ��� with labels �
��������� 1 �
	�	�	������

weak learning algorithm WeakLearn
integer � specifying number of iterations

Initialize � 1
��� ��� 1 � for all

�
.

Do for ! � 1 � 2 ��	�	"	�� �
1. Call WeakLearn, providing it with the distribution �$# .
2. Get back a hypothesis %&# : ')(� .
3. Calculate the error of % # : * # � +� : ,"-/.10�243�56�7 2 � #

��� � . If * #98 1 2, then set � � !;: 1 and abort loop.

4. Set <�# � *�#� � 1 :=*�# � .
5. Update distribution �># : �?#A@ 1

��� �B� �C# ��� �D # E
F < # if % # ��� � ���G� �

1 otherwise
where

D # is a normalization constant (chosen so that � #H@ 1 will be a distribution).

Output the final hypothesis: %JILK ��� ��� arg max7"MON +# : ,"-P.Q0�3 6�7 log
1<R# 	

Figure 1: The algorithm AdaBoost.M1.

of problems with more than two classes.

2.1 AdaBoost.M1

We begin with the simpler version, AdaBoost.M1. The boosting algorithm takes as input a training
set of S examples TVUXWZY�[1 \^] 1 _^\O`O`O`�\ Y�[\"] _ba where [� is an instance drawn from some spacec

and represented in some manner (typically, a vector of attribute values), and]R�9dfe is the class
label associated with [� . In this paper, we always assume that the set of possible labels e is of
finite cardinality g .

In addition, the boosting algorithm has access to another unspecified learning algorithm, called
the weak learning algorithm, which is denoted generically as WeakLearn. The boosting algorithm
calls WeakLearn repeatedly in a series of rounds. On round h , the booster provides WeakLearn
with a distribution i�# over the training set T . In response, WeakLearn computes a classifier or
hypothesis j�# :

c k e which should misclassify a non trivial fraction of the training examples,
relative to il# . That is, the weak learner’s goal is to find a hypothesis jm# which minimizes the
(training) error n�#�U Pr�poRq -Or jR#�Y�[�s_utU]v�Aw . Note that this error is measured with respect to the
distribution il# that was provided to the weak learner. This process continues for x rounds, and, at
last, the booster combines the weak hypotheses j 1 \O`O`O`O\ j�y into a single final hypothesis j�ILK .

Still unspecified are (1) the manner in which iz# is computed on each round, and (2) howjJILK is computed. Different boosting schemes answer these two questions in different ways.
AdaBoost.M1 uses the simple rule shown in Figure 1. The initial distribution i 1 is uniform overT so i 1 Y�{ _ U 1 |}S for all { . To compute distribution iz#H@ 1 from il# and the last weak hypothesisjR# , we multiply the weight of example { by some number ~B# d�� 0 \ 1 _ if j�# classifies [� correctly,
and otherwise the weight is left unchanged. The weights are then renormalized by dividing by
the normalization constant � # . Effectively, “easy” examples that are correctly classified by many

3

Figure 1.5: AdaBoost.M1 pseudocode. Extracted from [24]

AdaBoost tends to reduce both the bias and variance terms of error.
Though AdaBoost is a very widely used method, it sometimes can not
achieve the expected results. According to [60], AdaBoost tends to overfit,
AdaBoost tries to build classifiers that improve outcomes for instances

3The error rate on the training data

1. Introduction 11

misclassified by previous classifiers, over a large number of iterations, this
can cause that the classifiers added to the ensemble to overly focus on the
noisy instances and begins to degrade its performance with other instances.

MultiBoost MultiBoost [78] combines AdaBoost with Wagging [4]. Ad-
aBoost and Wagging are techniques with very different properties. Ad-
aBoost tends to minimize both the bias and variance and Wagging only
minimizes the variance. MultiBoost assumes that if the underlying mecha-
nisms of these two algorithms are effective, their combination can produce
even better method. Multiboost can be seen as Wagging using AdaBoost as
base classifier. It is recommended to set the size of subcommittees to

√
N,

thus, Multiboost size N = 100 is equivalent to Wagging size N = 10 whose
base classifier is AdaBoost size N = 10.

1.3.1.1.2 Methods based on creating new instances

There are two cases in which the methods that provide diversity by sub-
sampling and re-weighting, just as is done in bagging and boosting, do not
work properly: a) when the dataset is small, b) the number of instances
of one of the classes is limited. In these cases the best strategy is to add
artificial instances to the training set. A method for increasing diversity in
small size datasets is DECORATE [54]. In the DECORATE method the
first base classifier of the ensemble is constructed using the original dataset,
the following classifiers are trained using the original set and artificial
data created by randomly picking data points from an approximation of
the training data distribution. To increase the diversity, the labels of the
artificial data are chosen using probabilities that are inversely proportional
to the predictions of the previous classifier. To avoid increasing the error
of the ensemble, the base classifiers are checked and discarded when they
increase the ensemble total error.

When one class has much less examples than the others (imbalanced
datasets see Sec. 1.3.3), specific techniques are used to create artificial
instances, such as SMOTE (see sec. 1.3.4.3), this instance creation tech-
nique can be combined with resampling methods above mentioned to create
ensembles methods that are specially designed to deal with unbalanced sets,
such SMOTEBagging and SMOTEBoost (Secc 1.3.4.4).

12 1.3. Ensembles: Taxonomy and most common techniques

1.3.1.1.3 Partitioning the space of hypotheses

One can define the partitioning of datasets as the division of the dataset of
instances into several smaller datasets. There are several reasons for this:

1. To overcome the limitations of some classifiers to handle large data
sets.

2. To Scale and parallelize classifiers.

3. Just to increase the diversity of the ensemble.

4. Balancing each of the partitions.

5. Trying to increase the precision of ensemble

To overcome the limitations of some classifiers to handle large data sets This lim-
itation, described in [59] as one of the reasons to work with ensembles can
be overcome by splitting the training set into several partitions. By doing so,
ensembles that use this technique are not only able to reduce processor time
and memory size needs of each classifier, but also increase the diversity
since each classifier is trained with a different data set.

Scale and parallelize classifiers. Partition-based methods are highly paralleliz-
able since the process of building the ensemble can be run across multiple
machines, each machine can build one or several base classifiers using
datasets of smaller size. Experiments show this approach is fast, accurate,
and scalable. [14]

Increasing the diversity of the ensemble. Sometimes a random partitioning
can be used as well to increase diversity, this is the strategy followed in
Random Oracle [46]. The oracle divides the data set into two parts without
regard to the class of the instances or the internal structure of the data set.
This division can be carried out in two different ways: split the instances
to one side or another of a random hyperplane (Random Linear Oracle),
or in and out of a random hypersphere (Random Spherical Oracle). In the
training stage, a different classifier is built for each of the two datasets. In
the prediction stage, firstly, it is determined which partition the instance
belongs to, and finally it is returned only the prediction of the classifier
associated with that partition.

1. Introduction 13

Balance each of the partitions. In [55] it is explored the idea of turning a
dataset where one class (negative class) is much larger than the other
(positive class) in several sets of balanced data. The dataset S, consisting of
SN and SP, where SN is M times larger than SP, is divided into M balanced
sets. The division of negative instances in groups can be done by clustering
or just randomly.

Trying to increase the accuracy of the base classifiers. Sometimes it may be
convenient to divide the set of hypotheses, so that each member of the
ensemble explore different parts of the search space. Doing this has two
effects, on the one hand, the problem is simplified, resulting in minor errors
individual for each of base classifiers, on the other hand, there is an increase
in diversity

In [57] it is described the method Mixture of Experts. In this method the
instances in the training set are divided into several subspace and each expert
(classifier) assigned to a different subspace. The subspaces of this method
have “soft borders” since overlapping is allowed between neighboring
subspaces.

Woods et al. [120] hardly improved upon the best classifier in the ensemble, which

was often the nearest neighbor classifier. Nonetheless, the proposed dynamic classi-

fier selection method was found by other authors believable and appealing even

without convincing empirical support. Some authors suggest using bagging or boost-

ing to develop the ensemble and use a selection strategy for combining [206,207].

An interesting ensemble method which belongs in the classifier selection group is

the so calledmixture of experts (ME) [191,200,209,210]. As illustrated in Figure 6.6,

in this model the selector makes use of a separate classifier, which determines the

participation of the experts in the final decision for an input x. The ME architecture

has been proposed for neural networks. The experts are neural networks, which are

trained so that each NN is responsible for a part of the feature space. The selector

uses the output of another neural network called the gating network. The input to

the gating network is x and the output is a set of coefficients p1(x), . . . , pL(x). Typi-
cally,

PL
i¼1 pi(x) ¼ 1, and pi(x) is interpreted as the probability that expert Di is the

most competent expert to label the particular input x. The probabilities are used

together with the classifier outputs in one of the following ways:

. Stochastic selection. The classifier to label x is chosen by sampling from

D ¼ {D1, . . . , DL} according to the distribution p1(x), . . . , pL(x).

. Winner-takes-all. The classifier to label x is chosen by the maximum of pi(x).

Fig. 6.6 Mixture of experts.

BASE CLASSIFIERS AND MIXTURE OF EXPERTS 201

Figure 1.6: How the algorithm mixture of experts works. Extracted from [45]

14 1.3. Ensembles: Taxonomy and most common techniques

1.3.1.2 Manipulating the training set horizontally

The other major family of techniques to increase the diversity by manipu-
lating the training set is the family encompassing methods that transforms
attributes. This time the number of instances does not change (instances are
not created, or deleted, nor resampled), what changes is the way in which
each instance is represented.

1.3.1.2.1 Adding new attributes

One way to introduce diversity in an ensemble is to add new attributes
whose values are different in each of the ensemble members. Disturbing
Neighbours [51] uses N randomly selected instances, the disturbing neigh-
bours, to train a k-NN classifier, then it creates N binary attributes for each
instance (with value 1 if the corresponding disturbing neighbour is the
closest to the instance, 0 otherwise) and an additional attribute whose value
is the class predicted by the k-NN classifier, hence, the feature space is
expanded with N+1 new attributes.

1.3.1.2.2 Assign weights to the attributes

It is possible to introduce diversity by giving a different importance/weight
to every attribute for each member of the ensemble. Random Subspaces,
presented by Ho in [38], is a special case of this approach. A set of binary
random weights is used, where a weight of value 0 means that the attribute
is not included in the subset for the respective ensemble member. The result
is that different classifiers are constructed using different subsets of the
attributes. Ho proved that the diversity gain compensates for the loss of
precision in each individual classifier. This technique has the additional
advantage of accelerating training and facilitating the creation of classifiers
for large data sets.

The Random Forest ensemble [8] is a bagging ensemble with random
trees. A random tree differs from the standard tree only in the number of
attributes that are considered during its training. In random trees, a random
subset of attributes is considered for the splitting of each node. This can
be seen as a variation of Random Subspaces, but instead of using the same
subset for the whole tree, the set is different in each node evaluated in the
construction of the tree.

1. Introduction 15

Proposed more recently, the Random Feature Weights ensemble [53]
associates a vector of weights with each tree of the ensemble. This vector
is used to modify the way in which the merit function of the attributes
is calculated. For a training set D and a weight vector w, the new merit
function for attribute ai is defined as fw(ai,D) = wi f (ai,D), where f (ai,D)
denotes the original merit function of ai for D. Thus, the method introduces
a bias which favours the selection and use of attributes with higher associ-
ated weight. The vector of weights is randomly created for each tree in the
ensemble. These weights are real-valued (not just 0 and 1, as in Random
Subspaces and Random Forest) so it is possible to draw a parallel with
Wagging, but using features instead of instances.

The last two examples, can also be included in the family of methods
which manipulate the learning algorithm (Secc 1.3.1.4)

1.3.1.2.3 Projections

These are frequently used to reduce the dimensionality of the data. In the
context of ensemble learning, projecting can be construed as a diversifying
heuristic. A well known example is Rotation Forest [62], an ensemble
method for decision trees which uses principal component analysis (PCA)
to project different groups of attributes for each base classifier. A similar
approach, but using supervised projections, is Boosting Projections [28,
31], this method follows the philosophy of boosting, focusing on difficult
instances, to do that a supervised projection is obtained using only the
misclassified instances at each iteration. The next classifier is trained using
all available examples, in the space given by the supervised projection.
Random Projections have been used to provide an extra diversity and embed
the original set into a space of lower dimension [65]. Random Subspaces
can be also seen as a special case of Random Projections.

1.3.1.3 Manipulating the class representation.

The last category of techniques that manipulate the data set comprises those
methods that manipulate the class representation. Although in this case the
manipulation of data is not performed to increase diversity, but to overcome
a limitation of the base classifiers.

Many learning algorithms are designed to solve binary classification
problems. By changing the representation of the class, it is possible to get a
multiclass ensemble consisting of binary classifiers.

16 1.3. Ensembles: Taxonomy and most common techniques

The strategy is to use a different encoding of the class for each base
classifier of the ensemble. To do that, a matrix M is created that is formed of
k rows and t columns, where k is the number of classes, and t is the number
of base classifiers in the ensemble. There are basically two alternatives
to fill this matrix, and the resulting number of classifiers depends on the
alternative used.

• 1-1 decomposition: With this scheme k(k− 1)/2 binary classifiers,
each binary classifier solves a problem consisting of distinguishing
between a pair of classes i and j.

• 1-All decomposition: This time k binary classifiers are requiered (as
many classifiers as classes), each trained to distinguish class i from the
rest.

After this, the final output of the ensemble is the class in which most of
the base classifiers agree.

1.3.1.3.1 Error Correcting Output Codes

Error Correcting Output Codes (ECOC) originally emerged in information
theory to correct the bit inversions produced during transmission through a
noisy communication lines. In data mining, these codes have been used to
transform binary classifiers into multiclass classifiers [20]. The idea behind
ECOC is that every word differs from the most similar word to it at least
in the Hamming distance. The Hamming distance [35] is used for data
transmission, if two possible words formed by binary characters differ by a
distance d of bits, then p errors in the transmission can be corrected at least,
being d ≥ 2p+1. In ECOC based ensembles, a class is represented by a
binary word of length T , and two classes differ at least in the Hamming
distance. In this method a matrix M is also created formed of k rows and
t columns, where k is the number of classes, and t is the number of base
classifiers in the ensemble. In the most common strategy t is 2k−1−1. So
with four classes seven classifiers are needed. four words of size seven are
generated so that, the Hamming distance between each of the words is four
(that is, bT/2c+1).

When a new instance is classified, that instance is predicted using the
T classifiers, each of which generates a vector of size T , the vector is
compared with the one which describe each class and class whose distance
is lower is returned as prediction.

1. Introduction 17

Figure 1.7: Example of how ECOC works

1.3.1.4 Manipulating the behavior of the learning algorithm.

1.3.1.4.1 Manipulate the parameters that regulate the functioning of the classifier.

Some learning algorithms such as neural networks or SVM are very sensitive
to the fine tunning of its parameters. This means that the same classification
algorithm trained with the same training set and evaluated using the same
test set can obtain very different results depending on the values of the
parameters that configure the method. A simple way to create diverse
ensemble of classifiers is to use different parameter values in each of the
members of the ensemble. For example in [72] this strategy is studied in
ensembles of SVMs, this paper conduct an analysis of the relationships
between bias, variance, kernel type and its parameters.

1.3.1.4.2 Injecting randomness inside the learning algorithm.

The strategy of injecting randomness has generally been applied to classifi-
cation trees. Classification trees are one of the preferred algorithms to be
used as a base classifier in ensembles, because they are unstable, that means
that small changes in the training set or in the construction method will
produce very different models, this instability makes it easy to incorporate
diversity within the tree construction algorithm.

In [19], a simple technique randomizes the selection of one of the twenty
best splits in each node. Random Forest [8] increases diversity when
it combines training set sampling with random selection of subsets of
attributes at each tree node; thus, the splits are only considered in each
node within the selected subset of attributes. Extremely randomized trees
[33] take k random attributes into account at each node, as in Random
Forest, but the splitting point in each attribute is also randomly chosen. The
Random Feature Weights method [52] makes use of all attributes, each
with a differing probability of being used as a split. These probabilities
are subject to the weight that is assigned to each attribute. These weights

18 1.3. Ensembles: Taxonomy and most common techniques

are randomly generated and are different between trees, so diversity is the
ensemble is ensured.

This thesis presents two new method for creating diverse decision
trees called GRASP Forest and GAR-Forest. GRASP Forest method
have been used in clasification trees (see Chapter 2) and regresion trees
(see Chapter 3). The Grasp Forest method was expanded and improved
resulting in GAR-Forest (GAR means GRASP with Annealed Random-
ness).

1.3.1.5 Hybrid methods

It is quite common that ensemble methods simultaneously use more than
one of the above techniques. A clear example is Random Forest, which
combines resampling with injecting randomness in the learning algorithm.
Or RotBoost [83] which combines projections with weigthed resampling.

Hybrid methods are particularly common when working with unbalanced
sets because imbalance learning ensembles usually combine balancing tech-
niques (artificial instance creation, undersampling, . . .) with bias reduction
techniques (RUSBoost [67] and SMOTEBoost [16]) or variance reduction
techniques (SMOTEBagging [75] and UnderBagging).

1.3.2 Methods of combining multiple classifiers

The generation of classifiers that are accurate and diverse is only the first
part of building and ensemble. The second, but not less important, is the
method of obtaining the ensemble outputs by combining the outputs of the
base classifiers. In [59] the methods of combining multiple classifiers are
classified into two categories according to how are the combination rules:

• Methods without learned combination rules.

• Methods in which the combination rules are learned.

1.3.2.1 Methods without learned combination rules.

In these methods it is assumed that only the predictions of the base classifiers
are available to perform the final prediction.

Some ways to combine the outputs of the base classifiers are:

1. Introduction 19

• Majority voting. The predicted class is the one with the most votes
among base classifiers

• Average of probabilities. Predictions for each class are the average of
the predictions of each of the base classifiers.

• Product of probabilities.

• Weighted average. A weight is assigned to each base classifier of the
ensemble that determines how much the classifier contributes to the
average. This weight may be proportional to its accuracy.

1.3.2.2 Methods in which the combination rules are learned.

The methods that learn the combination rules are often called meta-classifiers.
These methods are particularly useful when the base classifiers do not have
the same success in classifying instances (failed instances for each classifier
are very different between different classifiers). This happens when the
base classifiers are generated using different methods; or when generated
with the same method but with very different parameters.

1.3.2.2.1 Stacking

When decision boundaries of the base classifiers are very different, the
problem of combining the results arises. Stacked generalization [81] solves
this problem by building a classifier that takes as inputs the outputs of the
base classifiers and learn to map the outputs of the base classifiers with
the correct output. In other words, to combine the predictions of the base
classifiers, there is not voting, instead a “meta” classifier is used.

The base classifiers are trained with the training set and the meta classifier
is trained with the predictions of the base classifiers. The predictions of the
classifiers are obtained from a different partition set than the one used for
training. This is achieved by dividing the training set into several partitions
(see figure 1.8).

1.3.2.2.2 Grading

The Grading method [66] is very similar to Stacking. This time, the meta-
classifier, rather than being trained with the set of predictions returned by
the base classifiers, it is trained with a dataset consisting of as many rows

20 1.3. Ensembles: Taxonomy and most common techniques

Classifier
1

F1

F2

F3

F4

F5
Tr
a
in
in
g

Test

Classifier
2

D1,1 D2,1 C1

Figure 1.8: The training set is divided into several partitions. Iteratively, one partition
is chosen to obtain the predictions and the rest to train the base classifiers. (ie. with
the classifiers trained using partitions from F2 to F5, the predictions of partition F1 are
obtained.). By repeating this process several times the training set of the meta classifier is
built.

as instances and as many columns as base classifiers. In each pair rowi-
columnj, the cell contains a 1 (+) if the instancei was successful classified
by the classifierj or 0 (−) otherwise (see figure 1.9).

O�STSVUTWg�DP<ST\'R � iYXlRTR
����� �>�m� �����	�

���� �>�m� �����	� �
��� �>�m� ��� ���
� �	�� �>�m� � �	���	�

¦dX�§ SVUKX>WgZDWgZ<k:RT\mS

� � � � �'�'��� �	�

�
 �'�'� �
��
 �'�'�

�������� �'�'� ����
��� �'�'�

¦/�³§ �vUK\m�@WY]'SVWYc�Z<R

� � � � �m�'��� ���
��� �m�'���
� � �m�'���
��������� �m�'� ������� �m�'� �

¦d]�§r¡£k>UKX��D\'�D¤r�vUK\'�4WY]'SVWYc�Z<R

� � � � �'�m��� � � ��i

�
 �'�m� �

��
 �'�m�
 �
�������� �'�m� ��� ����
� � �'�m�

¦d�M§©S'�DR'�Dbdc>UeRTSTX�]T�4WgZMk

O�STSVUTWg�vPMST\'R � i
����� �'�'� ������� �
� �� �'�'� � ��� � �
���� �'�'� ��� ���
�����!� �'�'� ������	� �

�'�m�

O�STSVUTWg�vPMST\'R � i
����� �'�'� �����	� �
� �� �'�'� � ��� � �
���� �'�'� ���� ���
�����!� �'�'� ���	���	� �

¦d\�§#"�$QSVUKX�WgZvWgZMk�RT\mSTRQbdc�U�k>UKXl�@WgZMk
%�&('F��)v�M`jigigPMRTSVUKX�SVWYc�Z:c>b³RTSTX�]T�4WgZ<k-X>ZM�rk>UKXl�@WgZMkv�M`/Z
SV^vWYRp^D���2clSV^<\'SVWY]mX>i RVWYSVP<XlSVWYc>Z n�" $]hiYX�RTRVWgfM\hUKR
X�UK*SVUTWY\'��c�Z X��vUKc��viY\m� �%WYSV^*"�+�X�STSVUTWg�DPMST\'R'n�"�,Q\'²4Xl���viY\mR*X>ZM�-"�.�/10�]KiYX�RTRT\'R-¦
 n � §h�

ÅKE2.:Ï67K.�52Ä/Â�ÅhÄ/CD3ÃC4À*ÅKE6ÄAG¥,A.�147K36.�7�=*14G¥Â�CD7h7K.�Â�Å�CD3ÃÅhE2Ä/G
Ï 1@7KÅKÄ/Â J ,j1@7r.�0214Ê Ï6,A.v9 Ü�.�32Â�.!2
Ä/3 Â�Cv3MÅh7m1@GKÅ-ÅhC GhÅm14Â'L<Ä/32É32ó=�.-,/.l1�Øv.�ÅhE2.
Cv7KÄ/ÉDÄ/3 1@,p.�0214Ê Ï6,A.>G J 36ÂmEF1432Év.�5ªÒFË J Å*Ä/32GhÅK.l1@5
Ê C<52ÄÎÀ£Ì
ÅhE2.
Â�,d1@GKG*,d14ËF.�,/Gl9
â*E2.
Ä/52.l1C4À�ÉD7'1452Ä/32É:Ä/G*32CvÅ-.�3<ÅKÄ/7h.�,/Ìa36.�=
9ªÔgî�×�14325àÔ 4�×ªÄ/3252.�ÏF.�3252.>3MÅh,/Ì)Ä/3MÅh7KC<5 J Â>.

14,/ÉDCv7KÄ/ÅKE6Ê G%Ë 14Gh.�5)Cv3aÅhE2.
G'14Ê .�Ë 14GhÄ/Â
Ä/52.l12Ò<Ë J Å-Ï27hC4Ø<ÄA56.�Cv32,/Ì 1�Ï27K.>,AÄ/Ê¢ÄA3F147KÌ�.�ØD1@, J ß
14ÅhÄACv3 C@À©ÅhE2.
14Ï2Ï67KCM1@Â'Eª9 ¿ .r=*Ä/,/,p52.�GKÂ>7KÄ/Ë .¥ÅKE2Ä/G-Ä/52.�1�ÄA3¢Ê Cv7K.r52.�Å'14Ä/,ª14325�Â�CvÊ Ï 1@7K.rÄ/Å
ÅKC�Â�7KCvGKG_ßÁØD1@,AÄ/5 1@ÅKÄ/CD3 ÒDGhÅm14Â'L<Ä/32É ÒF14325�1�ØDCvÅKÄ/32É�ÅK.�Â'E232Ä/ð J .D9

5 6ó¹�7%»-¾h·98

H ÄAÉ J 7K.�Õ;:V1;<�GKE6C4=*G�1¢EMÌ<ÏFCDÅhE2.�ÅKÄ/Âl1@,�,/.l147h32Ä/32É Ï67KCDË6,A.>ÊÓ=*Ä/ÅKE>=@?
Åh7m1@ÄA36ÄA36Éa.>0³1@Ê Ï2,/.�G�Ò
.l14Â'E¢C4À�ÅhE2.�Ê .>32Â�C<52.�5 J GKÄ/32É-=@A
14ÅhÅK7KÄ/Ë J ÅK.�GCBEDGF
14325�1
Â�,d1@GKG*,d14ËF.�,IHJ(D'9DÛT3�C J 7e.�021@Ê:ß
Ï2,/.DÒ4ÅhE2.-3 J Ê:ËF.�7%C4Àª52ÄLKp.�7K.>3MÅ�Â�,d14GhGe,d1@Ë .�,/GM=�NFÄ/GMO-:ìÅKE2.�ØD14, J .�G#Pe1@325RQ�<QË J ÅQÅKE2Ä/G�ÄAGQ32C
Ï27KÄ/32Â>ÄAÏF14,p7K.>GKÅK7hÄ/Â�ÅKÄ/CD3 9 ¿ .
1@7K.r32C4=´14GKG J Ê Ä/32É�ÅKEF14Å*=�.
E 1�ØD.S=�TVUmç@å�W:è�X/ç4å'å�ê Y�W�ñ'å[Z]\2Ò
=*E2Ä/Â'E
=e.>7K.�.�ØD14, J 1@ÅK.�5 J GKÄ/32É-GhCDÊ¢.�Â�7KCvGKG_ßÁØD1@,AÄ/5 1@ÅKÄ/CD3rGhÂmE6.�Ê .D9�+�G�Â>7KCDGhGTßTØD14,/Ä/5 14ÅhÄ/CD3r.�3<ß
G J 7h.�G�ÅhE 14Å%.l1@ÂmE:.>0³1@Ê Ï2,/.�Ä/G J Gh.�5 14G�1�ÅK.�GhÅe.>0³1@Ê Ï2,/.�.>0³1@Â�ÅK,/Ì
Cv32Â�.DÒ@=e.*E 1�Øv.eCvË2Åm1@Ä/32.�5
CD32.rÏ27h.�52Ä/Â�ÅhÄACv3¢À£CD7�.l14Â'E)Â>,j1@GKGhÄYÍF.�7-14325¢À£Cv7*.l14Â'E�ÅK7'14Ä/32Ä/32É�.�0214Ê¢Ï2,/.S:£H Ä/É J 7h. Õ;:ìË�<�<>9
+´GKÅK7'14Ä/ÉDE<Å_ß£À£Cv7K=*147h5 J GK.�C4À�ÅKE2Ä/G*Ï27h.�52Ä/Â�ÅhÄACv3)Êa1@ÅK7hÄA0:Ä/G*ÅhC:,A.>Å-.l1@ÂmExÂ�,d14GKGhÄÎÍ .�7-ØvCDÅh.

À£CD7*1¥Â�,d14GKG�Ò 1@325 Ï27h.�52Ä/Â�Å�ÅKE2.rÂ�,d14GhG*ÅKE 1@Å*7K.�Â>.�Ä/ØD.�G�ÅKE2.rÊ CvGKÅ�ØvCDÅh.�Gl9F;<Åm1@ÂmL<Ä/32ÉFÒ214G�CD7KÄ/É@ß
Ä/3 14,/,/Ì 52.>GKÂ�7hÄAËF.�5ÝË<Ì¯Ô/Õlî�×_ÒFÊ�14LD.>G�1¢Ê Cv7K.�.�,d14ËFCD7m1@ÅK. J Gh.:C4À*ÅKE2.:Ï67K.�52Ä/Â�ÅhÄ/CD3ÃÊa1@ÅK7hÄA0p9
ÛTÅ
145252GrÅhE2.�Cv7KÄ/ÉDÄ/3 1@,ªÂ�,d1@GKG
,d14ËF.�,/G^H!J D ÅhC�ÄAÅ
1@325 J Gh.�G�ÅhE2Ä/G-32.>= 5F14Åm1GK.�Å_2óGKE2C4=*3ÃÄ/3
H ÄAÉ J 7K.�Õ;:ì5�<`2ÝÀ£Cv7eÅh7m14Ä/32Ä/32É�1432CvÅKE2.�7*Â>,j1@GKGhÄYÍF.�7�a49�b%0214Ê¢Ï2,/.�Ge147h.rÂ�,d14GKGhÄÎÍ .�5�Ë<Ì:G J Ë2Ê¢Ä/ÅTß
ÅKÄ/32É¢ÅKE2.�Ê ÅKC�.l1@ÂmEÃËF14GK.�Â�,d14GhGKÄÎÍ .�7c:dÅK7'14Ä/32.�5°CD3°ÅKE6.:.�3<ÅKÄ/7K.:Åh7m14Ä/32Ä/32É¢GK.�Å<
14365 J GhÄ/32É
� `jZ�bjX�]'S'n �%\rbdc>igiYc��%\m�edYt�fg%WgZ)P<RVWgZMk:�vUKc��<X��vWgigWYS£�°�4WYRTSVUTWg�vPMSVWYc�Z<R
bdc>U�RTSTX�]T�4WgZMkv��`jZMRTST\'X��)c�b
�r\hUK\hiY�-X��D�4WgZ<k*SV^M\%]hiYXlRTRT\'R SV^MX�SpX�UK\]mc>ZMRVWY�v\hUK\m�¥STc��2\%�rclRTS6igWg��\hiY���D�*\'Xl]_^-�<XlRT\%]hiYXlRTRVWgf<\hU�n
SV^<\m�:RVP<klk�\'RTSeSTc�X��D�:SV^M\r\hZDSVWgUK\^" . s£�4WY�r\hZMRVWYc>ZMX>i�]hiYXlRTR��vUKc��<X��vWgigWASV�a��\']'STc�UCh@ikj@nM��WY\hiY�@WgZMk
Xr�r\'STX��vXlSTX�RT\'S��%WYSV^R" .@l "�$�X�STSVUTWg�DP<ST\'R�WgZ<RTST\mX��:c>bªc�ZviY�m"�$©bdc�U�]'c>ZD�l\hZDSVWYc>ZMX>i�RTSTX�]T�4WgZMkv�

Figure 1.9: Grading table and comparison with Stacking (figure from [66])

1.3.3 Introduction to imbalanced learning

In classification, the imbalance problem occurs when some classes contains
many more cases than others[13].

Many real-life problems can be described as imbalanced. The areas in
which this problem has been studied more deeply are:

• Bioinformatics: translation initiation site (TIS) recognition in DNA

1. Introduction 21

sequences [30], gene recognition [3], mining cancer gene expression
[82].

• Monitoring of industrial processes: non-destructive testing in weld
flaws detection through visual inspection [47, 21], tools breakage
detection [12].

• Finance: predicting credit card customer churn [1], fraud detection [58,
18], risk predictions in credit data [27].

• Security: spam detection [32, 69].

• Software engineering: software defect detection [76, 50, 48].

Classification of imbalanced data is hard and standard learning algo-
rithms usually perform badly on them because standard classifiers are driven
by accuracy, hence the minority class may simply be ignored [74], more-
over standard classification methods operate under the assumption that
the data sample is an accurate representation of the population of interest,
which is not always the case with imbalance problems and finally standard
classification can not handle different errors costs coming from different
classes.

According to [49] there are at least six problems related to imbalance
datasets that contribute to make the problem harder:

1. overlapping [70].

2. lack of density and information [77].

3. noisy examples [9].

4. small disjuncts [79].

5. the significance of borderline instances to discriminate between posi-
tive and negative classes [56].

6. differences in the data distributions between training and test stages
[61].

Because the difference between the class sizes, accuracy is not an appro-
priate measure to assess performance in unbalanced datasets. Commonly
used measures of performance for imbalanced data are the Area Under the
ROC (Receiver Operation Characteristic) curve [22], the F-Measure [73]
and the Geometric Mean [43] (see section 1.4.1).

22 1.3. Ensembles: Taxonomy and most common techniques

1.3.4 Classification methods for imbalanced problems

In recent years, numerous techniques have been developed to deal with the
problem of class-imbalance datasets. This section is a sort summary of
the subset of methods tested in the articles of the thesis that address the
problem of imbalance, longer summaries can be found in these articles (see
chapters 5 and 6).

The methods of this summary are organized using the following classifi-
cation. We can consider to approaches:

Data level approaches: the balanced is achieved through the modification
of the data distribution, this methods are: random undersampling,
oversampling, SMOTE.

Ensemble learning: methods designed to deal directly with imbalanced
datasets, such as, modifications of bagging: SMOTEBagging; modi-
fications of AdaBoost: SMOTEBoost, RUSBoost; methods based on
partitioning, and multiobjective methods.

1.3.4.1 Random Undersampling.

This technique will randomly drop some of the examples of the majority
class. When it comes to sampling without replacement, an example of the
minority can appear only once in the sub-sampling; with replacement, the
same example can appear multiple times.

1.3.4.2 Oversampling

Oversampling [2] consists on adding exact copies of some minority class
examples. With this technique overfitting is more common than in the prior
technique.

1.3.4.3 SMOTE

Synthetic Minority Over-sampling Technique [15] creates new examples
using the following procedure: a member of the minority class is selected
and its k nearest neighbours (from the minority class) are identified. One
of them is randomly selected. Then, the new example added to the set is a
random point in the line segment defined by the member and its neighbour.
This method tries to avoid overfitting using a random procedure to create
the new samples, but this can introduce noise or nonsensical samples.

1. Introduction 23

1.3.4.4 SMOTEBagging

SMOTEBagging [75], combines Bagging with different amounts of SMOTE
and Oversampling in each iteration. The resulting dataset is completely
balanced and consists of three parts: i) a sample with replacement of the
majority class, keeping the original size; ii) oversampling of the minority
class; and iii) SMOTE of the minority class. The amounts of oversampling
and SMOTE are not equal in all ensemble members: the oversampling
percentage varies in each iteration (ranging from 10% in the first iteration
to 100% in the last.) The rest of the positive instances are generated by the
SMOTE algorithm.

1.3.4.5 SMOTEBoost and RUSBoost

SMOTEBoost [16] and RUSBoost [67] are both modifications of Ad-
aBoost.M2 [26], in each iteration, besides the instance reweighting done
according to the algorithm Adaboost.M2, SMOTE or Random undersam-
pling are applied to the training set of the base classifier. Ensembles based
on boosting tend to perform better than bagging based ensembles, how-
ever their base classifiers are more sensitive to noise (they focus on pre-
viously failed instances that can be noise), this disadvantage is attenuated
in SMOTEBoost and RUSBoost because they introduce a high degree of
randomness by creating or deleting instances.

1.3.4.6 Partitioning

Although the most popular methods are modifications or variations of bag-
ging or boosting, there are methods that do not do resampling, oversampling
or undersampling and instead of that, they make partitions.

Partitioning [55] is similar to undersampling based ensembles, it breaks
the majority class into several disjoint partitions and constructs several
models each using one partition from the majority class and the entire
minority class.

1.3.4.6.1 Multiobjective Methods

Most of the above methods, at the same time that increase accuracy in
minority class, they decrease overall accuracy compared to traditional
learning algorithms. Some approaches combine both types of classifiers,

24 1.4. Experimental methodology

one trained with the original skewed data and other trained according to
one of the previous approaches in an attempt to cope with the imbalance.

Reliability Based Classifier [68] trains two classifiers and then chooses
between the output of the classifier trained on the original skewed distribu-
tion and the output of the classifier trained according to a learning method
addressing the curse of imbalanced data. This decision is guided by a
parameter whose value maximizes, on a validation set, the accuracy and a
measure designed to evaluate the performance of a classifier in imbalanced
classifiers, such as the geometric mean.

The preprocessing methods used for dealing with the problem of im-
balance such as Undersampling or SMOTE have an issue: the optimum
value of the parameters of these methods are problem dependent and are
often difficult to find.

Chapter 5 of this thesis presents a method called “Random Balance”
that overcomes this problem and increases the diversity of the ensemble
by randomly changing the class proportions.

Most literature about imbalanced learning addresses the problem of
imbalance using reweighing, oversampling, undersampling and other
techniques that affect the ratio between classes. Chapter 6 of this thesis
presents a study of the effect on diversity techniques (Random Oracles,
Random Feature Weights, Rotation Forest and Disturbing Neighbours)
in imbalanced learning.

1.4 Experimental methodology

This section will present the basic fundamentals of the experimental method-
ology: what measures are evaluated 1.4.1, how to measure 1.4.2, and what
are the statistical test used to compare different models 1.4.3.

1.4.1 Performance measures

Basically when evaluating a classifier what is measured is the rate of suc-
cess/error o accuracy.

accuracy =
number of instances correctly labeled

number of instances
(1.8)

1. Introduction 25

But it is not always appropriate to use the accuracy to compare methods.
Sometimes the cost of making a mistake is not the same, but depends on the
class, for example, financial fraud, errors in medical diagnosis (the cost of
making an unnecessary test is less than the cost to discharge a patient with
a dangerous disease). On other occasions due to the data distribution, the
accuracy is not useful, for example, let us imagine an industrial process that
produces a defective product per 1000 correct products, a defect prediction
system that always predicts that the product is correct would have a success
rate of 99.9%, it would be very accurate, but not useful.

In examples of this nature, binary and unbalanced datasets, it is more
appropriate to evaluate and measure the performance of classifiers using
ROC analysis [22], the F measure [73] and the Geometric Mean [43].

To understand these measures, it is necessary to explain some basic
concepts: given a test dataset for a 2-class imbalanced problem, containing
P examples of the positive (minority) class and N examples of the negative
(majority) class. There are four posible outcomes: that the instance is
positive and it is predicted as positive, true positive, that the instance is
negative and it is predicted as positive, false positive, that the instance is
negative and it is predicted as negative, true negative, or is positive and it is
predicted as negative, false negative.

One way to visualize these outcomes is using a tabular representation
called confusion matrix, shown in Table 6.3.

Table 1.1: Confusion matrix in binary problems

Positive prediction Negative prediction

Positive class True Positive (TP) False Negative (FN)
Negative class False Positive (FP) True Negative (TN)

The True Positive Rate (T PR), also named Sensitivity or Recall in some
fields, is defined as T P/P, and False Positive Rate (FPR) is defined as
FP/N. The precision is defined as T P/(T P+FP).

Using these previous measures it is posible to define the F-Measure as

FMeasure = 2× precision× recall
precision+ recall

The Geometric Mean is defined as

GMean =
√

T P/P×T N/N

.

26 1.4. Experimental methodology

The ROC Curve is obtained from the probabilities assigned to the in-
stances by the classifier, each probability threshold gives a T PR and FPR
that defines a point in the curve. The Area Under the ROC curve (AUC) is
a way to represent the performance of a binary classifier using a scalar.

The ROC curve is a graphical representation of the performance of
classifiers. In this representation:

• a classifier that always predicts negative, will be represented by a
single point in (0,0).

• a classifier that always predicts positive, will be represented by a single
point in (1,1).

• a perfect classifier will be represented by a point of coordinates (0,1).

• a Random classifier will be represented by a diagonal line.

A classifier is better than others if its corresponding point is on the top left
corner. The best possible area under the curve is 1 and the worst is 0.5

1.4.2 Training and test datasets

The proper evaluation of a model requires the use of a dataset totally
independent of the dataset used for training. The reason of this is that if we
use the same dataset used for training, or with instances in common, the
estimation of the performance of the model would be too optimistic. We are
not seeking models with just a good behaviour on the training set, we want
more than that, we want the model to be able to generalize, that is, a model
with good behaviour on instances that have not been used in training. That
is why first a dataset is used for training the model. The larger this dataset,
the better the model. And then, a different dataset is used for evaluating
the model. The larger this dataset is, the more accurate is the estimation of
the model performance. So in practice, the available data is used to satisfy
these two objectives, in a way that the data used for training is not later
used for evaluation.

The k-fold cross-validation is a process that avoids overlapping between
training and test datasets, the procedure is as follows:

1. The data is divided into k subsets, folds, of the same size.

2. Successively each fold is used as test and the rest is used for training.

1. Introduction 27

instance scores. A classifier need not produce accurate, cal-
ibrated probability estimates; it need only produce relative
accurate scores that serve to discriminate positive and neg-
ative instances.

Consider the simple instance scores shown in Fig. 4,
which came from a Naive Bayes classifier. Comparing the
hypothesized class (which is Y if score > 0.5, else N) against
the true classes, we can see that the classifier gets instances
7 and 8 wrong, yielding 80% accuracy. However, consider
the ROC curve on the left side of the figure. The curve rises
vertically from (0, 0) to (0,1), then horizontally to (1, 1).
This indicates perfect classification performance on this test
set. Why is there a discrepancy?

The explanation lies in what each is measuring. The
ROC curve shows the ability of the classifier to rank the
positive instances relative to the negative instances, and it

is indeed perfect in this ability. The accuracy metric
imposes a threshold (score > 0.5) and measures the result-
ing classifications with respect to the scores. The accuracy
measure would be appropriate if the scores were proper
probabilities, but they are not. Another way of saying this
is that the scores are not properly calibrated, as true prob-
abilities are. In ROC space, the imposition of a 0.5 thres-
hold results in the performance designated by the circled
‘‘accuracy point’’ in Fig. 4. This operating point is subop-
timal. We could use the training set to estimate a prior for
p(p) = 6/10 = 0.6 and use this as a threshold, but it would
still produce suboptimal performance (90% accuracy).

One way to eliminate this phenomenon is to calibrate
the classifier scores. There are some methods for doing this
(Zadrozny and Elkan, 2001). Another approach is to use
an ROC method that chooses operating points based on
their relative performance, and there are methods for doing
this as well (Provost and Fawcett, 1998, 2001). These latter
methods are discussed briefly in Section 6.

A consequence of relative scoring is that classifier scores
should not be compared across model classes. One model
class may be designed to produce scores in the range
[0,1] while another produces scores in [�1,+1] or [1,100].
Comparing model performance at a common threshold will
be meaningless.

4.2. Class skew

ROC curves have an attractive property: they are insen-
sitive to changes in class distribution. If the proportion of
positive to negative instances changes in a test set, the
ROC curves will not change. To see why this is so, consider
the confusion matrix in Fig. 1. Note that the class distribu-
tion—the proportion of positive to negative instances—is
the relationship of the left (+) column to the right (�) col-
umn. Any performance metric that uses values from both
columns will be inherently sensitive to class skews. Metrics
such as accuracy, precision, lift and F score use values from
both columns of the confusion matrix. As a class distribu-
tion changes these measures will change as well, even if the
fundamental classifier performance does not. ROC graphs
are based upon tp rate and fp rate, in which each dimension
is a strict columnar ratio, so do not depend on class
distributions.

To some researchers, large class skews and large changes
in class distributions may seem contrived and unrealistic.
However, class skews of 101 and 102 are very common in
real world domains, and skews up to 106 have been
observed in some domains (Clearwater and Stern, 1991;
Fawcett and Provost, 1996; Kubat et al., 1998; Saitta and
Neri, 1998). Substantial changes in class distributions are
not unrealistic either. For example, in medical decision
making epidemics may cause the incidence of a disease to
increase over time. In fraud detection, proportions of fraud
varied significantly from month to month and place to
place (Fawcett and Provost, 1997). Changes in a manufac-
turing practice may cause the proportion of defective units

Infinity

.9

.8 .7

.6

.55

.54 .53 .52

.51 .505

.4 .39

.38 .37 .36 .35

.34 .33

.30 .1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

False positive rate

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
ru

e
po

si
tiv

e
ra

te

Inst# Class Score Inst# Class Score

1 p .9 11 p .4

2 p .8 12 n .39

3 n .7 13 p .38

4 p .6 14 n .37

5 p .55 15 n .36

6 p .54 16 n .35

7 n .53 17 p .34

8 n .52 18 n .33

9 p .51 19 p .30

10 n .505 20 n .1

Fig. 3. The ROC ‘‘curve’’ created by thresholding a test set. The table
shows 20 data and the score assigned to each by a scoring classifier. The
graph shows the corresponding ROC curve with each point labeled by the
threshold that produces it.

864 T. Fawcett / Pattern Recognition Letters 27 (2006) 861–874

Figure 1.10: ROC Curve. To create a ROC curve is necessary to order the instances based
on the probability returned by the classifier, considering that values close to 1 means that
the instance is predicted as positive and vice versa. Starting with the instances with highest
probabilities, every time the instance is correctly predicted a segment is drawn upward,
and every time the prediction fails, it is drawn to the left. [22]

Often, the folds are obtained in such a way that the proportion of classes
follows the proportion in the full dataset, that is called stratified cross-
validation.

In the experiments presented in this thesis, the configuration used is
5× 2, the data set is halved in two folds. One fold is used for training
and the other for testing, and then the roles of the folds are reversed. This
process is repeated five times, with different folds each time.. The results
are the averages of these ten experiments. Cross validation was stratified:
the class proportions was approximately preserved for each fold.

28 1.4. Experimental methodology

Table 1.2: Class sizes for certain datasets in the Keel repository 4

Name Size Minority Size Majority

keel_shuttle-c2-vs-c4 6 123
keel_ecoli-0-1-3-7_vs_2-6 7 274
keel_glass5 9 205
keel_glass-0-6_vs_5 9 99
keel_glass-0-4_vs_5 9 83
keel_glass-0-1-6_vs_5 9 175

As the datasets we are dealing with are imbalanced, the use of 5-fold
stratified cross validation (another configuration commonly used in the
literature) will make the measures calculated in each fold too unreliable
when there are very few instances in the minority class (some of them
with only 6 instances in the minority class, (see Table 1.2), with 5-fold
stratified cross validation a minority class in a fold will have only one or
two instances, the value of the performance measure could be minimum or
maximum depending on a single instance). By using 2-fold stratified cross
validation we alleviate this, since in each fold half of the instances of the
minority class are present instead of only a fifth.

1.4.3 Method comparison

There are several types of methods for comparing classifiers, these methods
can be arranged depending on the number of models to be evaluated and the
number of datasets used for the comparison. The comparison of classifiers
is a huge area of study and this section will only briefly describe those
statistical tests used in the experiments of this thesis.

• two models.

– Student’s t-test.

– Sign test.

• More than two models, several sets.

– Friedman test.

– Iman Daveport test.

– One versus the rest. Bounferroni-Dunn.

– One versus the rest. Hochberg.

1. Introduction 29

1.4.3.1 Student’s t-test

To compare how accurate are two models on a certain dataset, a evaluation
using cross-validation may be sufficient. However, to demonstrate convinc-
ingly that a model A works significally better than a model B in a particular
dataset we must use the Student’s t-Test.

The Student’s t-Test indicates whether the means of two samples are
significantly different or else the differences can be merely due to chance.

When for every observation of a group there is associated one observation
in the other group, is called the paired t-test. This is what happens when
estimates are obtained by cross-validation.

In this test, the null hypothesis is that the difference between averages is
zero. When the the mean of the differences is not consistent with an average
equal to zero the hypothesis is rejected.

1.4.3.2 Comparison of 2 models on several datasets

According to [17], when comparing various classifiers on different datasets,
new problems arise, that did not existed when using only one dataset.
Although it is possible to perform a paired t test with the results of each
dataset, the results for each dataset are not comparable with each other.
There are specific tests to evaluate this type of experiments.

The signs test requires simply to count for how many data sets a model
wins the other. If the two models are equivalent, each of them should win
in half of the datasets. A classifier is significantly better than the other if it,
has at least the number of wins (ties count as half a win) that appears on
Table 1.3. For example, for 20 data sets and considering a confidence α =
0.10, one method is significally better than the other, if it wins at least in 14
datasets.

datasets 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
α =0.05 5 6 7 7 8 9 9 10 10 11 12 12 13 13 14 15 15 16 17 18 18
α =0.10 5 6 6 7 7 8 9 9 10 10 11 12 12 13 13 14 14 15 16 16 17

Table 1.3: Number of wins that has to reach a model to be significantly superior than the
other

30 1.4. Experimental methodology

1.4.3.3 Comparison of various models over multiple datasets

Average ranks is a method that computes a rank for each model, taking into
account the scores on all datasets and the scores of other methods. The
procedure is as follows:

1. Scores are obtained for each data set and model.

2. Using the scores, models are ordered from best to worst.

3. Each model recieves a number, its rank, according to its position. The
best receives a 1, the second receives a rank of 2, and so on.

4. When there is a tie, the ranks are shared out. For example, if the top
three models for a given dataset tied, each one of them would receive
rank (1+2+3)/3 = 2 for this dataset.

5. For each classifier the average rank for all datasets is calculated.

6. Classifiers are sorted using that average rank.

7. From these rankings one can perform various statistical tests.

Table 1.4 shows an example.

Scores (AUC) Ranks
C4.5 C4.5+m C4.5+cf C4.5+m+cf C4.5 C4.5+m C4.5+cf C4.5+m+cf

adult 0.763 0.768 0.771 0.798 4.0 3.0 2.0 1.0
breast cancer 0.599 0.591 0.590 0.569 1.0 2.0 3.0 4.0
cancer wisconsin 0.954 0.971 0.968 0.967 4.0 1.0 2.0 3.0
cmc 0.628 0.661 0.654 0.657 4.0 1.0 3.0 2.0
ionosphere 0.882 0.888 0.886 0.898 4.0 2.0 3.0 1.0
iris 0.936 0.931 0.916 0.931 1.0 2.5 4.0 2.5
liver disorders 0.661 0.668 0.609 0.685 3.0 2.0 4.0 1.0
lung cancer 0.583 0.583 0.563 0.625 2.5 2.5 4.0 1.0
lymphography 0.775 0.838 0.866 0.875 4.0 3.0 2.0 1.0
mushroom 1.000 1.000 1.000 1.000 2.5 2.5 2.5 2.5
primary tumor 0.940 0.962 0.965 0.962 4.0 2.5 1.0 2.5
rheum 0.619 0.666 0.614 0.669 3.0 2.0 4.0 1.0
voting 0.972 0.981 0.975 0.975 4.0 1.0 2.0 3.0
wine 0.957 0.978 0.946 0.970 3.0 1.0 4.0 2.0

Average Rank: 3.143 2.000 2.893 1.964

Table 1.4: Average Ranks example. The best classifier according to average ranks is
C4.5+m+cf. Example extracted from [17]

1. Introduction 31

1.4.3.3.1 Friedman’s Test and Iman Davenport’s Test

The null hypothesis is that if the models are equivalent, their average ranks
should be equivalent. Friedman statistic is as follows:

χ
2
F =

12N
k(k+1))

[
∑

j
R2

j−
k(k+1)2

4

]
(1.9)

Where N is the number of datasets, k is the number of models, R j the
average ranks of model j.

According to Iman and Davenport [41], this test is too conservative and
they establish an alternative statistic:

FF =
(N−1)χ2

F
N(k−1)−χ2

F
(1.10)

If the null hypothesis is rejected, that is, if the models are not equivalent,It
is possible to use a “post-hoc” test to detect differences between models.

1.4.3.3.2 Bonferroni-Dunn’s Test and Hochberg’s Test

These methods are used to compare one model against an other, usually the
best model according to the average rank of all the models.

A model is significally bether than other if the difference between their
average ranks are at least:

CD = qα

√
k(k+1)

6N
(1.11)

Where qα is the confidence level, for example, 90% and 95%.
There are many other methods that are more powerful than Bonferroni-

Dunn, this means that can detect more significant differences between meth-
ods. One of this methods is the Hochberg procedure [39]. The Hochberg
procedure is more powerful, but require the hypotheses to be independent,
that is the compared methods must be different, not same methods with
different parameters.

1.5 Applications

Part of the work done in this thesis is the application of Data Mining
methods to solve real problems. The selected problems were of industrial
processes of manufacturing and defect inspection.

32 1.6. Motivations and objectives

The manufacturing problems can be solved by dividing them into differ-
ent parts each of them likely to be posed as a problem that can be solved
with a Data Mining technique: for example, to determine the values of the
process’ parameters that will yield the desired product quality or maximize
manufacturing system performance using the available resources [5].

The inspection of defects is a very important task to ensure the quality of
industrial processes. Human inspection is not as consistent as an automated
process since it is a process that requires high concentration, besides it is
affected by the occurrence of fatigue, different levels of skill, experience
or ways of working of each operator. From a Machine Learning point of
view a defect detection system is a binary classification problem being the
classes ‘defect’, or ‘not defect’.

Throughout the development of this thesis we have studied these two
processes. It has been studied the use of ensemble learning technique called
“Boosting projections” to improve the surface roughness prediction in high-
torque milling operations (chapter 7). And it has been applied imbalance
learning ensembles to the novel problem of detecting defects in magnesium
alloys castings. The latter problem has been addressed in two ways, the first
of which was by classifying pixels in the image as belonging to a defect or
not, using the technique of sliding window (chapter 8); and the second by
classifying regions of interest (ROIs) in defects or no-defects (chapter 9).

1.6 Motivations and objectives

After describing briefly some theoretical concepts in the previous sections,
the problems that have motivated the development of this thesis will be
outlined.

• As seen in Section 1.3.1, the diversity among base classifiers is es-
sential to get accurate ensembles. But diversity has to be introduced
without losing much accuracy in the base classifiers. Many heuristics
have been used to increase the diversity. In this thesis GRASP heuristic
is used as the inspiration for a new method to create diverse ensembles
of trees with a controlled degree of randomness. This is addressed in
Chapters 2 and 3.

• Delving deep into the previous idea, it is going to be studied the
possibility of building decision trees that are accurate and have a great

1. Introduction 33

source of randomness at the same time. The motivation is an intuitive
idea: since the prediction of the tree is calculated at leaves, nodes
closer to the leaves are the more influential on the final prediction of
the tree, while nodes that affect the overall structure of the tree (and
hence diversity) are the root and the upper nodes. So it is going to
investigated the idea of building trees that are random at the root and
deterministic in the leaves, with a level of randomness that decreases
as the tree is built. This is addressed in Chapter 4.

• When Data Mining is applied to real world dataset, sometimes the
problem of imbalance arises, the size of a class is much larger than
the other. There are several strategies for dealing with imbalanced
datasets, one is to reduce the size of the majority class and another to
increase the size of the minority class. It happens that it is difficult
to find out which is the optimal strategy for a particular dataset. This
motivates an interesting line of research: to study whether it is possible
or not to rely on randomness and repetition to address this problem.
The goal is to eliminate the need to choose the proper technique and
adjust their optimal parameters. The results and conclusions of this
research line are given in Chapter 5.

• Continuing with unbalanced learning, most of the techniques used in
ensembles for imbalanced learning are approaches based on modify
the dataset “vertically”, by bootstrapping, reweighed, oversampling or
undersampling; not only to deal with the imbalance but to introduce
diversity. There has not been so far a study on the influence of the
techniques that modify the dataset “horizontally” affecting attributes
rather than instances. Nor about the combination of both approaches.
This study is conducted in Chapter 6.

• One of the practical areas where it is possible to apply ensembles
of classifiers is in the prediction in industrial processes. Often these
problems are commonly addressed using neural networks, genetic
algorithms and fuzzy logic, there are not many studies using ensembles.
It will be studied the performance of different ensemble algorithms
in a problem of predicting the final quality of an industrial process
(Chapter 7).

• Another practical area is defect inspection. Thanks to Grupo Antolin

34 1.7. Discussion of results

Irausa, SA, we have access to a repository of X-ray images of mag-
nesium alloys pieces. Magnesium is a very light material but may
present internal porosity. Since the portions of the piece containing
pores are much smaller than those that are free of these defects, this is
a problem of unbalanced classification and may be interesting to try
to solve this problem using imbalanced learning ensembles. This is
studied in Chapters 8 and 9.

1.7 Discussion of results

The research conducted during the course of this thesis has led to the
publication of several articles in conferences and journals. This section
provides a summary of the results of each. The list of articles published as
research results is:

1. GRASP Forest: A New Ensemble Method for Trees.

Authors José-Francisco Díez-Pastor, César García-Osorio, Juan José
Rodríguez, Andrés Bustillo

Type Conference

Published in 10th International Workshop on. Multiple Classifier
Systems (MCS 2011), pages 66-75.

Year 2011

2. GRASP Forest for regression: GRASP Metaheuristic Applied to the
Construction of Ensembles of Regression Trees.

Authors José-Francisco Díez-Pastor, César García-Osorio, Juan José
Rodríguez.

Type Conference

Published in XIV Conferencia de la Asociación Española para la
Inteligencia Artificial. (CAEPIA 2011).

Year 2011

3. Tree ensemble construction using a GRASP-based heuristic and an-
nealed randomness.

Authors José-Francisco Díez-Pastor, César García-Osorio, Juan J.
Rodríguez

1. Introduction 35

Type Journal

Published in Information Fusion 20: 189-202

Year 2014

4. Random Balance: Ensembles of Variable Priors Classifiers for Imbal-
anced Data

Authors Jose F Diez-Pastor; Juan J. Rodriguez; César I Garcia-Osorio;
Ludmila I Kuncheva

Type Journal

Published in Knowledge-Based Systems. (In press)

Year 2015

5. Diversity techniques improve the performance of the best imbalance
learning ensembles

Authors Jose F Diez-Pastor; Juan J. Rodriguez; César I Garcia-Osorio;
Ludmila I Kuncheva

Type Journal

Published in Information Sciences

Year Review (Minor changes)

6. Boosting Projections to improve surface roughness prediction in high-
torque milling operations

Authors José-Francisco Díez-Pastor, Andrés Bustillo, Guillem Quin-
tana, César García-Osorio

Type Journal

Published in Soft Computing. 16(8): 1427-1437

Year 2012

7. Imbalanced Learning Ensembles for Defect Detection in X-Ray Im-
ages.

Authors José-Francisco Díez-Pastor, César García-Osorio, Víctor
Barbero-García, Alan Blanco-Álamo

Type Conference

36 1.7. Discussion of results

Published in The 26th International Conference on Industrial, En-
gineering & Other Applications of Applied Intelligent Systems.
(IEA/AIE 2013), pages 654-663.

Year 2013

8. Segmentación de defectos en piezas de fundido usando umbrales
adaptativos y ensembles (Segmentation of defects in castings using
adaptive thresholds and ensembles).

Authors José-Francisco Díez-Pastor, Álvar Arnaiz-González, César
García-Osorio, Juan J. Rodriguez

Type Conference

Published in XVII Congreso Español sobre Tecnologías y Lógica
Fuzzy (ESTYLF 2014), pages 345-349

Year 2014

1.7.1 GRASP Forest: A New Ensemble Method for Trees

This conference paper proposes a new technique for constructing ensembles
of decision trees called GRASP Forest. This technique seeks to increase
the diversity of the ensemble while controlling the performance of base
classifiers. It is based on the generative step of GRASP and is similar
to Random Forest. While Random Forest choose the best attribute from
a randomly selected subset of attributes, GRASP Forest creates a subset
of selected good attributes candidates and then the attribute is randomly
chosen. This heuristic is also used to select the split value for each numeric
attribute.

The highlights of the paper are:

• The GRASP metaheuristic and its application to tree construction is
described. The resulting method is based on J48 (Java version of
C4.5).

• The level of randomness is controlled using a parameter α . A parame-
ter that varies from 0 (totally random) to 1 (totally deterministic).

• An experimental study is performed comparing our method with Bag-
ging, AdaBoost.M1, Multiboost, Random Subspaces and Random
Forest over 62 datasets from the UCI repository.

1. Introduction 37

– Average ranks were used for comparing multiple methods.

– The proposed method outperforms the rest of ensemble methods.

– Binary trees outperforms non-binary trees for almost all of the
methods and variants tested.

– The best performance of the proposed method is obtained when
α is 0.2 or 0.3.

1.7.2 GRASP Forest for regression: GRASP metaheuristic applied
to the construction of ensembles of regression trees

In this conference paper the idea of the previous paper is adapted to regres-
sion tasks.

The highlights of the paper are:

• GRASP metaheuristic is applied to REPTree regression tree algorithm.

• A experimental study is performed comparing our method with Bag-
ging, Iterated Bagging AdaBoost.R2, Random Subspaces and Random
Forest over 61 regression datasets from the UCI repository and from
Luis Torgo Collection.

– The proposed method achieves the best average rank.

– The best performance of the proposed method is obtained when
α is 0.4 or 0.5.

1.7.3 Tree ensemble construction using a GRASP-based heuristic and
annealed randomness

This Journal Paper extends the idea of GRASP Forest and presents a new
method for constructing ensembles of decision trees. The new method is
called GAR-Forest (GRASP with Annealed Randomness). This method in-
troduces randomness during the process of constructing the tree: maximum
randomness at the root and minimum randomness at the leaves. The paper
presents the intuitive idea that the nodes that have the greatest influence on
the correct classification of the instances are the lower nodes and leaves,
while the root and the top nodes influence the structure of the tree but not
the correct classification of examples.

The key aspects of the paper are:

38 1.7. Discussion of results

• The attribute and split point that shape the nodes of the trees are
randomly selected from a list of good candidates.

• The minimum value of the items belonging to the list of candidates is
calculated from the maximum, minimum and a parameter α as in the
previous paper.

• The size of this list varies: from a list containing all possible items to
a list containing only the best element.

• The size of the list associated with a given node depends on the per-
centage of instances that reach that node. A parameter τ controls how
rapidly α is increased with the reduction of instances reaching the
node.

• An experimental study is performed comparing GRASP Forest and
GAR Forest with Bagging, AdaBoost.M1, Multiboost, Random Sub-
spaces and Random Forest over 62 datasets from the UCI repository.

– Average ranks were used for comparing mutiple methods.

– The best ranks correspond to GAR-Forest with different values of
τ .

– We analyze the results, grouping the methods into families, be-
cause of the high number of methods compared and the fact that
many of them differ only in the value of a parameter. The pro-
posed method get the best position again.

– New experiments were performed using datasets with artificial
noise added. The results are even more convincing in the presence
of noise, demonstrating the robustness of the method.

– Kappa-error relative movement diagrams were used to visualize
the behavior of the methods. Diagrams show that both GRASP-
Forest and GAR-Forest build trees that are more accurate than
those built by Random Forest.

1.7.4 Random Balance: Ensembles of Variable Priors Classifiers for
Imbalanced Data

In this paper a new approach for building ensembles for two-class im-
balanced datasets is proposed. The paper presents a new preprocessing

1. Introduction 39

technique called Random Balance. This technique, based on a simple
randomisation heuristic, can be used within an ensemble to increase the
diversity and deal with imbalance. In the paper, it is also described a new en-
semble method for imbalanced learning which combines Random Balance
with AdaBoost.M2 and is called RB-Boost (Random Balance Boost).
The highlights of the paper are:

• The presented technique is based on a simple randomisation heuristic.
The dataset obtained after applying the preprocessing technique will
have random class proportions. The classes are either reduced, using
Random Undersampling or augmented with artificial examples using
SMOTE.

• The paper presents a study about the instance inclusion probability,
showing the chances that an instance appears in the resulting datasets
depending on the original size of classes. This study shows that the
problem of discarding important instances of the majority class is
ameliorated respecting other methods that use undersampling.

• The paper explains the intuition behind the method in a graphical way.
When the classifier is represented as a point in the True Positive Rate
- False Positive Rate space, it is shown how base classifiers trained
using datasets with large variability in the ratio between classes are
represented throughout the entire space.

• The paper includes a section on the state of the art in imbalanced
learning.

• The paper includes an exhaustive experimental study. Ensembles using
the proposed preprocessing technique are compared with SMOTE-
Boost, RUSBoost, SMOTEBagging and a long list of methods more
over 86 datasets from KEEL repository and the HDDT collection.

– The ensembles using the proposed method obtains the top po-
sitions in the average ranks according to AUC, F-Measure and
Geometric Mean.

– Several fusion rules are evaluated concluding that combination
that performs better is the simple average of probabilities.

– Regarding to base classifiers, decision trees perform better than
nearest neighbours and SVM.

40 1.7. Discussion of results

• This simple idea bypasses the need to tune the sensitive parameter used
in most common preprocessing methods for imbalanced classification
and simultaneously outperforms state of the art methods.

1.7.5 Diversity techniques improve the performance of the best im-
balance learning ensembles

Ensembles of classifiers have gained popularity in dealing with imbalanced
learning problems. When dealing with imbalanced data, commonly the
techniques they used are those that affect the proportion between classes,
for example re-weighting, oversampling and undersampling. In this paper it
is studied the effect on imbalanced problems of other techniques originally
intended to increase the ensemble diversity. The highlights of the paper are:

• The paper includes a brief introduction to the state of the art in imbal-
anced learning and classifier ensembles.

• The paper includes a novel taxonomy of the different diversifying
techniques based on data manipulation.

• The paper includes a vast experimental study: in which seventeen
of the state of the art methods for imbalance learning: RAMOBoost,
Random Balance Boost, RUSBoost, SMOTEBoost and many more
are tested by themselves and in combination with four different diver-
sifying techniques: Random Oracles, Random Feature Weigths, Dis-
turbing Neighbors and Rotation Forest. Experiments were conducted
using 104 datasets from KEEL repository and the HDDT collection.
The key parts of this experimental study are:

– Average ranks are used for multiple method comparisons. The
ranks were computed over AUC, F-Measure and Geometric Mean,
comparing each ensemble method with its diversity enhanced
variants.

– In the average rank computed using the AUC and according to
Hochberg’s test, all ensembles are significaly worse than at least
one of its counterpart enhanced with diversity techniques.

– In the case of using the F-measure to compute the average ranks,
the improvement is not statistically significant for all cases, but the
improvement exists for the best methods. The best non-enhanced
methods are Random Balance Boost, Bagging + Random Balance

1. Introduction 41

and RUSBoost, and these methods are improved significantly
when combined with Rotation Forest strategy.

– Something similar happens when examining the rank calculated
with the G-mean. Bagging + Random Undersampling, Ensemble
of Random Balance and RUSBoost are improved significantly
when combined with Random Oracles and Disturbing Neighbors.

– The overall winner is Rotation Forest according to de AUC.
RAMOBoost combined with Rotation Forest obtain the top po-
sition in the rank according to the F-Measure and Bagging +
Random Undersampling combined with Random Oracles is the
method with better rank according to the Geometric Mean.

– Another interesting finding is that the best combinations accord-
ing to the F-measure use oversampling strategies while the best
combinations according to the G-mean use undersampling. The
method that gets the top position in the rank according to the AUC
do not uses any balancing strategy.

– The paper presents a preliminary study trying to predict when to
apply diversity techniques. This study is performed from meta-
features obtained using a data complexity library. We use HotSpot
to identify for which meta-features exists a high probability that a
certain diversity technique improves the ensemble.

– Another experimental setup was conducted to test the suitability of
Disturbing Neigbours, for dealing with datasets that have presence
of noisy and borderline examples. It was found that methods
which have been combined with Disturbing Neigbours perform
better than their non-enhanced counterpart.

• It has been found that diversity-enhancing techniques can improve
the performance of the best imbalance learning ensembles. This is
a curious finding because all diversity-enhancing techniques that we
applied are “imbalance-blind”. This is doubly interesting because most
research in imbalanced focuses on methods that address the imbalance
of classes and neglects the use for techniques of increasing diversity.

42 1.7. Discussion of results

1.7.6 Boosting Projections to improve surface roughness prediction
in high-torque milling operations

The process consisting on removing material from a piece of raw material
and cutting it into a desired shape is called “machining”. Milling is a sub-
type of machining using rotatory cutters to remove the material. Surface
roughness is a quality measure defined as the the vertical deviations of a
real surface from its ideal form. Surface roughness of a milled workpiece
will depend on many parameters. This paper describes how to use Boosting
Projections to predict surface roughness in milling operations. Although
the roughness is a continuous variable, this problem has become a classi-
fication problem by discretizing roughness in the levels suggested by the
ISO Standard 4288:1996. The main parts of the article are:

• There is a section explaining the data set generation.

• There is a section that briefly reviews the ensemble learning techniques
used to predict this model.

• Novel techniques for this type of problems have been used, such as
Boosting Projections and Ordinal Classification.

• Although neural networks are commonly used for this type of prob-
lems, the best results are obtained with ensembles of trees, particularly
Boosting Projections.

1.7.7 Imbalanced Learning Ensembles for Defect Detection in X-ray
Images

This paper describes the process of detection of defects in high complexity
metallic pieces through the analysis of X-ray images. There are several
highlights in this paper:

• Metallic pieces used in this paper can present great amount of porosity,
due to the magnesium inherent porosity. To our knowledge this is the
first time that magnesium pieces are analyzed.

• The automatic system to be constructed should work with the same
images that are currently used by human operators. This real appli-
cation has many challenges: several different pieces, different views,
variability introduced by the inspection process, such as the small

1. Introduction 43

variations that occur in the position of the piece, when this is placed in
the X-ray device.

• Due to the high complexity of images a system based on sliding
window has been used. In this way a problem of image processing is
transformed into a binary classification problem, and since the number
of defective regions is much smaller than the non-defective, it is an
unbalanced learning problem.

• The window is systematically moved along the image. For each
window a set of features are extracted: basic statistics, Haralick and
local binary patterns. From all these attribute selection is performed.

• CFS and SVM Attribute eval obtains the set of attributes that performs
better in the results. Bigger window sizes leads to better performance.

• Experiments conclude that in this problem, Bagging achieved the best
results, no improvements are obtained by combining Bagging with
preprocessing techniques as SMOTE or Undersampling.

1.7.8 Segmentación de defectos en piezas de fundido usando umbrales
adaptativos y ensembles (Segmentation of defects in castings us-
ing adaptive thresholds and ensembles)

In this paper we continue working with images and the problem described
in the previous paper. This time we try to provide a solution that works
almost in real time obtaining good results. The key aspects in this paper
are:

• This paper presents a method that combines two approaches: the
simplicity and speed common in image processing based methods,
and the robustness to the variability provided by data mining based
methods.

• The proposed method consists of two steps, in the first, all candidate
regions be a defect are detected using local thresholds. In the second,
feature extraction and classification of these candidate regions into
defects or not-defect is performed.

• Four different local threshold algorithms were tested: Bersen, Mean,
Niblack and Sauvola.

44 1.8. Conclusions

• Several features were extracted: basic stats, Haralick and geometric
measures.

• Rotation Forest was used as a classifier. The performance of the
method was evaluated comparing the predicted defect image with the
“Ground Truth” using the geometric mean.

1.8 Conclusions

This thesis addres standard classification problems, imbalanced classifica-
tion problems and applications using ensembles. Some of the contributions
made in each of these fields are listed bellow.

1.8.1 Standard classification

It has been proposed the use of GRASP, a metaheuristic strategy widely
used for optimization problems, for the construction of decision trees, in
order to inject randomness, and thus to increase the diversity of ensembles.
The results obtained were favourable t when compared with state of the art
ensembles.

In the first method that follows to this idea, GRASP Forest, the level of
randomness was the same throughout the process of building the tree.

The method is sophisticated and improved resulting in GAR-Forest.
GAR-Forest. The purpose of GAR-Forest is to increase ensemble diversity,
without harming the accuracy of the individual classifiers that constitute
it. It is introduced another idea: lower nodes and leaves have the greatest
influence on the correct classification of the instances so it is possible to
introduce higher levels of randomness at the root and the top nodes to
influence the structure of the tree and introduce lower levels of randomness
in lower nodes and leaves to keep the tree still accurate. The combination
of both ideas have proven to be competitive in experimental studies

The improvements made by the proposed methods over other ensemble
methods are even more evident in presence of noisy datasets.

1.8.2 Regression

The use of GRASP metaheuristic as a way of injecting diversity has been
also applied in ensembles of regression trees. Once again the results are

1. Introduction 45

very competitive and outperform Random Forest, AdaBoost.R2 and other
ensembles of regression trees.

1.8.3 Imbalance classification

Random Balance, a new preprocessing technique specially designed to
be used in combination with ensemble methods, has been proposed and
evaluated showing very good results. This technique is based on the idea
of creating preprocessed output datasets in which the ratio between classes
varies randomly. With this idea and taking inspiration from other methods,
such as SMOTEBoost and RUSBoost, this technique has been combined
with boosting creating a new ensemble method: RB-Boost. This intuitive
heuristic avoids the need to tune the proportion parameter, common to most
methods for imbalanced classification. Despite their simplicity, method
using Random Balance clearly have exceeded the performance of other
state-of-the-art ensembles.

Generally, the problem of unbalanced data sets, is addressed by manipu-
lating the ratio between classes in order to reduce it. This has been done in
Random Balance, but this time the ratio is random.

Diversity techniques have not been systematically studied for their effect
on imbalanced problems. In the development of this thesis, a paper has
been prepared that presents an exhaustive experimental study that combines
techniques especially designed to work with imbalanced data with ensemble
diversifying techniques that do not favourably impact the imbalance ratio
of the dataset. An exhaustive experimental setup with five different analysis
is carried out:

1. To analyze the impact of ensemble size (with and without diversity
added) in the quality of the results. It was found that in general,
bigger ensemble sizes leads to better results. There is one exception:
RUSBoost using the G-mean as performance measure, for this method
the best sizes are 20 and 30. This behaviour happens even when
combining the method with diversity techniques.

2. To check whether the diversity enhancing techniques are well suited
for ensembles in imbalanced classification. It was found that for
the AUC all methods enhanced with diversity techniques perform
significantly better than the original method. When taking into account
the F-Measure and G-Mean, improvement does not happen for all the

46 1.8. Conclusions

methods, but it is clearly visible for the best methods according to
these measures.

3. To find which combination between ensemble learning and diversity
scheme has the best overall results for different metrics of performance.
Rotation Forest and ensemble methods that combines resampling and
oversampling with Rotation Forest monopolize the best positions in
the average rank computed using the AUC. A similar conclusion can
be extracted from the average rank computed using the F-Measure.
The best combinations use oversampling strategies trying to obtain
more balance and Rotation Forest, but this time Rotation Forest (alone
without balancing strategies) does not achieve a good position. For the
G-Mean, there is no clear trend. Although it seems that ensembles that
uses Undersampling (RUSBoost, Bagging+RUS) or Random Balance
obtains the best results when they are enhanced with Random Linear
Oracles and Disturbing Neighbors.

4. To extract rules based on data complexity metrics to find when is
more suitable to combine ensemble methods with diversity techniques.
We prove that is possible to establish a relationship between the meta-
features and the fact that the diversity technique improves the ensemble
or not. From the generated set of rules, it can be extracted some
interesting conclusions, for example, when the overlap of the per-class
bounding boxes is high or the Directional-vector maximum Fisher’s
discriminant ratio is low 5, it would be a good idea to apply some
diversity techniques.

5. To analyze the behaviour of diversity techniques for noisy and bor-
derline examples in imbalanced datasets. It was found that methods
which have been combined with Disturbing Neigbours occupy the top
positions of the ranking for the three measures.

We found that enhancing diversity pays off. All diversity-enhancing tech-
niques that were applied are “imbalance-blind”, but surprisingly diversity-
enhanced ensembles ranked better than their original counterpart. Another
interesting finding was the results obtained for one measure can not be ex-
trapolated to others, and one method that is the best according to a measure,
not necessarily is the best according to others.

5which indicates the classes are hardly separables when projected into the maximum separability vector

1. Introduction 47

1.8.4 Applications

Surface roughness prediction is a problem commonly addressed using neural
networks or decision trees. There were not many papers on this subject
that used ensembles. In this thesis Boosting Projection has been used for
surface roughness prediction in a vertical milling machine obtaining better
results than classical ensemble methods.

Besides the predicted output of industrial processes, defect detection
is the other major area of application Machine Learning methods in an
industrial context. Defect inspection ensure the safety and reliability of
industrial processes and is key to achieving and maintaining competitiveness.
Considering the techniques based on non-destructive test, those based on
X-ray analysis are the most used. Radiography has proven to be one of
the most effective techniques to identify defects in the process of injection-
molded material. Two different approaches to the problem of detection of
defects in radiographic images of magnesium parts have been developed, the
aim of both is to speed up the process of defect detection and the elimination
of the ambiguity and subjectivity of the human inspection.

1.9 Future lines

During the making of this thesis, some ideas have emerged that have not
been yet fully developed, but that might be interesting for future work and,
eventually, for further papers..

1.9.1 Multiclass classification

The success applying the GRASP metaheuristic as a technique to inject ran-
domness into the tree construction process of J48 (C4.5) lead us to several
possible lines of future research. For example, to study how this heuristic
can be adapted to other tree construction algorithms, such as Functional
Trees, Model Trees or Hellinger Distance Decision Tree (HDDT). Other
algorithms such as rule construction, are also likely to be modified benefit
from this heuristics in order to increase diversity.

1.9.2 Imbalance classification

Imbalanced datasets present some problems that have a strong influence on
imbalanced classification [49, 36]. Some of these problems are: overlap-

48 1.9. Future lines

ping [70], noisy examples [9], small disjuncts [79] or borderline examples
[56]. One promising future line is to use the ideas of Random Balance to
combine preprocessing techniques that have been designed to address the
aforementioned problems (for example, the resampling strategy CBO [42]
has been used successfully with small disjuncts; cleaning techniques such as
ENN [80] or CNN [34] have been used with noisy datasets; and variants of
SMOTE, such as, Safe-Level-SMOTE [11] or SPIDER [71] with borderline
examples.) It can be very difficult to determine when a dataset suffers from
these problems, unless the dataset is artificially generated, and much more
difficult to adjust the value of the parameters of each technique for each
dataset. We plan to use the various preprocessing techniques randomly at
the begining, then progressively betting on those that offer better results
using an adaptive mechanism.

In the paper with the systematic study of the diversity techniques applied
to imbalanced learning (Chapter 6) we perform a preliminary study that tries
to predict when the use of diversity-enhancing techniques could be more
beneficial. One interesting future line would be to continue with this study
using meta-features specially designed for unbalanced or meta-features that
measures any of the intrinsic problems aforementioned. The objective of
this study could be to determine whether it is possible to find the balancing
technique and diversity strategy best suited to a certain dataset problem
based on this meta-features.

Another interesting finding in this paper was that the best methods
according to a measure are not necessarily the best according to others.
The AUC and the F-Measure presents similar patterns, regarding the order
of the methods in the ranks calculated with these measures, but with the
Geometric Mean the ranks are quite different compared to the other two
measures. It is therefore interesting to study ways of combining classifiers
to try to get good results in both measures. We are exploring the idea of
stacking, using classifiers that maximize a measure on the first level of the
stack and the other on at the second level.

1.9.3 Applications

This thesis has addressed the problem of detecting and locating defects in
metallic pieces using X-ray images. This is the first step of a full inspection
system, the next steps are: extract features from the defect, classifying
the type of defect in terms of its features (pore, bubble, impurity . . .)

1. Introduction 49

and because some types of defects are more severe than others provide
a summary of each type of defect and a final assessment of the metallic
piece’s quality . We plan to address each of the following stages of the
inspection process using ensemble learning.

Apart from this we are starting to use classifiers in another problem
consisting also in analyzing X-ray images, but for a different application.
This time it is about images of dental radiographs. There are two types of
dental radiographs: intraoral and extraoral. Extraoral images are hard to
analyze because teeth occlude with each other frequently. We have interest
in applying ensemble learning to solve problems like: teeth detection and
segmentation, dental age assessment based on teeth shape, prediction of a
person’s diet based on analyzing the erosion of the teeth and other interesting
problems in the fields of archaeology and forensic science.

50 1.9. Future lines

Chapter 2

GRASP Forest: A New Ensemble
Method for Trees

Authors José-Francisco Díez-Pastor, Cesar García-Osorio, Juan José Ro-
dríguez, Andrés Bustillo

Type Conference

Published in 10th International Workshop on. Multiple Classifier Systems
(MCS 2011), pages 66-75.

Year 2011

Abstract

This paper proposes a method for constructing ensembles of decision trees:
GRASP Forest. This method uses the metaheuristic GRASP, usually used
in optimization problems, to increase the diversity of the ensemble. While
Random Forest increases the diversity by randomly choosing a subset of at-
tributes in each tree node, GRASP Forest takes into account all the attributes,
the source of randomness in the method is given by the GRASP metaheuris-
tic. Instead of choosing the best attribute from a randomly selected subset
of attributes, as Random Forest does, the attribute is randomly chosen from
a subset of selected good attributes candidates. Besides the selection of
attributes, GRASP is used to select the split value for each numeric at-
tribute. The method is compared to Bagging, Random Forest, Random
Subspaces, AdaBoost and MutliBoost, being the results very competitive
for the proposed method.

Index terms— Classifier ensembles, Bagging, Random Subspaces, Boost-
ing, Random Forest, decision trees, GRASP

51

52 2.1. Introduction

2.1 Introduction

Classifier ensembles [16] are combinations of several classifiers which are
called base classifiers or member classifiers. Ensembles often give better
results than individual classifiers. The kind of ensemble most often used is
the homogeneous ensemble, in which all the base classifiers are built using
the same method. In these ensembles, the diversity is commonly forced by
training each base classifier with a variant of the training data set: Bagging
[1] uses different random samples of the training set, Random Subspace
[14] uses different subsets of attributes, AdaBoost [11] and Multiboost
[21] adaptively change the distribution of the training set based on the
performance of the previous classifiers, this way, the instances more difficult
for the previous classifiers have a higher probability of being in the next
training sample. Other methods, like Random Forest [2], increase the
randomness by combining the sampling of the training set with the random
selection of subsets of attributes in each node of the tree. This way, in
each node, the splits only consider the selected subset of attributes. In
[6], they use a very simple technique to randomize the election of the split
among the twenty best split in each node. Recently, the method called
Random Feature Weights [17] proposes to use all the attributes, but with
different probabilities of being considered in the splits that depend on a
weight associated to the attribute. To assure the diversity, the weights are
randomly generated for each tree in the ensemble.

Decision trees are frequently used as base classifiers because they are
efficient and unstable, that is, small changes in the training set or in the
construction method will produce very different classifiers.

The algorithms for building decision trees are top-down methods. In the
root of the tree they use all the instances to find which attribute is the best
to split the instances in two subsets assigned to two new nodes1, children
of the root node. This process is recursively repeated in each new node till
a stop criteria is verified. The best attribute is determined in each node by
evaluating a merit function. Some common split criteria are: Information
Gain and Gain Ratio [20], or Gini Index [3]. In this paper the merit function
used is Gain Ratio.

The meta heuristic GRASP (Greedy Randomize Adaptive Search Pro-
cedure) [8, 9], a widely used strategy in optimization problems, has been

1If the attribute ai is nominal, they create a new branch for each possible value of ai.

2. GRASP Forest: A New Ensemble Method for Trees 53

recently used in [19] to modify the way the attribute is selected in the
process of building a binary decision tree. The controlled randomness
introduced by GRASP is able to build less complex trees without affecting
the accuracy.

This work takes as starting point the idea used in [19], extends it using
GRASP also in the selection of the split value for each attribute, and
combining these trees in the construction of an ensemble, the GRASP
Forest. Using GRASP in the selection of the split values gives an extra level
of randomness that helps in increasing the diversity in the ensemble. This
increased diversity compensates the loss in accuracy of the individual trees,
improving in overall the ensemble accuracy.

The rest of the paper is organised as follows. Next section describes
the proposed method. Section 3 describes the experiments and the results.
Finally, Section 4 gives the conclusions and presents some future lines of
research.

2.2 Method

Usually, to built a decision tree we have a training dataset D, several at-
tributes a1,a2, . . . ,an and a merit function f (ai,D) that gives a value to the
i-th attribute. One of the most used merit function is Information Gain
defined as

Gain(D,a) = Entropy(D)−∑
v

|Dv|
|D|

Entropy(Dv) (2.1)

where D is the data set, a is the candidate attribute, v indicates the values of
the attribute and Dv is the subset of the data set D formed by the examples,
where a = v. The entropy is defined as

Entropy(D) =
c

∑
i=1
−pi log2(pi) (2.2)

where c is the number of classes and pi the probability of class i.
The GRASP method [8, 9] is a iterative process, each iteration has two

steps:

1. Build an initial solution using a method that is greedy, random and
adaptive.

2. Local search from the built solution trying to improve it.

54 2.2. Method

Table 2.1: Backpack problem (weight limit of the backpack: 10 weight units).

Ratio
Element Weight Value Ratio Value/Weight

1 10 11 1.10
2 6 9 1.50
3 4 1 0.25

With each iteration the best found solution is updated and the process ends
when a stop condition is reached.

As the building method is greedy, random and adaptive, every time a
new element is added to the solution, instead of choosing the best possible
element, one is randomly chosen from a short list of good candidates called
the Restricted Candidate List (RCL). This list is created with those items
whose values are close enough to the value of the best item. This closeness
is defined by a percentage α of the best value. The idea behind GRASP is
that the best solution in each step does not always lead the process to the
global optimal solution of the problem. A good example is the backpack
problem, for example, given 3 objects with weights, values and ratios
(value/weight) shown in table 4.1 and a backpack capacity 10, is necessary
to select a subset of them that fits in the backpack and that maximizes the
value. A greedy method would take in each step the element with best
possible value-weight ratio: first element 2, then element 3, with total value
of 10; however, the best solution would have been to choose the element 1
that improves by one the previous solution.

The content of the RCL is defined as:

RCL = {i : Valuei/Weighti ≥ αRatiomax +(1−α)Ratiomin}

If α = 1 the list would have only one element, the element chosen by
the greedy procedure; if α = 0 the list would have all possible elements and
the selection would be totally random.

In the work described in this paper, from GRASP we only use the
construction of the solution by a greedy, random and adaptive procedure.
Greedy, as the construction of trees is greedy by nature, random due to
the random selection of attributes and split points, and adaptive because
depending on the maximum and minimum gain ratio of the attributes the
number of these considered for selection is different for each node. The aim
is to increase the randomness in the process of building the base classifiers.

2. GRASP Forest: A New Ensemble Method for Trees 55

The method GRASP Forest (see Algorithm 4) works by using Algorithm
7 to create L decision trees that are added to the ensemble.

Algorithm 1: GRASP Forest
Input: Dataset DT , set of attributes Attributes, size of ensemble L, value α between

0 and 1 to control the level of randomness
Output: Ensemble of decision trees
for l = 1 to L do

GTree← TrainDecisionTree (DT ,Attributes, α)
Add GTree to the ensemble;

end

The way the trees are built is similar to the traditional algorithms. In
each node, the merit function is evaluated for the m attributes. With these
values a list of candidates is created from which the attribute to be used
in the node is chosen. Note that with α = 1 this algorithm would choose
the same attribute as a traditional method, with α = 0 the selection of the
attribute is totally random.

Algorithm 2: TrainDecisionTree (for numeric attributes)
Input: Dataset DT , set of attributes Attributes, value between 0 and 1 to control the

level of randomness α

Output: Tree
if Attributes is empty or number of examples < minimum allowed per branch then

Node.label = most common value label in examples
return Node;

else
for j = 1 to m do

model [j]← GraspSplit (DT ,Attributes,j,α)
end
maxGain←Max(model.gain); minGain←Min(model.gain)
List← { j = 1,2, . . . ,m| model [j].gain ≥ αmaxGain+(1−α)minGain}
Randomly choose jg ∈ List; Att = jg, splitPoint = model [jg].splitPoint
Dl ←{x ∈ DT |xi jg ≤ splitPoint}; Dr ←{x ∈ DT |xi jg > splitPoint};
Node.son[0] = TrainDecisionTree (Dl ,Attributes, α);
Node.son[1] = TrainDecisionTree (Dr,Attributes, α);

end

Algorithm 8 shows how the idea of GRASP is also used in the process
of choosing the splitting point for numeric attributes. The normal way of
selecting the splitting point would be to find the point that maximizes the
merit function value (in this work Gain Ratio). However, in GraspSplit, we
again create a list of good candidates, with all points with value higher than

56 2.3. Results

a minimal value determined by α , and one of them is randomly chosen and
returned together with its merit function value.

Thus, the randomness in each node is both in selecting the attribute and
in the choice of the splitting point within that attribute. With α = 1, the
generated tree is the same as with a traditional algorithm2. With α = 0
the generated tree will be completely random as it happens in Extremely
Randomized Trees [12].

Algorithm 3: GraspSplit
Input: Dataset DT , set of attributes Attributes, attribute index j, value α between 0

and 1 to control the level of randomness
Output: model
/* Compute values for all possible split point and their index */
infoGain← List of all possible split info gains
infoGainIndex← List of all possible split indexes
maxGain←Max(infoGain); minGain←Min(infoGain)
List← { j = 1,2, . . . ,m|infoGain[j]≥ αmaxGain+(1−α)minGain}
Randomly choose jg ∈ List
model.gain = infoGain [jg], model.splitPoint = infoGainIndex [jg]
return model

2.3 Results

The proposed method was implemented in the Weka library [13] by modify-
ing J48, the Weka implementation of C4.5 [20] in conjunction with Random
Committee3. The rest of decision trees and other ensembles are from this
library. The size of the ensembles was set to 50. Since, when using trees in
ensembles, we are interested in increasing diversity, we validate our method
with low values of α , from 0.1 to 0.5. We compare our method with the
following ensembles, whose settings are the default parameters of Weka
unless otherwise indicated:

1. Bagging [1].

2. Boosting: AdaBoost.M1 [11] and Multiboost [21]. In both version
the variants with resampling and reweighting were used (in the tables

2Except in the case of multiple attributes with the same value of the merit function, the traditional
algorithm will always choose the same, according to the method of calculating the maximum, the version
using GRASP will choose randomly between them, and similarly in the case of the splitting points.

3A Random Committee is an ensemble of randomizable base classifiers. Each base classifier is built
using the same data but a different seed for the generation of randomness. The final predicted probabilities
are simply the average of the probabilities generated by the individual base classifiers.

2. GRASP Forest: A New Ensemble Method for Trees 57

Table 2.2: Summary of the data sets used in the experiments.
#N: Numeric features, #D: Discrete features,#E: Examples, #C: Classes.

Dataset #N #D #E #C

abalone 7 1 4177 28
anneal 6 32 898 6
audiology 0 69 226 24
autos 15 10 205 6
balance-scale 4 0 625 3
breast-w 9 0 699 2
breast-y 0 9 286 2
bupa 6 0 345 2
car 0 6 1728 4
credit-a 6 9 690 2
credit-g 7 13 1000 2
crx 6 9 690 2
dna 0 180 3186 3
ecoli 7 0 336 8
glass 9 0 214 6
heart-c 6 7 303 2
heart-h 6 7 294 2
heart-s 5 8 123 2
heart-statlog 13 0 270 2
heart-v 5 8 200 2
hepatitis 6 13 155 2
horse-colic 7 15 368 2
hypo 7 18 3163 2
ionosphere 34 0 351 2
iris 4 0 150 3
krk 6 0 28056 18
kr-vs-kp 0 36 3196 2
labor 8 8 57 2
led-24 0 24 5000 10
letter 16 0 20000 26
lrd 93 0 531 10

Dataset #N #D #E #C

lymphography 3 15 148 4
mushroom 0 22 8124 2
nursery 0 8 12960 5
optdigits 64 0 5620 10
page 10 0 5473 5
pendigits 16 0 10992 10
phoneme 5 0 5404 2
pima 8 0 768 2
primary 0 17 339 22
promoters 0 57 106 2
ringnorm 20 0 300 2
sat 36 0 6435 6
segment 19 0 2310 7
shuttle 9 0 58000 7
sick 7 22 3772 2
sonar 60 0 208 2
soybean 0 35 683 19
soybean-small 0 35 47 4
splice 0 60 3190 3
threenorm 20 0 300 2
tic-tac-toe 0 9 958 2
twonorm 20 0 300 2
vehicle 18 0 846 4
vote1 0 15 435 2
voting 0 16 435 2
vowel-context 10 2 990 11
vowel-nocontext 10 0 990 11
waveform 40 0 5000 3
yeast 8 0 1484 10
zip 256 0 9298 10
zoo 1 15 101 7

represented with S and W). For Multiboost the approximate number
of subcommittees was 10.

3. Random Subspaces [14]: with two different configurations, with 50%
and 75% of the original set of attributes.

4. Random Forest [2]: three different configurations, random subsets of
attributes of size 1, 2 and base 2 logarithm of the number of attributes
in the original set.

58 2.3. Results

Table 2.3: Wins, ties and losses; the comparison of the ensembles with binary and with
non-binary trees is shown (U: unpruned trees, P: pruned trees).

Method All Significative (0.05)
V T L V T L

Bagging (P) 17 35 10 3 59 0
Bagging (U) 15 39 8 3 59 0
AdaBoost-W (P) 16 34 12 2 60 0
AdaBoost-W (U) 15 36 11 2 60 0
AdaBoost-S (P) 18 35 9 2 60 0
AdaBoost-S (U) 15 34 13 2 60 0
MultiBoost-W (P) 13 36 13 3 59 0
MultiBoost-W (U) 14 37 11 2 60 0
MultiBoost-S (P) 12 37 13 2 60 0
MultiBoost-S (U) 16 34 12 2 60 0
Random Subspaces 50% (P) 18 36 8 0 62 0
Random Subspaces 50% (U) 17 35 10 0 62 0
Random Subspaces 75% (P) 20 35 7 3 59 0
Random Subspaces 75% (U) 17 36 9 2 60 0
Random Forest K = lognumAtt 42 2 18 3 59 0
Random Forest K = 1 24 4 34 0 62 0
Random Forest K = 2 34 1 27 1 60 1

For all ensembles, both pruned and not pruned trees were used as base
classifiers, except for Random Forest, because pruning is not recommended
in this case [2]. Binary trees were used for two reasons, first, this was the
kind of trees used in [19], second, in the case of nominal attributes, the use
of GRASP metaheuristic for selecting the splitting point is only possible for
binary trees (in a non-binary tree, a node that uses a nominal attribute has
as many children as nominal values, and it is not necessary to create the list
of splitting points since only one splitting point is possible). For Random
Forest, that does not work with binary nodes, we used the preprocessing
described in [3], where nominal attributes with k values are transformed into
k binary attributes. It could have been possible to optimize the value of α

of our method by using a validation data subset or internal cross-validation,
but this would not have been fair for the other methods, besides we were
interested in analysing the global effect of α .

Before comparing the new method, to check that the good results of
GRASP Forest over the other ensembles are not due to the use of binary
trees degrading their performance, we compared the other ensembles using
binary and non binary trees. In Table 2.3 the wins, ties and losses are

2. GRASP Forest: A New Ensemble Method for Trees 59

Table 2.4: Ensemble methods sorted by average rank (U: unpruned trees, P: pruned trees).

Method Ranking

1 GRASP Forest α = 0.2 (U) 10.0645161290323
2 GRASP Forest α = 0.3 (U) 10.4838709677419
3 RandomForest K = lognumAtt 11.1129032258065
4 GRASP Forest α = 0.4 (P) 11.1935483870968
5 GRASP Forest α = 0.3 (P) 11.3306451612903
6 GRASP Forest α = 0.4 (U) 11.4274193548387
7 GRASP Forest α = 0.1 (U) 11.5887096774194
8 MultiBoost-S (P) 11.9435483870968
9 MultiBoost-S (U) 12.3467741935484

10 GRASP Forest α = 0.5 (U) 12.7661290322581
11 GRASP Forest α = 0.2 (P) 12.8548387096774
12 GRASP Forest α = 0.5 (P) 13.2177419354839
13 AdaBoost-S (P) 13.3709677419355
14 MultiBoostAB-W (U) 13.6290322580645
15 RandomForest S = 2 13.6370967741935
16 MultiBoostAB-W (P) 13.6451612903226
17 GRASP Forest α = 0.1 (P) 13.6532258064516
18 AdaBoost-S (P) 13.6774193548387
19 AdaBoost-W (P) 14.3145161290323
20 AdaBoost-W (U) 15.1209677419355
21 Random-Subspaces-50% (U) 15.4435483870968
22 RandomForest K = 1 16.5806451612903
23 Random-Subspaces-50% (P) 17.1854838709677
24 Bagging (P) 17.7903225806452
25 Bagging (U) 18.0483870967742
26 Random-Subspaces-50% (U) 20.7096774193548
27 Random-Subspaces-75% (P) 20.8629032258064

shown both total and with a 0.05 significance level for the corrected t
paired Student test [18] using 5× 2 cross validation [7] and the same 62
datasets used in the next experiments. We can see that the performance
is slightly better when the base classifiers are binary trees. Anyway, the
results with binary trees are clearly not worse, so the use of binary trees in
the comparison of these ensembles with GRASP forest is fair.

Finally, we did the comparison with our method. The experiments
were performed using 5× 2 cross validation, over 62 data sets from the
UCI repository [10] (see table 4.2). Table 4.3 shows the results as an
average ranking [5]4. Various configurations for the parameter α obtained

4For each dataset, the methods are sorted according to their performance. The best method has rank 1,
the second rank 2, and so on. If several methods have the same result, they are assigned an average value.

60 2.3. Results

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1
10

15

20

25

30

35

40

(1)
(2)
(3)
(4)

Parameter alpha

A
ve

ra
ge

 r
an

k

5 10 15 20 25 30 35 40 45 50

3

4

5

RF
0,1
0,2
0,3
0,4
0,5

Ensemble size

10 20 30 40 50
2,5

3

3,5

4

4,5

RF
0,1
0,2
0,3
0,4
0,5

Ensemble size

A
ve

ra
ge

 r
an

k

Figure 2.1: Left: Average rankings in function of α and four different GRASP Forest
configurations: (1) and (2) using GRASP only to choose the attribute, (3) and (4) using
GRASP both for attribute and splitting point selection; (1) and (3) using pruned trees as
base classifiers, (2) and (4) using not pruned trees as base classifiers (average rankings
calculated from all 44 configurations). Right: Average rankings for different ensemble
sizes and six different methods, Random Forest with K = lognumAtts and GRASP Forest
with five different α values and unprunned trees (GRASP used both for attribute and
splitting point selection).

favourable results compared to most traditional ensembles.

Figure 2.1 shows average rankings for different configurations of GRASP
forest: using GRASP for both the attribute and splitting point selection,
using GRASP only for attribute selection, using pruned trees as base clas-
sifiers, using not pruned trees as base classifiers, and using 11 different
values of α between 0 and 1. The ensemble size was 50. On the left, the
average rankings are calculated from all ensemble configurations, 44 in
total (2 variants of GRASP × 2 different base tree classifiers × 11 values
of α). On the right, the average rankings are calculated for each size of the
ensemble and for six different methods.

It is possible to appreciate how, in general, the ensembles that use
GRASP in the two steps of the tree construction, both attribute and split
point selection, get better results both with prune and not pruned trees. The
global optimum for α is around 0.2, the point from which the increase in
diversity does not compensate the lost in accuracy of the individual trees
in the ensemble. As well, for ensembles with few base classifiers, the best
results are obtained with trees with low randomness (α = 0.5), but as the
size of the ensemble increases, the trees with the best rankings are those
with higher level of randomness (α = 0.2 and α = 0.3).

For each method, its average rank is calculated as the mean across all the datasets.

2. GRASP Forest: A New Ensemble Method for Trees 61

2.4 Conclusion and future lines

GRASP is a metaheuristic strategy widely used for optimization problems,
recently it has been used for the construction of trees less complex than
the ones built with deterministic algorithms. In this paper, we propose an
evolution of the use of this metaheuristic in the construction of trees that
is used to increase the diversity of ensembles. The results are favourable
compared with traditional ensembles.

There are several future research lines. This paper presents a method
that injects randomness into two steps in the construction of the tree: in
the choice of the splitting attribute and in the selection of the splitting
point within that attribute. In this work, the parameter that determines the
randomness is the same for both steps, a line of future work will be to study
how the performance of the method could be affected if independent values
are used in these steps. Another aspect to consider is the performance
of this new method in combination with traditional ensembles. Rather
than considering these methods as competitors against which to measure
the GRASP Forest, consider them as allies that the GRASP Forest could
improve.

We have shown that when the average ranking is calculated as a function
of α , there is a kind of global optimum. However, this does not mean
that a value of α could optimally work for all data sets. In [19] is stated
that intermediate values of α improve the accuracy of the trees in simple
databases and high values improve the accuracy in complex databases.
Another line of future work could be to carry out an exhaustive study of
what is the effect of the value of α in terms of different meta-features [4] or
complexity measures [15] for several datasets. This way, this knowledge
could be used in the algorithm to adaptively choose the value of α taking
into account the characteristics of the dataset.

Last but not least, we would like to work on adapting GRASP Forest for
regression problems.

References
[1] L. Breiman. “Bagging predictors”. In: Machine learning 24.2 (1996), pp. 123–140.

[2] L. Breiman. “Random forests”. In: Machine learning 45.1 (2001), pp. 5–32. ISSN:
0885-6125.

62 REFERENCES

[3] L. Breiman et al. Classification and Regression Trees. 1st ed. Chapman & Hall/CRC,
1984. ISBN: 0412048418.

[4] C. Castiello, G. Castellano, and A. Fanelli. “Meta-data: Characterization of input
features for meta-learning”. In: Modeling Decisions for Artificial Intelligence (2005),
pp. 457–468.

[5] J. Demšar. “Statistical comparisons of classifiers over multiple data sets”. In: The
Journal of Machine Learning Research 7 (2006), p. 30.

[6] T. Dietterich. “Ensemble methods in machine learning”. In: Multiple classifier
systems (2000), pp. 1–15.

[7] T.G. Dietterich. “Approximate statistical tests for comparing supervised classifica-
tion learning algorithms”. In: Neural computation 10.7 (1998), pp. 1895–1923.

[8] T.A. Feo and M.G.C. Resende. “A probabilistic heuristic for a computationally
difficult set covering problem”. In: Operations Research Letters 8 (1989), pp. 67–
71.

[9] T.A. Feo and M.G.C. Resende. “Greedy randomized adaptive search procedures”.
In: Journal of Global Optimization 6.2 (1995), pp. 109–133. ISSN: 0925-5001.

[10] A. Frank and A. Asuncion. UCI Machine Learning Repository. 2010.

[11] Y. Freund and R.E. Schapire. “Experiments with a new boosting algorithm”. In:
MACHINE LEARNING-INTERNATIONAL WORKSHOP THEN CONFERENCE-.
Citeseer. 1996, pp. 148–156.

[12] P. Geurts, D. Ernst, and L. Wehenkel. “Extremely randomized trees”. In: Machine
Learning 63.1 (2006), pp. 3–42. ISSN: 0885-6125.

[13] Mark Hall et al. “The WEKA data mining software: an update”. In: SIGKDD Explor.
Newsl. 11.1 (Nov. 2009), pp. 10–18. ISSN: 1931-0145. DOI: 10.1145/1656274.
1656278.

[14] T.K. Ho. “The random subspace method for constructing decision forests”. In: IEEE
Transactions on Pattern Analysis and Machine Intelligence 20.8 (1998), pp. 832–
844.

[15] T.K. Ho and M. Basu. “Complexity Measures of Supervised Classification Prob-
lems”. In: IEEE Trans. Pattern Anal. Mach. Intell. 24.3 (2002), pp. 289–300. ISSN:
0162-8828.

[16] L.I. Kuncheva. Combining pattern classifiers: methods and algorithms. Wiley-
Interscience, 2004.

[17] J. Maudes et al. “Random Feature Weights for Decision Tree Ensemble Construc-
tion”. In: Information Fusion In Press, Accepted Manuscript (2010). ISSN: 1566-
2535. DOI: DOI:10.1016/j.inffus.2010.11.004.

[18] C. Nadeau and Y. Bengio. “Inference for the Generalization Error”. In: Machine
Learning 52 (3 2003), pp. 239–281. ISSN: 0885-6125.

[19] J. Pacheco et al. “Uso del metaheurístico GRASP en la construcción de árboles de
clasificación”. In: Rect@ 11 (2010), pp. 139–154. ISSN: 1575605X.

http://dx.doi.org/10.1145/1656274.1656278
http://dx.doi.org/10.1145/1656274.1656278
http://dx.doi.org/DOI: 10.1016/j.inffus.2010.11.004

2. GRASP Forest: A New Ensemble Method for Trees 63

[20] R. J. Quinlan. C4.5: Programs for Machine Learning. 1st ed. Morgan Kaufmann,
1993. ISBN: 1558602380.

[21] G.I. Webb. “Multiboosting: A technique for combining boosting and wagging”. In:
Machine learning 40.2 (2000), pp. 159–196.

64 REFERENCES

Chapter 3

GRASP Forest for regression: GRASP
metaheuristic applied to the
construction of ensembles of regression
trees

Authors José-Francisco Díez-Pastor, Cesar García-Osorio, Juan José Ro-
dríguez.

Type Conference

Published in XIV Conferencia de la Asociación Española para la Inteligen-
cia Artificial. (CAEPIA 2011).

Year 2011

Abstract

This paper proposes the application of the GRASP metaheuristic, commonly
used in optimization problems, as a method for increasing diversity in
ensembles of regression trees. Most ensemble algorithms try to increase
diversity by modifying the training set in some way, e. g. Random Forest
does it and also introduces randomness in the process of building the tree
by selecting among different random subsets of attributes for each node.

In our method, the source of diversity is due to GRASP; attributes and
splitting points within these are selected at random from a list of candidates
generated as proposed by GRASP. The method has been compared to
Bagging, AdaBoost.R2, Random Subspaces, Iterated Bagging and Random
Forest, obtaining very competitive results for the proposed method.

65

66

Index terms— Regression ensembles, Bagging, Random Subspaces,
Boosting, Random Forest, regression trees, GRASP

3. GRASP Forest for regression: GRASP metaheuristic applied to the construction
of ensembles of regression trees 67

3.1 Introduction

Ensembles [19] are combinations of several models which are called base
models. Ensembles often give better results than individual models. Al-
though they have been studied mainly for classification, there are also
ensemble methods for regression.

To make sense of combining multiple models they have to be different.
The underlying logic is that if they all give the same output, the whole
ensemble could be replaced by a single model. Therefore a key aspect in
the construction of ensembles is to get diverse base models.

The kind of ensemble most often used is the homogeneous ensemble,
in which all the base models are built using the same method. In these
ensembles, the diversity is commonly forced by training each base model
with a variant of the training data set.

In Bagging [1], each base model is trained using a random sample, with
replacement, of the training data. Some examples of the training will appear
several times in the sample, while others will not appear. This can be used
both for regression and classification.

In Random Subspaces [18], all the training data is used to train all the
base models, but the models are trained in different random subspaces.
Again, if the models are for classification, this builds an ensemble for
classification, similarly, if one use regressors as base models, an ensemble
for regression is obtained.

In AdaBoost.R2 [8], that is based on AdaBoost [14], each training
example has a weight. Initially, all the examples have the same weight. The
construction of the ensemble members must take into account the examples
weights. After an ensemble member is constructed, the examples weights
are adjusted. The idea is to give more weight to the examples with greater
errors in the previous iterations. Hence, in the construction of the next
member, these examples will be more important. The ensemble members
also have weights that depend on their error. The prediction of the ensemble
is a weighted median of the predicted value of the base models.

Iterated Bagging [3] combines several Bagging ensembles. The first
Bagging ensemble is constructed as usual. Based on the predictions of the
previous Bagging ensemble, the values of the predicted variable are altered.
The next Bagging ensemble is trained with these altered values. These
values are the residuals: the difference between the real and the predicted

68 3.2. The GRASP metaheuristic applied to the construction of regression trees

values. Nevertheless, these predictions are not obtained using all the mem-
bers in the Bagging ensemble. The error of the predictions for a training
example would be too optimistic, the majority of the ensemble models have
been trained with that example. These predictions are calculated using
the out-of-bag estimation: the prediction for an example is obtained using
only those ensemble members that were not trained with that example. The
prediction of an Iterated Bagging ensemble is the sum of the predictions of
its Bagging ensembles.

Other methods, like Random Forest [2], increase the randomness by
combining the sampling of the training set with the random selection of
subsets of attributes in each node of the tree. This way, in each node, the
splits only consider the selected subset of attributes. It can be used for
regression or for classification just changing the type of base models.

The increase of diversity in ensembles of trees has been widely studied.
In [6], they use a very simple technique consisting on randomizing the
election of the split among the twenty best split in each node. Recently,
the method called Random Feature Weights [20] proposes to use all the
attributes, but with different probabilities of being considered in the splits
that depend on a weight associated to the attribute. To assure the diversity,
the weights are randomly generated for each tree in the ensemble.

The rest of the paper is organised as follows. Next section describes the
proposed method. Section 7.6 describes the experiments and the results.
Finally, Section 7.7 gives the conclusions and presents some future lines of
research.

3.2 The GRASP metaheuristic applied to the construc-
tion of regression trees

Decision and regression trees are frequently used as base models because
they are efficient and unstable, that is, small changes in the training set or
in the construction method will produce very different models.

The algorithms for building regression trees are top-down methods. In
the root of the tree they use all the instances to find which attribute is the
best to split the instances in sub-divisions assigned to new nodes, children
of the root node. This process is recursively repeated in each new node till
a stop criteria is verified. The best attribute is determined in each node by
evaluating a merit function. Some common split criteria are: Impurity [22],

3. GRASP Forest for regression: GRASP metaheuristic applied to the construction
of ensembles of regression trees 69

Table 3.1: Backpack problem (weight limit of the backpack: 10 weight units).

Ratio
Element Weight Value Ratio Value/Weight

1 10 11 1.10
2 6 9 1.50
3 4 1 0.25

or Gini Index [4].
The regression tree used for this work is REPtree [23], a fast tree learner

that builds a regression tree using variance, and prunes it using Reduced
Error Pruning (REP) [9]. This type of tree is implemented in the Weka
machine learning library [17].

The meta heuristic GRASP (Greedy Randomize Adaptive Search Pro-
cedure) [10, 11], a widely used strategy in optimization problems, is an
iterative process, each iteration has two steps:

1. Build an initial solution using a method that is greedy, random and
adaptive.

2. Improve the initial solution by means of a local search.

With each iteration the best found solution is updated and the process ends
when a stop condition is reached.

As the building method is greedy, random and adaptive, every time a
new element is added to the solution, instead of choosing the best possible
element, one is randomly chosen from a short list of good candidates called
the Restricted Candidate List (RCL). This list is created with those items
whose values are close enough to the value of the best item. This closeness
is defined by a percentage α of the best value. The content of the RCL is
defined as:

RCL = {i : Scorei ≥ αScoremax +(1−α)Scoremin} (3.1)

If α = 1 the list would have only one element, the one with best score
that will be chosen by the greedy procedure; if α = 0 the list would have
all possible elements and the selection would be totally random.

The idea behind GRASP is that the best solution in each step does
not always lead the process to the global optimal solution of the problem.
A good example is the backpack problem. For instance, given 3 objects
of different values and weights, as shown in Table 4.1), and a backpack

70 3.2. The GRASP metaheuristic applied to the construction of regression trees

capacity 10, it is necessary to select a subset of them that fits in the backpack
and that maximizes the value. A greedy method would take in each step
the element with best possible value/weight ratio: first element 2 and then
element 3, with total value of 10; however, the best solution would have
been to choose the element 1 that improves by one the previous solution.

GRASP has firstly been used to modify the way attributes are selected
in the process of building a binary classification tree in [21]. The controlled
randomness introduced by GRASP is able to build less complex trees
without affecting the accuracy. In that work the trees were constructed
using the strategy proposed by GRASP; at each node, the attribute to split
the node is chosen from a Restricted Candidate List with the attributes with
highest information gain, generating a set of classification trees (something
equivalent to the first step of GRASP). After that the best tree of the set is
selected (this is equivalent to the second step) and that single tree is the one
used for classification.

Recently in [7] it has been proposed a new method of constructing
ensembles of classification trees using GRASP. The starting point is, as in
[21], the idea of using a Restricted Candidate List to choose the attributes; to
increase even more the diversity, a second list is also used for selecting the
splitting points within the attributes. When all the trees has been generated,
instead of doing a search to pick the best one, all the trees are kept and used
as base models of an ensemble. This paper describes the adaptation of the
method proposed in [7] to solving regression problems.

3.2.1 Method

Usually, to build a regression tree we have a training dataset D, several
attributes a1,a2, . . . ,am and a merit function f (ai,D) that gives a value to
the i-th attribute. Variance Gain, Impurity and Gini Index are commonly
used as merit function in regression trees.

For this work, the REPtree implementation in Weka library has been
modified. The merit function for this tree is the Variance Gain. In case of
nominal attributes, the Variance Gain is calculated as:

VGain(D,a) = Var(LBL(D))−∑
v

Var(LBL(Da=v)) (3.2)

where D is the data set, LBL(D) is the set of all the values to predict, a is
the candidate attribute, v represents an attribute value, and Da=v is a subset

3. GRASP Forest for regression: GRASP metaheuristic applied to the construction
of ensembles of regression trees 71

of D with only those instances for which the attribute a has value equal to v,
{xi : xi,a = v}. For continuous attributes, the Variance Gain is calculated as:

VGain(D,a) = Var(LBL(D))−min
x
(Var(LBL(Da>x)+Var(LBL(Da≤x))

(3.3)
For all values x of attribute a in the training set, the split variance, the sum
of the variances on both sides of the value is calculated, the minimum of all
these values is subtracted from the total variance, the result is the variance
gain for the attribute.

The method GRASP Forest for Regression (see Algorithm 4) works
by using Algorithm 7 to create L regression trees that are added to the
ensemble.

Algorithm 4: GRASP Forest for Regression
Input: Training dataset DT , set of attributes Attributes, size of ensemble L, value α

to control the level of randomness (between 0 and 1)
Output: Ensemble of regression trees
for l = 1 to L do

GTree← TrainRegressionTree (DT , Attributes, α); // Algorithm 7

Add GTree to the ensemble;
end

The way the trees are built is similar to the original REPtree algorithm.
In each node, the merit function is evaluated for all the attributes. With
these values, a restricted candidate list (see Equation 3.1) is created from
which the attribute to be used in the node is chosen. Note that with α = 1
this algorithm would choose the same attribute as a traditional method, with
α = 0 the selection of the attribute is totally random.

Algorithm 8 shows how the idea of GRASP is also used in the process
of selecting the splitting point for numeric attributes. The normal way
of doing this would have been to find the point that maximizes the merit
function value (in this work Variance Gain). This requires minimizing the
split variance (see second term of Equation 3.3). However, in GraspSplit,
we again create a list of good candidates, with all splitting points with split
variance value lower than a maximal value determined by α , and one of
them is randomly chosen.

Thus, the randomness in each node is both in choosing the attribute and
in the selection of the splitting point within that attribute. If the value of α

72 3.3. Results

Algorithm 5: TrainRegressionTree (for numeric attributes)
Input: Training dataset DT , set of m attributes Attributes, value α to control the

level of randomness (between 0 and 1)
Output: Regression tree
if Attributes is empty or number of examples < minimum allowed per branch then

Node.label = average of label values in the examples;
return Node;

else
for j = 1 to m do

model [j]← GraspSplit (DT , Attributes, j, α); // see Algorithm 8

end
maxVG←Max(model.VarGain); minVG←Min(model.VarGain);
List← { j = 1,2, . . . ,m| model [j].VarGain ≥ αmaxVG+(1−α)minVG};
Randomly choose jg ∈ List; Node.att = jg;
Node.splittingPoint = model [jg].splittingPoint;
Dl ←{x ∈ DT |xi, jg ≤ Node.splittingPoint};
Dr←{x ∈ DT |xi, jg > Node.splittingPoint};
Node.son [0] = TrainRegressionTree (Dl , Attributes, α);
Node.son [1] = TrainRegressionTree (Dr, Attributes, α);

end

is 1, the generated tree is the same as with a traditional algorithm. If the
value of α is 0, the generated tree will be completely random.

3.3 Results

The proposed method was implemented in Weka library [17] by modifying
REPtree, and used in conjunction with Random Committee, an ensemble
of randomizable base regressors. Each base regressor is built using the
same data but a different seed for the generation of randomness. The final
predictions are simply the average of the values generated by the individual
base regressor. The rest of regression trees and other ensembles are from
this library. The size of ensembles was set to 100.

We validate our method with α = 0.5 comparing with the following
ensembles (whose settings are the default parameters of Weka unless other-
wise indicated):

1. Bagging [1].

2. Boosting (specifically, AdaBoost.R2 [8], its variant for regression).
This method can be used with different loss functions. Three are

3. GRASP Forest for regression: GRASP metaheuristic applied to the construction
of ensembles of regression trees 73

Algorithm 6: GraspSplit
Input: Dataset DT , set of attributes Attributes, attribute index j, value α between 0

and 1 to control the level of randomness
Output: model
Variance← variance of all output values;
/* Compute split variance values for all possible splitting points */
splittingPointVars← List of all possible split variance values;
splittingPointValues← List of all possible splitting points;
maxSplitVar←Max(splittingPointVars);
minSplitVar←Min(splittingPointVars);
List← { j = 1, . . . ,m|splittingPointVars[j]≤ αminSplitVar+(1−α)maxSplitVar};

Randomly choose jg ∈ List;
model.VarGain = Variance − splittingPointVars [jg];
model.splittingPoint = splittingPointValues [jg];
return model;

proposed in [8] and used in this work: linear, square and exponential.
The suffixes “-Li”, “-Sq” and “-Ex” are used to denote the function
used. Moreover, methods based on AdaBoost can be used in two ways
[13]. In the reweighting version, the base model is trained with all
the training data, it must take into account the weight distribution. In
the resampling version, the base model is trained with a sample from
the training data. This sample is constructed taken into account the
weights. These versions are denoted with “-W” and “-S”.

3. Random Subspaces [18] with two different configurations, with 50%
and 75% of the original set of attributes.

4. Random Forest [2], random subsets of attributes of size logarithm in
base 2 of the number of attributes in the original set.

5. Iterated Bagging [3]: two configurations were considered: 10 × 10
(Bagging is iterated 10 times, the ensemble size of each Bagging is
10), and 5 × 20 (Bagging is iterated 5 times, the ensemble size of each
Bagging is 20). In both cases, the maximum ensemble size is 100.

For all ensembles, both pruned and not pruned trees were used as base
regressors.

The experiments were performed using 5×2 cross validation, over 61
data sets (see Table 4.2) available in the arff format used by Weka1, most of

1http://www.cs.waikato.ac.nz/ml/weka/index_datasets.html

http://www.cs.waikato.ac.nz/ml/weka/index_datasets.html

74 3.3. Results

Table 3.2: Summary of the data sets used in the experiments.
#N: Numeric features, #D: Discrete features,#E: Examples, #C: Classes.

Dataset #N #D #E

2d-planes 10 0 40768
abalone 7 1 4177
ailerons 40 0 13750
auto93 16 6 93
auto-horse 17 8 205
auto-mpg 4 3 398
auto-price 15 0 159
bank-32nh 32 0 8192
bank-8FM 8 0 8192
baskball 4 0 96
bodyfat 14 0 256
bolts 7 0 40
breast-tumor 1 8 286
cal-housing 8 0 20640
cholesterol 6 7 303
cleveland 6 7 303
cloud 4 2 108
cpu-act 21 0 8192
cpu 6 1 209
cpu-small 12 0 8192
delta-ailerons 5 0 7129
delta elevators 6 0 9517
detroit 13 0 13
diabetes-numeric 2 0 43
echo-months 6 3 130
elevators 18 6 16599
elusage 1 1 55
fishcatch 5 2 158
friedman 10 0 40768
fruitfly 2 2 125
gascons 4 0 27

Dataset #N #D #E

house-16H 16 0 22784
house-8L 8 0 22784
housing 12 1 506
hungarian 6 7 294
kin8nm 8 0 8192
longley 6 0 16
lowbwt 2 7 189
machine-cpu 6 0 209
mbagrade 1 1 61
meta 19 2 528
mv 7 3 40768
pbc 10 8 418
pharynx 1 10 195
pole 48 0 15000
pollution 15 0 60
puma32H 32 0 8192
puma8NH 8 0 8192
pw-linear 10 0 200
pyrimidines 27 0 74
quake 3 0 2178
schlvote 4 1 38
sensory 0 11 576
servo 0 4 167
sleep 7 0 62
stock 9 0 950
strike 5 1 625
triazines 60 0 186
veteran 3 4 137
vineyard 3 0 52
wisconsin 32 0 194

them from the UCI repository [12] and from Luis Torgo Collection2.
Table 4.3 shows the results as an average ranking [5]. For each dataset,

the methods are sorted according to their Root relative squared error. The
best method is given rank 1, the second rank 2, and so on. If several methods
have the same result, they are assigned an average value. For each method,
its average rank is calculated as the mean across all the datasets.

Grasp Forest for Regression using α = 0.5 obtained favourable results
2http://www.liaad.up.pt/~ltorgo/Regression/DataSets.html

http://www.liaad.up.pt/~ltorgo/Regression/DataSets.html

3. GRASP Forest for regression: GRASP metaheuristic applied to the construction
of ensembles of regression trees 75

Table 3.3: Ensemble methods sorted by average rank (U: unpruned, P: pruned trees).

Method Ranking

1 GRASP Forest α = 0.5 (U) 7.82
2 RandomForest K = log2 N (U) 9.00
3 AdaBoostR2-S-Ex (P) 9.74
4 Iterated Bagging 5×20 (P) 9.97
5 Bagging (U) 11.00
6 AdaBoostR2-S-Sq (P) 11.39
7 AdaBoostR2-S-Li (P) 11.62
8 Iterated Bagging 5×20 (U) 12.26
9 Iterated Bagging 10×10 (P) 12.66

10 Bagging (P) 12.74
11 GRASP Forest α = 0.5 (P) 12.74
12 AdaBoostR2-S-Sq (U) 12.82
13 RandomForest K = log2 N (P) 13.00
14 AdaBoostR2-S-Li (U) 13.62
15 AdaBoostR2-W-Sq (U) 13.77
16 AdaBoostR2-S-Ex (U) 14.39
17 AdaBoostR2-W-Ex (P) 14.75
18 AdaBoostR2-W-Li (P) 15.38
19 Random-Subspaces-50% (U) 15.54
20 AdaBoostR2-W-Sq (P) 15.79
21 Iterated Bagging 10×10 (U) 15.84
22 Random-Subspaces-75% (P) 15.97
23 AdaBoostR2-W-Li (U) 16.84
24 Random-Subspaces-75% (U) 17.33
25 AdaBoostR2-W-Ex (U) 17.36
26 Random-Subspaces-50% (P) 17.77

compared to most traditional ensembles.

Fig. 3.1 shows the evolution of the average ranks for different configura-
tions of GRASP forest, using pruned and unpruned trees as base regressors,
and using 11 different values of α between 0 and 1 for each. The ensem-
ble size was 100. The average rankings are calculated from all ensemble
configurations, 22 in total (2 different base tree regressors × 11 values of
α).

Another experiment carried out was the comparison between Random
Forest and GRASP Forest, the ones that performed better according to
the average ranking (Table 4.3). As both are methods that depend on the
choice of a parameter (the size K of the subset of attributes to evaluate
at each node in Random Forest, and the value of α which controls the

76 3.4. Conclusion and future lines

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

5

7

9

11

13

15

17

19

Pruned
Unpruned

Alpha value

A
ve

ra
g

e
 R

a
n

ki
n

g

Figure 3.1: Average rankings in function of α and two different base trees: pruned and
unpruned. Unpruned are better than pruned in most of al pha values tested, values between
0.3 and 0.5 reach the best average ranking

randomness in GRASP Forest), a grid search was done to find the optimal
values. In the case of Random Forest, the best value among K = 0, K = 1
and K = log2 numAtt was used; and in the case of GRASP Forest, the
experiments were carried out with the value of α among all the values
between 0.1 and 0.9 at intervals of 0.2.

The Wilcoxon matched-pairs signed ranks was used, according to this
test GRASP Forest is better than Random Forest with a level of significance
p≤ 0.06284.

3.4 Conclusion and future lines

The GRASP metaheuristic, widely used in optimization problems, had been
previously applied to the construction of trees and ensembles of decision
trees. In this paper, we apply this metaheuristic as a way of injecting
diversity into the construction method of regression trees, the results are
very competitive and outperform traditional ensembles of regression trees.

There are several possible lines of future research, in our opinion, the
most interesting of them would be finding a modification of this method
that were independent of the choice of a parameter. Others could be the
use of the same techniques used to improve the performance of GRASP,
such as Path Relinking [16] or use other heuristics such as Tabu Search [15]
pursuing the same goal of increasing diversity in the process construction
of constructing ensembles of trees.

3. GRASP Forest for regression: GRASP metaheuristic applied to the construction
of ensembles of regression trees 77

References
[1] L. Breiman. “Bagging predictors”. In: Machine learning 24.2 (1996), pp. 123–140.

[2] L. Breiman. “Random forests”. In: Machine learning 45.1 (2001), pp. 5–32. ISSN:
0885-6125.

[3] L. Breiman. “Using iterated bagging to debias regressions”. In: Machine Learning
45.3 (2001), pp. 261–277. ISSN: 0885-6125.

[4] L. Breiman et al. Classification and Regression Trees. 1st ed. Chapman & Hall/CRC,
1984. ISBN: 0412048418.

[5] J. Demšar. “Statistical comparisons of classifiers over multiple data sets”. In: The
Journal of Machine Learning Research 7 (2006), p. 30.

[6] T. Dietterich. “Ensemble methods in machine learning”. In: Multiple classifier
systems (2000), pp. 1–15.

[7] J. F. Diez-Pastor et al. “GRASP Forest: A New Ensemble Method for Trees”. In:
10th International Workshop, MCS 2011, Lecture Notes in Computer Science, Vol.
6713. 2011, pp. 66–75. ISBN: 978-3-642-21557-5.

[8] H. Drucker. “Improving regressors using boosting techniques”. In: Proc. 14th
International Conference on Machine Learning. Morgan Kaufmann, 1997, pp. 107–
115. URL: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.
31.314.

[9] T. Elomaa and M. Kääriäinen. “An analysis of reduced error pruning”. In: Journal
of Artificial Intelligence Research 15.1 (2001), pp. 163–187. ISSN: 1076-9757.

[10] T.A. Feo and M.G.C. Resende. “A probabilistic heuristic for a computationally
difficult set covering problem”. In: Operations Research Letters 8 (1989), pp. 67–
71.

[11] T.A. Feo and M.G.C. Resende. “Greedy randomized adaptive search procedures”.
In: Journal of Global Optimization 6.2 (1995), pp. 109–133. ISSN: 0925-5001.

[12] A. Frank and A. Asuncion. UCI Machine Learning Repository. 2010.

[13] Y. Freund and R.E. Schapire. “A Decision-Theoretic Generalization of On-Line
Learning and an Application to Boosting”. In: Journal of Computer and System
Sciences 55.1 (1997). cited By (since 1996) 2237, pp. 119–139. URL: http://www.
scopus.com/inward/record.url?eid=2-s2.0-0031211090&partnerID=
40&md5=6aa263ad916f3130742d61a6bf8337c3.

[14] Y. Freund and R.E. Schapire. “Experiments with a new boosting algorithm”. In:
MACHINE LEARNING-INTERNATIONAL WORKSHOP THEN CONFERENCE-.
Citeseer. 1996, pp. 148–156.

[15] F. Glover and M. Laguna. Tabu search. Kluwer Academic Publishers, 1998. ISBN:
9780792381877. URL: http://books.google.com/books?id=mFYt0C5cqtAC.

[16] F. Glover, M. Laguna, and R. Martí. “Fundamentals of scatter search and path
relinking”. In: Control and Cybernetics 39.3 (2000), pp. 653–684.

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.31.314
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.31.314
http://www.scopus.com/inward/record.url?eid=2-s2.0-0031211090&partnerID=40&md5=6aa263ad916f3130742d61a6bf8337c3
http://www.scopus.com/inward/record.url?eid=2-s2.0-0031211090&partnerID=40&md5=6aa263ad916f3130742d61a6bf8337c3
http://www.scopus.com/inward/record.url?eid=2-s2.0-0031211090&partnerID=40&md5=6aa263ad916f3130742d61a6bf8337c3
http://books.google.com/books?id=mFYt0C5cqtAC

78 REFERENCES

[17] Mark Hall et al. “The WEKA data mining software: an update”. In: SIGKDD Explor.
Newsl. 11.1 (Nov. 2009), pp. 10–18. ISSN: 1931-0145. DOI: 10.1145/1656274.
1656278.

[18] T.K. Ho. “The random subspace method for constructing decision forests”. In: IEEE
Transactions on Pattern Analysis and Machine Intelligence 20.8 (1998), pp. 832–
844.

[19] L.I. Kuncheva. Combining pattern classifiers: methods and algorithms. Wiley-
Interscience, 2004.

[20] J. Maudes et al. “Random Feature Weights for Decision Tree Ensemble Construc-
tion”. In: Information Fusion In Press, Accepted Manuscript (2010). ISSN: 1566-
2535. DOI: DOI:10.1016/j.inffus.2010.11.004.

[21] J. Pacheco et al. “Uso del metaheurístico GRASP en la construcción de árboles de
clasificación”. In: Rect@ 11 (2010), pp. 139–154. ISSN: 1575605X.

[22] J.R. Quinlan. “Learning with continuous classes”. In: 5th Australian joint conference
on artificial intelligence. Citeseer. 1992, pp. 343–348.

[23] I.H. Witten and E. Frank. Data mining: practical machine learning tools and tech-
niques. Morgan Kaufmann series in data management systems. Morgan Kaufman,
2005. ISBN: 9780120884070.

http://dx.doi.org/10.1145/1656274.1656278
http://dx.doi.org/10.1145/1656274.1656278
http://dx.doi.org/DOI: 10.1016/j.inffus.2010.11.004

Chapter 4

Tree ensemble construction using a
GRASP-based heuristic and annealed
randomness

Authors José-Francisco Díez-Pastor, Cesar García-Osorio, Juan J. Ro-
dríguez

Type Journal

Published in Information Fusion 20: 189-202

Year 2014

Abstract

Two new methods for tree ensemble construction are presented: G-Forest
and GAR-Forest. In a similar way to Random Forest, the tree construction
process entails a degree of randomness.

The same strategy used in the GRASP metaheuristic for generating
random and adaptive solutions is used at each node of the trees. The source
of diversity of the ensemble is the randomness of the solution generation
method of GRASP. A further key feature of the tree construction method
for GAR-Forest is a decreasing level of randomness during the process
of constructing the tree: maximum randomness at the root and minimum
randomness at the leaves. The method is therefore named “GAR”, GRASP
with Annealed Randomness.

The results conclusively demonstrate that G-Forest and GAR-Forest
outperform Bagging, AdaBoost, MultiBoost, Random Forest and Random

79

80

subspaces. The results are even more convincing in the presence of noise,
demonstrating the robustness of the method.

The relationship between base classifier accuracy and their diversity
is analysed by application of kappa-error diagrams and a variant of these
called Kappa-error relative movement diagrams.

Index terms— GRASP metahuristic, Decision Trees, Classifier ensem-
bles, Boosting, Bagging, Random Forest, Random Subspaces, Kappa-error
Relative Movement Diagrams

4. Tree ensemble construction using a GRASP-based heuristic and annealed
randomness 81

4.1 Introduction

In this paper, we introduce a new ensemble method. Ensemble methods
combine several classifiers, referred to as member classifiers or base classi-
fiers, the combination usually achieve better performance than any of the
single classifiers [36].

They are intended to generate many classifiers and to combine their
outputs, in such a way that the combination of classifiers outperforms the
accuracy of any individual classifier when used alone. This requires non-
coincidence of the mistakes of individual classifiers. Hence, the classifiers
in the ensemble should be diverse [51].

Various methods can ensure high diversity levels in the ensemble classi-
fiers; Kuncheva [36] has described four basic approaches to this problem:

1. Use different methods of combining classifiers;

2. Use different models of classifiers;

3. Use different feature subsets;

4. Use different subsets of the training data.

The most commonly used type of ensemble, the homogeneous ensemble,
involves the same method of base classifier construction. Either of the
last two approaches may be used to force diversity in these ensembles.
In Random Subspaces [28] each base classifier is trained with a different
subset of the attributes, while in Bagging [2] they are trained with a different
random sample of the original training set. AdaBoost [17] and Multiboost
[57] modify the training set distribution, by taking the results of the previous
classifiers into account. Instances with which previous classifiers have had
difficulty are weighted in accordance with that level of difficulty, to build the
training data for the next classifier in the ensemble. This weight can increase
the probability of their use in the next sample. Alternatively, instead of
sampling, the weight can be directly applied to the construction of the
next classifier, to focus on the classification of unsuccessfully classified
instances.

Decision trees perform a partition of the input space into regions, and
independently classify each one. This partitioning approach is a recursive
method, each step of which divides the space, using the best attribute
according to a splitting criterion. Base classifiers can often be decision

82 4.1. Introduction

trees, as their efficiency and instability help the classification process: slight
modifications to the training dataset or the construction method will generate
dramatically different classifiers.

Certain methods may be specifically designed for tree ensemble con-
struction. They use a procedure that produces different trees, even though it
is the same for all trees in the ensemble, due to the randomness introduced
in the way in which the attributes and split points are chosen at each node.
In [10], a simple technique randomizes the selection of one of the twenty
best splits in each node. Random Forest [3] increases diversity when it com-
bines training set sampling with random selection of subsets of attributes
at each tree node; thus, the splits are only considered in each node within
the selected subset of attributes. The Random Feature Weights method [44]
makes use of all attributes, each with a differing probability of being used as
a split. These probabilities are subject to the weight that is assigned to each
attribute. These weights are randomly generated and are different between
trees, so diversity is the ensemble is ensured.

The GRASP metaheuristic [14, 15] is an iterative procedure, each itera-
tion consists of two parts:

1. Construction of the starting solution.

2. Attempt to find improvements on the built solution through a local
search, updating the solution when an improvement is achieved.

. This iterative process continues until a stopping condition is satisfied. In
the first part the solution is generated incrementally using a randomized
and adaptable method. This method consists of adding elements to the
solution. These elements are randomly extracted from the RCL (Restricted
Candidate List), the list of elements “close enough” to the best element.
This closeness is defined in terms of a parameter α . On the contrary, a
deterministic algorithm takes the best decision at each step.

GRASP and similar metaheuristics try to overcome the limitations of de-
terministic algorithms (based on adding what is apparently the best element
to the partial solution); that is, that they are often unable to ensure that the
solution is a global optimum, because of their limited exploration of the
search space.

The knapsack problem shown in Table 4.1 is a clear example, given a
knapsack capacity and a specific set of attributes for 4 objects: object weight,
object price and the the ratio between these two values. The objective is

4. Tree ensemble construction using a GRASP-based heuristic and annealed
randomness 83

Table 4.1: Knapsack problem

Element Weight Value Ratio =V/W
1 20 20 1.0
2 12 18 1.5
3 10 14 1.4
4 10 8 0.8

Weight limit of the knapsack: 20 weight units

to find the subset that maximizes the sum of prices and does not reach
the weight limit. One greedy deterministic strategy would be to select the
object with best ratio every time, the selected object would be element 2,
no more space is left in the knapsack for any other object, and the total
value would be 18. If the selection criterion is the value, the selected object
would be element 1, which would fill the bag and give a total value of 20;
nevertheless, a superior solution would involve a choice of elements 3 and
4 that improves the preceding solution by two. This optimal solution can
not be found using deterministic greedy algorithms (such as those usually
used by decision trees algorithms), whereas the solution is accessible for
randomized algorithms, such as GRASP.

The items in the RCL are those that meet the following criteria:

RCL = {i : Valuei ≥ α ·MaxValue+(1−α)·MinValue} (4.1)

If α = 1, only the best item could be selected, the same that would have
been selected by the deterministic greedy strategy. If α = 0, all possible
elements will be in the list and the selection will be random.

G-Forest, proposed in [12] and close to the Random Forest method, is
based on the GRASP heuristic (solely as regards the greedy, random and
adaptive solutions). Unlike Random Forest, rather than selecting the best
attribute from among a random subset of attributes, one attribute is selected
at random from a list of candidate attributes. A similar procedure selects the
split point. The length of the candidate attribute list depends on the quality
of those attributes (attribute value for splitting the dataset into subsets, each
with instances whose class values are as homogeneous as possible) and on
a parameter α . The same approach as in the GRASP metaheuristic that
generates random and adaptive solutions is used to form this list. A list
with α = 1 only includes the best attribute (or multiple attributes if they all
share the maximum value) and a list with α = 0 would include all possible
attributes.

84 4.1. Introduction

Usually, increased diversity leads to a loss of accuracy in the individual
classifiers1. A novel method for tree ensemble construction is presented,
which increases diversity trying not to affect accuracy. To do this, the
following ideas are taken as starting point:

• The choice made at the root of a tree is the most influential in its
final structure. Small changes in the root of a tree can produce totally
different trees.

• The correct classification of instances is mainly influenced by the
lower nodes and leaves2.

A method of tree construction is proposed in which both attribute and
split point selection are absolutely random at the tree root (that is, random
and with no bias), and then the randomness decreases as the tree building
process advances (that is, the selection of attributes is still random, but
with a bias in favour of the best attributes and split points), to the point
that, at the leaves, the choice of attributes and split points becomes highly
deterministic.

In this paper we extend the work of [12] by:

• Presenting an improvement, GAR-Forest, which dynamically varies
the parameter α of G-Forest.

• Analysing its tolerance to class noise.

• Studying how the method influences ensemble diversity.

• Examining the results after performing parameter optimization.

In the same way as in [12], random selections of attributes and split
points are taken from a list of reliable candidates, the size of which is
controlled by a parameter α . The significant novelty is the fact that the
parameter value varies from α = 0 at the root up to α = 1 at the leaves,
growing in a manner that is inversely proportional to the number of instances
that reach each node.

The layout of this paper is as follows: Section 4.2 discusses the theoreti-
cal background of trees used as ensemble members and GRASP metaheuris-
tics. Section 4.3 explains the experimental setting and shows the results. In

1Nevertheless, ensemble accuracy improves, as greater diversity offsets loss of base classifier accuracy.
2Considering that trees are constructed starting at the root and growing downward to the leaves.

4. Tree ensemble construction using a GRASP-based heuristic and annealed
randomness 85

section 4.4, kappa-error diagrams and kappa-error relative movement dia-
grams are used to explain the effect of the method in the ensemble accuracy
and diversity. The influence of one particular parameter of the proposed
method is discussed in section 4.5. Finally, in section 7.7, the conclusions
and future research lines are presented.

4.2 Decision trees and their use as ensembles members

The procedures used to build decision trees are top-down algorithms. All
instances at tree root are used to identify the best attribute with which to
split the dataset into two or more subsets linked to new nodes that are the
offspring of the root node. As a process, a recursive repetition of each
new node continues until the stop criterion is verified. A merit function
determines the best selection of the attribute for each node. Commonly
used split criteria are: Gini Index [4], Information Gain and Gain Ratio [53].
Gain ratio is used in this work as the merit function.

The construction of a decision tree requires a training dataset T , with
attributes a1, . . . ,an, and a splitting criterion f (T,ai), which computes a
value to the i-th attribute. A widely used splitting criterion is Gain Ratio
defined in [52] as:

Gain(T,ai) = S (T)− ∑
v∈V (ai)

|Tv|
|T |

S (Tv) (4.2)

where, T is the training dataset, ai is the attribute to evaluate, V (ai) is the
set of all different values for attribute ai, and Tv is the subset of the data set
T formed by the examples, where ai = v, and S , the entropy, for c class
labels, is defined as

S (T) =
c

∑
i=1
−pi log2(pi) (4.3)

where pi represents the probability of class label i.
When dealing with numeric attributes, the splits are binary, with two

subsets, one with all the instances whose attribute value is lower or equal
than the chosen split point, and the other with all the instances with attribute
values greater than the chosen split point. Besides, numeric attributes,
unlike nominal attributes, have many possible split points. To select the best
one, the instances are ordered according to one particular attribute, then the
merit function is evaluated for each split point for which the corresponding

86 4.2. Decision trees and their use as ensembles members

instance has a different class from the next one. Typical algorithms for tree
construction select the attribute with the highest value of the Gain Ratio for
each node (or any other chosen merit function), assuming that this is the
best attribute with which to split the data set.

The construction of an ensemble involves two conflicting objectives:
to build base classifiers that are as diverse as possible and to preserve
their accuracy. A commonly used technique to introduce diversity in tree
ensembles is to discard certain information when calculating the splitting
point:

1. Ignore attributes: these attributes may vary at each node, as in Random
Forest [3], or they may be the same for the whole tree, but vary from
one tree to another in the ensemble, as in Random Subspaces [28].

2. Ignore both attributes and splitting points: for example, extremely
randomized trees [23] take k random attributes into account at each
node, as in Random Forest, but the splitting point in each attribute is
also randomly chosen.

Another technique to introduce further diversity is to introduce a bias in
the choice of attributes and split points:

1. Random Feature Weights [44] tries to increase the diversity of the
ensemble by adding a different set of random weights to each tree.
This set has one weight per attribute. Unlike traditional algorithms,
that only take into account the Gain Ratio or similar measures, Random
Feature Weights jointly uses the Gain Ratio and the random weight. A
high weight contribute positively to the choice of the attributes, a low
weight reduce the probability of the attribute to be chosen.

2. Randomization [10] uses a very straightforward technique, at each
decision point, it computes the best 20 splits and chooses one at
random.

3. Random Linear Oracle [37] can be seen as a tree with a random split
at the root and in an arbitrary direction, not necessarily parallel to the
feature axes, but in a direction defined by any random linear combi-
nation of attributes; the rest of the nodes of the tree are constructed
in the traditional way. This approach encourages extra diversity in
the ensemble while allowing for high individual ensemble-member
accuracy.

4. Tree ensemble construction using a GRASP-based heuristic and annealed
randomness 87

4.2.1 The use of the GRASP metaheuristic as a means of increasing
diversity in the tree construction

The use of heuristics and meta-heuristics in statistics and data mining is
a relevant approach with a promising future [58]. Many problems in data
mining can be considered as a combinatorial optimization problem. The
operations research community has contributed significantly to the data
mining field. A survey of heuristic and metaheuristic methods that solve
data mining problems can be found in [47].

Metaheuristics are usually chosen over other optimization methods,
when it is necessary to find a good solution to a complex problem with
many local optima.

The family of the metaheuristics includes such methods as simulated
annealing [34], genetic algorithms [26], tabu search [25, 24], variable
neighbourhood search (VNS) [45] and GRASP.

Some data mining problems to which this type of metaheuristics has
been applied are attribute selection [59, 33, 8], learning the structure of a
Bayesian network [39], clustering [1, 50], and decision trees [18, 41, 55].

GRASP (Greedy Randomized Adaptive Search Procedure) [14, 15] is
a metaheuristic strategy initially proposed to solve the set covering prob-
lem, which is known to be NP-complete. Widely used as a strategy in
optimization problems, this is a constructive strategy, based on gradually
adding elements to a solution until it is complete and meets a stop criterion.
The idea behind GRASP, and what differentiates this method from other
constructive strategies, is that the best step at each point of the process does
not necessary lead to the best solution of the problem.

Recently, GRASP has been applied to alter the selection method of
attributes in the construction of binary decision trees [49, 48]. The idea is
to randomly choose attributes from a Restricted Candidate List that lists
attributes with sufficiently close values to the best one:

RCL = {i : Valuei ≥ α ·bestValue+(1−α)·worstValue} (4.4)

Note, that α = 1 gives a RCL that only contains the attribute for which
the merit functions gives the best value. With α = 0 all attributes may be
selected, regardless of whether their values are good or bad. GRASP con-
trolled randomness managed to build less complex trees without reducing
accuracy, while the optimum results were obtained with high values of α

88 4.2. Decision trees and their use as ensembles members

(0.9 or 0.95).
The methods in this study use the GRASP construction phase to construct

ensembles of classification trees. One further combines the ideas of [12]
with annealed randomness. This process of annealing the randomness is
explained below.

GAR-Trees (GRASP with Annealed Randomness trees) are constructed
by slight modifications to the traditional tree construction algorithm. At-
tribute evaluation at each node involves a specific merit function, in this case
the Gain Ratio, with a value that represents the efficiency of the attribute at
dividing the dataset into subsets, each having class values of their instances
that are fairly homogeneous. The attribute to be used in the node is selected
from a candidate list, constructed from those same values. Note that for
α = 1, the same attribute as a traditional method would be chosen and for
α = 0, the attribute will be fully random.

Our interest consists in increasing diversity without overly reducing
accuracy, so α will take an initial value of 0 at the root of the tree and it
will be increased until it reaches a maximum value, close to 1, in the lower
nodes. Equation 4.5 shows the function that controls how randomness is
reduced.

α =

(
1− numInstancesNode

numInstances

)τ

(4.5)

In this equation, α is determined by the fraction of instances that reach the
node and a parameter τ which controls how rapidly α is increased with the
reduction of instances reaching the node. Figure 4.1 shows the evolution of
α in terms of the percentage of instances reaching a node and the exponent
τ .

A parallel may be drawn with simulated annealing [34], in which the
heuristic search can accept a solution that is worse than the best solution
found at that time. The probability of this solution will depend on the degree
to which the new solution is worse than the best one and a further parame-
ter, which is a synthetic temperature inspired by the annealing process in
metallurgy. As this parameter value gradually descends, so too does the
randomness of the method (the lower the value, the lower the randomness).
In the proposed method, randomness decreases as the number of instances
that reach each node descends. The randomness of the decisions may be
said to fall at each node, as the tree construction process progresses.

A linear relationship exists with an exponent of τ = 1 between the

4. Tree ensemble construction using a GRASP-based heuristic and annealed
randomness 89

� �� �� �� �� �� �� �� 	�
� ���
�

���

���

���

���

���

���

���

��	

��

�
τ =1

τ =2

τ =3

τ =4

τ =5

τ =6

τ =0.2

τ =0.4

τ =0.6

τ =0.8

τ =0

τ = ∞
��������������������������������������

�
��
�
�
�(

α
)

Figure 4.1: Evolution of α in terms of the percentage of instances reaching a node and
the exponent τ .

fraction of instances that reach the nodes and the degree of randomness
when selecting the attribute and the splitting point. With exponents greater
than 1, the level of randomness at the upper tree nodes, where the number of
instances is a large fraction of all instances, decreases more slowly, unlike
in the lower nodes, where they increase more rapidly. The reverse takes
place, with exponents of less than 1; a rapid decrease in randomness at
higher nodes and more slowly at lower nodes. Two extreme cases exist,
with an exponent of τ = 0, the value of α is equal to 1 throughout the whole
tree building process. When α = 1, the attributes and split points selected
are those with higher values of the merit function, as it happens in the
traditional algorithm. With exponent τ = ∞, the value of α always remains
at 0. With α = 0, each attribute and split point have the same probability of
being chosen, so the tree construction process is totally random.

Algorithm 7 shows the GAR-Tree construction procedure, it resembles
the traditional algorithms. When there is a sufficient number of instances,
the following sequence of actions is executed:

1. The α value for each node is calculated using Equation 4.5 (a key
difference between GAR-Trees and G-Trees is that in the later α is a
parameter that is constant throughout the tree construction);

2. The importance of each attribute is calculated using the merit function.

3. The set of elements forming the candidate list is calculated using the

90 4.3. Experimental setup and results

Algorithm 7: TrainDecisionTree (for numeric attributes)
Input: Training dataset T , set of m attributes Attributes, total number of instances

totalNum, a value that controls the level of annealed randomness τ

Output: Tree
if Attributes is empty or number of examples < minimum allowed per branch then

Node.label← most common value label in examples
return Node;

else
numInstancesNode← size(T)
α ← (1− (numInstancesNode/totalNum))τ

for j = 1 to m do
model[j]← GraspSplit (T , Attributes, j, α)

end
maxGain←Max(model.gain); minGain←Min(model.gain)
List← { j = 1,2, . . . ,m| model[j].gain ≥ αmaxGain+(1−α)minGain}
Randomly choose jg ∈ List; Att = jg, splitPoint = model[jg].splitPoint
Tl ←{xi ∈ T |xi, jg ≤ splitPoint}
Tr ←{xi ∈ T |xi, jg > splitPoint}
Node.child[0]← TrainDecisionTree (Tl , Attributes, totalNum, exponent)
Node.child[1]← TrainDecisionTree (Tr, Attributes, totalNum, exponent)

end

maximum and minimum merit values, and the α value.

4. The model, which contains the attribute and split point values, is
randomly chosen from the candidate list and used to split the training
set.

As shown in Algorithm 8, a similar strategy is used for the selection of
splitting points. A list of good candidates is generated once again, one of
them is randomly selected and its gain and split value are returned to the
main procedure. This contrasts with the traditional algorithm that always
returns the best split value. Randomness therefore exists in each node, when
the attribute is selected and when the splitting point within that attribute is
selected.

4.3 Experimental setup and results

In this section, ensembles of classification trees that use the GRASP strategy
are compared to ensembles of regular classification trees. In the experi-
ments, both kinds of GRASP trees are used. The term G-Trees refers to
trees without randomness annealing, as presented in [12], and the term
GAR-Trees refers to the improved version presented in this paper, that

4. Tree ensemble construction using a GRASP-based heuristic and annealed
randomness 91

Algorithm 8: GraspSplit
Input: Training dataset T , set of m attributes Attributes, attribute index j, value between 0

and 1 to control the level of randomness α

Output: model
X← T ordered according to attribute j
/* Compute values for all possible split points and their index */
infoGain← List of all possible split info gains
infoGainIndex← List of all possible split indexes
maxGain←Max(infoGain)
minGain←Min(infoGain)
List← {k = 1,2, . . . ,size(infoGain)|infoGain[k]≥ αmaxGain+(1−α)minGain}
Randomly choose kg ∈ List
model.gain← infoGain[kg]
splitIndex← infoGainIndex[kg]
model.splitPoint← (xsplitIndex, j + xsplitIndex+1, j)/2
return model

uses annealed randomness. The scoring function is the comparisons was
accuracy.

From the implementation point of view, both GRASP-based trees are
modifications of J48, the Java version of C4.5 [53] provided by Weka [27].

In the experiments, these trees were used as base classifiers of Bagging.
From this library are also the other decision trees and ensembles. The
ensembles size was set to 100.

The G-Trees were tested with six values for the parameter α , between
0.05 and 0.3 (at intervals of 0.05). Interest in increasing the diversity of
ensemble methods based on these trees is aided by low alpha values, which
assure a high degree of randomness.

GAR-Trees were tested with integer exponents from τ = 1 to τ = 6.
We compare both methods with the ensembles listed below. Unless

specified, no changes to the default parameters were made:

1. Boosting: Multiboost [57] and AdaBoost.M1 [17]. In the two versions,
the variants with reweighting and resampling were used (represented
as W and S in the table). Multiboost had 10 subcommittees.

2. Bagging [2].

3. Random Subspaces [28]: two separate configurations were considered:
50% and 75% of the feature size.

4. Random Forest [3]: four separate configurations, random attribute

92 4.3. Experimental setup and results

subsets with sizes of 1, 2, square root and log base 2 of the feature
space size.

The pruned and non-pruned versions were applied to all ensembles
of J48 trees. Only the unpruned version of Random Forest was used, as
pruning is not recommended [3]. Pruning was also by-passed for ensembles
of G-Trees and GAR-Trees, as pruning in randomized trees usually does
not give good results. Moreover, unpruned trees yielded the best results in
[12].

Four were the reasons for using binary trees:

1. This type of tree was applied in [49], a preliminary work that used
GRASP to modify the attribute selection process in the construction
of a binary decision tree.

2. When a non-binary tree handles a nominal attribute, a node is created
with as many children as different values has that nominal attribute.
Having only one possible decision to divide the dataset, it is not possi-
ble to create a candidate list, so the GRASP strategy is not applicable.

3. In [12], with binary trees as base classifiers, the performance of all the
ensembles improved slightly.

4. Most attribute scores (except a few, like Relief) [54] overestimate
multivalued attributes, which can be avoided by inducing binary trees.

As the implementation of Random Forest in Weka does not have the
option of using binary nodes, the pre-processing method discussed in [4]
was applied, in which nominal k value attributes are converted into k binary
attributes.

A 5×2 cross validation [11] was performed using 62 UCI data sets [16],
their main characteristics are shown in Table 4.2. Table 4.3 contains the
results as an average ranking [9]. The configurations under consideration
are sorted from best to worst in average ranks, for each data set, each
configuration receiving a numeric rank: the best method is ranked 1, the
second best, 2. . . . If several configurations yield the same result, they
receive an average rank. The average rank for each configuration is obtained
by averaging across all the data sets. According to Demsar [9] a reasonable
fair comparison between algorithms is provided by average ranks.

Table 4.3 shows the average ranking for all tested configurations over
the 62 dataset listed in Table 4.2. The first 5 positions correspond to 5

4. Tree ensemble construction using a GRASP-based heuristic and annealed
randomness 93

Table 4.2: Datasets used in the experiments (the number of Numeric and Discrete features,
Examples and Classes are indicated with: #N, #D, #E and #C).

Dataset #N #D #E #C
abalone 7 1 4177 28
anneal 6 32 898 6
audiology 0 69 226 24
autos 15 10 205 6
balance-scale 4 0 625 3
breast-w 9 0 699 2
breast-y 0 9 286 2
bupa 6 0 345 2
car 0 6 1728 4
credit-a 6 9 690 2
credit-g 7 13 1000 2
crx 6 9 690 2
dna 0 180 3186 3
ecoli 7 0 336 8
glass 9 0 214 6
heart-c 6 7 303 2
heart-h 6 7 294 2
heart-s 5 8 123 2
heart-statlog 13 0 270 2
heart-v 5 8 200 2
hepatitis 6 13 155 2
horse-colic 7 15 368 2
hypo 7 18 3163 2
ionosphere 34 0 351 2
iris 4 0 150 3
krk 6 0 28056 18
kr-vs-kp 0 36 3196 2
labor 8 8 57 2
led-24 0 24 5000 10
letter 16 0 20000 26
lrd 93 0 531 10

Dataset #N #D #E #C

lymphography 3 15 148 4
mushroom 0 22 8124 2
nursery 0 8 12960 5
optdigits 64 0 5620 10
page 10 0 5473 5
pendigits 16 0 10992 10
phoneme 5 0 5404 2
pima 8 0 768 2
primary 0 17 339 22
promoters 0 57 106 2
ringnorm 20 0 300 2
sat 36 0 6435 6
segment 19 0 2310 7
shuttle 9 0 58000 7
sick 7 22 3772 2
sonar 60 0 208 2
soybean 0 35 683 19
soybean-small 0 35 47 4
splice 0 60 3190 3
threenorm 20 0 300 2
tic-tac-toe 0 9 958 2
twonorm 20 0 300 2
vehicle 18 0 846 4
vote1 0 15 435 2
voting 0 16 435 2
vowel-context 10 2 990 11
vowel-nocontext 10 0 990 11
waveform 40 0 5000 3
yeast 8 0 1484 10
zip 256 0 9298 10
zoo 1 15 101 7

94 4.3. Experimental setup and results

of the 6 tested configurations of GAR-Forest. The first thing to check for
any significant differences between the ranks of the compared methods.
The Iman-Davenport [32] test, an enhanced version of the Friedman test,
was used to resolve this issue. The Iman-Davenport test gives a p-value
of 1.5569e-66, meaning that it rejects the hypothesis of the equivalence
of the algorithms under comparison. Having verified the statistical dif-
ference of the methods, to detect pairwise differences between the best
method and the remaining methods, the Hochberg test [30] was used as a
post-hoc test, which was found to be more powerful and less conservative
than the Bonferroni-Dunn test [13, 21], which makes it more suitable for
comparisons with a large number of methods. Using the Hochberg test, the
methods that are significantly different from the best method in Table 4.3 at
a confidence level of 0.10 appear below the horizontal dashed line. Those
that are significantly different at a confidence level of 0.05 appear below the
horizontal unbroken line. According to the Hochberg test, the best method
in Table 4.3 is equivalent to those methods above the horizontal dashed line
with significance level of 0.1, and equivalent to those above the horizontal
unbroken line with significance level of 0.05, and it is significantly superior
to those below the aforementioned lines.

The high number of methods compared and the fact that many of them
differ only in the value of a parameter (so some correlation may exist
between them) makes it advisable to analyze the results, grouping the
methods into families. Those methods that use the same base algorithm have
been specifically grouped together, thus it is possible to make a hierarchical
analysis similar to that used in [19]. Table 4.4 shows the rankings for each
family and the corresponding Iman-Davenport p-values. The lines indicate
the methods that, according to the Hochberg test, are significantly different
from the method with best ranking.

Table 4.5 compares the best methods for each family. GAR-Forest is the
best according to the ranking. The order in which the best methods appear
in Table 5 can give a general idea of their relative performance, although
these results should be treated with caution, because the selection of the
best methods has been done using the same set of results used to form the
ranking.

4. Tree ensemble construction using a GRASP-based heuristic and annealed
randomness 95

Table 4.3: Average ranks for the different algorithms (Unpruned and Pruned trees).

Rank Method

10.718 GAR-Forest τ = 4
10.798 GAR-Forest τ = 3
11.177 GAR-Forest τ = 5
11.444 GAR-Forest τ = 2
11.484 GAR-Forest τ = 6
12.468 G-Forest α = 0.30
12.613 Random Forest k =

√
N

12.919 G-Forest α = 0.20
13.000 G-Forest α = 0.25
13.379 GAR-Tree τ = 1
14.073 G-Forest α = 0.15
14.089 Random Forest k = log2 N
14.315 G-Forest α = 0.10
14.637 Multiboost -S (U)
15.242 Multiboost -S (P)
15.452 AdaBoost -S (P)
16.000 Random Forest k = 3
16.242 Multiboost -W (U)
16.274 G-Forest α = 0.05
16.315 Adaboost -S (U)
16.419 Random Forest k = 2
16.718 Multiboost -W (P)
17.419 AdaBoost -W (P)
18.218 AdaBoost -W (U)
18.879 Random Forest k = 1
19.315 Random Subspaces 50% (U)
20.468 Random Subspaces 50% (P)
22.589 Bagging (P)
22.766 Bagging (U)
25.226 Random Subspaces 75% (P)
25.347 Random Subspaces 75% (U)

96 4.3. Experimental setup and results

Table 4.4: Rankings by algorithm families (the p-values for Iman-Davenport are shown at
the bottom of each ranking).

Rank Method

1.419 Bagging (U)
1.581 Bagging (P)

p-value=2.066e-1

2.040 AdaBoost -S (P)
2.508 AdaBoost -W (P)
2.540 Adaboost -S (U)
2.911 AdaBoost -W (U)

p-value=2.203e-3

2.234 Multiboost -S (U)
2.419 Multiboost -S (P)
2.613 Multiboost -W (U)
2.734 Multiboost -W (P)

p-value=1.452e-1

2.379 Random Forest k =
√

N
2.750 Random Forest k = logN
3.113 Random Forest k = 3
3.129 Random Forest k = 2
3.629 Random Forest k = 1

p-value=1.680e-4

1.758 Random Subspaces 50% (U)
2.234 Random Subspaces 50% (P)
2.903 Random Subspaces 75% (U)
3.105 Random Subspaces 75% (P)

p-value=2.189e-10

2.960 G-Forest α = 0.30
3.194 G-Forest α = 0.25
3.274 G-Forest α = 0.20
3.556 G-Forest α = 0.15
3.685 G-Forest α = 0.10
4.331 G-Forest α = 0.05

p-value=7.745e-4

3.169 GAR-Forest τ = 5
3.202 GAR-Forest τ = 4
3.363 GAR-Forest τ = 3
3.500 GAR-Forest τ = 6
3.613 GAR-Forest τ = 2
4.153 GAR-Forest τ = 1

p-value=3.882e-2

4. Tree ensemble construction using a GRASP-based heuristic and annealed
randomness 97

Table 4.5: Comparison of the best method in each algorithm family.

Rank Method

2.927 GAR-Forest τ = 5
3.379 Random Forest k =

√
N

3.387 G-Forest α = 0.30
3.839 Multiboost -S (U)
3.960 Adaboost -S (P)
4.823 Random Subspace 50% (U)
5.685 Bagging (U)

p-value=3.998e-15

4.3.1 Noise Robustness

Noisy or corrupted data may downgrade the performance of a classification
method, it is worth assessing the robustness of a method against noise.

One advantage of ensembles over other classifiers is their potential ro-
bustness to noise and other imperfections in the data. Real-world problems
do have noise, due to errors in data measurement and in labelling. So, it is
relevant to study the behaviour of any learning algorithm in the presence of
noise.

In order to test this robustness, artificial datasets were composed by
shuffling a percentage of the class values of the original datasets, in the
same way as described in [10]. For these artificial noisy data sets, the
methods were also evaluated using 5×2-fold stratified cross validation.

Table 4.6 shows the methods sorted according to their average ranks
for the data sets with 10% class noise and Table 4.8 with 20% class noise.
As in Table 4.3, a horizontal dashed line separates those methods that
are significantly different from the best one at a confidence level of 0.10,
and a horizontal unbroken line separates the methods that are significantly
different from the best one at a confidence level of 0.05.

In Table 4.6, the first five positions correspond to the GAR-Forest method.
Also, the only rankings that are not significantly different from the best
belong to those methods that use the GRASP strategy for constructing the
trees, that is, G-Trees and GAR-Trees. In Table 4.8, the first position corre-
sponds to one of the GAR-Forest configurations, but the next correspond to
ensembles that use G-Trees. The two methods introduced in this paper have
a ranking that is equivalent to the ranking of the best methods. The table
also shows the poor performance of Adaboost due to noise, which occupies
the final positions in the ranking.

98 4.3. Experimental setup and results

Table 4.6: Average rank for the different algorithms (Unpruned and Pruned trees). Dataset
with 10% class noise.

Rank Method

8.008 GAR-Forest τ = 3
8.734 GAR-Forest τ = 5
8.968 GAR-Forest τ = 4
9.226 GAR-Forest τ = 2
9.234 GAR-Forest τ = 6
9.685 G-Forest α = 0.25

10.153 G-Forest α = 0.30
10.468 GAR-Forest τ = 1
10.548 G-Forest α = 0.15
10.597 G-Forest α = 0.20
11.831 G-Forest α = 0.10
12.581 G-Forest α = 0.05
14.040 Random Forest k =

√
N

14.460 Random Forest k = log2 N
15.266 Random Subspaces 50% (U)
15.419 Random Forest k = 3
15.573 Random Subspaces 50% (P)
16.403 Random Forest k = 2
16.573 Bagging(P)
18.879 Random Forest k = 1
19.758 Bagging (U)
20.024 Random Subspaces 75%(P)
20.218 Multiboost -S (U)
20.363 Multiboost -S (P)
21.371 Multiboost -W (P)
22.798 Random Subspaces 75% (U)
23.411 Multiboost -W (U)
24.145 AdaBoost -S(P)
24.823 Adaboost -S (U)
26.169 AdaBoost -W (U)
26.274 AdaBoost -W (P)

4.3.2 Optimized version

In previous experiments, Random Forest was tested with various fixed
values of k, G-Forest with various fixed values of α and GAR-Forest with
several fixed values for the exponent τ . In this section, a comparison has
been made between these methods using a five folds internal cross validation
for parameter setting.

Table 4.13 shows the average ranking of the 62 data sets shown in Table
4.2, at different noise levels (the ranking was given by the ordering of the
methods according to their accuracy). The Iman-Davenport test gives p-
values of 4.956e-2, 1.786e-5 and 3.082e-8, which means that it rejects the
hypothesis of the equivalence of the algorithms under comparison. Taking
Random Forest as the reference method, a post-hoc Hochberg test was also
performed. The methods that were significantly different from Random

4. Tree ensemble construction using a GRASP-based heuristic and annealed
randomness 99

Table 4.7: Ranking by algorithm families with dataset with 10% of class noise (the
p-values for Iman-Davenport are shown at the bottom of each ranking).

Rank Method

3.024 G-Forest α = 0.25
3.177 G-Forest α = 0.30
3.371 G-Forest α = 0.20
3.452 G-Forest α = 0.15
3.895 G-Forest α = 0.10
4.081 G-Forest α = 0.05

p-value=3.743e-3

3.065 GAR-Forest τ = 3
3.234 GAR-Forest τ = 4
3.363 GAR-Forest τ = 6
3.379 GAR-Forest τ = 5
3.653 GAR-Forest τ = 2
4.306 GAR-Forest τ = 1

p-value=9.834e-3

Forest, according to the Hochberg test, at a confidence level of 0.05, appear
above the horizontal line. In the case of data sets without the added noise,
although the G-Forest is not significantly better than random forest, its
improvement, GAR-Forest, increases the difference and makes it significant.
With noisy data sets, both methods are significantly better than Random
Forest. The actual scores are shown in tables 5.7, 4.11 and 4.12, where the
wins, draws and losses are also shown at the bottom of the table, the second
line shows the statistical significant results, according to the Student’s t-
test for α = 0.05 (the corrected version suggested in [46], the default in
Weka). The significant victories and losses are also marked in the tables
with Xand * respectively. Table 5.7 shows the results for the original data
sets. Tables 4.11 and 4.12 show the results for the datasets with 10% and
20% class noise.

4.4 Kappa-error diagrams

According to the decomposition of generalization error [35, 22], the in-
creased accuracy of ensembles with respect to individual classifiers is due to
an increase in diversity or a reduction in the error of the individual classifiers
in the ensemble. Visualization techniques such us kappa-error diagrams are
useful to understand the behaviour of ensembles in terms of diversity and
error [42].

In this visualization technique, each point represent a couple of classifiers

100 4.4. Kappa-error diagrams

Table 4.8: Average rank for the different algorithms (Unpruned and Pruned trees). Dataset
with 20% class noise.

Rank Method

8.847 GAR-Forest τ = 4
9.032 G-Forest α = 0.25
9.065 G-Forest α = 0.3
9.597 G-Forest α = 0.1
9.726 G-Forest α = 0.2
9.823 GAR-Forest τ = 6

10.081 G-Forest α = 0.15
10.339 GAR-Forest τ = 5
10.702 GAR-Forest τ = 3
10.823 GAR-Forest τ = 2
11.065 G-Forest α = 0.05
11.677 Random Subspaces 50% (P)
11.798 GAR-Forest τ = 1
13.403 Random Subspaces 50% (U)
14.016 Bagging (P)
14.782 Random Forest k =

√
N

15.218 Random Forest k = log2 N
15.669 Random Forest k = 3
16.000 Random Forest k = 2
17.363 Random Subspaces 75% (P)
17.798 Bagging (U)
18.379 Random Forest k = 1
21.306 Random Subspaces 75% (U)
21.742 Multiboost -S (P)
22.710 Multiboost -S (U)
22.944 Multiboost -W (P)
23.702 Multiboost -W (U)
26.032 AdaBoost -S (P)
27.145 AdaBoost -W(P)
27.355 Adaboost -S (U)
27.863 AdaBoost -W(U)

belonging to the ensemble, so, with N classifiers in the ensemble, the
number of points will be N · (N − 1)/2. For every combination of two
classifiers there is a point, its coordinates are the kappa diversity measure
and the mean error of the classifiers. An appropriate measure to evaluate
the diversity is kappa, which is defined as:

κ =
Θ1−Θ2

1−Θ2
(4.6)

where Θ1, for L classes and m test samples, is defined as a measure of the
agreement between the two classifiers

Θ1 =
∑

L
i=1Ci,i

m
(4.7)

where, C is a contingency matrix, each Ci, j is the cardinality of the set of
instances classified as class i by one classifier and as class j by the other.

4. Tree ensemble construction using a GRASP-based heuristic and annealed
randomness 101

Table 4.9: Ranking by algorithm families with dataset with 20% of class noise (the
p-values for Iman-Davenport are shown at the bottom of each ranking).

Rank Method

3.258 G-Forest α = 0.10
3.323 G-Forest α = 0.25
3.484 G-Forest α = 0.30
3.508 G-Forest α = 0.15
3.589 G-Forest α = 0.20
3.839 G-Forest α = 0.05

p-value=5.856e-1

2.782 GAR-Forest τ = 4
3.202 GAR-Forest τ = 6
3.266 GAR-Forest τ = 5
3.645 GAR-Forest τ = 3
3.710 GAR-Forest τ = 2
4.395 GAR-Forest τ = 1

p-value=3.725e-5

And Θ2, an estimate of the probability that two classifiers agree by chance,
is defined as:

Θ2 =
L

∑
i=1

(
L

∑
j=1

Ci, j

m
.

L

∑
j=1

C j,i

m

)
(4.8)

The values of κ are in the interval −1 to 1. If the pair of classifiers
predict the same class for all test samples, κ = 1. If the classification for
both classifiers were totally random, κ would be 0. If the agreement in the
classification were less than the expected by chance, κ < 0.

It would be advisable that all the points were at the bottom left of these
diagrams, that would mean that the classifiers in the ensemble are both
accurate and diverse. Unfortunately, accuracy and diversity are in conflict,
as the classifiers can not be very accurate and very diverse at the same time.

Figure 4.2 shows the kappa-error diagrams for Car data set, and the four
methods: Random Forests with k =

√
N, bagging of G-Trees with α = 0.3,

and bagging of GAR-Trees with τ = 4 and τ = 5. Figure 4.3 shows the
kappa-error diagrams for the same four methods, but applied to the Krk
dataset.

With regard to Random Forest, in general, the new proposed method not
only reduces the average error of the classifiers in the ensemble, but also
the diversity.

These diagrams only show the information for one data set. A much
more useful representation technique for simultaneous visualization of
information for several data sets, is the kappa-error relative movement

102 4.4. Kappa-error diagrams

Table 4.10: Scores of the selected methods for datasets without added noise (results where
G-Forest and GAR-Forest are significantly better/worse are marked with X/*).

Dataset Random Forest G-Forest GAR-Forest
abalone 24.42 25.02 24.81
anneal 99.15 98.84 98.64
audiology 74.78 76.19 76.55
autos 76.40 73.08 75.03
balance-scale 84.32 86.72 85.41
breast-w 96.91 96.80 96.62
breast-y 71.05 71.54 70.91
bupa 68.53 66.03 66.44
car 92.64 96.23X 96.28X
credit-a 86.03 86.52 86.35
credit-g 75.10 74.24 74.54
crx 86.06 87.10 86.90
dna 95.10 94.88 94.97
ecoli 84.76 85.89 85.95
glass 76.17 72.43 74.58
heart-c 80.99 83.24 82.25
heart-h 81.70 80.48 80.20
heart-s 92.85 93.17 92.69
heart-statlog 83.26 83.11 82.07
heart-v 75.40 76.60 76.90
hepatitis 83.48 83.10 83.87
horse-colic 84.29 85.05 85.38
hypo 98.77 98.80 98.98
ionosphere 92.71 92.36 92.99
iris 94.67 95.20 94.93
kr-vs-kp 98.77 99.34X 99.29X
krk 78.61 77.16* 79.88X
labor 87.76 88.79 87.75
led-24 74.17 74.71 74.30
letter 95.07 95.36 95.50
lrd 87.19 87.27 87.83
lymphography 84.73 82.84 82.57
mushroom 100.00 100.00 100.00
nursery 97.45 99.15X 99.35X
optdigits 97.85 97.81 98.16
page 97.06 97.19 97.26
pendigits 98.97 98.97 99.07
phoneme 89.03 86.79 88.69
pima 75.76 75.86 76.35
primary 42.72 43.54 42.37
promoters 87.36 84.34 85.66
ringnorm 95.80 93.47 91.33
sat 90.89 90.41 90.99
segment 97.31 97.48 97.72
shuttle 99.98 99.97 99.98
sick 98.19 98.29 98.46
sonar 79.62 77.88 80.67
soybean-small 100.00 100.00 99.15
soybean 91.74 92.27 92.56
splice 95.66 96.00 95.38
threenorm 83.07 80.40 81.07
tic-tac-toe 91.11 94.95 96.56X
twonorm 94.80 95.27 95.33
vehicle 74.11 75.30 75.37
vote1 90.80 91.63 91.31
voting 96.09 95.45 96.00
vowel-context 91.92 92.40 92.30
vowel-nocontext 92.00 91.96 92.22
waveform 84.89 85.81X 85.38
yeast 59.62 60.66 60.84
zip 95.89 95.30 96.00
zoo 93.67 93.47 93.49

Win-tie-loses 34-2-26 38-1-23
Statistically significant win-tie-loses 4-57-1 5-57-1

4. Tree ensemble construction using a GRASP-based heuristic and annealed
randomness 103

Table 4.11: Scores of the selected methods for datasets with 10% added noise (results
where G-Forest and GAR-Forest are significantly better/worse are marked with X/*).

Dataset Random Forest G-Forest GAR-Forest
abalone 21.97 22.79 21.92
anneal 85.68 88.80X 88.80X
audiology 67.17 67.70 70.00
autos 62.54 63.22 64.00
balance-scale 72.86 74.53 73.82
breast-w 86.32 87.58 87.32
breast-y 61.05 64.13 63.57
bupa 62.26 60.52 60.75
car 81.18 85.43X 85.80X
credit-a 76.20 77.71 77.54
credit-g 68.58 68.42 68.94
crx 78.20 78.90 78.81
dna 84.48 84.98 85.43
ecoli 72.32 74.64 74.70
glass 68.60 67.38 66.92
heart-c 73.27 72.87 72.54
heart-h 75.17 75.58 75.10
heart-s 83.09 83.58 83.91
heart-statlog 75.11 75.48 74.96
heart-v 69.60 68.30 68.50
hepatitis 78.07 76.52 76.27
horse-colic 78.26 79.46 79.08
hypo 88.48 88.81 88.73
ionosphere 83.59 82.90 82.91
iris 83.07 86.80 86.93
kr-vs-kp 86.27 88.52X 88.25X
krk 66.75 67.20 70.00X
labor 78.90 75.36 75.39
led-24 66.76 67.48 66.91
letter 83.17 85.12X 85.36X
lrd 78.87 78.23 78.83
lymphography 72.84 73.11 70.81
mushroom 89.71 89.86 89.56
nursery 86.52 88.62X 88.98X
optdigits 88.09 87.82 88.21
page 86.79 87.52 87.63
pendigits 88.78 88.92 89.03
phoneme 79.11 77.13 79.60
pima 68.49 68.98 69.19
primary 37.52 37.82 37.64
promoters 73.40 73.58 76.79
ringnorm 85.60 82.67 82.53
sat 82.07 81.68 82.15
segment 85.90 86.92 87.10
shuttle 86.85 89.87X 89.86X
sick 88.41 88.06 88.08
sonar 70.19 71.44 69.90
soybean-small 87.70 89.42 88.55
soybean 80.44 82.20 83.43
splice 84.73 85.79 86.03X
threenorm 73.47 71.93 70.40
tic-tac-toe 80.67 82.63 83.40X
twonorm 84.73 86.00 85.33
vehicle 67.21 68.23 68.09
vote1 81.19 82.16 82.30
voting 85.38 86.71 87.13
vowel-context 77.01 80.73 80.36
vowel-nocontext 78.26 80.83 80.75
waveform 77.03 77.81 77.43
yeast 54.23 54.95 54.49
zip 86.26 86.01 86.48
zoo 80.59 83.77 82.38

Win-tie-loses 46-0-16 47-0-17
Statistically significant win-tie-loses 6-56-0 9-53-0

104 4.4. Kappa-error diagrams

Table 4.12: Scores of the selected methods for datasets with 20% added noise (results
where G-Forest and GAR-Forest are significantly better/worse are marked with X/*).

Dataset Random Forest G-Forest GAR-Forest
abalone 19.06 20.30 19.32
anneal 72.00 76.82X 76.77X
audiology 53.98 58.41 59.56
autos 52.09 54.14 55.89
balance-scale 63.14 65.06 64.42
breast-w 74.77 77.40 76.40
breast-y 55.87 56.64 55.52
bupa 55.76 55.24 56.12
car 69.65 73.83X 74.35X
credit-a 68.09 68.96 68.52
credit-g 62.40 61.50 61.08
crx 69.45 69.97 69.68
dna 73.74 74.93 75.50X
ecoli 65.60 67.32 66.85
glass 60.84 60.56 61.96
heart-c 64.22 64.89 63.56
heart-h 65.92 68.57 67.14
heart-s 75.29 75.44 73.97
heart-statlog 64.30 64.22 62.30
heart-v 60.90 62.40 62.60
hepatitis 70.46 68.01 67.88
horse-colic 70.60 71.41 71.09
hypo 77.21 78.08 77.42
ionosphere 71.00 71.68 70.20
iris 72.53 75.20 74.00
kr-vs-kp 73.62 75.94X 75.58X
krk 54.46 57.12X 59.96X
labor 68.45 67.38 64.58
led-24 58.76 60.04X 59.17*
letter 71.31 74.85X 75.00X
lrd 70.17 70.51 70.70
lymphography 63.38 64.19 64.86
mushroom 78.20 79.00X 77.63
nursery 75.91 78.17X 78.45X
optdigits 77.98 77.99 78.21
page 75.74 77.58X 77.32X
pendigits 78.61 78.95X 78.99
phoneme 68.63 68.33 70.35
pima 59.06 62.71 61.30
primary 28.91 31.39 31.27
promoters 56.23 56.42 60.00
ringnorm 72.93 69.93 69.07
sat 72.78 72.57 72.77
segment 74.65 76.27X 76.11
shuttle 73.43 79.33X 79.31X
sick 77.79 77.22 76.96
sonar 66.92 66.15 67.60
soybean-small 73.70 78.33 78.77
soybean 67.79 70.89 71.22
splice 74.02 75.94 75.68X
threenorm 63.67 63.00 61.60
tic-tac-toe 68.98 70.17 70.23
twonorm 74.53 74.20 75.13
vehicle 58.53 60.02 59.60
vote1 68.23 70.94 71.13
voting 73.01 75.40 74.44
vowel-context 60.91 66.12X 64.75
vowel-nocontext 63.86 67.17X 67.47X
waveform 69.11 69.64 69.16
yeast 46.24 47.44 46.66
zip 76.37 76.10 76.57
zoo 63.78 69.33 68.73

Win-tie-loses 48-0-14 49-0-13
Statistically significant win-tie-loses 14-48-0 11-51-0

4. Tree ensemble construction using a GRASP-based heuristic and annealed
randomness 105

Table 4.13: Ranks of the three methods for different levels of noise (the p-values at the
foot of the tables are for the Iman-Davenport test, the final columns show the p-values
for the Hochberg test when the Random Forest is taken as the reference method, methods
above the line are significantly different from Random Forest, at a confidence level of
0.05).

Rank Method p-Hochberg

1.758 GAR-Forest 3.50e-2
2.056 G-Forest 4.72e-1
2.185 Random Forest

p-value=4.956e-2
(a) No noise

Rank Method p-Hochberg

1.766 GAR-Forest 1.0e-4
1.766 G-Forest 1.0e-4
2.468 Random Forest

p-value=1.786e-5
(b) 10% noise

Rank Method p-Hochberg

1.629 G-Forest 0
1.806 GAR-Forest 2.0e-5
2.565 Random Forest

p-value=3.082e-8
(c) 20% noise

diagram [43]. This diagram is obtained by summarizing each kappa-error
diagram for a data set as a single point, which is calculated as the centroid
of the points in the cloud (the centroids are represented by an asterisk in
figures 4.2 and 4.3). The aim of these diagrams is to summarize as a
single point the results of two methods applied to the same dataset. The y
coordinate is the increase in the error of the second method with respect
to the first, and the x coordinate is the increase in the kappa value of the
second method respect to the first.

In Figure 4.4, these kappa-error relative movement diagrams are used to

 0.05

 0.1

 0.15

 0.2

 0.4 0.6 0.8

e
rr

o
r

diversity

Random Forest (k=√n)

 0.05

 0.1

 0.15

 0.2

 0.4 0.6 0.8

e
rr

o
r

diversity

G-Forest (α=0.3)

 0.05

 0.1

 0.15

 0.2

 0.4 0.6 0.8

e
rr

o
r

diversity

GAR-Forest (τ=4)

 0.05

 0.1

 0.15

 0.2

 0.4 0.6 0.8

e
rr

o
r

diversity

GAR-Forest (τ=5)

Figure 4.2: Kappa-error diagrams for the car data set.

106 4.4. Kappa-error diagrams

 0.35

 0.4

 0.45

 0.4 0.5 0.6

e
rr

o
r

diversity

Random Forest (k=√n)

 0.35

 0.4

 0.45

 0.4 0.5 0.6

e
rr

o
r

diversity

G-Forest (α=0.3)

 0.35

 0.4

 0.45

 0.4 0.5 0.6

e
rr

o
r

diversity

GAR-Forest (τ=4)

 0.35

 0.4

 0.45

 0.4 0.5 0.6

e
rr

o
r

diversity

GAR-Forest (τ=5)

Figure 4.3: Kappa-error diagrams for the krk data set.

-0.1

-0.05

 0

 0.05

 0.1

 0.15

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3

e
rr

o
r

d
if
fe

re
n
c
e

diversity difference

Random Forest (k=√n) -> GAR-Forest (τ=4)

4

24

34

0

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3

e
rr

o
r

d
if
fe

re
n
c
e

diversity difference

Random Forest (k=√n) -> GAR-Forest (τ=5)

5

24

33

0

-0.004

-0.002

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

-0.025 -0.02 -0.015 -0.01 -0.005 0 0.005 0.01 0.015 0.02

e
rr

o
r

d
if
fe

re
n
c
e

diversity difference

GAR-Forest (τ=4) -> GAR-Forest (τ=5)

4

52

6

0

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0.08

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25 0.3

e
rr

o
r

d
if
fe

re
n
c
e

diversity difference

Random Forest (k=√n) -> G-Forest (α=0.3)

4

24

33

1

-0.08

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

e
rr

o
r

d
if
fe

re
n
c
e

diversity difference

G-Forest (α=0.3) -> GAR-Forest (τ=4)

3

39

18

2

-0.08

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

e
rr

o
r

d
if
fe

re
n
c
e

diversity difference

G-Forest (α=0.3) -> GAR-Forest (τ=5)

5

38

17

2

Figure 4.4: Kappa-error relative movement diagrams (the number of points in each
quadrant appears at the corresponding corner). Points in the bottom-left quadrant represent
datasets for which the second method is better than the first in both error (lower average
error in the base classifiers in the ensemble) and diversity (lower kappa), points in the
bottom-right quadrant indicate that the second algorithm gives better error but worse
diversity, and so on.

4. Tree ensemble construction using a GRASP-based heuristic and annealed
randomness 107

show the comparison of several pairs of methods. In the top row, Random
Forest with k =

√
N is compared against GAR-Forest with τ = 4 (left) and

τ = 5 (right). In both diagrams, the majority of points are in the lower right
quadrant, which means that, for both values of τ , the new method gives
more accurate classifiers than Random Forest, but at expense of diversity.
In general, both diagrams are quite similar, and it does not appear that
the magnitude of the improvement is related to the value of the exponent.
However, in the majority of data sets, it is clear that the method with
exponent τ = 5 yields ensembles with higher error and diversity than the
method with exponent τ = 4, when the two exponent values (middle left)
of GAR-Forest are compared. Although, as shown before, this increased
diversity was unable to compensate the increased error, and GAR-Forest
with exponent τ = 4 yielded, in general, better results than with exponent
τ = 5 (see tables 4.3, 4.6 and 4.8).

A comparison between Random Forest with k =
√

N and Bagging of
G-Trees with α = 0.3 yields results that are similar to those obtained when
comparing with GAR-Trees.

Finally, in the comparison between bagging of G-Trees, G-Forest, and
bagging of the two tested configurations of GAR-Trees, GAR-Forest (two
lower diagrams in Figure 4.4), it can be seen that an increase in diversity
at the expense of a decrease in accuracy occurs for most of the data sets
(39 datasets in the case of GAR-Forest with τ = 4, 38 datasets when the
exponent is τ = 3). For a few datasets, the improved diversity hardly affects
the error (only 3 for τ = 4 and 5 for τ = 5). The error and diversity of GAR-
Forest is worse than G-Forest in only 2 datasets. For the rest of dataset,
diversity worsens, but the average error of the individual base classifiers in
the ensemble improves.

4.5 Influence of the parameter

This section shows how the exponent τ , which is the parameter of GAR-
Forest that controls the speed with which randomness decreases, affects the
accuracy of the ensemble.

Figure 4.5 shows, for each data set, the evolution of the error as a function
of the exponent τ . The value for τ ranges from 0 to 8 at intervals of 0.2. The
results shown for the different exponents were obtained from a 5×2 fold
cross-validation of GAR-Forest with 100 classification trees. In most of the

108 4.6. Conclusion and future lines

data sets, the worst exponent value was 0. But the best value was dependent
on the dataset and no clear trend was observed. However, from the average
error and average rank (bottom row of Figure 4.5) the best values for τ

seems to be between 3 and 5. We do not know yet why the best results are
in this range. This issue, which we hope to address in the future, deserves
further investigation.

4.6 Conclusion and future lines

This article has examined two new methods for constructing decision tree
ensembles: G-Forest and GAR-Forest. Both use the same GRASP meta-
heuristic strategy for generating random and adaptive solutions at each
node. GAR-Forest introduces another key idea: to make the randomness
dependent on the fraction of instances that reach each node, so the random-
ness is lower when this fraction is smaller. The combination of these ideas
offers competitive results. Improvements over ensemble methods based on
traditional trees are more obvious when datasets with added noisy are used.

The aim of GAR-Forest is to increase ensemble diversity, but tries not to
harm the accuracy of the individual classifiers that constitute it; these two
criteria guide the way the decision tree is built. The attribute and split point
that will determine the children of a node are randomly chosen from a set
of good candidates, in order to increase diversity. The elements in this set
are required to have a value of the merit function within certain limits, in
order not to have an excessive effect on precision. Additionally, in order
to encourage diversity, randomness is higher at the root, where it has more
impact on the final structure of the tree. This randomness is lower in the
leaves and nodes that are far away from the root to reduce loss of accuracy,
so that decisions taken in these nodes can be more informed. The speed of
transition from random decisions to more informed ones is controlled by a
parameter τ and the traditional trees and the extremely random trees can be
considered specific cases for the extreme values of this parameter.

The strategy of injecting randomness into the tree construction process
of J48 (C4.5) gives rise to several possible lines of future research. One line
would be to study how this heuristic can be adapted to other tree construction
algorithms, such as Functional Trees [20, 38], Model Trees [56], or decision
tree algorithm for imbalanced data sets, such as Hellinger Distance Decision
Tree (HDDT) [6] and Class Confidence Proportion Decision Tree (CCPDT)

4. Tree ensemble construction using a GRASP-based heuristic and annealed
randomness 109

 72

 74

 76

 78

 80

 0 1 2 3 4 5 6 7 8

abalone

-2

 0

 2

 4

 6

 0 1 2 3 4 5 6 7 8

anneal

 18

 20

 22

 24

 26

 0 1 2 3 4 5 6 7 8

audiology

 22

 24

 26

 28

 30

 0 1 2 3 4 5 6 7 8

autos

 12

 14

 16

 18

 20

 0 1 2 3 4 5 6 7 8

balance-scale

 0

 2

 4

 6

 8

 0 1 2 3 4 5 6 7 8

breast-w

 26

 28

 30

 32

 34

 0 1 2 3 4 5 6 7 8

breast-y

 30

 32

 34

 36

 38

 0 1 2 3 4 5 6 7 8

bupa

 0

 2

 4

 6

 8

 0 1 2 3 4 5 6 7 8

car

 10

 12

 14

 16

 18

 0 1 2 3 4 5 6 7 8

credit-a

 22

 24

 26

 28

 30

 0 1 2 3 4 5 6 7 8

credit-g

 10

 12

 14

 16

 18

 0 1 2 3 4 5 6 7 8

crx

 2

 4

 6

 8

 10

 0 1 2 3 4 5 6 7 8

dna

 12

 14

 16

 18

 0 1 2 3 4 5 6 7 8

ecoli

 24

 26

 28

 30

 32

 0 1 2 3 4 5 6 7 8

glass

 14

 16

 18

 20

 22

 0 1 2 3 4 5 6 7 8

heart-c

 16

 18

 20

 22

 24

 0 1 2 3 4 5 6 7 8

heart-h

 4

 6

 8

 10

 12

 0 1 2 3 4 5 6 7 8

heart-s

 14

 16

 18

 20

 22

 0 1 2 3 4 5 6 7 8

heart-statlog

 20

 22

 24

 26

 28

 0 1 2 3 4 5 6 7 8

heart-v

 14

 16

 18

 20

 0 1 2 3 4 5 6 7 8

hepatitis

 12

 14

 16

 18

 0 1 2 3 4 5 6 7 8

horse-colic

-2

 0

 2

 4

 0 1 2 3 4 5 6 7 8

hypo

 6

 8

 10

 12

 0 1 2 3 4 5 6 7 8

ionosphere

 2

 4

 6

 8

 10

 0 1 2 3 4 5 6 7 8

iris

-4

-2

 0

 2

 4

 0 1 2 3 4 5 6 7 8

kr-vs-kp

 18

 20

 22

 24

 26

 0 1 2 3 4 5 6 7 8

krk

 10

 12

 14

 16

 0 1 2 3 4 5 6 7 8

labor

 22

 24

 26

 28

 30

 0 1 2 3 4 5 6 7 8

led-24

 2

 4

 6

 8

 10

 0 1 2 3 4 5 6 7 8

letter

 10

 12

 14

 16

 0 1 2 3 4 5 6 7 8

lrs

 14

 16

 18

 20

 22

 0 1 2 3 4 5 6 7 8

lymphography

-4

-2

 0

 2

 4

 0 1 2 3 4 5 6 7 8

mushroom

-4

-2

 0

 2

 4

 0 1 2 3 4 5 6 7 8

nursery

 0

 2

 4

 6

 8

 0 1 2 3 4 5 6 7 8

optdigits

-2

 0

 2

 4

 6

 0 1 2 3 4 5 6 7 8

page

-2

 0

 2

 4

 6

 0 1 2 3 4 5 6 7 8

pendigits

 8

 10

 12

 14

 16

 0 1 2 3 4 5 6 7 8

phoneme

 20

 22

 24

 26

 28

 0 1 2 3 4 5 6 7 8

pima

 54

 56

 58

 60

 62

 0 1 2 3 4 5 6 7 8

primary

 10

 12

 14

 16

 18

 0 1 2 3 4 5 6 7 8

promoters

 6

 8

 10

 12

 14

 0 1 2 3 4 5 6 7 8

ringnorm

 6

 8

 10

 12

 14

 0 1 2 3 4 5 6 7 8

sat

 0

 2

 4

 6

 0 1 2 3 4 5 6 7 8

segment

-4

-2

 0

 2

 4

 0 1 2 3 4 5 6 7 8

shuttle

-2

 0

 2

 4

 6

 0 1 2 3 4 5 6 7 8

sick

 18

 20

 22

 24

 26

 0 1 2 3 4 5 6 7 8

sonar

-4

-2

 0

 2

 4

 0 1 2 3 4 5 6 7 8

soybean-small

 4

 6

 8

 10

 12

 0 1 2 3 4 5 6 7 8

soybean

 2

 4

 6

 8

 0 1 2 3 4 5 6 7 8

splice

 16

 18

 20

 22

 24

 0 1 2 3 4 5 6 7 8

threenorm

 0

 2

 4

 6

 8

 0 1 2 3 4 5 6 7 8

tic-tac-toe

 4

 6

 8

 10

 0 1 2 3 4 5 6 7 8

twonorm

 22

 24

 26

 28

 0 1 2 3 4 5 6 7 8

vehicle

 6

 8

 10

 12

 0 1 2 3 4 5 6 7 8

vote1

 0

 2

 4

 6

 8

 0 1 2 3 4 5 6 7 8

voting

 8

 10

 12

 14

 0 1 2 3 4 5 6 7 8

vowel-context

 8

 10

 12

 14

 16

 0 1 2 3 4 5 6 7 8

vowel-nocontext

 12

 14

 16

 18

 20

 0 1 2 3 4 5 6 7 8

waveform

 36

 38

 40

 42

 44

 0 1 2 3 4 5 6 7 8

yeast

 2

 4

 6

 8

 10

 0 1 2 3 4 5 6 7 8

zip

 4

 6

 8

 10

 0 1 2 3 4 5 6 7 8

zoo

 13

 14

 15

 16

 0 1 2 3 4 5 6 7 8

Average ERROR

 15

 20

 25

 30

 35

 40

 0 1 2 3 4 5 6 7 8

Average RANK

Figure 4.5: Influence of the exponent in the error (x-axis is the τ parameter and y-axis the
error).

110 REFERENCES

[40].
It could also be appealing to apply these heuristics to similar data mining

algorithms, such as the classic construction of rules like RIPPER [7], or the
most recent one such as FURIA [31].

Although, no clear pattern has become evident, in terms of the precision
of the exponent τ value, while it evolved, as discussed in Section 4.5, a
further research line would be to study the relationship between the optimum
value of the exponent τ and different meta-features [5] or measures of
complexity [29] for several datasets.

References
[1] N. Belacel, P. Hansen, and N. Mladenovic. “Fuzzy J-means: a new heuristic for

fuzzy clustering”. In: Pattern Recognition 35.10 (2002), pp. 2193–2200.

[2] L. Breiman. “Bagging predictors”. In: Machine learning 24.2 (1996), pp. 123–140.

[3] L. Breiman. “Random forests”. In: Machine learning 45.1 (2001), pp. 5–32. ISSN:
0885-6125.

[4] L. Breiman et al. Classification and Regression Trees. 1st ed. Chapman & Hall/CRC,
1984. ISBN: 0412048418.

[5] C. Castiello, G. Castellano, and A. Fanelli. “Meta-data: Characterization of input
features for meta-learning”. In: Modeling Decisions for Artificial Intelligence (2005),
pp. 457–468.

[6] David A. Cieslak and Nitesh V. Chawla. “Learning Decision Trees for Unbalanced
Data”. In: Proceedings of the 2008 European Conference on Machine Learning
and Knowledge Discovery in Databases - Part I. ECML PKDD ’08. Antwerp,
Belgium: Springer-Verlag, 2008, pp. 241–256. ISBN: 978-3-540-87478-2. DOI:
10.1007/978-3-540-87479-9_34.

[7] W.W. Cohen and Y. Singer. “A simple, fast, and effective rule learner”. In: Proceed-
ings of the National Conference on Artificial Intelligence. John Wiley & sons Ltd.
1999, pp. 335–342.

[8] J.C.W. Debuse and V.J. Rayward-Smith. “Feature subset selection within a simulated
annealing data mining algorithm”. In: Journal of Intelligent Information Systems
9.1 (1997), pp. 57–81.

[9] J. Demšar. “Statistical comparisons of classifiers over multiple data sets”. In: The
Journal of Machine Learning Research 7 (2006), p. 30.

[10] T. Dietterich. “Ensemble methods in machine learning”. In: Multiple classifier
systems (2000), pp. 1–15.

[11] T.G. Dietterich. “Approximate statistical tests for comparing supervised classifica-
tion learning algorithms”. In: Neural computation 10.7 (1998), pp. 1895–1923.

http://dx.doi.org/10.1007/978-3-540-87479-9_34

4. Tree ensemble construction using a GRASP-based heuristic and annealed
randomness 111

[12] José Diez-Pastor et al. “GRASP Forest: A New Ensemble Method for Trees”. In:
Multiple Classifier Systems. Ed. by Carlo Sansone, Josef Kittler, and Fabio Roli.
Vol. 6713. Lecture Notes in Computer Science. Springer Berlin / Heidelberg, 2011,
pp. 66–75. ISBN: 978-3-642-21556-8.

[13] O. Dunn. “Multiple comparisons among means”. In: Journal of the American
Statistical Association 56 (1961), pp. 52–64.

[14] T.A. Feo and M.G.C. Resende. “A probabilistic heuristic for a computationally
difficult set covering problem”. In: Operations Research Letters 8 (1989), pp. 67–
71.

[15] T.A. Feo and M.G.C. Resende. “Greedy randomized adaptive search procedures”.
In: Journal of Global Optimization 6.2 (1995), pp. 109–133. ISSN: 0925-5001.

[16] A. Frank and A. Asuncion. UCI Machine Learning Repository. 2010.

[17] Y. Freund and R.E. Schapire. “Experiments with a new boosting algorithm”. In:
MACHINE LEARNING-INTERNATIONAL WORKSHOP THEN CONFERENCE-.
Citeseer. 1996, pp. 148–156.

[18] Z. Fu et al. “Diversification for better classification trees”. In: Computers & opera-
tions research 33.11 (2006), pp. 3185–3202.

[19] Mikel Galar et al. “A Review on Ensembles for the Class Imbalance Problem:
Bagging-, Boosting-, and Hybrid-Based Approaches”. In: IEEE Transactions on
Systems, Man, and Cybernetics, Part C 42.4 (2012), pp. 463–484. URL: http:
//dx.doi.org/10.1109/TSMCC.2011.2161285.

[20] J. Gama. “Functional trees”. In: Machine Learning 55.3 (2004), pp. 219–250.

[21] Salvador García et al. “A study on the use of non-parametric tests for analyzing the
evolutionary algorithms’ behaviour: a case study on the CEC’2005 Special Session
on Real Parameter Optimization”. In: J. Heuristics 15.6 (2009), pp. 617–644.

[22] S. Geman, E. Bienenstock, and R. Doursat. “Neural networks and the bias/variance
dilemma”. In: Neural computation 4.1 (1992), pp. 1–58.

[23] P. Geurts, D. Ernst, and L. Wehenkel. “Extremely randomized trees”. In: Machine
Learning 63.1 (2006), pp. 3–42. ISSN: 0885-6125.

[24] F. Glover. “Tabu search-part II”. In: ORSA Journal on computing 2.1 (1990), pp. 4–
32.

[25] F. Glover et al. “Tabu search-part I”. In: ORSA Journal on computing 1.3 (1989),
pp. 190–206.

[26] D.E. Goldberg. Genetic algorithms in search, optimization, and machine learning.
Artificial Intelligence. Addison-Wesley Pub. Co., 1989. ISBN: 9780201157673.

[27] Mark Hall et al. “The WEKA data mining software: an update”. In: SIGKDD Explor.
Newsl. 11.1 (Nov. 2009), pp. 10–18. ISSN: 1931-0145. DOI: 10.1145/1656274.
1656278.

[28] T.K. Ho. “The random subspace method for constructing decision forests”. In: IEEE
Transactions on Pattern Analysis and Machine Intelligence 20.8 (1998), pp. 832–
844.

http://dx.doi.org/10.1109/TSMCC.2011.2161285
http://dx.doi.org/10.1109/TSMCC.2011.2161285
http://dx.doi.org/10.1145/1656274.1656278
http://dx.doi.org/10.1145/1656274.1656278

112 REFERENCES

[29] T.K. Ho and M. Basu. “Complexity Measures of Supervised Classification Prob-
lems”. In: IEEE Trans. Pattern Anal. Mach. Intell. 24.3 (2002), pp. 289–300. ISSN:
0162-8828.

[30] Y. Hochberg. “A sharper Bonferroni procedure for multiple tests of significance”.
In: Biometrika 75 (1988), pp. 800–803.

[31] J. Hühn and E. Hüllermeier. “FURIA: an algorithm for unordered fuzzy rule induc-
tion”. In: Data Mining and Knowledge Discovery 19.3 (2009), pp. 293–319.

[32] R.L. Iman and J.M. Davenport. “Approximations of the critical region of the fbietkan
statistic”. In: Communications in Statistics-Theory and Methods 9.6 (1980), pp. 571–
595.

[33] YeongSeog Kim, W. Nick Street, and Filippo Menczer. “Feature selection in un-
supervised learning via evolutionary search”. In: Proceedings of the sixth ACM
SIGKDD international conference on Knowledge discovery and data mining. KDD
’00. Boston, Massachusetts, United States: ACM, 2000, pp. 365–369. ISBN: 1-
58113-233-6. URL: http://doi.acm.org/10.1145/347090.347169.

[34] S. Kirkpatrick, C.D. Gelatt, and M.P. Vecchi. “Optimization by simulated annealing”.
In: science 220.4598 (1983), p. 671.

[35] Anders Krogh and Jesper Vedelsby. “Neural Network Ensembles, Cross Validation,
and Active Learning”. In: Advances in Neural Information Processing Systems. MIT
Press, 1995, pp. 231–238.

[36] L.I. Kuncheva. Combining pattern classifiers: methods and algorithms. Wiley-
Interscience, 2004.

[37] Ludmila I. Kuncheva and Juan José Rodríguez. “Classifier Ensembles with a Ran-
dom Linear Oracle”. In: IEEE Trans. Knowl. Data Eng. 19.4 (2007), pp. 500–508.

[38] Niels Landwehr, Mark Hall, and Eibe Frank. “Logistic Model Trees”. In: Proceeding
of the 14th European Conference on Machine Learning. 2003, pp. 241–252. URL:
http://dx.doi.org/10.1007/978-3-540-39857-8_23.

[39] P. Larrañaga et al. “Structure learning of Bayesian networks by genetic algorithms:
A performance analysis of control parameters”. In: Pattern Analysis and Machine
Intelligence, IEEE Transactions on 18.9 (1996), pp. 912–926.

[40] Wei Liu et al. “A Robust Decision Tree Algorithm for Imbalanced Data Sets”. In:
Proceedings of the SIAM International Conference on Data Mining, SDM 2010.
2010, pp. 766–777.

[41] Brenda Mak, Robert Blanning, and Susanna Ho. “Genetic algorithms in logic tree
decision modeling”. In: European Journal of Operational Research 170.2 (2006),
pp. 597–612. ISSN: 0377-2217. URL: http://dx.doi.org/10.1016/j.ejor.
2004.09.030.

[42] Dragos D. Margineantu and Thomas G. Dietterich. “Pruning Adaptive Boosting”.
In: Proceedings of the Fourteenth International Conference on Machine Learning
(ICML 1997). 1997, pp. 211–218.

http://doi.acm.org/10.1145/347090.347169
http://dx.doi.org/10.1007/978-3-540-39857-8_23
http://dx.doi.org/10.1016/j.ejor.2004.09.030
http://dx.doi.org/10.1016/j.ejor.2004.09.030

4. Tree ensemble construction using a GRASP-based heuristic and annealed
randomness 113

[43] J. Maudes, J. J. Rodríguez, and C. García-Osorio. “Disturbing neighbors diversity
for decision forests”. In: Applications of Supervised and Unsupervised Ensemble
Methods. Ed. by Oleg Okun and Giorgio Valentini. Vol. 245. Studies in Computa-
tional Intelligence. Springer, 2009, pp. 113–133. ISBN: 978-3-642-03998-0. URL:
http://dx.doi.org/10.1007/978-3-642-03999-7_7.

[44] J. Maudes et al. “Random Feature Weights for Decision Tree Ensemble Construc-
tion”. In: Information Fusion In Press, Accepted Manuscript (2010). ISSN: 1566-
2535. DOI: DOI:10.1016/j.inffus.2010.11.004.

[45] N. Mladenovic and P. Hansen. “Variable neighborhood search”. In: Computers &
Operations Research 24.11 (1997), pp. 1097–1100.

[46] Claude Nadeau and Yoshua Bengio. “Inference for the Generalization Error”. In:
Mach. Learn. 52.3 (Sept. 2003), pp. 239–281. ISSN: 0885-6125. URL: http://dx.
doi.org/10.1023/A:1024068626366.

[47] S. Olafsson, X. Li, and S. Wu. “Operations research and data mining”. In: European
Journal of Operational Research 187.3 (2008), pp. 1429–1448.

[48] J. Pacheco et al. “A GRASP method for building classification trees”. In: Expert
Systems with Applications 39.3 (2012), pp. 3241–3248. URL: http://dx.doi.
org/10.1016/j.eswa.2011.09.011.

[49] J. Pacheco et al. “Uso del metaheurístico GRASP en la construcción de árboles de
clasificación”. In: Rect@ 11 (2010), pp. 139–154. ISSN: 1575605X.

[50] J.A. Pacheco. “A scatter search approach for the minimum sum-of-squares clustering
problem”. In: Computers & operations research 32.5 (2005), pp. 1325–1335.

[51] R. Polikar. “Ensemble based systems in decision making”. In: IEEE Circuits and
systems magazine 6.3 (2006), pp. 21–45.

[52] J.R. Quinlan. “Bagging, boosting, and C4. 5”. In: Proceedings of the National
Conference on Artificial Intelligence. 1996, pp. 725–730.

[53] R. J. Quinlan. C4.5: Programs for Machine Learning. 1st ed. Morgan Kaufmann,
1993. ISBN: 1558602380.

[54] Marko Robnik-Šikonja and Igor Kononenko. “Theoretical and Empirical Analysis
of ReliefF and RReliefF”. In: Machine Learning 53.1-2 (Oct. 2003), pp. 23–69.
ISSN: 0885-6125. URL: http://dx.doi.org/10.1023/A:1025667309714.

[55] K. Sorensen and G.K. Janssens. “Data mining with genetic algorithms on binary
trees”. In: European Journal of Operational Research 151.2 (2003), pp. 253–264.

[56] Y. Wang and I. H. Witten. “Inducing Model Trees for Continuous Classes”. In:
Proceedings of the 9th European Conference on Machine Learning Poster Papers.
1997, pp. 128–137.

[57] G.I. Webb. “Multiboosting: A technique for combining boosting and wagging”. In:
Machine learning 40.2 (2000), pp. 159–196.

[58] P. Winker and M. Gilli. “Applications of optimization heuristics to estimation and
modelling problems”. In: Computational statistics & data analysis 47.2 (2004),
pp. 211–223.

http://dx.doi.org/10.1007/978-3-642-03999-7_7
http://dx.doi.org/DOI: 10.1016/j.inffus.2010.11.004
http://dx.doi.org/10.1023/A:1024068626366
http://dx.doi.org/10.1023/A:1024068626366
http://dx.doi.org/10.1016/j.eswa.2011.09.011
http://dx.doi.org/10.1016/j.eswa.2011.09.011
http://dx.doi.org/10.1023/A:1025667309714

114 REFERENCES

[59] J. Yang and V. Honavar. “Feature subset selection using a genetic algorithm”. In:
Intelligent Systems and Their Applications, IEEE 13.2 (1998), pp. 44–49.

Chapter 5

Random Balance: Ensembles of
Variable Priors Classifiers for
Imbalanced Data

Authors Jose F Diez-Pastor; Juan J. Rodriguez; Cesar I Garcia-Osorio;
Ludmila I Kuncheva

Type Journal

Published in Knowledge-Based Systems. (In press)

Year Review 2015.

Abstract

In machine learning, a data set is imbalanced when the class proportions
are highly skewed. Imbalanced data sets arise routinely in many application
domains and pose a challenge to traditional classifiers. We propose a new
approach to building ensembles of classifiers for two-class imbalanced
data sets, called Random Balance. Each member of the Random Balance
ensemble is trained with data sampled from the training set and augmented
by artificial instances obtained using SMOTE. The novelty in the approach
is that the proportions of the classes for each ensemble member are chosen
randomly. The intuition behind the method is that the proposed diversity
heuristic will ensure that the ensemble contains classifiers that are spe-
cialised for different operating points on the ROC space, thereby leading to
larger AUC compared to other ensembles of classifiers. Experiments have
been carried out to test the Random Balance approach by itself, and also in
combination with standard ensemble methods. As a result, we propose a

115

116

new ensemble creation method called RB-Boost which combines Random
Balance with AdaBoost.M2. This combination involves enforcing random
class proportions in addition to instance re-weighting. Experiments with
86 imbalanced data sets from two well known repositories demonstrate the
advantage of the Random Balance approach.

Index terms— Classifier ensembles, imbalanced data sets, Bagging,
AdaBoost, SMOTE, Undersampling

5. Random Balance 117

5.1 Introduction

The class-imbalance problem occurs when there are many more instances
of some classes than others [9]. Imbalanced data sets are common in fields
such as bioinformatics (translation initiation site (TIS) recognition in DNA
sequences [25], gene recognition [5]), engineering (non-destructive testing
in weld flaws detection through visual inspection [39]), finance (predicting
credit card customer churn [2]), fraud detection [46] and many more.

Bespoke methods are needed for imbalanced classes for at least three
reasons [56]. Firstly, standard classifiers are driven by accuracy so the
minority class may be ignored. Secondly, standard classification methods
operate under the assumption that the data sample is a faithful representation
of the population of interest, which is not always the case with imbalanced
problems. Finally, the classification methods for imbalanced problems
should allow for errors coming from different classes to have different
costs.

Galar et al. [23] systemize the wealth of recent techniques and ap-
proaches into four categories:

a) Algorithm level approaches. This category contains variants of ex-
isting classifier learning algorithms biased towards learning more
accurately the minority class. Examples include decision tree algo-
rithms insensitive to the class sizes, like Hellinger Distance Deci-
sion Tree (HDDT) [12], Class Confidence Proportion Decision Tree
(CCPDT) [41] and a SVM classifier with different penalty constants
for different classes [55].

b) Data level approaches. The main idea in this category is to pre-process
the data so as to transform the imbalanced problem into a balanced
one by manipulating the distribution of the classes. These algorithms
are often used in combination with ensembles of classifiers. This
category can be further subdivided into methods that increase the
number of minority class examples: Oversampling [4], SMOTE [10],
Borderline-SMOTE [28] and Safelevel-SMOTE [8] among others; and
methods that reduce the size of the majority class, such as random
undersampling, this approach has been used both with and without
replacement [3]. These techniques can be jointly applied to increase
the size of the minority class while simultaneously decreasing the
majority class.

118 5.1. Introduction

c) Cost-sensitive learning. While traditional algorithms aim at increasing
the accuracy by giving equal weights to the examples of any class,
cost-sensitive methods, such as cost-sensitive decision trees [40] or
cost-sensitive neural networks [36], assign a different cost to each
class. The best known methods in this category are the cost-sensitive
versions of AdaBoost: AdaCost [17], [33], AdaC1, AdaC2 and AdaC3
[53].

d) Ensemble learning. Classifier ensembles have often offered solutions
to challenging problems where standard classification methods have
been insufficient. One approach for constructing ensembles for im-
balanced data is based on using data level approaches: each base
classifier is trained with a pre-processed data set. As data level ap-
proaches usually use random values, the pre-processed data sets and
the corresponding classifiers will be different. Another strategy is
based on combining conventional ensemble methods (i.e., not specific
for imbalance) with data level approaches. Examples of this strategy
are SMOTEBagging [57], SMOTEBoost [11] and RUSBoost [49]. It
is also possible to have ensembles that combine classifiers obtained
with different methods [34].

In general, according to [23], algorithm level and cost-sensitive ap-
proaches are more data-dependent, whereas data level and ensemble learn-
ing methods are more versatile.

Here we propose a new preprocessing technique that can be used to
build ensembles, for two-class imbalanced learning tasks, based on a simple
randomisation heuristic. The data for training an ensemble member is
sampled from the training data using random class proportions. The classes
are either undersampled or augmented with artificial examples to make up
such a sample.

The rest of the paper is structured as follows. Section 5.2 presents the
performance measures used in the experimental evaluation. Section 5.3
briefly overviews some of the most relevant methods in imbalanced learning,
those used in the experimental study. Section 5.4 explains the proposed
method. In Section 5.5 we provide a simulation example that tries to give
some insight in why the method works. An experimental study is reported
in Section 6.3, and, finally, Section 6.5 contains our conclusions and several
future research lines.

5. Random Balance 119

5.2 Measures of performance for imbalanced data

When working with binary classification problems instances can be
labelled as positive (p) or negative (n). In binary imbalanced data sets
usually the minority class is considered positive while the majority class is
considered negative. For a prediction there are 4 possible outcomes: a) True
Positive: prediction is p and the real label is p. b) True Negative: prediction
is n and the real label is n. c) False Positive: prediction is p and the real
label is n. d) False Negative: prediction is n and the real label is p. Given a
test dataset, containing P examples of the positive class and N examples of
the negative class, T P is the number of True Positives, FP is the number of
False Positives, T N is the number of True Negatives and FN the number of
False Negatives.

The True Positive Rate (T PR), also called Sensitivity or Recall, is defined
as T P/P and False Positive Rate (FPR) is defined as FP/N. The precision
is defined as T P/(T P+FP).

Commonly used measures of performance for imbalanced data are the
Area Under the ROC (Receiver Operation Characteristic) curve [18], the
F-Measure [54] and the Geometric Mean [35]. The F-Measure is defined
as 2× precision×recall

precision+recall . The Geometric Mean is defined as
√

T P/P×T N/N.
The ROC Curve is a two-dimensional representation of classifier perfor-
mance, it is created by plotting the T PR against the FPR for different
decision thresholds. The Area Under the ROC curve (AUC) is a way to
represent the performance of a binary classifier using a scalar.

5.3 Classification methods for imbalanced problems

In recent years, numerous techniques have been developed to deal with the
problem of class-imbalance datasets. This section is a sort summary of the
subset of methods tested in this article. The methods are organized using
the same classification presented in the introduction:

• Data level approaches.

– Random Undersampling. This technique will randomly drop
some of the examples of the majority class. When it comes to
sampling without replacement, an example of the minority class
can appear only once in the sub-sampling; with replacement, the
same example can appear multiple times.

120 5.3. Classification methods for imbalanced problems

– Random oversampling [4] consists of adding exact copies of some
minority class examples. With this technique overfitting is more
common than in the prior technique.

– SMOTE (Synthetic Minority Over-sampling Technique [10]) al-
though this technique has “oversampling” in the name, it does
not add copies of existing instances, but creates new artificial ex-
amples using the following procedure: a member of the minority
class is selected and its k nearest neighbours (from the minority
class) are identified. One of them is randomly selected. Then, the
new example added to the set is a random point in the line segment
defined by the member and its neighbour. A value of k = 5 has
been recommended and is the one used in this study. This method
tries to avoid overfitting using a random procedure to create the
new samples, but this can introduce noise or nonsensical samples.

• Ensemble learning. One of the keys for good performance of ensem-
bles is the diversity, there are several ways to inject diversity into an
ensemble, the most common is the use of sampling. In Bagging [6],
each base classifier is obtained from a random sample of the training
data. In AdaBoost [22] the resampling is based on a weighted distri-
bution, the weights are modified depending on the correctness of the
prediction for the example given by the previous classifier. Bagging
and AdaBoost have been modified to deal with imbalanced datasets:

– SMOTEBagging [57] combines Bagging with different amounts
of SMOTE and Oversampling in each iteration, so that the data
set is completely balanced and consists of three parts: i) a sample
with replacement of the majority class, keeping the original size;
ii) oversampling of the minority class; and iii) SMOTE of the
minority class. The Oversampling percentage varies in each itera-
tion (ranging from 10% in the first iteration to 100% in the last.)
The rest of the positive instances are generated by the SMOTE
algorithm.

– SMOTEBoost [11] and RUSBoost [49] are both modifications
of AdaBoost.M2 [22], in each iteration, besides the instance
reweighting done according to the algorithm Adaboost.M2, SMOTE
or Random undersampling is applied to the training set of the base
classifier. Boosting based ensembles tend to perform better than

5. Random Balance 121

bagging based ensembles, however, in Boosting based ensembles,
the base classifiers are trained in sequence which slows down the
training, and they are more sensitive to noise. SMOTEBoost and
RUSBoost are more robust to noise because they introduce a high
degree of randomness by creating or deleting instances.

– Although the most popular methods are modifications or varia-
tions of bagging or boosting, there are methods that do not perform
resampling, oversampling or undersampling and, instead of that,
they make partitions. One method described in [44], which will
be called “Partitioning” in this paper, is similar to undersampling
based ensembles, it breaks the majority class into several disjoint
partitions and constructs several models which use one partition
from the majority class and the entire minority class.

– Most of the above methods, at the same time they increase accu-
racy in minority class, they decrease overall accuracy compared
to traditional learning algorithms. Some approaches combine
both types of classifiers, one trained with the original skewed data
and other trained according one of the previous approaches in an
attempt to cope with the imbalance. Reliability Based Classifier
[50] trains two classifiers and then chooses between the output
of the classifier trained on the original skewed distribution and
the output of the classifier trained according to a learning method
addressing the curse of imbalanced data. This decision is guided
by a parameter whose value maximizes, on a validation set, the
accuracy and a measure designed to evaluate the performance of
a classifier in imbalanced classifiers, such as the geometric mean.

5.4 Random Balance and RB-Boost ensembles

This section presents the main contribution of the paper. In this section
we present a new preprocessing technique called Random Balance, this
technique can be used within an ensemble to increase the diversity and deal
with imbalance. We also describe a new ensemble method for imbalanced
learning called RB-Boost (Random Balance Boost) which is a a Random
Balance modification of AdaBoost.M2. We also explain the intuition behind
the method in an aside subsection.

122 5.4. Random Balance and RB-Boost ensembles

When dealing with imbalanced dataset the three common data-level
approaches to balancing the classes are listed below1:

• The new data set is formed by taking the entire minority class and
a random subsample from the majority class. The method has a
parameter N that is the desired percentage of instances that belongs to
the majority class in the processed dataset. For example, consider a
data set with 20 instances in the minority class and 480 instances in
the majority class. For N = 40, the desired number of instances from
the majority class is 30 so that the 20 instances of the minority class
make up 40% of the data.

• The new data set is formed by adding to it (M/100)× sizeMinority
synthetic instances of the minority class using the SMOTE method.
The amount of artificial instances is expressed as a percentage M of
the size of the minority class, and is again a parameter of the algorithm.
In the example above, if we choose M = 200, 40 examples from the
minority class will be generated through SMOTE.

• Use both undersampling and oversampling through SMOTE to reach
a desired new size of the data and proportions of the classes within.

The problem with these data-level approaches is that the optimal pro-
portions depend on the data set and are hard to find, it is known that this
proportions have a substantial influence on the performance of the classifier.
The proposed method relies completely on randomness and repetition to try
to overcome this problem.

5.4.1 Random Balance

While preprocessing techniques are commonly used to restore the balance
of the class proportions to a given extent, Random Balance relies on a
completely random ratio. This includes the case where the minority class is
over-represented and the imbalance ratio is inverted.

An example of the sampling procedure can be seen in Figure 5.1. Given
a data set, a different data set of the same size is obtained for each member
of ensemble where the imbalance ratio is chosen randomly. In this example,
the initial proportions of both classes appears on the top. Classifiers 1,2 . . .T

1Note that although random undersampling and SMOTE are mentioned because they are the most used
techniques, more sophisticated techniques could be used resulting in variants of the proposed method.

5. Random Balance 123

Size of the minority class Size of the majority class

Classifier 1

Classifier 2

Classifier 3

Classifier 4

Classifier 5

Classifier T

...

Figure 5.1: Example of data sets used to train a Random Balance ensemble, note that
the imbalance ratio is different for each dataset (even in favor of the minority class, for
example, for the second classifier).

are trained with variants of this data set where the ratio between classes
varies randomly. In iteration 1, the imbalance ratio has been slightly reduced.
In iteration 2, the ratio is reversed, the size of the previous minority class
exceeds the size of the previous majority class. And in iteration 3, the
minority class has become even smaller. All these cases are possible since
the procedure is random.

The procedure is described in the pseudocode in Figure 5.2. The funda-
mental step is to randomly set the new size of the majority and minority
classes (lines 6-7). Then SMOTE and Random Undersampling (resampling
without replacement) are used to respectively increase or reduce the size of
the classes to match the desired size (lines 8-11 or lines 12-15 as required.)
We call this generic ensemble method Ensemble-RB. Additionally, it can be
combined with Bagging, resulting in what we call Bagging-RB.

Pre-procesing strategies can have important drawbacks. Undersampling
can throw out potentially useful data, while SMOTE increases the size of
the dataset and hence the training time. Random-Balance maintains the
size of the training set and because it is a process which is repeated several
times, the problem of removing important examples is reduced.

124 5.4. Random Balance and RB-Boost ensembles

RANDOM BALANCE

Require: Set S of examples (x1, y1), . . . , (xm, ym) where xi ∈ X ⊆ Rn and yi ∈ Y =
{−1,+1} (+1: positive or minority class, −1: negative or majority class), neighbours
used in SMOTE, k

Ensure: New set S′ of examples with random balance
1: totalSize← |S|
2: SN ← {(xi,yi) ∈ S | yi =−1}
3: SP← {(xi,yi) ∈ S | yi =+1}
4: ma joritySize← |SN |
5: minoritySize← |SP|
6: newMa joritySize← Random integer between 2 and totalSize-2

// Resulting classes will have at least 2 instances
7: newMinoritySize← totalSize - newMa joritySize
8: if newMa joritySize < ma joritySize then
9: S′← SP

10: Take a random sample of size newMa joritySize from SN , add the sample to S′.
11: Create newMinoritySize−minoritySize artificial examples from SP using SMOTE,

add these examples to S′.
12: else
13: S′← SN
14: Take a random sample of size newMinoritySize from SP, add the sample to S′.
15: Create newMa joritySize−ma joritySize artificial examples from SN using SMOTE,

add these examples to S′.
16: end if
17: return S′

Figure 5.2: Pseudocode for the Random Balance ensemble method.

5.4.1.1 Instance inclusion probability

The data sets generated in random balance have instances from the original
training data and artificial instances. For Random Balance, the probability
of including an instance is different for minority and majority instances.
Given p positive instances and n negative instances with m = n+ p and
assuming that p≥ 2 the probability of including an instance of the minority
class is:

Pmino =
1

m−3

(
p−1

∑
i=2

i
p
+

m−2

∑
i=p

1

)
=

1
m−3

(
m− p+3

2
− 1

p

)
In the generated data set, each class has at least two instances. Then,

there are n− 3 possible sizes of the minority class in the generated data
sets (from 2 to m− 2). The summation ∑

p−1
i=2

i
p is for the cases when the

number of instances in the minority class is reduced (from p instances we

5. Random Balance 125

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50

se
le

ct
io

n
 p

ro
b

a
b

ili
ty

minority percentage

minority instances
majority instances

Figure 5.3: Probabilities of including an instance in the transformed dataset, when the
number of instances is m = 1000.

randomly take i so the selection probability is i/p), while ∑
m−2
i=p 1 is for the

cases when the minority size is increased (the selection probability is 1).
Analogously, the probability of selecting an instance of the majority

class will be:

Pma jo =
1

m−3

(
m− n+3

2
− 1

n

)
Figure 5.3 shows the probabilities of selecting an instance in the gener-

ated data set as a function of the percentage of instances from the minority
class, for a data set with 1000 instances. The probability of selecting an
instance of the minority class decreases when the data set is more balanced.

It can be seen that if p≤ n then Pma jo ≤ Pmino, Pmino ≥ 0.75 and Pma jo ≥
0.5. For a perfectly balanced data set, the probability of selecting an instance
is a bit greater than 0.75 because there will be at least two instances of
each class. The problem of discarding important instances of the majority
class is ameliorated because the expected number of base classifiers that
are trained with a given instance of the majority class is greater than 50%.
Moreover, some of the instances included in the data set will also used to
generate artificial instances.
5.4.1.2 Intuition behind the method

The ROC space is defined by FPR and T PR as x and y axes respectively
because there is a trade-off between this two values. A classifier can be
represented as a point in this space and all base classifiers in an ensemble
can be represented as a cloud of points. Figure 5.4a shows the cloud of
points for a Bagging ensemble trained with the credit-g dataset, the color
of each point represents the percentage of the instances than belong to the
positive class in the dataset used for training that base classifier. It is easy to

126 5.4. Random Balance and RB-Boost ensembles

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positivie Rate

T
ru

e
P

os
iti

vi
e

R
at

e

DATA11: hddt−credit−g.arffbag.data

10

20

30

40

50

60

70

80

90

100

(a) Bagging

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positivie Rate

T
ru

e
P

os
iti

vi
e

R
at

e

DATA13: hddt−credit−g.arffeRB.data

10

20

30

40

50

60

70

80

90

100

(b) Ensemble of Random Balance

Figure 5.4: Base classifiers in the ROC Space (credit-g dataset). The color of each point
represents the percentage of the instances than belong to the positive class in the dataset
used for training that base classifier. Higher values (in red) represent that the imbalance
ratio has been changed in favour of the minority class, values around 50 (in light blue/cyan)
are for balanced cases, and lower values (in dark blue) the minority class has been made
even smaller (originally credit-g dataset has 2.33 times more negative instances than
positive).

appreciate that all of the members of the ensemble are trained with samples
which vary very slightly the proportion between classes. In contrast, Figure
5.4b shows the cloud for an ensemble of Random Balance classifiers, the
large variability in the ratio between classes in the datasets used to train each
of the base classifiers, including cases in which the positive class becomes
larger than the negative, makes the base classifiers of the ensemble spread
out over the ROC space.

In the proposed method, the base classifiers are forced to learn different
points on the ROC space and thereby expected to be more diverse and to
improve the ensemble performance (see Figure 5.4). Diversity is generally
considered beneficial for ensemble methods, including the imbalanced
case [58].
5.4.2 RB-Boost

There are several modification of AdaBoost.M2 for imbalanced problems.
The best known of these methods is SMOTEBoost [11].

As in AdaBoost.M2, the examples of the training data have weights that
are updated according to a pseudo-loss function. For each base classifier
the weighted training data is augmented with artificial examples generated
by SMOTE.

RUSBoost [49], as SMOTEBoost, is also an AdaBoost.M2 modification,

5. Random Balance 127

but in this case instances of the majority class are removed using random
undersampling in each iteration. No new weights are assigned; the weights
of the remaining instances are normalized according to the new sum of
weights of the data set. The rest of the procedure is as in AdaBoost.M2 and
SMOTEBoost.

Both methods apply a preprocessing technique to the data and simulta-
neously alter the weights. Following this philosophy we propose RB-Boost,
whose pseudocode is described in Figure 5.5. It is also a modification of
AdaBoost.M2, in which line 3 is changed to generate a data set according
to the procedure shown in Figure 5.2. The number of instances removed by
undersampling is equal to the number of instances introduced by SMOTE.
The algorithm works as follows: for each of the T rounds (lines 2-11) a
data set S

′
t is generated according to the Random Balance procedure (line

3). Distribution D
′
t is updated, maintaining for each instance of the original

data set its associated weight and assigning a uniform weight to the artificial
examples (line 4). Then a weak learning algorithm is trained using S

′
t and D

′
t

(line 5), this classifier will give a probability between 0 and 1 to each class2

. The pseudo-loss εt of the weak classifier ht is computed according to the
formula presented in line 6. The distribution D

′
t is updated to make the

weights associated with wrong classifications higher than the weights given
to correct classifications (line 7-9). Finally, the different classifiers outputs
are combined (line 11) taking into account their respective βt (obtained in
line 7).

5.5 A simulation experiment

To test-run the idea we carried out experiments with generated data. By
contrasting the Random Balance with Bagging, we intend to gain more
insight and support for our hypothesis that the Random Balance heuristic
improves diversity in a way which leads to larger AUC3. We generated
two 2-dimensional Gaussian classes centred at (0,0) and (3,3), both with
identity covariance matrices. To simulate unbalanced classes, 450 points

2In experiments, J48 classification tree with Laplace smoothing has been used as a weak classifier. The
prediction returned by the classifier is the probability calculated taking into the instances that end in the leaf.
With Laplace smoothing this is (ai +1)/(A+ c), where ai is the number of instances of class i in the leaf, A
is the total number of instances in the leaf, and c the number of classes.

3The varying parameter for the ROC curve is the threshold on the class membership probability estimated
by the whole ensemble, not a particular base classifier.

128 5.5. A simulation experiment

RB-BOOST

Require: Set S of examples (x1, y1), . . . , (xm, ym) where xi ∈ X ⊆ Rn and yi ∈ Y =
{−1,+1} (+1: positive or minority class, −1: negative or majority class),
Weak learner, weakLearn
Number of iterations, T
Number of neighbours used in SMOTE, k

Ensure: RB-Boost is built
// Initialize distribution D1

1: D1(i)← 1
m for i = 1, . . . ,m

2: for t = 1,2 . . . T do
3: S′t ← RandomBalance(S,k)
4: D′t(i)← Dt(j) if S′t(i) = St(j) else 1

m , for i = 1, . . . ,m
// If the example is from the sample it maintains its weight, if the example is artificial
it has the initial weight.

5: Using S′t and weights D′t , train weakLearn ht : X × Y→ [0,1],
6: Compute the pseudo-loss of hypothesis ht :

εt = ∑
(i,y):yi 6=y

Dt(i)(1−ht(xi,yi)+ht(xi,y))

7: βt ← εt/(1− εt)
8: Update Dt :

Dt+1(i)← Dt(i) ·β
1
2 (1+ht(xi,yi)−ht(xi,y))

t
9: Normalize Dt+1: Let Zt ← ∑i Dt+1(i)

Dt+1(i)← Dt+1(i)
Zt

10: end for
11: return h f (x) = argmaxy∈Y ∑

T
t=1

(
log 1

βt

)
ht(x,y)

Figure 5.5: Pseudocode for the RB-Boost ensemble method.

5. Random Balance 129

(a) Random Balance (b) Bagging

Figure 5.6: An unbalanced data set and examples of the classification boundaries generated
by two ensemble methods.

were sampled from the first class, and 50 points from the second class (10%).
Each ensemble was composed of 50 decision tree classifiers4. The ensemble
output was calculated as the average of the the individual outputs. An
example of the classification boundaries for the Random Balance ensemble
and the Bagging ensemble is shown in Figure 5.6. To evaluate the individual
and ensemble accuracies as well as the AUC, we sampled a new data set
from the same distribution and of the same size. The numerical results for
this illustrative example are given in Table 5.1.

It can be observed that the boundary lines for the Random Balance
ensemble are more widely scattered compared to these for the Bagging
ensemble, stepping well into the region of the majority class. Table 5.1
shows also the average results from 200 iterations, each iteration with
freshly sampled training and testing data. The results indicate that: i)
individual errors of the decision trees for the ensemble-RB are larger than
these for the Bagging ensemble, ii) RB has a higher classification error than
Bagging, and iii) RB has a better AUC than Bagging. All differences were
found to be statistically significant (two-tailed paired t-test, p < 0.005).
This suggests that the better AUC produced by the ensemble-RB may come
at the expense of slightly reduced classification accuracy. Since AUC is
often viewed as the primary criterion for problems with unbalanced classes,
the results of this simulation favour the ensemble-RB.

Kappa-error diagrams are often used for comparing classifier ensem-
bles [43, 37]. Consider a testing set with N examples and the contingency

4MATLAB’s Statistic Toolbox was used for training the decision trees and estimating AUC.

130 5.5. A simulation experiment

Data sets Ensemble Individual error Ensemble error AUC
1 simulation RB 0.0272 0.0180 0.9979
(Figure 5.6) Bagging 0.0250 0.0220 0.9373

200 simulations RB 0.0307 0.0162 0.9963
(average values) Bagging 0.0192 0.0133 0.9917

Table 5.1: Comparison of Random Balance and Bagging ensembles.

table of two classifiers, C1 and C2

C2 correct C2 wrong
C1 correct a b
C1 wrong c d

where the table entries are the number of examples jointly classified as
indicated, and a+b+ c+d = N. Diversity between the two classifiers is
measured by κ [19] as

κ =
2(ad−bc)

(a+b)(b+d)+(a+ c)(c+d)
(5.1)

Kappa is plotted on the x-axis on the diagram. Smaller kappa indicates more
diverse classifiers. The averaged individual error for the pair of classifiers is

e =
1
2

(
c+d

N
+

b+d
N

)
=

b+ c+2d
2N

(5.2)

The error is plotted on the y-axis of the diagram. An ensemble with L clas-
sifier generates a “cloud” of L(L−1)/2 points on the kappa-error diagram,
one point for a pair of classifiers.

We calculated the centroid points of 200 RB and 200 Bagging ensemble
clouds following the simulation protocol described above. Figure 5.7 shows
the kappa-error diagrams with the centroids, 200 in each subplot. The black
points correspond to ensembles whose AUC is larger than the respective
AUC of the rival ensemble. Out of the 200 ensembles, RB had larger AUC
in 127 cases, which is seen as the larger proportion of black triangles in the
left subplot compared to the proportion of black dots in the right subplot.

As expected, the ensemble-RB generates substantial diversity compared
to Bagging, which is indicated by the stretch to the left of the set of points in
the left subplot. The cloud of points is tilted, showing that the larger diversity

5. Random Balance 131

0.7 0.75 0.8 0.85 0.9
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

kappa

er
ro

r

0.7 0.75 0.8 0.85 0.9
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

kappa

er
ro

r

(a) Random Balance (b) Bagging

Figure 5.7: Kappa-error diagrams for the two ensemble methods. Black points indicate
ensembles for which the AUC was larger than that for the rival method.

is paid for by larger individual error. An interesting observation from the
figure is that the black markers (triangles and dots) are spread uniformly
along the point clouds, suggesting that there is no specific diversity-accuracy
pattern which is symptomatic of better AUC.

5.6 Experimental setup and results

Two collections of data sets were used. The HDDT collection5 contains the
binary imbalanced data sets used in [13]. Table 6.1 shows the characteristics
of the 20 data sets in this collection.

The KEEL collection6 contains the binary imbalanced data sets from the
repository of KEEL [1]. Table 6.2 shows the characteristics of the 66 data
sets in this collection7.

In both tables, the first column is the name of the data set, the second
the number of examples, the third the number of attributes and the last is
the imbalance ratio (the number of instances of the majority class for each
instance of the minority class).

Many data sets in these two collections are available or are modifications
of data sets in the UCI Repository [20].

Weka [27] was used for the experiments. The ensemble size was set
to 100, for some methods this is not the exact size, but it is the maximum,

5Available at http://www.nd.edu/~dial/hddt/.
6Available at http://sci2s.ugr.es/keel/imbalanced.php.
7Notice that several of the data sets come from data sets that were originally multiclass, the 66 datasets

have been derived from 16 original sets.

http://www.nd.edu/~dial/hddt/
http://sci2s.ugr.es/keel/imbalanced.php

132 5.6. Experimental setup and results

data set Examples Attributes
(Numeric / Nominal) IR

boundary 3505 (0/175) 27.50
breast-y 286 (0/9) 2.36
cam 18916 (0/132) 19.08
compustat 13657 (20/0) 25.26
covtype 38500 (10/0) 13.02
credit-g 1000 (7/13) 2.33
estate 5322 (12/0) 7.37
german-numer 1000 (24/0) 2.33
heart-v 200 (5/8) 2.92
hypo 3163 (7/18) 19.95
ism 11180 (6/0) 42.00
letter 20000 (16/0) 24.35
oil 937 (49/0) 21.85
optdigits 5620 (64/0) 9.14
page 5473 (10/0) 8.77
pendigits 10992 (16/0) 8.63
phoneme 5404 (5/0) 2.41
PhosS 11411 (480/0) 17.62
satimage 6430 (36/0) 9.29
segment 2310 (19/0) 6.00

Table 5.2: Characteristics of the data sets from the HDDT collection.

5. Random Balance 133

da
ta

se
t

E
xa

m
pl

es
A

ttr
ib

ut
es

(N
um

er
ic

/N
om

in
al

)
IR

ab
al

on
e1

9
41

74
(7

/1
)

12
9.

44
ab

al
on

e9
-1

8
73

1
(7

/1
)

16
.4

0
cl

ev
el

an
d-

0_
vs

_4
17

7
(1

3/
0)

12
.6

2
ec

ol
i-

0-
1-

3-
7_

vs
_2

-6
28

1
(7

/0
)

39
.1

4
ec

ol
i-

0-
1-

4-
6_

vs
_5

28
0

(6
/0

)
13

.0
0

ec
ol

i-
0-

1-
4-

7_
vs

_2
-3

-5
-6

33
6

(7
/0

)
10

.5
9

ec
ol

i-
0-

1-
4-

7_
vs

_5
-6

33
2

(6
/0

)
12

.2
8

ec
ol

i-
0-

1_
vs

_2
-3

-5
24

4
(7

/0
)

9.
17

ec
ol

i-
0-

1_
vs

_5
24

0
(6

/0
)

11
.0

0
ec

ol
i-

0-
2-

3-
4_

vs
_5

20
2

(7
/0

)
9.

10
ec

ol
i-

0-
2-

6-
7_

vs
_3

-5
22

4
(7

/0
)

9.
18

ec
ol

i-
0-

3-
4-

6_
vs

_5
20

5
(7

/0
)

9.
25

ec
ol

i-
0-

3-
4-

7_
vs

_5
-6

25
7

(7
/0

)
9.

28
ec

ol
i-

0-
3-

4_
vs

_5
20

0
(7

/0
)

9.
00

ec
ol

i-
0-

4-
6_

vs
_5

20
3

(6
/0

)
9.

15
ec

ol
i-

0-
6-

7_
vs

_3
-5

22
2

(7
/0

)
9.

09
ec

ol
i-

0-
6-

7_
vs

_5
22

0
(6

/0
)

10
.0

0
ec

ol
i-

0_
vs

_1
22

0
(7

/0
)

1.
86

ec
ol

i1
33

6
(7

/0
)

3.
36

ec
ol

i2
33

6
(7

/0
)

5.
46

ec
ol

i3
33

6
(7

/0
)

8.
60

ec
ol

i4
33

6
(7

/0
)

15
.8

0
gl

as
s-

0-
1-

2-
3_

vs
_4

-5
-6

21
4

(9
/0

)
3.

20
gl

as
s-

0-
1-

4-
6_

vs
_2

20
5

(9
/0

)
11

.0
6

gl
as

s-
0-

1-
5_

vs
_2

17
2

(9
/0

)
9.

12
gl

as
s-

0-
1-

6_
vs

_2
19

2
(9

/0
)

10
.2

9
gl

as
s-

0-
1-

6_
vs

_5
18

4
(9

/0
)

19
.4

4
gl

as
s-

0-
4_

vs
_5

92
(9

/0
)

9.
22

gl
as

s-
0-

6_
vs

_5
10

8
(9

/0
)

11
.0

0
gl

as
s0

21
4

(9
/0

)
2.

06
gl

as
s1

21
4

(9
/0

)
1.

82
gl

as
s2

21
4

(9
/0

)
11

.5
9

gl
as

s4
21

4
(9

/0
)

15
.4

6

da
ta

se
t

E
xa

m
pl

es
A

ttr
ib

ut
es

(N
um

er
ic

/N
om

in
al

)
IR

gl
as

s5
21

4
(9

/0
)

22
.7

8
gl

as
s6

21
4

(9
/0

)
6.

38
ha

be
rm

an
30

6
(3

/0
)

2.
78

ir
is

0
15

0
(4

/0
)

2.
00

le
d7

di
gi

t-
0-

2-
4-

5-
6-

7-
8-

9_
vs

_1
44

3
(7

/0
)

10
.9

7
ne

w
-t

hy
ro

id
1

21
5

(5
/0

)
5.

14
ne

w
-t

hy
ro

id
2

21
5

(5
/0

)
5.

14
pa

ge
-b

lo
ck

s-
1-

3_
vs

_4
47

2
(1

0/
0)

15
.8

6
pa

ge
-b

lo
ck

s0
54

72
(1

0/
0)

8.
79

pi
m

a
76

8
(8

/0
)

1.
87

se
gm

en
t0

23
08

(1
9/

0)
6.

02
sh

ut
tle

-c
0-

vs
-c

4
18

29
(9

/0
)

13
.8

7
sh

ut
tle

-c
2-

vs
-c

4
12

9
(9

/0
)

20
.5

0
ve

hi
cl

e0
84

6
(1

8/
0)

3.
25

ve
hi

cl
e1

84
6

(1
8/

0)
2.

90
ve

hi
cl

e2
84

6
(1

8/
0)

2.
88

ve
hi

cl
e3

84
6

(1
8/

0)
2.

99
vo

w
el

0
98

8
(1

3/
0)

9.
98

w
is

co
ns

in
68

3
(9

/0
)

1.
86

ye
as

t-
0-

2-
5-

6_
vs

_3
-7

-8
-9

10
04

(8
/0

)
9.

14
ye

as
t-

0-
2-

5-
7-

9_
vs

_3
-6

-8
10

04
(8

/0
)

9.
14

ye
as

t-
0-

3-
5-

9_
vs

_7
-8

50
6

(8
/0

)
9.

12
ye

as
t-

0-
5-

6-
7-

9_
vs

_4
52

8
(8

/0
)

9.
35

ye
as

t-
1-

2-
8-

9_
vs

_7
94

7
(8

/0
)

30
.5

7
ye

as
t-

1-
4-

5-
8_

vs
_7

69
3

(8
/0

)
22

.1
0

ye
as

t-
1_

vs
_7

45
9

(7
/0

)
14

.3
0

ye
as

t-
2_

vs
_4

51
4

(8
/0

)
9.

08
ye

as
t-

2_
vs

_8
48

2
(8

/0
)

23
.1

0
ye

as
t1

14
84

(8
/0

)
2.

46
ye

as
t3

14
84

(8
/0

)
8.

10
ye

as
t4

14
84

(8
/0

)
28

.1
0

ye
as

t5
14

84
(8

/0
)

32
.7

3
ye

as
t6

14
84

(8
/0

)
41

.4
0

Ta
bl

e
5.

3:
C

ha
ra

ct
er

is
tic

s
of

th
e

da
ta

se
ts

fr
om

th
e

K
E

E
L

co
lle

ct
io

n.

134 5.6. Experimental setup and results

Size of the minority class

Size of the majority class

10% 30% 50% 70% 90%

0% 20% 40% 60% 80% 100%

a) Amount of instances generated when the parameter value is equal to 50.
b) Amount of instances removed when the parameter value is equal to 70.

a b

Figure 5.8: The figure shows how to interpret the parameters used for SMOTE and
Undersampling. These parameters can be thought of as a percentage of the difference of
class sizes. For SMOTE, in this case, a value of 50% (a in the figure) indicates that the
number of artificial instances to be created are the 50% of the number needed to match the
size of the majority class. For Undersampling a value of 70% (b in the figure) indicates
that the number of removed instances in the majority class will be 30% of the size of the
difference.

Data-processing-only Based Ensembles

Abbr. Method Details

ESM100 Ensemble, SMOTE=100% Amount of SMOTE in each iteration equal to 100% size of the minority class
ESM200 Ensemble, SMOTE=200% Amount of SMOTE in each iteration equal to 200% size of the minority class
ESM500 Ensemble, SMOTE=500% Amount of SMOTE in each iteration equal to 500% size of the minority class
ESM Ensemble, SMOTE SMOTE in each iteration until 50% of the data belongs to minority class
ERUS Ensemble, RUS Random Undersampling in each iteration until 50% of the data belongs to minority

class
E̊RUSR Ensemble, RUS with replacement Random Undersampling with replacement in each iteration until 50% of the data

belongs to minority class
E̊Part Ensemble, Partitioning Build balanced training sets by splitting the majority class into subsets.
EopS Ensemble, optimized SMOTE Amount of SMOTE selected by cross validation
EopU Ensemble, optimized Undersampling Amount of Random Undersampling selected by cross validation
EopB Ensemble, optimized Both Amounts of SMOTE and Undersampling selected by cross validation
E-RB Ensemble, Random Balance Random Balance in each iteration

Table 5.4: Algorithms used in the experimental study: Data-processing family

since some method have a stopping criteria. J48 was chosen as the base
classifier in all ensembles8. As recommended for imbalanced data [13], it
was used without pruning and collapsing but with Laplace smoothing at the
leaves. C4.5 with this options is called C4.4 [47].

The results were obtained with a 5×2-fold cross validation [15]. The
data set is halved in two folds. One fold is used for training and the other
for testing, and then the roles of the folds are reversed. This process is
repeated five times. The results are the averages of these ten experiments.
Cross validation was stratified: the class proportions was approximately
preserved for each fold.

Given the large number of methods and variants tested, the comparisons
are divided into families. Each family includes different types of classi-

8J48 is the Weka’s re-implementation of C4.5 [48].

5. Random Balance 135

Bagging Based Ensembles

Abbr. Method Details

SMBAG SMOTEBagging
BAG Bagging
BAGSM100 Bagging, SMOTE=100% Amount of SMOTE in each iteration equal to 100% size of

the minority class
BAGSM200 Bagging, SMOTE=200% Amount of SMOTE in each iteration equal to 200% size of

the minority class
BAGSM500 Bagging, SMOTE=500% Amount of SMOTE in each iteration equal to 500% size of

the minority class
BAGSM Bagging, SMOTE SMOTE in each iteration until 50% of the data belongs to

minority class
BAGRUS Bagging, RUS Random Undersampling in each iteration until 50% of the

data belongs to minority class
R̊bB:IC+BAGSM Reliability-based Balancing with SMOTE Miniensemble formed by Bagging and Bagging + SMOTE

in each iteration until 50% of the data belongs to minority
class

R̊bB:IC+BAGRUS Reliability-based Balancing with UnderSampling Miniensemble formed by Bagging and Bagging + Random
Undersampling in each iteration until 50% of the data be-
longs to minority class

BAGopS Bagging, optimized SMOTE Amount of SMOTE selected by cross validation
BAGopU Bagging, optimized Undersampling Amount of Random Undersampling selected by cross vali-

dation
BAGopB Bagging, optimized Both Amounts of SMOTE and Undersampling selected by cross

validation
BAG-RB Bagging, Random Balance Random Balance in each iteration

Table 5.5: Algorithms used in the experimental study: Bagging family

Boosting Based Ensembles

Abbr. Method Details

AdaM1W AdaBoost.M1 using reweighting
AdaM1S AdaBoost.M1 using resampling
MultiW MultiBoost using reweighting Number of subcommittees=10
MultiS MultiBoost using resampling Number of subcommittees=10
SB100 SMOTEBoost, SMOTE=100% Amount of SMOTE in each iteration equal to 100% size of the minority class
SB200 SMOTEBoost, SMOTE=200% Amount of SMOTE in each iteration equal to 200% size of the minority class
SB500 SMOTEBoost, SMOTE=500% Amount of SMOTE in each iteration equal to 500% size of the minority class
RUSB RUSBoost Random Undersampling in each iteration until 50% of the data belongs to minority

class
RB-B RB-Boost Random Balance in each iteration

Table 5.6: Algorithms used in the experimental study: Boosting family

136 5.6. Experimental setup and results

fier ensembles depending on the main diversity-generating strategy. We
distinguished three such families: Data-preprocessing-only, Bagging and
Boosting. The names, abbreviations and descriptions of the methods can be
found in tables 5.4, 5.5 and 5.6.

The scores obtained by the proposed methods: E-RB, BAG-RB and
RB-B are shown in Table 5.7, the reader is encouraged to consult the full
table of results in the supplementary material9. Some of the methods obtain
low result in certain datasets. The reason is that some of the performance
measures are a geometric mean (the G-mean) and a harmonic mean (the
F-measure) so the results are biased towards the lower of the two values
that are combined in the measure. With a classifier that always predict the
majority class the accuracy will be very high (depending on the imbalance
ratio), the AUC will be 0.5 if all the instances are given the same confidence;
but for these two means the value will be 0.

Table 5.7: Scores of the proposed methods according to de AUC, F-Measure and Geomet-
ric Mean

AUC F-Measure Geometric Mean
Dataset E-RB BAG-RB RB-B E-RB BAG-RB RB-B E-RB BAG-RB RB-B
hddt_boundary 0.6748 0.6945 0.7085 0.1421 0.1132 0.0388 0.3552 0.2730 0.1320
hddt_breast-y 0.6414 0.6460 0.6223 0.4417 0.4496 0.4023 0.5805 0.5872 0.5454
hddt_cam 0.7277 0.7631 0.7665 0.1922 0.1916 0.1356 0.3715 0.3610 0.2916
hddt_compustat 0.9072 0.9107 0.9320 0.3404 0.3632 0.4538 0.7924 0.7780 0.5965
hddt_covtype 0.9933 0.9934 0.9959 0.8517 0.8586 0.9055 0.9587 0.9555 0.9439
hddt_credit-g 0.7508 0.7695 0.7546 0.5536 0.5790 0.5173 0.6723 0.6941 0.6334
hddt_estate 0.6239 0.6239 0.6138 0.2425 0.2373 0.0813 0.5320 0.5266 0.2176
hddt_german-numer 0.7750 0.7856 0.7626 0.5819 0.6002 0.5334 0.6965 0.7134 0.6438
hddt_heart-v 0.6907 0.7067 0.7056 0.4250 0.4350 0.4107 0.5822 0.5871 0.5617
hddt_hypo 0.9911 0.9905 0.9925 0.8685 0.8793 0.8863 0.9610 0.9635 0.9432
hddt_ism 0.9394 0.9421 0.9130 0.5359 0.5660 0.6804 0.8860 0.8836 0.8308
hddt_letter 0.9990 0.9994 0.9999 0.9569 0.9618 0.9768 0.9747 0.9719 0.9779
hddt_oil 0.9128 0.9201 0.9281 0.4510 0.5254 0.5504 0.7642 0.7454 0.6679
hddt_optdigits 0.9986 0.9980 0.9999 0.9793 0.9811 0.9925 0.9901 0.9902 0.9937
hddt_page 0.9918 0.9918 0.9911 0.8498 0.8568 0.8792 0.9581 0.9569 0.9340
hddt_pendigits 0.9995 0.9996 1.0000 0.9725 0.9775 0.9892 0.9859 0.9869 0.9921
hddt_phoneme 0.9339 0.9379 0.9502 0.7837 0.7905 0.8149 0.8636 0.8663 0.8675
hddt_PhosS 0.7183 0.7502 0.7276 0.1753 0.1204 0.0045 0.3432 0.2598 0.0300
hddt_satimage 0.9513 0.9517 0.9620 0.6354 0.6427 0.6916 0.8513 0.8440 0.7929
hddt_segment 0.9991 0.9989 0.9999 0.9727 0.9753 0.9912 0.9873 0.9880 0.9932
keel_abalone19 0.7427 0.7685 0.7154 0.0535 0.0607 0.0284 0.4729 0.3001 0.1099
keel_abalone9-18 0.7919 0.8081 0.8070 0.3077 0.3487 0.3769 0.6512 0.6237 0.5716
keel_cleveland-0_vs_4 0.9377 0.9539 0.9572 0.5551 0.6396 0.5681 0.7246 0.7622 0.6754
keel_ecoli-0-1-3-7_vs_2-6 0.9278 0.9321 0.9204 0.6382 0.6226 0.5110 0.8256 0.7971 0.6880
keel_ecoli-0-1-4-6_vs_5 0.9654 0.9637 0.9892 0.6883 0.7310 0.8031 0.8336 0.8442 0.8912
keel_ecoli-0-1-4-7_vs_2-3 0.9308 0.9333 0.9325 0.6390 0.6721 0.6978 0.8355 0.8236 0.8243
keel_ecoli-0-1-4-7_vs_5-6 0.9521 0.9603 0.9668 0.7227 0.7195 0.8016 0.8634 0.8359 0.8635
keel_ecoli-0-1_vs_2-3-5 0.9480 0.9507 0.9495 0.6878 0.7247 0.7508 0.8726 0.8763 0.8544
keel_ecoli-0-1_vs_5 0.9579 0.9709 0.9853 0.6755 0.7272 0.7602 0.8287 0.8547 0.8506
keel_ecoli-0-2-3-4_vs_5 0.9690 0.9729 0.9833 0.6741 0.7135 0.7529 0.8717 0.8830 0.8746
keel_ecoli-0-2-6-7_vs_3-5 0.9261 0.9285 0.9305 0.7111 0.7537 0.7589 0.8573 0.8636 0.8553
keel_ecoli-0-3-4-6_vs_5 0.9568 0.9667 0.9789 0.7124 0.7425 0.7791 0.8683 0.8700 0.8841
keel_ecoli-0-3-4-7_vs_5-6 0.9474 0.9497 0.9622 0.7236 0.7103 0.7983 0.8718 0.8405 0.8706
keel_ecoli-0-3-4_vs_5 0.9619 0.9671 0.9815 0.7103 0.7475 0.7433 0.8441 0.8495 0.8495
Continued on next page

9https://github.com/joseFranciscoDiez/research/wiki/Supplementary-Material

https://github.com/joseFranciscoDiez/research/wiki/Supplementary-Material

5. Random Balance 137

Table 5.7: Scores of the proposed methods according to de AUC, F-Measure and Geomet-
ric Mean

AUC F-Measure Geometric Mean
Dataset E-RB BAG-RB RB-B E-RB BAG-RB RB-B E-RB BAG-RB RB-B
keel_ecoli-0-4-6_vs_5 0.9677 0.9721 0.9840 0.7450 0.7638 0.7453 0.8824 0.8804 0.8254
keel_ecoli-0-6-7_vs_3-5 0.9213 0.9346 0.9237 0.6796 0.7124 0.6996 0.8402 0.8405 0.8059
keel_ecoli-0-6-7_vs_5 0.9541 0.9610 0.9612 0.7534 0.7614 0.8079 0.9023 0.9034 0.8953
keel_ecoli-0_vs_1 0.9954 0.9925 0.9909 0.9765 0.9728 0.9691 0.9814 0.9793 0.9771
keel_ecoli1 0.9543 0.9573 0.9456 0.7876 0.7847 0.7650 0.8936 0.8886 0.8538
keel_ecoli2 0.9429 0.9473 0.9639 0.7915 0.7910 0.8128 0.8825 0.8839 0.8694
keel_ecoli3 0.9391 0.9379 0.9209 0.6214 0.6174 0.5567 0.8574 0.8519 0.7162
keel_ecoli4 0.9630 0.9724 0.9855 0.6585 0.6947 0.7911 0.8196 0.8385 0.8860
keel_glass-0-1-2-3_vs_4-5 0.9724 0.9747 0.9767 0.8412 0.8508 0.8363 0.9135 0.9183 0.8867
keel_glass-0-1-4-6_vs_2 0.7662 0.7510 0.7737 0.2970 0.3398 0.2646 0.5575 0.5606 0.4106
keel_glass-0-1-5_vs_2 0.7551 0.7466 0.7489 0.3464 0.2671 0.2688 0.6330 0.4768 0.4377
keel_glass-0-1-6_vs_2 0.7335 0.7148 0.7582 0.2650 0.2425 0.1841 0.5334 0.4649 0.3315
keel_glass-0-1-6_vs_5 0.9948 0.9938 0.9909 0.7913 0.7882 0.6867 0.9856 0.9756 0.8161
keel_glass-0-4_vs_5 0.9957 0.9964 0.9956 0.9505 0.9505 0.8519 0.9939 0.9939 0.9185
keel_glass-0-6_vs_5 0.9843 0.9837 0.9907 0.8946 0.8946 0.7988 0.9493 0.9493 0.8719
keel_glass0 0.8593 0.8694 0.8833 0.7216 0.7206 0.7172 0.7976 0.7967 0.7868
keel_glass1 0.8146 0.8264 0.8592 0.6354 0.6791 0.6997 0.7105 0.7466 0.7602
keel_glass2 0.8214 0.8020 0.7502 0.2984 0.2500 0.2469 0.6008 0.5043 0.3848
keel_glass4 0.9117 0.9322 0.9628 0.4748 0.5512 0.5128 0.7349 0.7836 0.6551
keel_glass5 0.9922 0.9905 0.9864 0.7606 0.7571 0.6602 0.9759 0.9754 0.7761
keel_glass6 0.9530 0.9602 0.9565 0.8239 0.8423 0.8551 0.9167 0.9235 0.9109
keel_haberman 0.7090 0.7130 0.6735 0.5002 0.4943 0.3409 0.6518 0.6454 0.4957
keel_iris0 1.0000 1.0000 1.0000 0.9813 0.9813 0.9813 0.9816 0.9816 0.9816
keel_led7digit-0-2-4-5-6- 0.9577 0.9605 0.9653 0.7541 0.7779 0.7667 0.8925 0.8960 0.8714
keel_new-thyroid1 0.9936 0.9949 0.9971 0.9077 0.9124 0.9270 0.9413 0.9494 0.9546
keel_new-thyroid2 0.9950 0.9953 0.9983 0.8960 0.8993 0.9455 0.9482 0.9420 0.9637
keel_page-blocks-1-3_vs_4 0.9997 0.9995 0.9998 0.9284 0.9271 0.9610 0.9700 0.9698 0.9837
keel_page-blocks0 0.9913 0.9912 0.9904 0.8455 0.8530 0.8692 0.9519 0.9537 0.9302
keel_pima 0.8185 0.8214 0.8018 0.6654 0.6721 0.6225 0.7387 0.7451 0.7025
keel_segment0 0.9983 0.9986 0.9999 0.9683 0.9700 0.9881 0.9847 0.9847 0.9919
keel_shuttle-c0-vs-c4 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
keel_shuttle-c2-vs-c4 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
keel_vehicle0 0.9885 0.9896 0.9958 0.8803 0.8803 0.9335 0.9391 0.9394 0.9588
keel_vehicle1 0.8452 0.8510 0.8511 0.6243 0.6197 0.5608 0.7643 0.7541 0.6830
keel_vehicle2 0.9936 0.9945 0.9981 0.9329 0.9404 0.9665 0.9653 0.9665 0.9772
keel_vehicle3 0.8478 0.8475 0.8458 0.6162 0.6140 0.5442 0.7626 0.7524 0.6647
keel_vowel0 0.9965 0.9965 0.9997 0.8733 0.8787 0.9697 0.9623 0.9681 0.9817
keel_wisconsin 0.9921 0.9924 0.9931 0.9521 0.9501 0.9526 0.9661 0.9635 0.9646
keel_yeast-0-2-5-6_vs_3-7 0.8449 0.8533 0.8427 0.5531 0.5957 0.5896 0.7745 0.7731 0.7195
keel_yeast-0-2-5-7-9_vs_3 0.9483 0.9444 0.9436 0.7434 0.7775 0.8049 0.8956 0.9022 0.8799
keel_yeast-0-3-5-9_vs_7-8 0.7573 0.7638 0.7565 0.3717 0.3869 0.3635 0.6575 0.6694 0.5319
keel_yeast-0-5-6-7-9_vs_4 0.8931 0.8963 0.8795 0.4982 0.5246 0.4876 0.7714 0.7433 0.6452
keel_yeast-1-2-8-9_vs_7 0.7373 0.7592 0.7477 0.1868 0.1785 0.2663 0.6400 0.4947 0.4452
keel_yeast-1-4-5-8_vs_7 0.6477 0.6617 0.6655 0.1644 0.1565 0.1135 0.5561 0.4222 0.2365
keel_yeast-1_vs_7 0.8096 0.8184 0.8059 0.3310 0.3350 0.3824 0.6851 0.6455 0.5663
keel_yeast-2_vs_4 0.9799 0.9799 0.9705 0.7149 0.7292 0.7514 0.9104 0.9070 0.8547
keel_yeast-2_vs_8 0.8167 0.8204 0.8216 0.4098 0.5572 0.5942 0.7089 0.7286 0.7238
keel_yeast1 0.7949 0.7992 0.7768 0.5920 0.6027 0.5309 0.7107 0.7212 0.6461
keel_yeast3 0.9741 0.9745 0.9641 0.7788 0.7811 0.7649 0.9320 0.9294 0.8603
keel_yeast4 0.9335 0.9381 0.9148 0.3336 0.3884 0.3790 0.8075 0.8055 0.5807
keel_yeast5 0.9897 0.9901 0.9766 0.7311 0.7269 0.6899 0.9461 0.9391 0.8438
keel_yeast6 0.9137 0.9168 0.8965 0.3685 0.4575 0.4997 0.7823 0.7869 0.6878

We used the most common configurations of SMOTE where the number
of synthetic instances was set to 100%, 200% and 500% of the minority
class. In the variants called ESM and BAGSM, the minority class was
oversampled to match the size of the majority class. For the undersampling
ensembles, the size of the majority class was reduced to match the size of

138 5.6. Experimental setup and results

the minority class.
In addition, optimized versions of some the ensemble methods were

tried. In the Data-preprocessing-only and the Bagging families we included
three versions: optimizing the amount of SMOTE oversampling, optimizing
the amount of Undersampling and optimizing both simultaneously. In
all these variants we used a 5-fold internal cross-validation 10 and tested
10 different amounts of SMOTE and Undersampling, which means that
the version that optimizes both parameters simultaneously has evaluated
100 possible combinations. These amounts are expressed in terms of the
difference between the majority and minority class sizes, as shown in Figure
5.8, for SMOTE, in this case, a value of 0% means not to add any instance,
a value of 100% means to create as many as necessary to match the size
of the majority. For Undersampling a value of 0% means not to delete any
instance, a value of 100% means remove instances to match the original
size of the minority class. Once found, the parameters that maximize the
AUC for a single decision tree are used for constructing the ensemble.

The Data-preprocessing-only also includes the Partitioning (or Random
Splitting) method, described in [44]. In that work, the ensemble size was the
Imbalanced Ratio, while in this work it is 100 11, as for the other methods
in this section, in order to make a fair comparison.

The Bagging family includes the Reliability-based Balancing (RbB)
method [50]. The classifiers obtained with this method can be seen as a mini-
ensemble of two classifiers, the first one using the original imbalanced class
distribution (IC), the second one using a classifier with balanced data (BC).
In order to have ensembles of 100 classifiers, two ensembles of 50 classifiers
are combined. The first classifier is obtained with Bagging. For the second
classifier two configurations are considered: Bagging with SMOTE and
Bagging with Undersampling. RbB uses a threshold to determine which
label return, when the reliability provided by IC is larger than the threshold,
the final label corresponds to the label returned by IC, in the opposite case
the label corresponds to the label returned by BC. This threshold is selected
for each dataset, considering the values from 0.0 to 1.0 in steps of size
0.05, the threshold chosen is the one for which the sum of accuracy and
geometric mean is maximized over a validation dataset.

10That means that the training set is repeatedly divided into train and validation sets to find the optimal
parameter value, and then the classifier is finally built using the complete training set.

11To achieve this size, as many partitions as necessary are created. e.g. if the imbalance ratio is 5, the 100
classifiers are created using 20 times the partitioning technique.

5. Random Balance 139

The Data-preprocessing-only family includes the Random Balance en-
semble (E-RB), while Bagging family includes the combination of Bagging
and Random Balance (BAG-RB).

In the Boosting family, we have compared the most popular algorithms.
For completeness, we included the standard boosting variants AdaBoost.M1
and MultiBoost. Both were tested with reweighting as well as with weighted
resampling [21]. The main contenders in this family were the boosting
variants especially designed for unbalanced data sets: SMOTEBoost, with
3 different rates of SMOTE, and RUSBoost. The proposed method: RB-
Boost was also added to the boosting family.

For comparison between multiple algorithms for each family and multi-
ple data sets we used average ranks [14]. For a given data set, the methods
are sorted from best to worst. The best method receives rank 1, the second
best receives rank 2, and so on. In case of a tie, average ranks are assigned.
For instance, if two methods tie for the top rank, they both receive rank 1.5.
Average ranks across all data sets are then obtained.

The first question is whether there are any significant differences between
the ranks of the compared methods. The Friedman test and the subsequent
version of Iman and Davenport [31] test were applied.

To detect pairwise differences between a designated method and the
remaining methods, we used the Hochberg test [30], which was found to be
more powerful than the Bonferroni-Dunn test [16, 24].

Table 5.8a shows the results of the comparison of the algorithms of the
Data-preprocessing-only family in the form of average ranking calculated
from the area under the curve. The second column shows the average rank
of each method. The Iman and Davenport test gives a p-value of 6.1904e-86,
which means that it rejects the hypothesis that the compared algorithms are
equivalent. The last column shows the adjusted Hochberg p-value between
E-RB and the respective method of that row. An adjusted p-value less than
0.05 means that the two methods are significantly different with a signif-
icance of α = 0.05. The table shows that the Random Balance ensemble
(E-RB) has a demonstrably better AUC than all the other ensembles in this
family.

Table 5.8b shows the average ranks for the Bagging family calculated
using the same measure. With p-value of 8.1240e-56, the Iman and Dav-
enport test discards the hypothesis of equivalence between the algorithms.
The combination of Bagging with the proposed method obtains the best

140 5.6. Experimental setup and results

Algorithm Average p-Hochberg
Rank

E-RB 2.2674
ERUSR 3.8256 0.0021
EPart 4.1337 4.4869e-004
ERUS 4.4767 3.7599e-005
EopB 5.5930 1.9442e-010
ESM200 6.7442 4.3307e-018
ESM500 7.0291 2.8543e-020
ESM100 7.1861 1.6549e-021
EopU 7.6744 9.0344e-026
ESM 8.2674 1.6612e-031
EopS 8.8023 3.4537e-037

(a) data-processing family

Algorithm Average p-Hochberg
Rank

BAG-RB 3.0930
BAGopB 5.9302 1.7768e-006
BAGSM500 6.0465 1.3180e-006
BAGSM200 6.1456 8.2646e-007
BAGSM100 6.3081 2.4709e-007
BAGRUS 6.3256 2.4709e-007
BAGopS 6.4826 6.8877e-008
BAGSM 6.5058 6.3800e-008
BAGopU 6.6977 1.0265e-008
SMBAG 8.3663 6.0674e-018
BAG 8.5233 6.0521e-019
RbB:IC+BAGSM 10.1919 6.8898e-032
RbB:IC+BAGRUS 10.3837 1.4618e-033

(b) Bagging Family

Algorithm Average p-Hochberg
Rank

RB-B 2.9884
RUSB 3.6628 0.10634
SB200 4.4419 0.00100
SB500 4.5116 7.9490e-004
SB100 4.8139 4.9417e-005
MultiS 4.9128 2.0338e-005
AdaM1S 6.0407 1.6196e-012
MultiW 6.1977 1.0754e-013
AdaM1W 7.4302 1.6253e-025

(b) Boosting Family

Table 5.8: Average ranks (AUC)

ranking and also presents significant differences with the other methods.
Table 5.8c shows the average ranks for the Boosting family. With p-

value of 1.0638e-37 the Iman and Davenport test discards the hypothesis of
equivalence. The proposed algorithm RB-Boost takes the top spot for the
AUC criterion, and there are significant differences with all other algorithms,
except RUSBoost, which occupies the second position (adjusted Hochberg’s
p-value of 0.10634).

Table 5.9a shows the average ranks for the data-processing according
to the F-Measure. In this case the Iman and Davenport test gives a p-
value of 2.3794e-44, so the compared algorithms are not equivalent. The
Random Balance ensemble gets the best ranking, but this time there are no
statistically significant differences with the next three algorithms.

Table 5.9b shows the average ranks for the Bagging family according
to the F-Measure. The Iman and Davenport test discards the hypothesis
of equivalence between the algorithms with p-value of 1.2896e-23. The
proposed method obtains the second highest ranking, but there are no
significant differences from the first method.

Finally, Table 5.9c shows the average ranks for the Boosting family. With
p-value of 6.912e-11 the Iman and Davenport test discards the hypothesis
of equivalence between the algorithms. The proposed algorithm has the
best place in the ranking with significant differences with all remaining
algorithms in this family.

Figure 5.9 shows scatter plots with the average ranks for the three fami-
lies of methods. The best methods according to the AUC appear at the left,
and the best methods according to the F-Measure appear at the bottom.

Similar patterns appear in the left and center plots:

5. Random Balance 141

Algorithm Average p-Hochberg
Rank

E-RB 4.0639
ESM200 4.3023 0.6374
ESM500 4.3954 0.6374
ESM100 4.7674 0.4928
EopB 5.5116 0.0168
ESM 5.7326 0.0049
EopS 5.9070 0.0016
EopU 6.7790 5.5677e-007
ERUS 7.9419 1.4066e-013
EPart 7.9535 1.3225e-013
ERUSR 8.6454 1.3278e-018

(a) data-processing family

Algorithm Average p-Hochberg
Rank

BAGSM500 5.3081
BAG-RB 5.5930 0.6315
BAGSM200 5.6686 0.6315
BAGSM 5.9651 0.6315
BAGopS 6.3023 0.3765
BAGSM100 6.4302 0.2942
RbB:IC+BAGSM 6.7791 0.0796
RbB:IC+BAGRUS 7.1977 0.0103
SMBAG 7.2035 0.0103
BAGopB 7.2616 0.0090
BAGopU 8.5639 4.2025e-007
BAG 8.7849 5.2748e-008
BAGRUS 9.9419 7.2984e-014

(b) Bagging Family

Algorithm Average p-Hochberg
Rank

RB-B 3.3372
RUSB 4.5639 0.00331
AdaM1S 4.6337 0.00331
SB500 4.7326 0.00250
MultiS 4.9942 2.9049e-004
SB200 5.2267 3.0287e-005
SB100 5.6919 1.0318e-007
AdaM1W 5.7733 3.8116e-008
MultiW 6.0465 6.9931e-010

(b) Boosting Family

Table 5.9: Average ranks (F-Measure)

 2

 3

 4

 5

 6

 7

 8

 9

 2 3 4 5 6 7 8 9

A
v
e
ra

g
e
 r

a
n
g
e
 f
o
r

F
-M

e
a
s
u
re

Average range for AUC

Data-preprocessing-only family

 E-RB

 EopB

 EopS

 EopU

 EPart ERUS

 ERUSR

 ESM

 ESM100

 ESM200 ESM500

 3

 4

 5

 6

 7

 8

 9

 10

 11

 3 4 5 6 7 8 9 10 11

A
v
e
ra

g
e
 r

a
n
g
e
 f
o
r

F
-M

e
a
s
u
re

Average range for AUC

Bagging family

 BAG

 BAG-RB

 BAGopB

 BAGopS

 BAGopU

 BAGRUS

 BAGSM

 BAGSM100

 BAGSM200
 BAGSM500

 RbB:
IC+RUS

 RbB:
IC+SM

 SMBAG

 2

 3

 4

 5

 6

 7

 8

 2 3 4 5 6 7 8

A
v
e
ra

g
e
 r

a
n
g
e
 f
o
r

F
-M

e
a
s
u
re

Average range for AUC

Boosting family

 AdaM1S

 AdaM1W

 MultiS

 MultiW

 RB-B

 RUSB

 SB100

 SB200

 SB500

Figure 5.9: Average ranks for the ensemble methods, according to te AUC and F-Measure

142 5.6. Experimental setup and results

Algorithm Average p-Hochberg
Rank

E-RB 3.3779
ERUS 3.7500 4.6192e-001
EPart 3.9767 4.6192e-001
ERUSR 4.3488 1.6470e-001
EopB 5.2442 8.9737e-004
ESM 6.4070 1.0563e-008
ESM500 6.5116 3.4791e-009
ESM200 7.8140 1.2430e-017
EopU 7.8372 9.4328e-018
EopS 8.2093 1.1410e-020
ESM100 8.5233 2.6149e-023

(a) data-processing family

Algorithm Average p-Hochberg
Rank

BAG-RB 3.2326
BAGRUS 4.1686 1.1500e-001
SMBAG 4.7267 2.3746e-002
BAGopB 5.3837 8.7661e-004
BAGSM 5.8430 4.4210e-005
BAGSM500 6.0640 9.3268e-006
BAGSM200 7.6570 5.6084e-013
BAGopU 7.6686 5.6084e-013
BAGopS 7.7791 1.5418e-013
RbB:IC+BAGRUS 8.3081 1.1445e-016
BAGSM100 8.9942 2.9739e-021
RbB:IC+BAGSM 9.3547 7.1062e-024
BAG 11.8198 2.6359e-046

(b) Bagging Family

Algorithm Average p-Hochberg
Rank

RUSB 2.0872
SB500 3.5233 5.8489e-004
RB-B 3.6686 3.0550e-004
SB200 4.7384 6.5421e-010
AdaM1S 5.4709 2.1606e-015
SB100 5.5756 3.3363e-016
MultiS 5.9477 1.4294e-019
AdaM1W 6.5872 3.1635e-026
MultiW 7.4012 3.4831e-036

(b) Boosting Family

Table 5.10: Average ranks (Geometric Mean)

• In the case of data processing family, ensembles which only use Ran-
dom Undersampling (ERUS, ERUSR and EPart) obtain the three worst
results for the F-Measure but according to the AUC criterion they are
much better, only surpassed by E-RB.

• The ensembles that apply only SMOTE (ESM/100/200/500, EopS) are
grouped into a cluster and methods that combine bagging and SMOTE
(BAGSM/ 100/200/500, BAGopS) are grouped into another cluster.

• The proposed method appears far ahead of the other methods on the
AUC criterion and is the best or the second best on the F-Measure
criterion.

The right plot, showing the Boosting family, reveals that the methods
are much closer to the diagonal line where the ranks for the AUC and the
F-Measure are identical. The proposed method RB-Boost is located at a
considerable distance from the other methods on both axes, which indicates
its advantage.

Table 5.10 shows the rankings of the three families according to the
geometric mean. The proposed methods get the best positions in the data
processing and bagging families, in both cases significantly according
to Hochberg’s Test. But it gets the third position in the boosting family
ranking.

Although accuracy is not usually considered an adequate performance
measure for imbalanced data, for the sake of completeness, Table 5.11
shows the average ranks for the considered ensemble methods according
to this measure. As it could be expected, the methods that do not consider

5. Random Balance 143

Data-level family Bagging family Boosting family
Algorithm Rank Algorithm Rank Algorithm Rank
ESM100 2.4826 BAG 3.5233 MultiS 3.3314
ESM200 3.4593 BAGSM100 3.9942 AdaS 3.4826
EopS 4.2326 RbB:IC+BAGSM 4.6221 MultiW 3.8430
ESM500 4.7500 BAGSM200 5.1337 RB-B 4.1337
E-RB 5.0407 BAGopS 5.3198 AdaW 4.2093
ESM 5.2267 RbB:IC+BAGRUS 6.3314 SB100 6.0174
EopB 6.0000 BAGSM500 6.6337 SB200 6.3023
EopU 6.1570 BAGSM 6.9128 RUSB 6.6337
EPart 9.1512 BAG-RB 8.3721 SB500 7.0465
RUS 9.2209 BAGopU 8.7151
ERUSR 10.2791 SMBAG 9.4884

BAGopB 9.5116
BAGRUS 12.4419

Table 5.11: Average ranks for the considered ensemble methods, obtained from the
accuracies.

imbalance (i.e., Bagging, AdaBoost and MultiBoost) have the top ranks for
their respective families.

In this paper we have used several different measures to evaluate the
performance of various methods. Some measures such as AUC, F-Measure
and Geometric Mean are specific to unbalanced datasets, while accuracy is
not specific to unbalanced. A combined average rank has been calculated to
show the overall performance of the four measures. This time the average
rank for each method is the average of their average ranks for each measure.
Table 5.12 shows the average ranks for the considered ensemble methods
according to the combination of measures. In all families, the proposed
method obtains the best position. In this case it is not appropriate to apply
any test to detect equivalence between methods or pairwise differences
because the values are not independent, for each dataset-algorithm pair
there are several values (one per measure).

After comparing the methods within their own families, we performed
a comparison between the methods that have achieved first place in their
respective rankings.

Table 5.13 shows the average ranks for the best methods in each family,
calculated for each different measure. With p-values of 8.113e-6 and
0.04933 the Iman and Davenport test discards the hypothesis of equivalence
between the algorithms in AUC and F-Measure. By contrast a p-value of
0.91474, in the case of ranking calculated with the best methods according
to their geometric means, indicates that there is not significant differences
between methods, RUSBoost obtains the top position but it is equivalent to
the next two methods.

In the ranking calculated from the AUC, the best position is for Bagging-

144 5.6. Experimental setup and results

Algorithm Average
Rank

E-RB 3.6948
ESM200 5.5828
EopB 5.5858
ESM500 5.6744
ESM100 5.7427
EPart 6.3009
RUS 6.3503
ESM 6.4113
ERUSR 6.7645
EopS 6.7820
EopU 7.1105
(a) data-processing family

Algorithm Average
Rank

BAG-RB 5.0727
BAGSM500 6.0131
BAGSM200 6.1512
BAGSM 6.3067
BAGSM100 6.4346
BAGopS 6.4695
BAGopB 7.0218
SMBAG 7.4462
RbB:IC+BAGSM 7.7384
BAGopU 7.9113
RbB:IC+BAGRUS 8.0552
BAG 8.1599
BAGRUS 8.2195

(b) Bagging Family

Algorithm Average
Rank

RB-B 3.5320
RUSB 4.2369
MultiS 4.7965
AdaS 4.9070
SB500 4.9535
SB200 5.1773
SB100 5.5247
MultiW 5.8721
AdaW 6.0000
(b) Boosting Family

Table 5.12: Average ranks (combined)

RB, which shows significant differences with Ensemble-RB. In the ranking
calculated with the F-Measure, the best position is for RB-Boost. In this
case, despite the p-value given by the Iman and Davenport test, the post-hoc
Hochberg test found no significant differences between the methods at
α = 0.05; the p-value of Hochberg between the first ranking method and
the last one is 0.05954. The method which obtains the best rank according
to accuracy is Multiboost with resampling, but we emphasize that accuracy
is not the best measure to evaluate classification methods in imbalanced
dataset. And finally, the method that obtains the best average ranking
considering all measures is one of the proposed methods: Random Balance
Boost (RB-B).

5.6.1 Fusion Rules

The outputs of the classifiers in an ensemble can be combined in several
ways [38]. For Ensemble-RB and Bagging-RB, the outputs are combined
using the simple average of probabilities. For RB-Boost, the outputs are
combined using a weighted average (line 11 in Figure 5.5), because it is the
method used in AdaBoost.M2 and its variants for imbalance (RUSBoost,
SMOTEBoost).

This section considers other combination methods for Ensemble-RB
and Bagging-RB: majority voting and product of probabilities. Tables 5.14
and 5.15 show the average ranks for the considered fusion rules. Iman
and Davenport Test discards the hypothesis of equivalence between the

5. Random Balance 145

Algorithm Average Rank p-Hochberg

BAG-RB 1.76163
RB-B 1.82558 0.67494
E-RB 2.41279 0.00004

(a) AUC

Algorithm Average Rank p-Hochberg

RB-B 1.88372
BAGSM500 1.90116 0.90894
E-RB 2.21512 0.05954

(b) F-Measure

Algorithm Average Rank p-Hochberg

RUSB 1.9651
E-RB 2.0058 7.8957e-001
BAG-RB 2.0291 7.8957e-001

(c) G-Mean

Algorithm Average Rank

MultiS 1.6395
BAG 1.7209
ESM100 2.6395

(d) Acurracy

Algorithm Average Rank

RB-B 1.8488
BAG-RB 1.8532
E-RB 2.2980

(e) Combined

Table 5.13: Average ranks (Best algorithms)

146 5.6. Experimental setup and results

Algorithm Average Rank p-Hochberg

Average 1.08721
Product 1.95349 1.34e-8
Majority Voting 2.9593 2.43e-34

(a) AUC

Algorithm Average Rank p-Hochberg

Majority Voting 1.49419
Average 1.94186 3.33e-003
Product 2.56395 4.60e-012

(b) F-Measure

Table 5.14: Average ranks for Ensemble-RB Fusion Rules.

Algorithm Average Rank p-Hochberg

Average 1.11047
Product 1.91860 1.16e-007
Majority Voting 2.97093 6.23e-034

(a) AUC

Algorithm Average Rank p-Hochberg

Majority Voting 1.56395
Average 1.94186 0.01321
Product 2.49419 2.12e-009

(b) F-Measure

Table 5.15: Average ranks for Bagging-RB Fusion Rules.

algorithms in all cases. Ensemble-RB and Bagging-RB show the same
behaviour: for AUC the order of fusion rules is average, product and
majority voting, while for F-Measure the order is majority voting, average
and product. When comparing the best method with the remaining methods,
the adjusted p-values for Hochberg’s procedure are small (<0.015). Hence,
which fusion rule is used gives significant differences.

5.6.2 Base Classifiers

Decision trees are usually used as base classifiers, since they are simple and
fast to compute, and they are unstable (small variations in the training set
can result in different trees and different predictions), which contributes
to the diversity of the ensemble. This section considers the performance
of the proposed ensemble methods with other two base classifiers: nearest
neighbour (1-NN) and SVM with Gaussian kernel. Due to the high com-
putational cost of SVM classifiers, the size of all ensembles used in the
comparison of this section was set to 50.

Tables 5.16, 5.17 and 5.18 show the average ranks for, respectively,
Ensemble-RB, Bagging-RB and RB-Boost. These tables show, for AUC
and F-Measure, the average ranks of the three considered base classifiers
with the corresponding ensemble methods. Decision trees work better in
these ensembles than the other two considered alternatives: in all the ranks,
decision trees have the top position. The differences are larger for AUC
than for F-Measure.

5. Random Balance 147

Algorithm Average Rank p-Hochberg

J48 1.74419
1-NN 2.04070 0.0519
SVM 2.21512 0.0040

(a) AUC

Algorithm Average Rank p-Hochberg

J48 1.63953
1-NN 1.88953 0.1011
SVM 2.47093 9.97e-008

(b) F-Measure

Table 5.16: Average ranks of base classifiers for Ensemble-RB.

Algorithm Average Rank p-Hochberg

J48 1.72674
1-NN 2.05233 0.0328
SVM 2.22093 0.0024

(a) AUC

Algorithm Average Rank p-Hochberg

J48 1.72674
1-NN 1.91279 0.2225
SVM 2.36047 6.49e-005

(b) F-Measure

Table 5.17: Average ranks of base classifiers for Bagging-RB.

Algorithm Average Rank p-Hochberg

J48 1.27326
SVM 2.17442 3.44e-009
1-NN 2.55233 9.94e-017

(a) AUC

Algorithm Average Rank p-Hochberg

J48 1.89535
1-NN 2.01744 0.4234
SVM 2.08721 0.4167

(b) F-Measure

Table 5.18: Average ranks of base classifiers for RB-Boost.

148 5.6. Experimental setup and results

 0.88

 0.885

 0.89

 0.895

 0.9

 0.905

 0.91

 10 20 30 40 50 60 70 80 90 100

a
v
e
ra

g
e
 A

U
C

ensemble size

E-RB
BAG-RB

RB-B
 0.615

 0.62

 0.625

 0.63

 0.635

 0.64

 0.645

 0.65

 0.655

 0.66

 0.665

 10 20 30 40 50 60 70 80 90 100

a
v
e
ra

g
e
 F

-M
e
a
su

re

ensemble size

E-RB
BAG-RB

RB-B

 4

 6

 8

 10

 12

 14

 16

 18

 20

 10 20 30 40 50 60 70 80 90 100

a
v
e
ra

g
e
 r

a
n
ks

 (
A

U
C

)

ensemble size

E-RB
BAG-RB

RB-B

 6

 8

 10

 12

 14

 16

 18

 20

 10 20 30 40 50 60 70 80 90 100

a
v
e
ra

g
e
 r

a
n
ks

 (
F-

M
e
a
su

re
)

ensemble size

E-RB
BAG-RB

RB-B

Figure 5.10: Performance measures as a function of the ensemble size.

5.6.3 Ensemble Size

In all the previous experiments the ensemble size was 100. This section
considers the effect of the ensemble size in the performance. Figure 5.10
shows the performance as a function of the ensemble size. The ensemble
sizes vary from 5 to 100 in steps of size 5. The top two plots show the
average value of the performance measure (AUC or F-Measure) across all
the data sets, for Ensemble-RB, Bagging-RB and RB-Boost. As usual with
ensembles, the performance improves with size, but the improvements are
smaller as the size grows. The bottom two plots shows the performance but
using average ranks instead of the mean across all the data sets. For each
method, 20 sizes are considered (5,10,15, . . . ,100), and the average ranks
are computed for them. The values are in the interval [1,20], and smaller
values represent better performance. The average ranks are better as the
ensemble size increases.

Figure 5.11 shows six plots, each one compares a pair of methods across
the considered ensemble sizes. Each plot shows, as a function of the
ensemble size, the percentage of data sets with the best performance in

5. Random Balance 149
Resumen

Página 1

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
0%

10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Percentage of wins according to AUC

ERUSR
E-RB

Ensemble size

Resumen

Página 1

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
0%

10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Percentaje of wins according to F-Measure

ESM200
E-RB

Ensemble size

Resumen

Página 1

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
0%

10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Percentaje of wins according to AUC

BAGopB
BAG-RB

Ensemble size

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
0%

10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Percentaje of wins according to F-Measure

BAG500
BAG-RB

Ensemble size

Resumen

Página 1

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
0%

10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Percentaje of wins according to AUC

BAGopB
BAG-RB

Ensemble size

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
0%

10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Percentaje of wins according to F-Measure

BAG500
BAG-RB

Ensemble size

Resumen

Página 1

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
0%

10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Percentaje of wins according to AUC

RUSB
RB-B

Ensemble size
5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Percentaje of wins according to F-Measure

RUSB
RB-B

Ensemble size

Resumen

Página 1

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
0%

10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Percentaje of wins according to AUC

RUSB
RB-B

Ensemble size
5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Percentaje of wins according to F-Measure

RUSB
RB-B

Ensemble size

Figure 5.11: Comparison of methods as a function of the ensemble size.

terms of AUC (left plots) or F-Measure (right plots). The selected pairs are
the two methods with best average ranks in each family (tables 5.8 and 5.9).

According to the AUC, the methods based on RB have a percentage of
victories around 70%. In the left center plot, when comparing Bagging-RB
with BAGopB (Bagging with the amount of SMOTE and Undersampling
selected by cross validation), the initial percentage is smaller but it increases
to greater values with the ensemble size

For the F-Measure (right plots), Ensemble-RB and Bagging-RB are
not better than the corresponding pairs (ESM200 and BAG500), this was
expected as in tables 5.8 and 5.9 the differences for the considered pairs were
not significant. When comparing RB-Boost with RUSBoost the difference
is greater, although it decreases with the ensemble size.

5.7 Conclusion

We propose a new preprocessing technique adequate to balance datasets
within ensemble methods: Random Balance, based on the idea of varying
randomly the proportions of the classes, and applied it to design a new
ensemble method: RB-Boost. In addition to boosting the AUC, this in-

150 REFERENCES

tuitive heuristic bypasses the need to tune the sensitive class proportion
parameter, common to most methods for imbalanced classification. Despite
their simplicity, the two proposed methods have proved competitive when
compared with other state-of-the-art ensembles, including those specifically
devised for imbalanced data classification.

There are several future research lines:

• Study the performance of Random Balance in presence of several
data intrinsic characteristics which have been proven to have a strong
influence on imbalanced classification [42, 29]. Some of these prob-
lems are overlapping [51], noisy examples [7], small disjuncts [59] or
borderline examples [45]. On several occasions these problems have
been addressed with preprocessing techniques, these techniques could
be combined using the same strategy that Random Balance uses to
combine SMOTE and undersampling resulting in new methods. For
example, the resampling strategy CBO [32] has been used successfully
with small disjuncts; cleaning techniques such as ENN [60] or CNN
[26] have been used with noisy datasets; and variants of SMOTE, such
as, Safe-Level-SMOTE [8] or SPIDER [52] with borderline examples.

• Extend the ideas in this article to multiple-class unbalanced problems.

• Test other combinations of classifiers beyond the average or the weighted
average.

Acknowledgments

This work was partially supported by the project TIN2011-24046 of the
Spanish Ministry of Economy and Competitiveness. We wish to thank the
developers of Weka [27], the KEEL Experimental Analysis Framework [1]
and the donors of the different data sets.

References
[1] J. Alcala-Fdez et al. “KEEL Data-Mining Software Tool: Data Set Repository and

Integration of Algorithms and Experimental Analysis Framework”. In: Journal of
Multiple-Valued Logic and Soft Computing 17.2-3 (2011), pp. 255–287.

[2] D. Anil Kumar and V. Ravi. “Predicting credit card customer churn in banks using
data mining”. In: International Journal of Data Analysis Techniques and Strategies
1.1 (2008), pp. 4–28.

5. Random Balance 151

[3] R Barandela, RM Valdovinos, and JS Sánchez. “New applications of ensembles of
classifiers”. In: Pattern Analysis & Applications 6.3 (2003), pp. 245–256.

[4] G.E. Batista, R.C. Prati, and M.C. Monard. “A study of the behavior of several meth-
ods for balancing machine learning training data”. In: ACM SIGKDD Explorations
Newsletter 6.1 (2004), pp. 20–29.

[5] R. Batuwita and V. Palade. “microPred: effective classification of pre-miRNAs for
human miRNA gene prediction”. In: Bioinformatics 25.8 (2009), pp. 989–995.

[6] L. Breiman. “Bagging predictors”. In: Machine Learning 24 (1996), pp. 123–140.

[7] Carla E Brodley and Mark A Friedl. “Identifying Mislabeled Training Data”. In:
Journal of Artificial Intelligence Research 11 (1999), pp. 131–167.

[8] C. Bunkhumpornpat, K. Sinapiromsaran, and C. Lursinsap. “Safe-level-SMOTE:
Safe-level-synthetic minority over-sampling technique for handling the class imbal-
anced problem”. In: Pacific-Asia Conference on Knowledge Discovery and Data
Mining(PAKDD09). Vol. 5476. Lecture Notes on Computer Science. Springer-
Verlag, 2009, pp. 475–482.

[9] N.V. Chawla, N. Japkowicz, and A. Kotcz. “Editorial: special issue on learning
from imbalanced data sets”. In: ACM SIGKDD Explorations Newsletter 6.1 (2004),
pp. 1–6.

[10] N.V. Chawla et al. “SMOTE: synthetic minority over-sampling technique”. In:
Journal of Artificial Intelligence Research 16.1 (2002), pp. 321–357.

[11] N.V. Chawla et al. “SMOTEBoost: Improving prediction of the minority class in
boosting”. In: 7th European Conference on Principles and Practice of Knowledge
Discovery in Databases(PKDD 2003). 2003, pp. 107–119.

[12] David A. Cieslak and Nitesh V. Chawla. “Learning Decision Trees for Unbalanced
Data”. In: Proceedings of the 2008 European Conference on Machine Learning
and Knowledge Discovery in Databases - Part I. ECML PKDD ’08. Antwerp,
Belgium: Springer-Verlag, 2008, pp. 241–256. ISBN: 978-3-540-87478-2. DOI:
10.1007/978-3-540-87479-9_34.

[13] David A. Cieslak et al. “Hellinger distance decision trees are robust and skew-
insensitive”. In: Data Min. Knowl. Discov. 24.1 (Jan. 2012), pp. 136–158. ISSN:
1384-5810. DOI: 10.1007/s10618-011-0222-1.

[14] Janez Demsar. “Statistical Comparisons of Classifiers over Multiple Data Sets”. In:
Journal of Machine Learning Research 7 (2006), pp. 1–30.

[15] T.G. Dietterich. “Approximate statistical tests for comparing supervised classifica-
tion learning algorithms”. In: Neural computation 10.7 (1998), pp. 1895–1923.

[16] O. Dunn. “Multiple comparisons among means”. In: Journal of the American
Statistical Association 56 (1961), pp. 52–64.

[17] Wei Fan et al. “AdaCost: Misclassification Cost-Sensitive Boosting”. In: Proceed-
ings of the Sixteenth International Conference on Machine Learning. ICML ’99.
San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1999, pp. 97–105.
ISBN: 1-55860-612-2.

http://dx.doi.org/10.1007/978-3-540-87479-9_34
http://dx.doi.org/10.1007/s10618-011-0222-1

152 REFERENCES

[18] T. Fawcett. “An introduction to ROC analysis”. In: Pattern recognition letters 27.8
(2006), pp. 861–874.

[19] Joseph L. Fleiss. Statistical methods for rates and proportions. Wiley series in
probability and mathematical statistics. Applied probability and statistics. John
Wiley & Sons, 1981. ISBN: 9780471064282.

[20] A. Frank and A. Asuncion. UCI Machine Learning Repository. 2010. URL: http:
//archive.ics.uci.edu/ml.

[21] Y. Freund and R. E. Schapire. “A decision-theoretic generalization of on-line learn-
ing and an application to boosting”. In: Journal of Computer and System Sciences
55.1 (1997), pp. 119–139.

[22] Yoav Freund and Robert E. Schapire. “Experiments with a New Boosting Algo-
rithm”. In: Machine Learning, Proceedings of the Thirteenth International Confer-
ence (ICML ’96), Bari, Italy, July 3-6, 1996. 1996, pp. 148–156.

[23] M. Galar et al. “A Review on Ensembles for the Class Imbalance Problem: Bagging-,
Boosting-, and Hybrid-Based Approaches”. In: Systems, Man, and Cybernetics, Part
C: Applications and Reviews, IEEE Transactions on 42.4 (2012), pp. 463 –484.
ISSN: 1094-6977. DOI: 10.1109/TSMCC.2011.2161285.

[24] Salvador García et al. “A study on the use of non-parametric tests for analyzing the
evolutionary algorithms’ behaviour: a case study on the CEC’2005 Special Session
on Real Parameter Optimization”. In: J. Heuristics 15.6 (2009), pp. 617–644.

[25] Nicolás García-Pedrajas et al. “Class imbalance methods for translation initiation
site recognition in DNA sequences”. In: Knowl.-Based Syst. 25.1 (2012), pp. 22–34.

[26] K. Gowda and G. Krishna. “The condensed nearest neighbor rule using the con-
cept of mutual nearest neighborhood (Corresp.)” In: Information Theory, IEEE
Transactions on 25.4 (1979), pp. 488–490.

[27] Mark Hall et al. “The WEKA data mining software: an update”. In: SIGKDD Explor.
Newsl. 11.1 (Nov. 2009), pp. 10–18. ISSN: 1931-0145. DOI: 10.1145/1656274.
1656278.

[28] H. Han, W.Y. Wang, and B.H. Mao. “Borderline-SMOTE: a new over-sampling
method in imbalanced data sets learning”. In: 2005 International Conference on
Intelligent Computing (ICIC05). Vol. 3644. Lecture Notes on Computer Science.
Springer-Verlag, 2005, pp. 878–887.

[29] Haibo He and Edwardo A. Garcia. “Learning from Imbalanced Data”. In: IEEE
Trans. on Knowl. and Data Eng. 21.9 (Sept. 2009), pp. 1263–1284. ISSN: 1041-4347.
DOI: 10.1109/TKDE.2008.239. URL: http://dx.doi.org/10.1109/TKDE.
2008.239.

[30] Y. Hochberg. “A sharper Bonferroni procedure for multiple tests of significance”.
In: Biometrika 75 (1988), pp. 800–803.

[31] R.L. Iman and J.M. Davenport. “Approximations of the critical region of the fbietkan
statistic”. In: Communications in Statistics-Theory and Methods 9.6 (1980), pp. 571–
595.

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://dx.doi.org/10.1109/TSMCC.2011.2161285
http://dx.doi.org/10.1145/1656274.1656278
http://dx.doi.org/10.1145/1656274.1656278
http://dx.doi.org/10.1109/TKDE.2008.239
http://dx.doi.org/10.1109/TKDE.2008.239
http://dx.doi.org/10.1109/TKDE.2008.239

5. Random Balance 153

[32] Taeho Jo and Nathalie Japkowicz. “Class imbalances versus small disjuncts”. In:
ACM SIGKDD Explorations Newsletter 6.1 (2004), pp. 40–49.

[33] M.V. Joshi, V. Kumar, and R.C. Agarwal. “Evaluating boosting algorithms to classify
rare classes: Comparison and improvements”. In: Data Mining, 2001. ICDM 2001,
Proceedings IEEE International Conference on. IEEE. 2001, pp. 257–264.

[34] S. B. Kotsiantis and P. E. Pintelas. “Mixture of expert agents for handling imbalanced
data sets”. In: Annals of Mathematics, Computing & Teleinformatics 1.1 (2003),
pp. 46–55.

[35] M. Kubat and Matwin. “Addressing the Curse of Imbalanced Training Sets : One-
Sided Selection”. In: Proceedings of the 14th International Conference on Machine
Learning. 1997, pp. 179–186.

[36] M. Kukar and I. Kononenko. “Cost-sensitive learning with neural networks”. In:
Proceedings of the 13th European conference on artificial intelligence (ECAI-98).
Citeseer. 1998, pp. 445–449.

[37] L. Kuncheva. “A Bound on Kappa-Error Diagrams for Analysis of Classifier Ensem-
bles”. In: Knowledge and Data Engineering, IEEE Transactions on PP.99 (2011),
p. 1. ISSN: 1041-4347. DOI: 10.1109/TKDE.2011.234.

[38] L.I. Kuncheva. Combining pattern classifiers: methods and algorithms. Wiley-
Interscience, 2004.

[39] T. Warren Liao. “Classification of weld flaws with imbalanced class data”. In: Expert
Systems with Applications 35.3 (2008), pp. 1041 –1052. ISSN: 0957-4174. DOI:
10.1016/j.eswa.2007.08.044.

[40] C.X. Ling, V.S. Sheng, and Q. Yang. “Test strategies for cost-sensitive decision
trees”. In: Knowledge and Data Engineering, IEEE Transactions on 18.8 (2006),
pp. 1055–1067.

[41] Wei Liu et al. “A Robust Decision Tree Algorithm for Imbalanced Data Sets”. In:
Proceedings of the SIAM International Conference on Data Mining, SDM 2010.
2010, pp. 766–777.

[42] Victoria López et al. “An insight into classification with imbalanced data: Empirical
results and current trends on using data intrinsic characteristics”. In: Information
Sciences 250.0 (2013), pp. 113 –141. ISSN: 0020-0255. DOI: http://dx.doi.
org/10.1016/j.ins.2013.07.007. URL: http://www.sciencedirect.com/
science/article/pii/S0020025513005124.

[43] Dragos D. Margineantu and Thomas G. Dietterich. “Pruning Adaptive Boosting”.
In: Proceedings of the Fourteenth International Conference on Machine Learning
(ICML 1997). 1997, pp. 211–218.

[44] M Molinara, MT Ricamato, and F Tortorella. “Facing imbalanced classes through
aggregation of classifiers”. In: Image Analysis and Processing, 2007. ICIAP 2007.
14th International Conference on. IEEE. 2007, pp. 43–48.

[45] Krystyna Napierała, Jerzy Stefanowski, and Szymon Wilk. “Learning from im-
balanced data in presence of noisy and borderline examples”. In: Rough Sets and
Current Trends in Computing. Springer. 2010, pp. 158–167.

http://dx.doi.org/10.1109/TKDE.2011.234
http://dx.doi.org/10.1016/j.eswa.2007.08.044
http://dx.doi.org/http://dx.doi.org/10.1016/j.ins.2013.07.007
http://dx.doi.org/http://dx.doi.org/10.1016/j.ins.2013.07.007
http://www.sciencedirect.com/science/article/pii/S0020025513005124
http://www.sciencedirect.com/science/article/pii/S0020025513005124

154 REFERENCES

[46] C. Phua, D. Alahakoon, and V. Lee. “Minority report in fraud detection: classification
of skewed data”. In: ACM SIGKDD Explorations Newsletter 6.1 (2004), pp. 50–59.

[47] F. Provost and P. Domingos. “Tree induction for probability-based ranking”. In:
Machine Learning 52.3 (2003), pp. 199–215.

[48] J.R. Quinlan. C4. 5: programs for machine learning. Morgan Kaufmann, 1993.

[49] C. Seiffert et al. “RUSBoost: A hybrid approach to alleviating class imbalance”. In:
Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions
on 40.1 (2010), pp. 185–197.

[50] Paolo Soda. “A multi-objective optimisation approach for class imbalance learning”.
In: Pattern Recognition 44.8 (2011), pp. 1801–1810.

[51] Jerzy Stefanowski. “Overlapping, rare examples and class decomposition in learning
classifiers from imbalanced data”. In: Emerging Paradigms in Machine Learning.
Springer, 2013, pp. 277–306.

[52] Jerzy Stefanowski and Szymon Wilk. “Selective pre-processing of imbalanced data
for improving classification performance”. In: Data Warehousing and Knowledge
Discovery. Springer, 2008, pp. 283–292.

[53] Y. Sun et al. “Cost-sensitive boosting for classification of imbalanced data”. In:
Pattern Recognition 40 (2007), pp. 3358–3378.

[54] C.J. Van Rijsbergen. Information Retrieval. Butterworths, 1979.

[55] K. Veropoulos, C. Campbell, and N. Cristianini. “Controlling the Sensitivity of
Support Vector Machines”. In: Proceedings of the International Joint Conference
on AI. 1999, pp. 55–60.

[56] Sofia Visa and Anca Ralescu. “Issues in mining imbalanced data sets - a review
paper”. In: Proceedings of the Sixteen Midwest Artificial Intelligence and Cognitive
Science Conference. 2005, pp. 67–73.

[57] S. Wang and X. Yao. “Diversity analysis on imbalanced data sets by using ensemble
models”. In: IEEE Symposium Series on Computational Intelligence and Data
Mining(IEEE CIDM 2009). 2009, pp. 324–331.

[58] Shuo Wang and Xin Yao. “Relationships between diversity of classification ensem-
bles and single-class performance measures”. In: Knowledge and Data Engineering,
IEEE Transactions on 25.1 (2013), pp. 206–219.

[59] Gary M Weiss. “The impact of small disjuncts on classifier learning”. In: Data
Mining. Springer. 2010, pp. 193–226.

[60] D.L. Wilson. “Asymptotic properties of nearest neighbor rules using edited data”.
In: Systems, Man and Cybernetics, IEEE Transactions on 2.3 (1972), pp. 408–421.

Chapter 6

Diversity techniques improve the
performance of the best imbalance
learning ensembles

Authors Jose F Diez-Pastor; Juan J. Rodriguez; Cesar I Garcia-Osorio;
Ludmila I Kuncheva

Type Journal

Published in Information Sciences

Year Review (Minor changes).

Abstract

Many real-life problems can be described as unbalanced, where the number
of instances belonging to one of the classes is much larger than the numbers
in other classes. Examples are spam detection, credit card fraud detection or
medical diagnosis. Ensembles of classifiers have acquired popularity in this
kind of problems for their ability to obtain better results than individual clas-
sifiers. The most commonly used techniques by those ensembles specially
designed to deal with imbalanced problems are for example re-weighting,
oversampling and undersampling. Other techniques, originally intended to
increase the ensemble diversity, have not been systematically studied for
their effect on imbalanced problems. Among these are Random Oracles,
Disturbing Neighbors, Random Feature Weights or Rotation Forest. This
paper presents an overview and an experimental study of various ensemble-
based methods for imbalanced problems, the methods have been tested
in its original form and in conjunction with several diversity-increasing

155

156

techniques, using 84 imbalanced data sets from two well known repositories.
This paper shows that these diversity-increasing techniques significantly
improve the performance of ensemble methods for imbalanced problems
and provides some ideas about when it is more convenient to use these
diversifying techniques.

Index terms— Classifier ensembles, imbalanced data sets, SMOTE,
Undersampling, Rotation Forest, diversity

6. Diversity techniques improve the performance of the best imbalance learning
ensembles 157

6.1 Introduction

The class imbalance problem1 arises when one class has much more exam-
ples than the others [10].

Imbalance learning has attracted much attention because imbalanced
data sets are common in real world problems like those related to security:
spam detection [29], fraud detection [17], software defect detection [64];
biomedical data: finding the transition between coding and non-coding
DNA in genes [27], mining cancer gene expression [69]; or financial data,
for example, risk predictions in credit data [25].

Classification of imbalanced data is difficult because standard classifiers
are driven by accuracy, hence the minority class may simply be ignored
[62], besides generally all classifiers present some performance loss when
the data is unbalanced [49]. In addition, many imbalanced datasets suffer
problems related to its intrinsic characteristic. According to [44] there
are at least six of these problems: overlapping [57], lack of density and
information [65], noisy examples [8], small disjuncts [67], the significance
of borderline instances to discriminate between positive and negative classes
[47] and differences in the data distributions between training and test stages
[53].

In [23], the approaches to dealing with unbalanced datasets are sorted
into four categories2:

• The algorithm-level category encompasses modifications of existing
general learning algorithms which bias the learning toward the minority
class. Examples of this category are Hellinger Distance Decision Trees
(HDDT) [14], Class Confidence Proportion Decision Tree (CCPDT) [42]
and Significant, Positively Associated and Relatively Class Correlated
Classification Trees (SPARCCC) [61], as well as other class-size insensitive
decision trees. In other occasions misclassification costs are different for
different examples, [70] presents decision tree and Naïve Bayesian learning
methods that learns with unknown costs.

• The data-level category includes pre-processing algorithms that change
the prior distribution of the classes either by increasing the number of

1Being aware of the terminological debate about “unbalanced” versus “imbalanced”, we will use both
words interchangeably. Our reason is that a keyword look-up should be able to retrieve this study, whichever
word has been picked.

2Notice that these categories are not mutually exclusive, for example some cost-sensitive methods can be
included in the classifier ensembles category

158 6.1. Introduction

minority class examples or by reducing the size of the majority class. In
the first category of algorithms the simplest technique is to randomly add
examples, without caring about neighbors from other class or the over-
lap between classes, some examples are Oversampling [4], SMOTE [11].
Other methods creates artificial instances taking into account these issues:
Borderline-SMOTE [31], Safe-level SMOTE [9], ADASYN [32] or Cluster
Based Oversampling [38]. In the second category Random Undersampling
[3] removes random examples from the majority class and other methods
like Edited Nearest Neighbor (ENN) [68] and Tomek Links [59] are based
on data cleaning techniques.

• The cost-sensitive category contains methods that assign different costs
for each class. Examples include AdaCost [20], AdaC1, AdaC2, and AdaC3
[58].

• Classifier ensembles [40, 48] are combinations of several classifiers
which are called base classifiers or member classifiers. Ensembles often
give better results than individual classifiers. Although ensembles were
not designed to work with imbalanced data, they have been successfully
applied to this task through combination with processing techniques from
the data-level category.

According to [23], the algorithm level and cost-sensitive approaches
are more problem-dependent, whereas data level and ensemble learning
approaches based on data processing are more versatile.

Ensemble methods for imbalanced learning tackle the imbalance prob-
lem using techniques like re-weighting, oversampling and undersampling.
These preprocessing techniques attempt to train base classifiers with a less
unbalanced dataset. These preprocessing techniques not only address the
problem of imbalance, but add diversity, since each base classifier is trained
on a different version of the data set. Diversity is one of the cornerstones
of ensembles. An ideal ensemble system should have accurate individual
classifiers and at the same time their errors should be in different instances.
Several techniques have been developed to increase the diversity of an
ensemble (see Section 6.2.4). In this paper we argue that techniques spe-
cially designed to increase diversity impact the performance of imbalance
learning, significantly improving even the specific techniques.

To prove this claim, we conducted an experimental study where both
classifiers specially designed for unbalanced sets and standard classifiers

6. Diversity techniques improve the performance of the best imbalance learning
ensembles 159

were tested in its original form and in conjunction with several diversity-
increasing techniques. Finding that ensembles combined with diversity-
increasing techniques ranked better than their original counterpart, even
though the original version was specifically designed to work for imbalanced
data. We also try to provide some clues when it is more appropriate to use
diversity techniques using meta-learning, and evaluate the performance of
the techniques in the presence of noisy and borderline examples.

The rest of the paper is structured as follows: Section 6.2 presents some
background of ensemble learning, state-of-the-art techniques for imbalanced
data, and our research hypothesis concerning diversity enhancing techniques.
Section 6.3 shows the experimental study and results. Section 6.4 enumerate
each one of the findings extracted in the experimental study. and finally, in
Section 6.5 and 6.6 the conclusions and several future lines of research are
presented.

6.2 Ensemble learning for imbalanced problems

In this section, the concept of ensemble and the important of diversity
will be introduced, then the preprocessing techniques and the ensembles
methods for imbalanced problems used in this paper will be described.
Finally, several techniques to increase the diversity in ensembles will be
explained

6.2.1 Ensembles of classifiers

Ensemble of classifiers are combinations of multiple classifiers, referred
as base classifiers. Ensembles usually achieve better performance than
any of the single classifiers [40]. In order to build a good ensemble, it is
necessary not only to build good base classifiers, also the base classifiers
must be diverse, this means that for the same instance, the base classifiers
return different outputs and their errors should be in different instances.
Ensemble methods differ in the way they induce diversity between the base
classifiers. The most common approach is modifying the training set for
each member of the ensemble. In Bagging [6], each base classifier is ob-
tained from a random sample of the training data. In the resampling version
of AdaBoost [22], the data set for each subsequent ensemble member is
drawn according to a distribution of weights over the data. The weights
are modified depending on the correctness of the prediction given to the

160 6.2. Ensemble learning for imbalanced problems

example by the previous classifier. In this way, the next classifier will give
more importance to the difficult examples. MultiBoost [66] combines Ad-
aBoost with Wagging (Weighted Bagging) [5], a variant of Bagging which,
instead of creating samples from the original dataset, it randomly modifies
the weight associated to each instance.

6.2.2 Preprocessing techniques for imbalance learning

Preprocessing techniques aiming at balancing the class proportions can be
easily embedded into an ensemble. The strategies are usually to increase
the size of the minority class, to reduce the size of the majority class, or do
both at the same time. While there are many variants of such preprocessing
techniques, we will focus on:

• Random Undersampling, that is done by eliminating random ex-
amples from the majority class. A drawback of this method is that,
potentially, it can discard useful data. However, this adverse effect is
minimized when using ensembles, since instances discarded in one
iteration can remain in others. The most common implementation is to
remove as much majority instances as necessary to match the size of
the minority class. When Random Undersampling is used in this way
in the experimental study, we name it RUS in the abbreviated names.

• Random Oversampling, that creates copies of minority class in-
stances randomly chosen. This method can lead to overfitting, since it
creates copies of existing instances.

• SMOTE, that creates artificial instances for the minority class. To cre-
ate an instance from an existing one, it randomly generates a synthetic
example along the imaginary line that connects the instance with one
of its k nearest neighbors from the same class. The amount of SMOTE,
the number of generated synthetic instances, is a parameter of the
method, whose value differs from one study to another. In this paper,
we have used the two most commonly used configurations. These are
to create as much artificial instances of the minority class as needed to
double the minority class size (we call it 100% of SMOTE and we use
the abbreviation SM100 in figures and tables), and to create as much
artificial instances of the minority class as necessary to match the size
of the majority class (we simply call this SMOTE, shortened as SM).

6. Diversity techniques improve the performance of the best imbalance learning
ensembles 161

SM100 only improves the balance ratio while SM equalizes the class
proportions.

• Random Balance, that takes into account the fact that the optimal
amount of undersampling and oversampling/SMOTE is problem-specific
and has considerable influence on the performance of the classifier.
Random Balance [19] is designed to be used within an ensemble,
to solve the above problem, it relies on the randomness and repeti-
tion. Random Balance conserves the size of the dataset but varies the
class proportions in the training sample of each base classifier using
a random ratio. This includes the case where the minority class is
over-represented and the imbalance ratio is inverted. SMOTE and
Random Undersampling (resampling without replacement) are used
to respectively increase or reduce the size of the classes to achieve
the desired ratios. The procedure is simple, having a dataset S, with
minority class SP (subset of positive instances) and majority class SN
(subset of negative instances), it can be described as follows:

1. A random number between 2 and |S|−2 is obtained. This number
is going to be the new size of the majority class, newMajSize, and
accordingly the new size of the minority class, newMinSize, will
be |S|−newMajSize, so that the size of the new set, S′, will be
identical to the initial set (|S|= |S′|).

2. If newMajSize< |SN|, the new majority class, S′N , is created by
random sampling without replacement the original SN so that its
final size is |S′N|=newMajSize, and the new minority class, S′P,
is obtained from SP using SMOTE to get newMinSize−|SP| new
artificial instances.

3. Otherwise, S′P is the class created as a random sample of SP, and
S′N is the class grown by SMOTE from SN , so that the final sizes
are |S′P|= newMinSize and |S′N|= newMajSize.

6.2.3 Ensemble methods specially designed for imbalance

Sometimes ensembles not designed specifically for imbalance are used in
unbalanced problems. A very common way of doing this is to combine them
with one of the previous preprocessing techniques, for example, combining
Bagging with Undersampling as it is done in [3]. Other times the method
is specially designed to deal with unbalanced datasets. This section lists

162 6.2. Ensemble learning for imbalanced problems

some of the most prominent methods specifically designed to deal with
unbalanced.

◦ SMOTEBagging [63] is similar to Bagging except that each classifier
is built with a data set with classes of equal size. The data set in
each iteration is composed as follows. A bootstrap sample is taken
from the majority class, keeping the original size, say N. The sample
of size N for the minority class is created through a combination of
Oversampling and SMOTE. The oversampling percentage varies in
each iteration, ranging from 10% in the first iteration to 100% in the
last, always being multiple of ten. The rest of the positive instances
are generated by SMOTE.

◦ SMOTEBoost [12] is a modification of the re-weighting version of
AdaBoost.M2. After each boosting round, SMOTE is applied in
order to create new synthetic examples from the minority class. The
synthetic instances always have the same weight, the weight of the
instances in the original dataset, while the originals have weights that
are updated according to a pseudo-loss function. Those instances that
are difficult for the previous classifiers have bigger weights.

◦ RAMOBoost [13] is inspired by SMOTEBoost and ADASYN [32]
algorithms. The main difference with SMOTEBoost is the way it
creates positive instances. While SMOTE, used within SMOTEBoost,
creates instances uniformly, in RAMOBoost there exists a sampling
distribution based in the underlying data distribution. As a result, the
artificial instances are created on the difficult regions of the decision
boundary.

◦ RUSBoost [56] works similarly to SMOTEBoost. This time a Ran-
dom Undersampling is applied after each boosting round, removing
instances from the majority class. In this case, there are no new in-
stances to assign weights to. It is only necessary to normalize the
weights of the instances in the processed dataset with regard to the
total sum of weights in the original dataset.

◦ EUSBoost [24] is based on RUSBoost and it aims to improve the
original method by using evolutionary undersampling. EUSBoost also
tries to promote diversity using different subsets of majority class
instances to train each base classifier in each iteration.

6. Diversity techniques improve the performance of the best imbalance learning
ensembles 163

◦ EasyEnsemble [43] samples several subsets from the majority class,
trains an AdaBoost ensemble using repeatedly each of these subsets,
and combines the outputs of those classifiers.

◦ Random Balance-Boost [19] follows the same philosophy as SMOTE-
Boost and RUSBoost. Each base classifier is trained with a dataset
obtained through Random Balance. The number of instances removed
by undersampling is equal to the number of instances introduced by
SMOTE. As in SMOTEBoost, synthetic instances are generated with a
weight proportional to the total number of instances. The combination
of SMOTE, UnderSampling and re-weighting provides more diversity
which generally leads to better performance in ensemble learning.

6.2.4 Diversity-enhancing techniques

Diversity is essential in order to build an accurate ensemble of classifiers.
Figure 6.1 summarizes some widely used diversifying heuristics for

building classifier ensembles based on manipulating of the training data.
Diversity is naturally promoted by oversampling, undersampling or re-

weighting. Approaches which do not specifically target imbalance are often
overlooked in imbalanced learning, in spite of their marked success in
general multi-class classification or regression. Among these, the vertical
approach methods (A) and (B) are commonly used to introduce diversity
in ensembles. Here we propose that ensemble creation methods may offer
more to imbalanced learning than what has already been achieved. To this
end, we examine four further techniques illustrated in the lower part of
Figure 6.1, called diversity-enhancing techniques; these are detailed below.

We decided on the following approaches:

Guided Random Sampling. In the Random Oracle ensemble [41],
for each iteration, the instances are divided into two groups using a
random hyperplane, and then a classifier is built for each group. Ensem-
ble methods based on random partitioning the training set into several
samples are often used for scaling up classifiers in large databases.
[51].

New Attributes. Some methods, like Disturbing neighbors [45], ex-
pand the feature space with attributes that are not originally present in
the dataset. For each base classifier in the ensemble, Disturbing neigh-
bors uses N randomly selected instances, the disturbing neighbors, to

164 6.2. Ensemble learning for imbalanced problems

train a 1-NN (Nearest Neighbors) classifier, then it creates N binary at-
tributes for each instance (with value 1 if the corresponding disturbing
neighbor is the closest to the instance, 0 otherwise) and an additional
attribute whose value is the class predicted by the 1-NN classifier,
hence, the feature space is expanded with N+1 new attributes.

Random Weights. It is possible to introduce diversity by giving a
different importance/weight to every attribute for each member of
the ensemble. Random Subspaces [34] can be viewed as a special
case of this approach. A set of binary random weights is used, where
a weight of value 0 means that the attribute is not included in the
subset for the respective ensemble member. The result is that different
classifiers are constructed using different subsets of the attributes. The
Random Forest ensemble [7] is a bagging ensemble with random
trees. A random tree differs from the standard tree only by its training.
In random trees, a random subset of attributes is considered for the
splitting of each node. This can be seen as a variation of Random
Subspaces but instead of using the same subset for the whole tree the
set is different in each node. Proposed more recently, the Random
Feature Weights ensemble [46] associates a vector of weights with
each tree of the ensemble. This vector is used to modify the way in
which the merit function of the attributes is calculated. For a training
set D and a weight vector w, the new merit function for attribute
ai is defined as fw(ai,D) = wi f (ai,D), where f (ai,D) denotes the
original merit function of ai for D. Thus, the method introduces a bias
which favours the selection and use of attributes with higher associated
weight. The vector of weights is randomly drawn for each tree in the
ensemble, thereby introducing diversity. These weights are real-valued
(not just 0 and 1, as in Random Subspaces and Random Forest) so it is
possible to draw a parallel with Wagging, but using features instead of
instances.

Projections. These are frequently used to reduce the dimensional-
ity of the data. In the context of ensemble learning, projecting can
be construed as a diversifying heuristic. A well known example is
Rotation Forest [54], an ensemble method for decision trees which
uses principal component analysis (PCA) to project different groups
of attributes for each base classifier. A similar approach but using

6. Diversity techniques improve the performance of the best imbalance learning
ensembles 165

supervised projections is Boosting Projections [26, 28]. Random Pro-
jections have been used to provide an extra diversity and embed the
original set into a space of lower dimension [55]. Random Subspaces
can be also seen as a special case of Random Projections.

The preprocessing techniques surrounded by a dashed line in the upper
part of Figure 6.1 are specifically designed for dealing with imbalanced
data. Each of these techniques alone can be used for creating an ensemble
(indicated by the dashed arrows).

Here we are interested in finding out whether the preprocessing tech-
niques (a)–(d) can be enhanced by (A)–(B), as well as other diversity
heuristics (1)–(4), to produce better ensembles. Many of the techniques
can be used in combination, both within their own group (for example,
technique (d) described in 6.2.2 combines (a) with (c)) and with techniques
from different groups (subsection 6.2.3 describes some ensemble learning
methods that combine preprocessing techniques (a)–(d) with (A)–(B) sam-
pling and re-weighting techniques). In the experimental study we have used
a representative from each diversity heuristic: from (1), Random Oracle,
from (2), Disturbing neighbors, from (3), Random Feature Weights, and
from (4), Rotation Forest.

6.3 Experimental Set-up and Results

We intend to demonstrate that techniques for promoting diversity in clas-
sifier ensembles enhance the performance of bespoke state-ot-the-art en-
sembles for imbalance learning. The structure of this section is: firstly,
the ensemble methods used in the experiments, along with their basic pa-
rameters and some clarifications of its operation are listed (Section 6.3.1).
Secondly, the datasets used, along with their basic characteristics are shown
(Section 6.3.2). Then (In Section 6.3.3), will be carried out a comparison
between the ensembles and the same group of ensembles combined with the
techiques used to increase the diversity listed in Section 6.2.4. The effect of
the size ensemble is studied inf Section 6.3.4.

Some ideas about when it is more appropriate to use diversity techniques
taking into account complexity measures of the datasets are provided in
Section 6.3.5, and finally Section 6.3.6 explores the effect of Disturbing
Neigbours in presence of noisy and borderline instances.

166 6.3. Experimental Set-up and Results

Pre-processing
(change of class
proportions)

V
ER

TI
C

A
L

ap
pr

oa
ch

(i

ns
ta

nc
es

)

Ensemble
techniques

Oversampling the
minority class

Undersampling
the majority class

(a) SMOTE

(b) Random Oversampling

(c) Random undersampling (RUS)

Randomized (d) Random balance

Bootstrapping (A) Bagging

Weight -
dependent
sampling or
reweighting

(B) Boosting

Guided-random
subsampling (1) Random Oracle

Projections

Random weights

(4) Rotation Forest

(2) Disturbing neighboursNew attributes

(3) Random Feature Weights

H
O

R
IZ

O
N

TA
L

ap
pr

oa
ch

(a

tt
ri

bu
te

s)

Diversity
promoting
techniques

Figure 6.1: Ensemble diversifying heuristics based on data manipulation.

6.3.1 Ensemble methods tested in the experimental set-up

Ensembles which only use techniques like reweighing, resampling, over-
sampling and undersampling will be called basic ensembles. Figure 6.2
displays the collection of basic ensemble methods examined in this study.
Each of the following methods will be combined with each of the diversity-
enhancing techniques described in Section 6.2.4, these methods will be
called enhanced ensembles, for example we refer to RUSBoost (RUSBo) as
basic ensemble and we refer to RUSBoost combined with Disturbing Neigh-
bors (DN+RUSBo) as a enhanced ensemble. Finally ensembles using only
the diversity-enhancing techniques (no resampling or other preprocessing)
were also tested.

These basic methods can be grouped into three different categories: x)
baseline methods which are not modified in any way to cope with imbal-
anced data, y) ensemble methods especially designed to cope with imbal-
anced data, and z) baseline methods combined with preprocessing tech-
niques to improve its performance in unbalanced datasets. In these methods,
the abbreviation used contains the name of the family of ensembles (e.g. E:

6. Diversity techniques improve the performance of the best imbalance learning
ensembles 167

E-SM100

E-SM

E-RUS

E-RB

Ba

SMBa

Ba-SM100

Ba-SM

Ba-RUS

Ba-RB

ABo1

ABo2

MBo

SMBo

RAMOBo

RUSBo

RBBo

Pre-processing

a b c d A B

Ensemble

Abbreviation Name

Ensemble SMOTE 100%

Ensemble SMOTE

Ensemble RUS

Ensemble Random Balance

Bagging

SMOTEBagging

Bagging SMOTE 100%

Bagging SMOTE

Bagging RUS

Bagging Random Balance

AdaBoost. M1

AdaBoost.M2

MultiBoost

SMOTEBoost

RAMOBoost

RUSBoost

Random Balance-Boost

Type

x y z

Figure 6.2: Ensemble methods compared in this study.

Simple Ensemble, Ba: Bagging and Bo: Boosting)3, and the preprocess-
ing techniques (SM/SM100: SMOTE, RUS: Random Undersampling, RB:
Random Balance). These methods are listed below:

1. E-SM100: SMOTE is used, in each iteration, to double the size of the
minority class. The number of neighbors is 5 for all methods that use
SMOTE.

2. E-SM: SMOTE is used, in each iteration, to get a minority class of the
same size as the majority class.

3. E-RUS: Random Undersampling is used, in each iteration, to reduce
the majority class so that equal in size to that of the minority class.

4. E-RB: Radom Balance is used in each iteration.
3In a method belonging to Simple Ensemble family the dataset used to build each member of the ensemble

is built using only the preprocessing technique (The source of diversity in these ensembles is the preprocessing
method, since SMOTE, RUS and Random Balance are randomized methods that produce a different dataset
at each iteration) , while a method that is a member of the Bagging family the dataset used to build each base
classifier comes from a resampling and then the preprocessing technique.

168 6.3. Experimental Set-up and Results

5. Ba: Bagging.

6. SMBa: SMOTEBagging.

7. Ba-SM100: Bagging in which in each iteration SMOTE is used to
double the size of the minority class.

8. Ba-SM: Bagging in which in each iteration SMOTE is used to get a
minority class of the same size as the majority class.

9. Ba-RUS: Bagging in which in each iteration Random Undersampling
is used to reduce the size of the majority class to the size of the minority
class. This method is called UnderBagging in [23, 3].

10. Ba-RB: Bagging with Random Balance in each iteration.

11. ABo1: AdaBoost.M1.

12. ABo2: AdaBoost.M2.

13. MBo: MultiBoost.

14. SMBo: SMOTEBoost with the following settings: SMOTE 100% in
each iteration.

15. RAMOBo: RAMOBoost with the following settings: number of syn-
thetic instances equal to the size of the minority class, number of
neighbors used to create synthetic instances equal to 5, number of
neighbors used to compute probabilities equal to 10.

16. RUSBo: RUSBoost.

17. RBBo: Random Balance Boost.

The size of the ensembles was set to 100. Default Weka parameters
were used in all the ensemble methods provided by the library, except the
number of sub committes in Multiboost that was set to 10. In a further
section (Section 6.3.4) the effect of the size of the ensemble is studied.

The classifier used as a base classifier in all ensembles was J48, the Java
implementation of Quinlan’s C4.5 [52]. As recommended for imbalanced
data [15], it was used with Laplace smoothing at the leaves, but without
pruning and collapsing. When C4.5 is used with this configuration, it is
called C4.4 [50].

6. Diversity techniques improve the performance of the best imbalance learning
ensembles 169

Table 6.1: Characteristics of the 20 data sets from the HDDT collection. Column #E
shows the number of examples in the dataset, column #A the number of attributes, both
numeric and nominal in the format (numeric/nominal), and column IR the imbalance ratio
(the number of instances of the majority class per instance of the minority class).

Data set #E #A IR

boundary 3505 (0/175) 27.50
breast-y 286 (0/9) 2.36
cam 18916 (0/132) 19.08
compustat 13657 (20/0) 25.26
covtype 38500 (10/0) 13.02
credit-g 1000 (7/13) 2.33
estate 5322 (12/0) 7.37
german-numer 1000 (24/0) 2.33
heart-v 200 (5/8) 2.92
hypo 3163 (7/18) 19.95

Data set #E #A IR

ism 11180 (6/0) 42.00
letter 20000 (16/0) 24.35
oil 937 (49/0) 21.85
optdigits 5620 (64/0) 9.14
page 5473 (10/0) 8.77
pendigits10992 (16/0) 8.63
phoneme 5404 (5/0) 2.41
PhosS 11411 (480/0) 17.62
satimage 6430 (36/0) 9.29
segment 2310 (19/0) 6.00

6.3.2 Datasets and Tools

Two collections of data sets were used. The HDDT collection4 contains 20
binary imbalanced data sets used in [15]. Table 6.1 shows the characteristics
of this dataset collection.

The KEEL collection5 contains 66 binary imbalanced data sets (we have
used 64 of them in the experiments, because two of them were almost
identical to two in the other repository) from the repository of KEEL [1].
Datasets in the KEEL collection are not completely independent of each
other. Several of them are variants of the same original dataset. Starting with
a single multiclass dataset, several binary datasets are created by grouping
their classes in different ways. Table 6.2 shows the characteristics of this
dataset collection.

Many data sets in these two collections are available or are modifications
of data sets in the UCI Repository [2].

Weka 3.7.10 [30] was used for the experiments. The results were ob-
tained with a 5×2-fold cross validation [18].

Three criteria were used for evaluating the ensemble performance: The
F-measure [60], the Geometric Mean [39] and the Area Under the ROC
Curve (AUC) [21].

Given a test dataset, containing P examples of the positive class and N
examples of the negative class. The confusion matrix is shown in Table 6.3.

The True Positive Rate (T PR) also named Sensitivity or Recall in some
4Available at http://www.nd.edu/~dial/hddt/.
5Available at http://sci2s.ugr.es/keel/imbalanced.php.

http://www.nd.edu/~dial/hddt/
http://sci2s.ugr.es/keel/imbalanced.php

170 6.3. Experimental Set-up and Results

Table 6.2: Characteristics of the data sets from the KEEL collection. Column #E shows
the number of examples in the dataset, column #A the number of attributes, both numeric
and nominal in the format (numeric/nominal), and column IR the imbalance ratio (the
number of instances of the majority class for each instance of the minority class).

Data set #E #A IR

abalone19 4174 (7/1) 129.44
abalone9-18 731 (7/1) 16.40
cleveland-0_vs_4 177 (13/0) 12.62
ecoli-0-1-3-7_vs_2-6 281 (7/0) 39.14
ecoli-0-1-4-6_vs_5 280 (6/0) 13.00
ecoli-0-1-4-7_vs_2-3-5-6 336 (7/0) 10.59
ecoli-0-1-4-7_vs_5-6 332 (6/0) 12.28
ecoli-0-1_vs_2-3-5 244 (7/0) 9.17
ecoli-0-1_vs_5 240 (6/0) 11.00
ecoli-0-2-3-4_vs_5 202 (7/0) 9.10
ecoli-0-2-6-7_vs_3-5 224 (7/0) 9.18
ecoli-0-3-4-6_vs_5 205 (7/0) 9.25
ecoli-0-3-4-7_vs_5-6 257 (7/0) 9.28
ecoli-0-3-4_vs_5 200 (7/0) 9.00
ecoli-0-4-6_vs_5 203 (6/0) 9.15
ecoli-0-6-7_vs_3-5 222 (7/0) 9.09
ecoli-0-6-7_vs_5 220 (6/0) 10.00
ecoli-0_vs_1 220 (7/0) 1.86
ecoli1 336 (7/0) 3.36
ecoli2 336 (7/0) 5.46
ecoli3 336 (7/0) 8.60
ecoli4 336 (7/0) 15.80
glass-0-1-2-3_vs_4-5-6 214 (9/0) 3.20
glass-0-1-4-6_vs_2 205 (9/0) 11.06
glass-0-1-5_vs_2 172 (9/0) 9.12
glass-0-1-6_vs_2 192 (9/0) 10.29
glass-0-1-6_vs_5 184 (9/0) 19.44
glass-0-4_vs_5 92 (9/0) 9.22
glass-0-6_vs_5 108 (9/0) 11.00
glass0 214 (9/0) 2.06
glass1 214 (9/0) 1.82
glass2 214 (9/0) 11.59

Data set #E #A IR

glass4 214 (9/0) 15.46
glass5 214 (9/0) 22.78
glass6 214 (9/0) 6.38
haberman 306 (3/0) 2.78
iris0 150 (4/0) 2.00
led7digit-0-2-4-5-6-7-8-9_vs_1 443 (7/0) 10.97
new-thyroid1 215 (5/0) 5.14
new-thyroid2 215 (5/0) 5.14
page-blocks-1-3_vs_4 472 (10/0) 15.86
pima 768 (8/0) 1.87
shuttle-c0-vs-c4 1829 (9/0) 13.87
shuttle-c2-vs-c4 129 (9/0) 20.50
vehicle0 846 (18/0) 3.25
vehicle1 846 (18/0) 2.90
vehicle2 846 (18/0) 2.88
vehicle3 846 (18/0) 2.99
vowel0 988 (13/0) 9.98
wisconsin 683 (9/0) 1.86
yeast-0-2-5-6_vs_3-7-8-9 1004 (8/0) 9.14
yeast-0-2-5-7-9_vs_3-6-8 1004 (8/0) 9.14
yeast-0-3-5-9_vs_7-8 506 (8/0) 9.12
yeast-0-5-6-7-9_vs_4 528 (8/0) 9.35
yeast-1-2-8-9_vs_7 947 (8/0) 30.57
yeast-1-4-5-8_vs_7 693 (8/0) 22.10
yeast-1_vs_7 459 (7/0) 14.30
yeast-2_vs_4 514 (8/0) 9.08
yeast-2_vs_8 482 (8/0) 23.10
yeast1 1484 (8/0) 2.46
yeast3 1484 (8/0) 8.10
yeast4 1484 (8/0) 28.10
yeast5 1484 (8/0) 32.73
yeast6 1484 (8/0) 41.40

6. Diversity techniques improve the performance of the best imbalance learning
ensembles 171

Table 6.3: Confusion matrix in binary problems

Positive prediction Negative prediction

Positive class True Positive (TP) False Negative (FN)
Negative class False Positive (FP) True Negative (TN)

fields, is defined as T P/P, and False Positive Rate (FPR) is defined as
FP/N. The precision is defined as T P/(T P+FP).

Using these previous measures it is posible to define the F-Measure as

FMeasure = 2× precision× recall
precision+ recall

The Geometric Mean is defined as

GMean =
√

T P/P×T N/N

In this work the ROC curve is obtained from the probabilities assigned
to the instances by the classifier, each probability threshold gives a T PR
and FPR that defines a point in the curve. The AUC is computed from
Wilcoxon Rank Sum test statistic.

6.3.3 Comparison between basic and enhanced ensembles

This section will show a summary of the results for each of the basic
ensembles and their improved versions and a comparison between these
methods is performed. The summary is done by averaging, for each method
the score across the 84 data sets.

Averaging the results is not the best way to compare multiple methods,
since a big difference in a dataset can mask a general trend in the rest. To
compare multiple methods, we used average ranks [16]. Each method was
assigned a rank for each data set based on its performance, separately for
each criterion. The best method obtained rank 1, the second best obtained
rank 2, etc. When there was a tie, the ranks were shared out. For example,
if the top three methods for a given data set tied, each one of them would
receive rank (1+ 2+ 3)/3 = 2 for this data set. The ranks are averaged
across all datasets. The methods were arranged by their ranks, where the
best methods (the ones with the lowest average ranks) were at the top of
the list. Iman and Davenport’s [37] test was applied to check whether there
are any significant differences between the ranks of the compared methods.
Subsequently, Hochberg’s test [36] was carried out next to identify all
methods which were not significantly different from the winner.

172 6.3. Experimental Set-up and Results

This section of the experiments consisted of two parts:

1. Basic ensembles versus enhanced variants and enhanced variants
among themselves Each basic ensemble was compared with its 4
enhanced variants, where each variant was obtained by applying the
respective diversity-enhancing method. The average ranks were calcu-
lated using five methods (four when comparing diversity techniques
among themselves).

Moreover, due to most of the enhanced versions make use of some
type of preprocessing, average ranks were calculated using all of the
methods that use the same diversity technique. The 17 ensemble
variants and a basic ensemble that only use the diversity technique.

2. The overall winner. In one final comparison, we select the method
with best average rank for each row in figures 6.5.a, 6.6.a and 6.7.a,
and calculated the ranks anew using these best methods.

6.3.3.1 Basic ensembles versus enhanced variants and enhanced variants among
themselves.

The way in which the combination of the ensemble methods and the diver-
sity technique is performed is always the same. In each iteration a modified
training set resulting from the application of sampling, oversampling, un-
dersampling, reweighting or the combination of two of these techniques
(depending on the ensemble type) is created. This modified training set
is modified again using a diversity technique for Random Linear Oracles,
Disturbing neighbors and Rotation Forest. The method Random Feature
Weights does not modify the dataset, it uses a modified decision tree.

Some of the diversity techniques have parameters. Rotation Forest has
been used with the default parameters found in Weka package. In the case
of Disturbing Neighbors, as the authors of the method proposed, the dimen-
sions used to compute the nearest neighbor are ramdomly selected, choosing
50% of the attributes. The number of “Disturbing Neighbors" selected in
each iteration is N = 10. The Random Feature Weights implementation is
based on J48 and is used with the C4.4 configuration. The exponent value,
which control the level of randomness, was set to 1 (the value used by the
authors when combined with another methods). Random Linear Oracles do
not have any parameter.

6. Diversity techniques improve the performance of the best imbalance learning
ensembles 173

Figure 6.3: Comparison of the basic ensemble methods with their combinations with
Disturbing Neighbors and Rotation Forest. The numbers in the corners indicate the
percentage of points above or below the diagonal.

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

A
U

C
 f
o
r

th
e
 e

n
s
e
m

b
le

w
it
h
 D

is
tu

rb
in

g
 N

e
ig

h
b
o
rs

AUC for the basic ensemble

80.39%

17.37%

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

A
U

C
 f
o
r

th
e
 e

n
s
e
m

b
le

w
it
h
 R

o
ta

ti
o
n
 F

o
re

s
t

AUC for the basic ensemble

80.67%

17.65%

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

F
 f
o
r

th
e
 e

n
s
e
m

b
le

w
it
h
 D

is
tu

rb
in

g
 N

e
ig

h
b
o
rs

F for the basic ensemble

70.38%

25.84%

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

F
 f
o
r

th
e
 e

n
s
e
m

b
le

w
it
h
 R

o
ta

ti
o
n
 F

o
re

s
t

F for the basic ensemble

65.06%

34.24%

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

G
 f
o
r

th
e
 e

n
s
e
m

b
le

w
it
h
 D

is
tu

rb
in

g
 N

e
ig

h
b
o
rs

G for the basic ensemble

63.80%

32.42%

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

G
 f
o
r

th
e
 e

n
s
e
m

b
le

w
it
h
 R

o
ta

ti
o
n
 F

o
re

s
t

G for the basic ensemble

55.18%

44.12%

174 6.3. Experimental Set-up and Results

Figure 6.4: Average scores in terms of the AUC (a) F-Measure (b) and G-Mean (c). The
intensity of the cell reflects the score. Cells with higher values (better) are filled in light
gray and those with lower values (worse) are filled in dark gray.

N
o
rm

a
l

(1
)

O
ra

c
le

s

(2
)

D
is

tu
rb

in
g

N
e
ig

h
b
o
u
rs

(3
)

R
F

W

(4
)

R
o
ta

ti
o
n

F
o
re

s
t

RBBo

RUSBo

RAMOBo

SMBo

MBo

ABo2

ABo1

Ba-RB

Ba-RUS

Ba-SM

Ba-SM100

SMBa

Ba

E-RB

E-RUS

E-SM

E-SM100

Ensemble

A
v
e
ra

g
e
 r

a
n
k
s

0.8965 0.8982 0.8786 0.9157

0.8797 0.8806 0.8810 0.8770 0.8894

0.8729 0.8946 0.8864 0.8812 0.8939

0.8932 0.9030 0.9062 0.8999 0.9112

0.8987 0.9051 0.9041 0.9055 0.9130

0.8932 0.9029 0.9052 0.9000 0.9149

0.8923 0.9053 0.9026 0.9076 0.9148

0.8990 0.9061 0.9073 0.9070 0.9162

0.9005 0.9071 0.9068 0.9084 0.9141

0.8984 0.9049 0.9086 0.9028 0.9119

0.9039 0.9084 0.9082 0.9084 0.9142

0.8815 0.8843 0.8849 0.8840 0.8883

0.8919 0.8992 0.8992 0.8987 0.9131

0.8862 0.8885 0.8899 0.8883 0.8934

0.8973 0.9027 0.9029 0.9031 0.9138

0.8985 0.9035 0.9038 0.9050 0.9138

0.9006 0.9045 0.9083 0.9023 0.9126

0.9028 0.9038 0.9053 0.9048 0.9117

N
o
rm

a
l

(1
)

O
ra

c
le

s

(2
)

D
is

tu
rb

in
g

N
e
ig

h
b
o
u
rs

(3
)

R
F

W

(4
)

R
o
ta

ti
o
n

F
o
re

s
t

RBBo

RUSBo

RAMOBo

SMBo

MBo

ABo2

ABo1

Ba-RB

Ba-RUS

Ba-SM

Ba-SM100

SMBa

Ba

E-RB

E-RUS

E-SM

E-SM100

Ensemble

A
v
e
ra

g
e
 r

a
n
k
s

0.6000 0.5969 0.5932 0.5896

0.6353 0.6300 0.6321 0.6187 0.6202

0.6298 0.6473 0.6386 0.6239 0.6331

0.5469 0.5682 0.5752 0.5631 0.5821

0.6425 0.6578 0.6565 0.6495 0.6607

0.5854 0.5808 0.5878 0.5731 0.5633

0.6412 0.6598 0.6527 0.6529 0.6699

0.6292 0.6319 0.6345 0.6212 0.6161

0.6487 0.6622 0.6597 0.6458 0.6583

0.5781 0.5986 0.6127 0.5969 0.6141

0.6520 0.6643 0.6657 0.6568 0.6609

0.6218 0.6206 0.6192 0.6101 0.6100

0.6049 0.6316 0.6289 0.6092 0.6246

0.6190 0.6168 0.6169 0.6097 0.6021

0.6267 0.6490 0.6458 0.6312 0.6491

0.6375 0.6553 0.6558 0.6396 0.6631

0.6449 0.6569 0.6667 0.6473 0.6653

0.6482 0.6611 0.6622 0.6496 0.6639

N
o
rm

a
l

(1
)

O
ra

c
le

s

(2
)

D
is

tu
rb

in
g

N
e
ig

h
b
o
u
rs

(3
)

R
F

W

(4
)

R
o
ta

ti
o
n

F
o
re

s
t

RBBo

RUSBo

RAMOBo

SMBo

MBo

ABo2

ABo1

Ba-RB

Ba-RUS

Ba-SM

Ba-SM100

SMBa

Ba

E-RB

E-RUS

E-SM

E-SM100

Ensemble

A
v
e
ra

g
e
 r

a
n
k
s

0.6692 0.6753 0.6691 0.6434

0.7400 0.7321 0.7365 0.7236 0.7203

0.7846 0.7922 0.7884 0.7685 0.7886

0.8282 0.8407 0.8439 0.8371 0.8489

0.8097 0.8161 0.8155 0.8011 0.8133

0.6531 0.6402 0.6506 0.6333 0.6148

0.7926 0.7978 0.7965 0.7806 0.7962

0.7115 0.7045 0.7089 0.6930 0.6800

0.7588 0.7667 0.7642 0.7405 0.7636

0.8314 0.8414 0.8453 0.8403 0.8426

0.7812 0.7893 0.7887 0.7727 0.7824

0.7060 0.7008 0.6997 0.6885 0.6866

0.7004 0.7106 0.7139 0.6877 0.6896

0.7000 0.6938 0.6953 0.6848 0.6769

0.7256 0.7337 0.7354 0.7159 0.7198

0.7384 0.7446 0.7484 0.7285 0.7405

0.8117 0.8135 0.8259 0.8123 0.8020

0.7419 0.7502 0.7512 0.7384 0.7457

(a) (b) (c)

Figure 6.3 shows a comparison of the basic ensemble methods with the
same methods augmented with Disturbing Neighbors (graphs at the left)
or Rotation Forest (at the right). There are three rows of graphs, one for
each performance measure. Each point in the graph corresponds to a pair
of basic ensemble method and dataset. The x coordinate is the value of the
performance measure for the basic ensemble while the y coordinate is the
value for that method combined with the diversity technique. Points above
the diagonal are the cases when the combination is better than the basic
ensemble. The graphs also show the percentage of points above and below
the diagonal. In the six graphs the majority of points are above the diag-
onal. Nevertheless, the performance measures show different behaviours,
specially for Rotation Forest: for AUC the advantage of Rotation Forest is
clear. For F-measure and G-mean, although the majority of the points are
above the diagonal, there are some points were Rotation Forest is clearly
worse. These points are relatively few, if we consider that each graph has
1428 points (17 basic ensemble methods multiplied by 84 datasets).

Figure 6.4 shows the average scores across the 84 datasets for the AUC,
F-Measure and G-Mean. The way to interpret the tables is as follows: Each
line, from the second onwards, contains the values of a basic ensemble and

6. Diversity techniques improve the performance of the best imbalance learning
ensembles 175

Figure 6.5: Average Ranks per row (a) and column (b) (AUC). The best method in each
row (a) or in each column (b) has it rank in brackets. Those methods that are equivalent to
the best one at significance 0.05 are delimited in parentheses.

N
o
rm

a
l

(1
)

O
ra

c
le

s

(2
)

D
is

tu
rb

in
g

N
e
ig

h
b
o
u
rs

(3
)

R
F

W

(4
)

R
o
ta

ti
o
n

F
o
re

s
t

RBBo

RUSBo

RAMOBo

SMBo

MBo

ABo2

ABo1

Ba-RB

Ba-RUS

Ba-SM

Ba-SM100

SMBa

Ba

E-RB

E-RUS

E-SM

E-SM100

Ensemble

A
v
e
ra

g
e
 r

a
n
k
s

2.554 2.679 3.381 [1.387]

3.298 2.810 3.107 3.476 [2.310]

4.185 [1.929] 2.887 3.643 (2.357)

4.494 (2.720) (2.357) 3.143 [2.286]

4.571 2.631 3.048 2.875 [1.875]

4.548 2.720 2.631 3.280 [1.821]

4.702 2.720 3.327 2.601 [1.649]

4.524 2.863 2.732 2.827 [2.054]

4.506 2.679 3.089 2.732 [1.994]

4.179 (2.702) (2.512) 3.143 [2.464]

4.274 (2.685) 2.940 2.887 [2.214]

3.518 (2.869) (2.887) (3.131) [2.595]

4.417 2.774 3.131 2.923 [1.756]

3.744 (2.726) (2.804) 3.262 [2.464]

4.286 2.804 3.083 2.857 [1.970]

4.339 2.940 2.976 2.845 [1.899]

3.929 2.940 [2.208] 3.327 (2.595)

3.732 3.095 (2.786) 3.173 [2.214]

N
o
rm

a
l

(1
)

O
ra

c
le

s

(2
)

D
is

tu
rb

in
g

N
e
ig

h
b
o
u
rs

(3
)

R
F

W

(4
)

R
o
ta

ti
o
n

F
o
re

s
t

RBBo

RUSBo

RAMOBo

SMBo

MBo

ABo2

ABo1

Ba-RB

Ba-RUS

Ba-SM

Ba-SM100

SMBa

Ba

E-RB

E-RUS

E-SM

E-SM100

Ensemble

A
v
e
ra

g
e
 r

a
n
k
s

11.119 11.435 13.167 [6.762]

13.369 15.446 16.101 15.220 15.720

14.488 12.756 14.756 14.137 13.798

10.345 10.345 9.220 10.560 10.256

7.583 (7.911) (8.054) (7.851) (7.780)

9.536 (8.131) (8.024) 9.000 (7.155)

10.298 (8.095) 9.464 (7.077) (7.494)

7.500 (6.762) (6.607) (6.667) (6.952)

7.280 (6.976) (7.280) (6.173) (7.964)

8.083 9.095 (7.988) 9.304 10.089

(5.232) [6.583] [6.452] [6.119] (8.506)

12.179 14.226 13.946 14.196 14.804

9.744 9.405 10.000 9.214 (7.351)

10.905 13.000 12.214 12.839 13.542

7.607 (7.833) (7.976) (7.583) (7.524)

(6.839) (7.470) (7.625) (6.857) (7.256)

(6.815) (8.524) (7.137) 8.423 9.893

[5.196] (7.321) (6.720) (6.613) (8.155)

(a) (b)

the enhanced versions of this ensemble. The column indicates the diversity-
enhancing strategy used. So, for example the intersection of column RFW
and row Ba contains the scores of Bagging combined with Random Feature
Weights. Ensembles using only the diversity-enhancing techniques (no
resampling or other preprocessing) are shown in the first row. The full table
of results can be consulted in the supplementary material6. For the AUC
it is clear that enhanced methods, specially those that use Rotation Forest
obtain better average results. One trend that also happens when considering
the F-Measure. For the G-Mean, the best average results are obtained by
methods that use Random Undersampling as a preprocessing technique
(Ba-RUS and E-RUS). For this measure, although the basic methods are
improved with the diversity techniques, the selection of the basic ensemble
method (row) has more influence than the diversity-enhancing technique
(column).

6https://github.com/joseFranciscoDiez/research/wiki/Supplementary-Material

https://github.com/joseFranciscoDiez/research/wiki/Supplementary-Material

176 6.3. Experimental Set-up and Results

Figure 6.6: Average Ranks per row (a) and column (b) (F-Measure). The best method
in each row (a) or in each column (b) has it rank in brackets. Those methods that are
equivalent to the best one at significance 0.05 are delimited in parentheses.

N
o
rm

a
l

(1
)

O
ra

c
le

s

(2
)

D
is

tu
rb

in
g

N
e
ig

h
b
o
u
rs

(3
)

R
F

W

(4
)

R
o
ta

ti
o
n

F
o
re

s
t

RBBo

RUSBo

RAMOBo

SMBo

MBo

ABo2

ABo1

Ba-RB

Ba-RUS

Ba-SM

Ba-SM100

SMBa

Ba

E-RB

E-RUS

E-SM

E-SM100

Ensemble

A
v
e
ra

g
e
 r

a
n
k
s

(2.411) (2.542) (2.738) [2.310]

(2.833) (2.810) [2.762] 3.661 (2.935)

3.476 [2.232] 2.827 3.607 2.857

4.298 2.845 2.643 3.077 [2.137]

3.923 [2.619] (2.679) (3.060) (2.720)

(2.964) (2.756) [2.500] 3.530 3.250

4.167 (2.589) 3.202 2.917 [2.125]

3.405 (2.714) [2.702] 3.351 (2.827)

3.815 (2.536) (2.845) 3.357 [2.446]

4.244 3.006 (2.536) 2.988 [2.226]

3.905 (2.685) [2.530] (3.113) (2.768)

(2.899) (2.798) [2.518] 3.756 (3.030)

3.833 [2.476] (2.607) 3.542 (2.542)

(2.851) (2.786) [2.565] 3.524 3.274

3.917 (2.548) (2.696) 3.470 [2.369]

3.869 2.744 (2.577) 3.619 [2.190]

3.815 2.958 (2.435) 3.595 [2.196]

3.815 (2.685) (2.530) 3.595 [2.375]

N
o
rm

a
l

(1
)

O
ra

c
le

s

(2
)

D
is

tu
rb

in
g

N
e
ig

h
b
o
u
rs

(3
)

R
F

W

(4
)

R
o
ta

ti
o
n

F
o
re

s
t

RBBo

RUSBo

RAMOBo

SMBo

MBo

ABo2

ABo1

Ba-RB

Ba-RUS

Ba-SM

Ba-SM100

SMBa

Ba

E-RB

E-RUS

E-SM

E-SM100

Ensemble

A
v
e
ra

g
e
 r

a
n
k
s

12.369 13.440 12.060 11.917

9.226 11.137 11.268 11.536 12.149

10.286 10.202 11.054 10.994 11.137

13.137 13.208 13.214 13.101 12.702

8.304 (8.429) (8.131) (7.982) (8.077)

10.911 11.768 11.375 11.792 13.232

(8.113) (7.851) (8.321) (6.714) (6.810)

(8.155) (8.458) (8.333) 8.863 9.077

(6.875) (6.613) (7.155) (7.137) (7.155)

11.554 11.708 11.149 11.315 10.911

(6.565) (7.113) (6.381) (6.274) (7.185)

8.982 10.875 10.756 11.089 11.750

11.518 10.250 10.881 11.185 9.613

9.518 11.411 11.256 11.250 12.607

9.179 (8.018) (8.387) 8.476 (7.238)

(7.821) (7.310) (7.381) (7.577) [5.929]

(6.726) (7.911) [6.185] (7.488) (7.381)

[6.131] [6.369] (6.333) [6.167] (6.131)

(a) (b)

Figures 6.5, 6.6 and 6.7 show the average ranks calculated from the area
under the curve, the F-Measure and the G-Mean, respectively.

The structure of the three figures is the same, on the left, the ranks
are calculated by rows. The possible ranks were from 1 to 5 (the basic
ensemble method and its four combinations with diversity techniques) or
1 to 4 when the diversity techniques are not combined with any other
ensemble or preprocessing technique. Again, rank 1 would correspond
to the best alternative, and rank 5, to the worst. The intensity of the cell
reflects the average rank. Cells with lower ranks (better) are filled in light
gray and those with higher ranks (worse) are filled in dark gray. It is easy to
see that, in general, the methods that use a diversity enhancing techniques
perform better than those without.

The best method in each row has it ranking in brackets. Those methods
that are equivalent to the best one at significance 0.05 (Hochberg’s test [36])
are delimited in parentheses.

6. Diversity techniques improve the performance of the best imbalance learning
ensembles 177

Figure 6.7: Average Ranks per row (a) and column (b) (G-Mean). The best method in each
row (a) or in each column (b) has it rank in brackets. Those methods that are equivalent to
the best one at significance 0.05 are delimited in parentheses.

N
o
rm

a
l

(1
)

O
ra

c
le

s

(2
)

D
is

tu
rb

in
g

N
e
ig

h
b
o
u
rs

(3
)

R
F

W

(4
)

R
o
ta

ti
o
n

F
o
re

s
t

RBBo

RUSBo

RAMOBo

SMBo

MBo

ABo2

ABo1

Ba-RB

Ba-RUS

Ba-SM

Ba-SM100

SMBa

Ba

E-RB

E-RUS

E-SM

E-SM100

Ensemble

A
v
e
ra

g
e
 r

a
n
k
s

[2.280] (2.304) (2.536) 2.881

(2.762) (2.762) [2.690] 3.708 3.077

3.298 [2.387] 2.875 3.988 (2.452)

4.369 (2.595) (2.643) 3.137 [2.256]

3.577 [2.476] (2.702) 3.679 (2.565)

(2.488) 2.958 [2.321] 3.554 3.679

3.619 [2.446] (2.940) 3.500 (2.494)

(2.833) (2.857) [2.488] 3.482 3.339

3.363 [2.298] (2.798) 4.012 (2.530)

3.982 [2.649] (2.690) (2.762) (2.917)

3.500 [2.506] (2.613) 3.685 (2.696)

(2.708) (2.714) [2.649] 3.768 (3.161)

3.262 (2.476) [2.405] 3.673 3.185

(2.649) (2.786) [2.565] 3.595 3.405

3.536 (2.560) [2.446] 3.625 (2.833)

3.393 (2.744) [2.542] 3.655 (2.667)

3.054 3.101 [2.185] 3.107 3.554

3.708 (2.637) [2.363] 3.607 (2.685)

N
o
rm

a
l

(1
)

O
ra

c
le

s

(2
)

D
is

tu
rb

in
g

N
e
ig

h
b
o
u
rs

(3
)

R
F

W

(4
)

R
o
ta

ti
o
n

F
o
re

s
t

RBBo

RUSBo

RAMOBo

SMBo

MBo

ABo2

ABo1

Ba-RB

Ba-RUS

Ba-SM

Ba-SM100

SMBa

Ba

E-RB

E-RUS

E-SM

E-SM100

Ensemble

A
v
e
ra

g
e
 r

a
n
k
s

15.173 15.298 14.500 15.452

10.881 12.482 12.339 12.274 12.565

8.583 8.726 8.982 9.339 8.530

(5.994) (5.054) (5.107) (4.661) [3.577]

(4.804) (4.357) (4.726) (4.923) (4.030)

13.946 15.089 14.446 14.887 16.339

(6.411) (5.857) 6.774 5.976 (5.411)

10.821 11.411 11.167 11.696 12.387

8.351 7.673 8.667 8.935 7.833

[4.720] [4.137] [4.244] [3.327] (3.994)

(5.708) (5.506) (5.643) 6.131 6.315

12.161 13.554 13.577 13.446 13.798

13.387 13.167 13.155 13.673 12.863

13.185 14.601 14.375 13.988 14.786

11.012 10.458 10.423 10.512 10.113

9.310 8.893 8.774 9.077 8.125

(5.095) (6.006) (4.720) (5.202) 6.315

8.631 8.857 8.583 8.452 8.565

(a) (b)

Note that there are no entries in parentheses in the first column in Fig-
ure 6.5.a. This means that, for the AUC, all basic ensembles perform
significantly worse than the best enhanced variant. For the F-Measure and
G-Mean criteria, improvement does not happen for all the methods but it is
clearly noticeable for the methods of interest, the best methods according
to this measure.

The way to know which are the best basic ensembles is through the
average ranks calculated column-wise instead of row-wise, on the first
column in the right table (figures 6.5.b, 6.6.b and 6.7.b)). Again the best
method in each column has it rank in brackets.

The best basic methods according the F-Measure are RBBo, Ba-RB,
RUSBo, and Ba-SM and these methods are clearly improved when com-
bined with Rotation Forest strategy, as seen in Figure 6.6.a.

For average ranks computed using G-Mean, the top methods are Ba-RUS,
E-RB and RUSBo and these methods are improved when combined with

178 6.3. Experimental Set-up and Results

Table 6.4: Average ranks for best methods. a) According to the AUC b) According to the
F-Measure c) According to the G-Mean. The combination of diversity techniques with
other ensemble methods will be named using the prefix O in the case of Random Linear
Oracles, DN for Disturbing neighbors and RF for Rotation Forest.

(a) AUC (b) F-measure (c) G-Mean

Method Rank

Rotation Forest 6.774
RF+Ba-SM100 6.929
RF+Ba 7.155
RF+RAMOBo 7.256
RF+ABo2 7.506
RF+SMBa 7.542
RF+SMBo 7.679
RF+E-RB 7.780
RF+Ba-SM 7.940
RF+RBBo 8.304
RF+Ba-RB 8.458
DN+RUSBo 9.536
RF+Ba-RUS 10.125
RF+E-RUS 10.280
RF+MBo 13.482
O+E-SM 13.780
RF+ABo1 14.780
RF+E-SM100 15.696

Method Rank

RF+RAMOBo 6.250
RF+RBBo 6.375
RF+SMBa 6.946
RF+Ba-SM 7.375
DN+Ba-RB 7.512
RF+RUSBo 7.577
RF+SMBo 7.744
DN+Ba-SM100 9.012
O+E-RB 9.107
O+ABo2 10.679
RF+Ba-RUS 10.762
O+E-SM 10.857
DN+ABo1 11.214
DN+E-SM100 11.518
DN+MBo 11.738
Rotation Forest 11.857
DN+Ba 11.935
RF+E-RUS 12.542

Method Rank

O+Ba-RUS 4.607
DN+RUSBo 4.750
RF+E-RUS 4.768
O+E-RB 4.798
O+Ba-RB 5.982
O+SMBa 6.417
O+Ba-SM 8.214
DN+RBBo 8.768
DN+RAMOBo 8.833
O+E-SM 8.923
DN+SMBo 10.560
DN+Ba-SM100 11.232
DN+E-SM100 12.244
DN+ABo2 13.107
DN+ABo1 13.530
DN+MBo 14.399
DN+Ba 14.464
Random Oracles 15.405

Random Oracles and Disturbing Neighbors.

6.3.3.2 The overall winner.

A new average rank has been calculated from the best combinations in each
row in figures 6.5.a, 6.6.a and 6.7.a.

The results are shown in Table 6.4. The classic Rotation Forest on its
own, alongside several methods combined with Rotation Forest monopolize
the best positions in the AUC table.

For the F-Measure, the basic Rotation Forest does not achieve a good po-
sition, although various combinations of Rotation Forest with other ensem-
bles still occupy the top positions. The best combinations use oversampling
strategies trying to obtain more balance.

This difference may be due to the fact that these two measures consider
different aspects: the AUC only takes into account the probabilities given
by the classifier for each instance, while the F-Measure takes into account
whether the instances are correctly labeled or not. One classifier could
achieve the maximum possible AUC and simultaneously the minimum
F-Measure, that happens when none of the instances of the positive class

6. Diversity techniques improve the performance of the best imbalance learning
ensembles 179

are correctly labeled, but the probabilities assigned to the instances of the
positive class are higher than the probabilities of instances belonging to the
negative class. This could be the reason why balancing strategies have less
impact when considering the AUC as an evaluation measure.

For the G-Mean, there is no clear trend. Although it seems that this time
ensembles enhanced with Random Linear Oracles and Disturbing neighbors
outperform those enhanced with Rotation Forest.

6.3.4 Ensemble size.

In the results presented until now, the ensemble size was 100. Neverthe-
less, different sizes can be more adequate for different ensemble methods.
In [23] two ensemble sizes were considered, 10 and 40, and some ensemble
methods have better results with a smaller size.

In order to study the behaviour of this size, the five non-enhanced meth-
ods with best ranks in Figures 6.5.b, 6.6.b and 6.7.b were selected for each
performance measure. For the selected methods, experiments were carried
out using the values 10, 20, 30, . . . , 100 as for the ensemble size. For each
ensemble method, the ten considered sizes were compared using average
ranks. Figures 6.8.a–c show these average ranks for the three measures.
Each graph has five lines, one for each considered ensemble method. The
values in the lines are in the range [1,10], as they are average ranks from 10
configurations.

In general, bigger ensemble sizes give better average ranks. Then, using
100 for the ensemble size instead of a smaller value is justified. There is one
clear exception, the behaviour of RUSBo for the G-mean, for this method
the best sizes are 20 and 30. Interestingly, this method does not have this
behaviour for AUC and F-measure.

Given the unsual behaviour of RUSBo with G-mean, its performance
with the diversity-enhancing methods was analysed. Figures 6.8.d shows,
for the considered ensemble sizes, the average ranks of the five RUSBo
ensemble configurations. As there are five configurations, the average ranks
are in [1,5]. The behaviour is rather uniform: for instance, for all ensemble
sizes, DN+RUSBo has better rank than RUSBo and RUSBo is better than
RF+RUSBo. Hence, the possibility of improving an ensemble method with
a diversity-enhancing method is not restricted to a particular ensemble size.

180 6.3. Experimental Set-up and Results

 3

 4

 5

 6

 7

 8

 9

 10

 10 20 30 40 50 60 70 80 90 100

a
v
e

ra
g

e
 r

a
n

k
s

ensemble size

(a) AUC

RBBo
RUSBo

BAG-SM
BAG-RB

RAMOBo

 3

 4

 5

 6

 7

 8

 9

 10

 10 20 30 40 50 60 70 80 90 100

a
v
e

ra
g

e
 r

a
n

k
s

ensemble size

(b) F-measure

RBBo
RUSBo

BAG-SM
BAG-RB

RAMOBo

 3

 4

 5

 6

 7

 8

 9

 10

 10 20 30 40 50 60 70 80 90 100

a
v
e

ra
g

e
 r

a
n

k
s

ensemble size

(c) G-mean

BAG-RUS
RUSBo
E-RUS

BAG-RB
E-RB

 1

 1.5

 2

 2.5

 3

 3.5

 4

 10 20 30 40 50 60 70 80 90 100

a
v
e

ra
g

e
 r

a
n

k
s

ensemble size

(d) G-mean for RUSBo

RUSBo
O+RUSBo

DN+RUSBo
RFW+RUSBo

RF+RUSBo

Figure 6.8: Average ranks for different ensemble sizes.

6.3.5 Trying to predict when to apply diversity techniques

In the majority of the cases the diversity-enhancing technique improves
the basic ensemble method, but as this improvement is not guaranteed, in
this section a study is performed that attempts to relate the meta-feature of
dataset with the convenience of whether to apply or not the techniques to
increase diversity.

The meta-features were obtained using the data complexity library7

(DCoL). This software computes the list of fourteen features shown in
Table 6.6, which are designed to characterize the complexity of data sets
for supervised learning and that were first defined in [35, 33].

In order to learn the relationship between meta-features and the best
combination of ensemble and diversity technique, three datasets, one per
performance measure, were built with the following attributes:

1. The fourteen features that characterize the dataset.

2. The name of the basic ensemble.
7This software is available at http://dcol.sourceforge.net.

http://dcol.sourceforge.net.

6. Diversity techniques improve the performance of the best imbalance learning
ensembles 181

Table 6.5: Meta-features

ID Measure ID Measure

F1 Maximum Fisher’s discriminant ra-
tio

L3 Nonlinearity of a linear classifier

F1v Directional-vector maximum
Fisher’s discriminant ratio

N1 Fraction of points on the class
boundary

F2 Overlap of the per-class
bounding boxes

N2 Ratio of average intra/inter class
nearest neighbor distance

F3 Maximum (individual)
feature efficiency

N3 Leave-one-out error rate of the one-
nearest neighbor classifier

F4 Collective feature efficiency N4 Nonlinearity of the one-nearest
neighbor classifier

L1 Minimized sum of the error distance
of a linear classifier

T 1 Fraction of maximum covering
spheres

L2 Training error of a linear classifier T 2 Average number of points per di-
mension

3. The name of the technique used to increase the diversity.

4. And the class, which encodes if, for the given dataset (the one from
which the first fourteen features were obtained), the combination of
the ensemble and the diversity technique gives better results than the
ensemble alone. The value of this attribute depends on the performance
measure, and hence is usually different in each of the three datasets.
If it is ‘yes’, the combination of diversity technique and ensemble
give better results (measured in terms of the AUC, the G-mean or the
F-measure) than using the ensemble alone, on the contrary, its value is
‘no’.

First we want to know if it is possible to establish any relationship
between the meta-features and the fact that the diversity technique improves
the ensemble. To do this, we compared the performance of a weak classifier,
that just predicts the mode of the class, with others much stronger, as J48
and Rotation Forest. Results are listed in Table 6.6.

The statistical improvement obtained by using a classifier as J48 or
Rotation Forest rather than simply predicting the mode is an indication that
there is a relationship between the meta-features of a dataset and the fact
that the combination of a diversity technique with an ensemble can give
better results than the ensemble alone.

Next step is to try to learn this relationship and extract some general
rules that could help us to find if a diversity technique will improve a basic
ensemble method for a given dataset. We use HotSpot [30] to learn this set

182 6.3. Experimental Set-up and Results

Table 6.6: Success percentage of the three classifiers evaluated on three meta-learning
datasets (the symbol ◦ indicates the cases where there strong classifier is statistically better
than the mode)

Dataset Mode J48 Rotation
Forest

Metadata for AUC 78.78 78.41 84.02 ◦
Metadata for F-measure 65.00 72.97 ◦ 78.92 ◦
Metadata for G-mean 56.29 68.26 ◦ 76.56 ◦

of rules in a tree structure, they identify for which meta-features there is a
high probability that a certain diversity technique improves the ensemble.
As well, this rule could help us to discard diversity techniques since they do
not give any improvement to the ensemble used alone.

The following are the rules found for the dataset where the improvement
is measure in terms of the AUC:

Class=yes (78.78% [4500/5712])
F2 > 0.0008 (84.09% [1601/1904])

N1 <= 0.448 (86.65% [1532/1768])
N3 <= 0.304 (86.65% [1532/1768])

F1v <= 1.235 (82.46% [1514/1836])
N1 <= 0.448 (84.79% [1499/1768])
N3 <= 0.304 (84.79% [1499/1768])

The way of interpreting this rule is the following, there are 4500 instances
out of 57128 for which the diversity technique improves the ensemble (that
is in 78.78% of the instances). But the percentage is even bigger (86.65%)
if we consider only those instances corresponding with datasets for which
F2 is bigger than 0.0008 and N1 lower than 0.448. So the argument in
favor of using diversity techniques together with ensembles is stronger for
datasets with values of F2 and N1 in these ranges. With the dataset created
using the F-Measure the following rules were obtained:

85712 instances: = 17 ensemble methods × 4 diversity techniques × 84 datasets

6. Diversity techniques improve the performance of the best imbalance learning
ensembles 183

Class=yes (65% [3713/5712])
F1v <= 0.657 (78.98% [1289/1632])

F2 <= 0.271 (80.75% [1263/1564])
L1 > 0.143 (82.15% [1229/1496])
T2 <= 1250 (82.15% [1229/1496])

N2 <= 0.634 (80.75% [1263/1564])
L1 > 0.143 (82.15% [1229/1496])
T2 <= 1250 (82.15% [1229/1496])

F2 > 0.0008 (72.64% [1383/1904])
F1 > 0.185 (76.53% [1249/1632])
F2 <= 0.664 (76.23% [1244/1632])

That is, considering all datasets, the instances corresponding with config-
urations in which diversity improves the ensembles alone are 65% (improve-
ment considering the F-measure). If we consider only dataset for which F1v
is less than 0.657 the percentage increase to 78.98%. If the dataset has also
a F2 value lower than 0.271, there is an extra increase to 80.75%. The per-
centage is 82.15 if we further restrict the dataset considering only those that
have also a L1 greater than 0.143 or a T 2 value lower or equal to 1250. So if
we have a new dataset with values of F1v, F2, L1 and T 2 verifying this in-
equalities, we better do not use the ensemble alone, but better combined with
a diversity technique (at least is the performance measure we want to im-
prove is the F-measure). The rules for the dataset created using the G-Mean

are:

Class=yes (56.29% [3215/5712])
F1v <= 0.657 (67.34% [1099/1632])

F2 <= 0.271 (68.41% [1070/1564])
N2 <= 0.634 (68.41% [1070/1564])

L1 > 0.287 (65.88% [1344/2040])
F3 <= 0.809 (69.49% [1323/1904])

N1 <= 0.372 (73.4% [1098/1496])
T2 > 15.385 (75.28% [1075/1428])
N4 <= 0.356 (74.44% [1063/1428])

N3 <= 0.258 (73.4% [1098/1496])
T2 > 15.385 (75.28% [1075/1428])
N4 <= 0.356 (74.44% [1063/1428])

N1 <= 0.365 (69.12% [1081/1564])
F1v <= 25.483 (71.99% [1077/1496])
T1 > 0.21 (71.99% [1077/1496])

In view of the rules obtained, if we have a dataset with low values for
the directional-vector maximum Fisher’s discriminant ratio, F1v, it would
be a good idea to apply some diversity techniques9.

9A high F1v indicates that there is a vector that can separate well the classes once instances are projected

184 6.3. Experimental Set-up and Results

In the selected rules do not appear the basic ensemble nor the diversity-
enhancing technique. This means that to determine if the basic ensemble
could be improved, the meta-features are more relevant than the specific
ensemble methods.

Of course all the above analysis would need further investigation, for
example to find relations between the ensembles and the diversity technique
more suitable when the dataset meta-features verify certain values. We
include this analysis here just to give general insights about for which
datasets the use of diversity techniques has a higher expectation to improve
the use the ensemble alone.

6.3.6 The impact of noisy and borderline examples

Now we will test the suitability of a specific diversity technique, Disturbing
Neigbours, for dealing with datasets that have presence of noisy and border-
line examples. The repository used for this purpose comes from [47]. It is a
repository that contains 30 different synthetic imbalance datasets10.

The artificial data sets are all 2-dimensional datasets, so the increasing
diversity technique more appropriate is Disturbing Neigbours, because it
increases the diversity by adding new features to the dataset.

To summarize the results, we used average ranks. They are calculated
using all the ensemble methods together with their enhanced version using
Disturbing Neigbours.

Table 6.7 shows the results, the first column in each subtable contains
the name of the method, the second its average rank and the third value is
the improvement (difference between the enhanced ensemble method and
its counterpart without additional diversity).

It is clearly seen that the methods which have been combined with
Disturbing Neigbours occupy the top positions of the ranking for the three
measures. In the ranking calculated with the AUC and the other calculated
with the F-Measure, all the methods combined with Disturbing Neigbours
obtains a better rank than their equivalent. This is also true for 14 of the 18
methods when the average rank is calculated with the G-Mean. The extra
dimensions added by Disturbing Neigbours help in the classification task
when there is presence of noisy and borderline examples.

on it, a low value indicates the opposite.
10It can be downloaded from http://sci2s.ugr.es/keel/imbalanced.php#sub50

http://sci2s.ugr.es/keel/imbalanced.php#sub50

6. Diversity techniques improve the performance of the best imbalance learning
ensembles 185

Table 6.7: Average ranks and ∆ (increment/decrement) of rank between basic and enhanced
ensembles in presence of noisy and borderline instances

(a) AUC (b) F-measure (c) G-Mean

Method Rank ∆

DN+Ba-SM100 5.333 12.767
DN+Ba-SM 5.600 10.033
DN+SMBa 6.700 10.433
DN+E-RB 7.167 13.567
DN+Ba-RB 8.600 10.100
DN+Ba 9.067 14.050
DN+RUSBo 9.533 7.967
DN+RAMOBo 12.467 4.067
DN+E-RUS 13.767 14.833
DN+E-SM 14.133 11.700
DN+Ba-RUS 14.900 11.633
DN+RBBo 14.933 1.933
Ba-SM 15.633
DN+E-SM100 15.633 12.233
DN+MBo 16 11.400
RAMOBo 16.533
RBBo 16.867
SMBa 17.133
DN+SMBo 17.300 5.067
RUSBo 17.500
Ba-SM100 18.100
Ba-RB 18.700
E-RB 20.733
DN+ABo2 21.500 4.817
SMBo 22.367
Ba 23.117
DN+ABo1 23.533 6.067
E-SM 25.833
ABo2 26.317
Ba-RUS 26.533
MBo 27.400
E-SM100 27.867
E-RUS 28.600
ABo1 29.600

Method Rank ∆

DN+Ba-SM 8.500 4.000
DN+RAMOBo 8.667 3.567
DN+SMBa 9.367 4.933
DN+E-SM 9.600 6.733
DN+RUSBo 10.533 3.767
DN+Ba-RB 11.133 5.433
DN+RBBo 11.967 5.033
RAMOBo 12.233
Ba-SM 12.500
DN+SMBo 12.767 8.133
DN+E-RB 12.800 8.267
DN+E-SM100 13.233 6.367
RUSBo 14.300
SMBa 14.300
DN+Ba-SM100 15.067 2.833
E-SM 16.333
Ba-RB 16.567
RBBo 17
Ba-SM100 17.900
DN+ABo2 18.333 9.833
DN+ABo1 18.867 7.467
DN+MBo 19.133 7.067
DN+Ba-RUS 19.400 6.100
E-SM100 19.600
SMBo 20.900
E-RB 21.067
DN+E-RUS 22.067 5.633
Ba-RUS 25.500
MBo 26.200
ABo1 26.333
DN+Ba 26.567 3.833
E-RUS 27.700
ABo2 28.167
Ba 30.400

Method Rank ∆

DN+E-RB 4.300 4.467
DN+E-RUS 6.067 8.933
SMBa 6.433
DN+Ba-RUS 7.433 5.567
DN+SMBa 7.867 -1.433
E-RB 8.767
DN+E-SM 9.133 0.333
RUSBo 9.167
E-SM 9.467
Ba-SM 12.233
DN+Ba-SM 12.967 -0.733
Ba-RUS 13
DN+RUSBo 13.100 -3.933
DN+Ba-RB 13.433 0.200
Ba-RB 13.633
E-RUS 15
DN+RAMOBo 15.767 2.433
E-SM100 18.067
RAMOBo 18.200
DN+E-SM100 18.400 -0.333
DN+RBBo 20.100 3.467
DN+SMBo 20.667 4.467
Ba-SM100 21.300
DN+Ba-SM100 22.867 -1.567
RBBo 23.567
DN+ABo2 24.100 6.167
SMBo 25.133
DN+ABo1 25.433 3.933
DN+MBo 26.667 3.000
ABo1 29.367
MBo 29.667
ABo2 30.267
DN+Ba 31.300 0.833
Ba 32.133

186 6.4. Lessons learned

6.4 Lessons learned

The paper includes a vast experimental study: 17 of the state of the art
methods for imbalance learning: RAMOBoost, Random Balance Boost,
RUSBoost, SMOTEBoost and many more are tested in its basic form
and enhanced in combination with four different diversifying techniques:
Random Oracles, Random Feature Weigths, Disturbing Neighbors and
Rotation Forest. Experiments were conducted using datasets from KEEL
repository and the HDDT collection. Five different analysis are conducted
in this paper and this section enumerates some of the findings of each an
analysis.

1. Effect of diversity techniques in combination with ensembles in im-
balanced classification. Average ranks are used for multiple method
comparisons. The ranks were computed over AUC, F-Measure and
Geometric Mean, comparing each ensemble method with its diversity
enhanced variants. This is the summary of findings:

• In the average rank computed using the AUC and according to
Hochberg’s test, all basic ensembles are significaly worse than at
least one of its enhanced counterpart.

• In the case of using the F-measure to compute the average ranks,
the improvement is not statistically significant for all cases, but the
improvement exists for the best methods. The best non-enhanced
methods are RBBo, Ba-RB and RUSBo, and these methods are
improved significantly when combined with Rotation Forest strat-
egy.

• Something similar happens when examining the rank calculated
with the G-mean. Ba-RUS, E-RB and RUSBoare improved sig-
nificantly when combined with Random Oracles and Disturbing
Neighbors.

2. Determination of which is the best combination according different
metrics of performance.

• According to the AUC the overall winner is Rotation Forest.

• According to the F-measure the best method is RF+RAMOBo
(RAMOBo combined with Rotation Forest).

6. Diversity techniques improve the performance of the best imbalance learning
ensembles 187

• According to the G-mean the best method is O+Ba-RUS (Ba-
RUScombined with Random Oracles.

Another interesting finding is that the best combinations according to
the F-measure use oversampling strategies while the best combinations
according to the G-mean use undersampling. The method that gets
the top position in the rank according to the AUC do not uses any
balancing strategy.

3. Impact of ensemble size in their performance. We wanted to ensure
that the performance of the ensemble increases as its size increases, up
to a point. It is found that in general, bigger ensemble sizes give better
average ranks. This trend is also seen in the enhanced ensembles. So
the use of ensembles of size 100 is justified. Among the evaluated
methods it was found one with a different behavior, RUSBo best
performance according to the G-mean is obtained when the size of the
ensemble is in 20 to 30 range.

4. Prediction of the convenience of applying diversity techniques using
complexity metrics.

• It was checked whether it is possible to establish relationships
between complexity metrics and the fact that the combination of a
diversity technique with an ensemble can give better results than
the ensemble alone.

• The rule-learner algorithm HotSpot was used to identify for which
meta-features exists a high probability that a certain diversity
technique improves the ensemble.

• From the set of rules generated it was found some pieces of knowl-
edge, for example when the Overlap of the per-class bounding
boxes is high or the Directional-vector maximum Fisher’s discrim-
inant ratio is low (which indicates the classes are hardly separables
when projected into the maximum separability vector) it would
be a good idea to apply diversity techniques.

5. Suitability of Disturbing Neigbours for dealing with noisy and border-
line examples. Average ranks were used and it was found that methods
which have been combined with Disturbing Neigbours perform better
than their non-enhanced counterpart for all performance measures

188 6.5. Concluding remarks

6.5 Concluding remarks

This article presents an exhaustive experimental study that combines tech-
niques especially designed to work with imbalanced data with ensemble
diversifying techniques. Examining 17 ensembles on their own and with
four diversifying techniques, using 84 imbalanced data sets, we found
that enhancing diversity pays off. Diversity-enhanced ensembles ranked
better than their original counterpart. This is a curious finding because
all diversity-enhancing techniques that we applied are “imbalance-blind”.
The method with best ranking in our experiments was the basic Rotation
Forest according to AUC, and Rotation Forest combined with balancing
techniques according to the F-measure. When the G-Mean is used, there
is not a technique of increasing diversity that highlights so clearly, but the
techniques of increasing diversity clearly improve the ensembles to which
they are applied. One interesting conclusion of this study is that the results
obtained for one measure can not be extrapolated to others, and one method
that is the best according to a measure, not necessarily is the best according
to others.

In order to justify the ensemble size used in the experiments, it has
been checked whether the ensemble size can influence the results on the
improvement that can be achieved by the diversity-enhancing techniques.
In general, bigger ensemble sizes give better average ranks. The RUSBo,
according to the G-mean, is an exception to this general tendency, as
its best results are for sizes 20 and 30. However, the general tendency
is observed if AUC and F-measure are considered. This reinforces the
previous observation, the results obtained using one measure not necessarily
are obtained when the others are used. Another conclusion is that it does
not matter the size of the ensemble, it is always possible to improve the
results by using a diversity-enhacing technique.

A preliminary study has been made that attempts to characterize for
which datasets the use of diversity-enhancing techniques could be beneficial.

6.6 Future research directions

One interesting future line of research would be to take this study further
to investigate whether it is possible to find an optimal combination of
balancing and diversity techniques or which is the balancing technique and
diversity strategy best suited to a problem based on certain meta-features.

6. Diversity techniques improve the performance of the best imbalance learning
ensembles 189

Another future research line could be to investigate further the effect of
the diversity techniques on the class overlapping and small disjuncts, two
of the characteristics that make imbalance problems so difficult to solve.
The aim will not only be to provide insight on why these techniques work,
but also could inspire the development of new diversity strategies specially
designed to deal with imbalanced datasets.

Acknowledgements

This work was supported by the Project TIN2011-24046 of the Spanish
Ministry of Economy and Competitiveness.

References
[1] J. Alcala-Fdez et al. “KEEL Data-Mining Software Tool: Data Set Repository and

Integration of Algorithms and Experimental Analysis Framework”. In: Journal of
Multiple-Valued Logic and Soft Computing 17.2-3 (2011), pp. 255–287.

[2] K. Bache and M. Lichman. UCI Machine Learning Repository. 2013. URL: http:
//archive.ics.uci.edu/ml.

[3] R Barandela, RM Valdovinos, and JS Sánchez. “New applications of ensembles of
classifiers”. In: Pattern Analysis & Applications 6.3 (2003), pp. 245–256.

[4] G.E. Batista, R.C. Prati, and M.C. Monard. “A study of the behavior of several meth-
ods for balancing machine learning training data”. In: ACM SIGKDD Explorations
Newsletter 6.1 (2004), pp. 20–29.

[5] E. Bauer and R. Kohavi. “An empirical comparison of voting classification algo-
rithms: Bagging, boosting, and variants”. In: Machine learning 36.1 (1999), pp. 105–
139.

[6] L. Breiman. “Bagging predictors”. In: Machine Learning 24 (1996), pp. 123–140.

[7] L. Breiman. “Random forests”. In: Machine learning 45.1 (2001), pp. 5–32. ISSN:
0885-6125.

[8] Carla E Brodley and Mark A Friedl. “Identifying Mislabeled Training Data”. In:
Journal of Artificial Intelligence Research 11 (1999), pp. 131–167.

[9] C. Bunkhumpornpat, K. Sinapiromsaran, and C. Lursinsap. “Safe-level-SMOTE:
Safe-level-synthetic minority over-sampling technique for handling the class imbal-
anced problem”. In: Pacific-Asia Conference on Knowledge Discovery and Data
Mining(PAKDD09). Vol. 5476. Lecture Notes on Computer Science. Springer-
Verlag, 2009, pp. 475–482.

[10] N.V. Chawla, N. Japkowicz, and A. Kotcz. “Editorial: special issue on learning
from imbalanced data sets”. In: ACM SIGKDD Explorations Newsletter 6.1 (2004),
pp. 1–6.

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

190 REFERENCES

[11] N.V. Chawla et al. “SMOTE: synthetic minority over-sampling technique”. In:
Journal of Artificial Intelligence Research 16.1 (2002), pp. 321–357.

[12] N.V. Chawla et al. “SMOTEBoost: Improving prediction of the minority class in
boosting”. In: 7th European Conference on Principles and Practice of Knowledge
Discovery in Databases(PKDD 2003). 2003, pp. 107–119.

[13] Sheng Chen, Haibo He, and Edwardo A Garcia. “Ramoboost: Ranked minority
oversampling in boosting”. In: Neural Networks, IEEE Transactions on 21.10 (2010),
pp. 1624–1642.

[14] David A. Cieslak and Nitesh V. Chawla. “Learning Decision Trees for Unbalanced
Data”. In: Proceedings of the 2008 European Conference on Machine Learning
and Knowledge Discovery in Databases - Part I. ECML PKDD ’08. Antwerp,
Belgium: Springer-Verlag, 2008, pp. 241–256. ISBN: 978-3-540-87478-2. DOI:
10.1007/978-3-540-87479-9_34.

[15] David A. Cieslak et al. “Hellinger distance decision trees are robust and skew-
insensitive”. In: Data Min. Knowl. Discov. 24.1 (Jan. 2012), pp. 136–158. ISSN:
1384-5810. DOI: 10.1007/s10618-011-0222-1.

[16] Janez Demsar. “Statistical Comparisons of Classifiers over Multiple Data Sets”. In:
Journal of Machine Learning Research 7 (2006), pp. 1–30.

[17] Matias Di Martino et al. “Improving Electric Fraud Detection using Class Imbalance
Strategies.” In: ICPRAM (2). 2012, pp. 135–141.

[18] T.G. Dietterich. “Approximate statistical tests for comparing supervised classifica-
tion learning algorithms”. In: Neural computation 10.7 (1998), pp. 1895–1923.

[19] José F Díez-Pastor et al. “Random Balance: Ensembles of Variable Priors Classiffiers
for Imbalanced Data”. In: Under Submision (2014), pp. –.

[20] Wei Fan et al. “AdaCost: Misclassification Cost-Sensitive Boosting”. In: Proceed-
ings of the Sixteenth International Conference on Machine Learning. ICML ’99.
San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1999, pp. 97–105.
ISBN: 1-55860-612-2.

[21] T. Fawcett. “An introduction to ROC analysis”. In: Pattern recognition letters 27.8
(2006), pp. 861–874.

[22] Yoav Freund and Robert E. Schapire. “Experiments with a New Boosting Algo-
rithm”. In: Machine Learning, Proceedings of the Thirteenth International Confer-
ence (ICML ’96), Bari, Italy, July 3-6, 1996. 1996, pp. 148–156.

[23] M. Galar et al. “A Review on Ensembles for the Class Imbalance Problem: Bagging-,
Boosting-, and Hybrid-Based Approaches”. In: Systems, Man, and Cybernetics, Part
C: Applications and Reviews, IEEE Transactions on 42.4 (2012), pp. 463 –484.
ISSN: 1094-6977. DOI: 10.1109/TSMCC.2011.2161285.

[24] Mikel Galar et al. “Eusboost: enhancing ensembles for highly imbalanced data-sets
by evolutionary undersampling”. In: Pattern Recognition 46.12 (2013), pp. 3460–
3471.

http://dx.doi.org/10.1007/978-3-540-87479-9_34
http://dx.doi.org/10.1007/s10618-011-0222-1
http://dx.doi.org/10.1109/TSMCC.2011.2161285

6. Diversity techniques improve the performance of the best imbalance learning
ensembles 191

[25] Vicente García, Ana Isabel Marqués, and Jose Salvador Sánchez. “Improving risk
predictions by preprocessing imbalanced credit data”. In: Neural Information Pro-
cessing. Springer. 2012, pp. 68–75.

[26] Nicolás García-Pedrajas and César García-Osorio. “Constructing ensembles of
classifiers using supervised projection methods based on misclassified instances”.
In: Expert Systems with Applications 38.1 (2011), pp. 343 –359. ISSN: 0957-4174.

[27] Nicolás García-Pedrajas et al. “Class imbalance methods for translation initiation
site recognition in DNA sequences”. In: Knowl.-Based Syst. 25.1 (2012), pp. 22–34.

[28] Nicolás García-Pedrajas et al. “Supervised subspace projections for constructing
ensembles of classifiers”. In: Information Sciences 193.0 (2012), pp. 1 –21. ISSN:
0020-0255.

[29] Guang-Gang Geng et al. “Boosting the performance of web spam detection with
ensemble under-sampling classification”. In: Fuzzy Systems and Knowledge Dis-
covery, 2007. FSKD 2007. Fourth International Conference on. Vol. 4. IEEE. 2007,
pp. 583–587.

[30] Mark Hall et al. “The WEKA data mining software: an update”. In: SIGKDD Explor.
Newsl. 11.1 (Nov. 2009), pp. 10–18. ISSN: 1931-0145. DOI: 10.1145/1656274.
1656278.

[31] H. Han, W.Y. Wang, and B.H. Mao. “Borderline-SMOTE: a new over-sampling
method in imbalanced data sets learning”. In: 2005 International Conference on
Intelligent Computing (ICIC05). Vol. 3644. Lecture Notes on Computer Science.
Springer-Verlag, 2005, pp. 878–887.

[32] Haibo He et al. “ADASYN: Adaptive synthetic sampling approach for imbalanced
learning”. In: Neural Networks, 2008. IJCNN 2008.(IEEE World Congress on
Computational Intelligence). IEEE International Joint Conference on. IEEE. 2008,
pp. 1322–1328.

[33] Tin Kam Ho, Mitra Basu, and Martin Hiu Chung Law. “Measures of geometrical
complexity in classification problems”. In: Data complexity in pattern recognition.
Springer, 2006, pp. 1–23.

[34] T.K. Ho. “The random subspace method for constructing decision forests”. In: IEEE
Transactions on Pattern Analysis and Machine Intelligence 20.8 (1998), pp. 832–
844.

[35] T.K. Ho and M. Basu. “Complexity Measures of Supervised Classification Prob-
lems”. In: IEEE Trans. Pattern Anal. Mach. Intell. 24.3 (2002), pp. 289–300. ISSN:
0162-8828.

[36] Y. Hochberg. “A sharper Bonferroni procedure for multiple tests of significance”.
In: Biometrika 75 (1988), pp. 800–803.

[37] R.L. Iman and J.M. Davenport. “Approximations of the critical region of the fbietkan
statistic”. In: Communications in Statistics-Theory and Methods 9.6 (1980), pp. 571–
595.

[38] Taeho Jo and Nathalie Japkowicz. “Class imbalances versus small disjuncts”. In:
ACM SIGKDD Explorations Newsletter 6.1 (2004), pp. 40–49.

http://dx.doi.org/10.1145/1656274.1656278
http://dx.doi.org/10.1145/1656274.1656278

192 REFERENCES

[39] M. Kubat and Matwin. “Addressing the Curse of Imbalanced Training Sets : One-
Sided Selection”. In: Proceedings of the 14th International Conference on Machine
Learning. 1997, pp. 179–186.

[40] L.I. Kuncheva. Combining pattern classifiers: methods and algorithms. Wiley-
Interscience, 2004.

[41] L.I. Kuncheva and J.J. Rodriguez. “Classifier ensembles with a random linear
oracle”. In: IEEE Transactions on Knowledge and Data Engineering 19.4 (2007),
p. 500.

[42] Wei Liu et al. “A Robust Decision Tree Algorithm for Imbalanced Data Sets”. In:
Proceedings of the SIAM International Conference on Data Mining, SDM 2010.
2010, pp. 766–777.

[43] Xu-Ying Liu, Jianxin Wu, and Zhi-Hua Zhou. “Exploratory undersampling for
class-imbalance learning”. In: Systems, Man, and Cybernetics, Part B: Cybernetics,
IEEE Transactions on 39.2 (2009), pp. 539–550.

[44] Victoria López et al. “An insight into classification with imbalanced data: Empirical
results and current trends on using data intrinsic characteristics”. In: Information
Sciences 250.0 (2013), pp. 113 –141. ISSN: 0020-0255. DOI: http://dx.doi.
org/10.1016/j.ins.2013.07.007. URL: http://www.sciencedirect.com/
science/article/pii/S0020025513005124.

[45] J. Maudes, J. J. Rodríguez, and C. García-Osorio. “Disturbing neighbors diversity
for decision forests”. In: Applications of Supervised and Unsupervised Ensemble
Methods. Ed. by Oleg Okun and Giorgio Valentini. Vol. 245. Studies in Computa-
tional Intelligence. Springer, 2009, pp. 113–133. ISBN: 978-3-642-03998-0. URL:
http://dx.doi.org/10.1007/978-3-642-03999-7_7.

[46] Jesús Maudes et al. “Random feature weights for decision tree ensemble construc-
tion”. In: Information Fusion 13.1 (2012), pp. 20–30.

[47] Krystyna Napierała, Jerzy Stefanowski, and Szymon Wilk. “Learning from im-
balanced data in presence of noisy and borderline examples”. In: Rough Sets and
Current Trends in Computing. Springer. 2010, pp. 158–167.

[48] Robi Polikar. “Ensemble learning”. In: Ensemble Machine Learning. Springer, 2012,
pp. 1–34.

[49] Ronaldo C Prati, Gustavo EAPA Batista, and Diego F Silva. “Class imbalance
revisited: a new experimental setup to assess the performance of treatment methods”.
In: Knowledge and Information Systems (2014), pp. 1–24.

[50] F. Provost and P. Domingos. “Tree induction for probability-based ranking”. In:
Machine Learning 52.3 (2003), pp. 199–215.

[51] Foster Provost and Venkateswarlu Kolluri. “A survey of methods for scaling up
inductive algorithms”. In: Data mining and knowledge discovery 3.2 (1999), pp. 131–
169.

[52] J.R. Quinlan. C4. 5: programs for machine learning. Morgan Kaufmann, 1993.

[53] Joaquin Quionero-Candela et al. Dataset Shift in Machine Learning. The MIT Press,
2009. ISBN: 0262170051, 9780262170055.

http://dx.doi.org/http://dx.doi.org/10.1016/j.ins.2013.07.007
http://dx.doi.org/http://dx.doi.org/10.1016/j.ins.2013.07.007
http://www.sciencedirect.com/science/article/pii/S0020025513005124
http://www.sciencedirect.com/science/article/pii/S0020025513005124
http://dx.doi.org/10.1007/978-3-642-03999-7_7

6. Diversity techniques improve the performance of the best imbalance learning
ensembles 193

[54] JJ Rodriguez, LI Kuncheva, and CJ Alonso. “Rotation forest: A new classifier ensem-
ble method”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence
28.10 (2006), pp. 1619–1630.

[55] Alon Schclar and Lior Rokach. “Random Projection Ensemble Classifiers”. In:
Enterprise Information Systems. Ed. by Joaquim Filipe and Jose Cordeiro. Vol. 24.
Lecture Notes in Business Information Processing. Springer Berlin Heidelberg,
2009, pp. 309–316. ISBN: 978-3-642-01346-1.

[56] C. Seiffert et al. “RUSBoost: A hybrid approach to alleviating class imbalance”. In:
Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions
on 40.1 (2010), pp. 185–197.

[57] Jerzy Stefanowski. “Overlapping, rare examples and class decomposition in learning
classifiers from imbalanced data”. In: Emerging Paradigms in Machine Learning.
Springer, 2013, pp. 277–306.

[58] Y. Sun et al. “Cost-sensitive boosting for classification of imbalanced data”. In:
Pattern Recognition 40 (2007), pp. 3358–3378.

[59] Ivan Tomek. “Two modifications of CNN”. In: Systems, Man and Cybernetics,
Transactions on 6 (1976), pp. 769–772.

[60] C.J. Van Rijsbergen. Information Retrieval. Butterworths, 1979.

[61] F. Verhein and S. Chawla. “Using Significant, Positively Associated and Relatively
Class Correlated Rules for Associative Classification of Imbalanced Datasets”. In:
Data Mining, 2007. ICDM 2007. Seventh IEEE International Conference on. 2007,
pp. 679–684.

[62] Sofia Visa and Anca Ralescu. “Issues in mining imbalanced data sets - a review
paper”. In: Proceedings of the Sixteen Midwest Artificial Intelligence and Cognitive
Science Conference. 2005, pp. 67–73.

[63] S. Wang and X. Yao. “Diversity analysis on imbalanced data sets by using ensemble
models”. In: IEEE Symposium Series on Computational Intelligence and Data
Mining(IEEE CIDM 2009). 2009, pp. 324–331.

[64] Shuo Wang and Xin Yao. “Relationships between diversity of classification ensem-
bles and single-class performance measures”. In: Knowledge and Data Engineering,
IEEE Transactions on 25.1 (2013), pp. 206–219.

[65] M. Wasikowski and Xue wen Chen. “Combating the Small Sample Class Imbalance
Problem Using Feature Selection”. In: Knowledge and Data Engineering, IEEE
Transactions on 22.10 (2010), pp. 1388–1400. ISSN: 1041-4347.

[66] Geoffrey I. Webb. “MultiBoosting: A Technique for Combining Boosting and
Wagging”. In: Machine Learning 40.2 (2000), pp. 159–196.

[67] Gary M Weiss. “The impact of small disjuncts on classifier learning”. In: Data
Mining. Springer. 2010, pp. 193–226.

[68] D.L. Wilson. “Asymptotic properties of nearest neighbor rules using edited data”.
In: Systems, Man and Cybernetics, IEEE Transactions on 2.3 (1972), pp. 408–421.

194 REFERENCES

[69] Hualong Yu et al. “Mining and integrating reliable decision rules for imbalanced
cancer gene expression data sets”. In: Tsinghua Science and Technology 17.6 (2012),
pp. 666–673.

[70] Bianca Zadrozny and Charles Elkan. “Learning and making decisions when costs
and probabilities are both unknown”. In: Proceedings of the seventh ACM SIGKDD
international conference on Knowledge discovery and data mining. ACM. 2001,
pp. 204–213.

Chapter 7

Boosting Projections to improve surface
roughness prediction in high-torque
milling operations

Authors José-Francisco Díez-Pastor, Andrés Bustillo, Guillem Quintana,
Cesar García-Osorio

Type Journal

Published in Soft Computing. 16(8): 1427-1437

Year 2012

Abstract

Industrial solutions for surface roughness prediction are in great demand,
especially in high-torque milling operations, owing to the exponential ex-
pansion of wind power energy generation over the last decade. In this paper,
we use Boosting Projections to predict surface roughness in high-torque,
high-power face milling operations. A data set is generated from experi-
ments performed under industrial conditions, using a milling machine with
a high working volume, in order to train and validate the new algorithm.
The experimental data comprise a very extensive set of parameters that influ-
ence surface roughness: cutting tool properties, machining parameters and
cutting phenomena. The proposed method is based on Non-linear Boosting
Projections (although it uses linear projections to speed up the training
process). To the best of our knowledge this is the first time it has been used
in an industrial context. It demonstrates a higher prediction accuracy when

195

196

compared with single multilayer perceptrons, decision trees, and classical
ensemble methods .

Index terms— high-torque milling, surface roughness, ensemble meth-
ods, linear projections, ordinal classification

7. Boosting Projections to improve surface roughness prediction in high-torque
milling operations 197

7.1 Introduction

The manufacture of many industrial metal components such as moulds and
dies is a complex process, usually involving a trade-off between various
parameters, in which the following constraints play an important role: prod-
uct quality specifications, pre-defined equipment, cost and time constraints,
among others. Unfortunately, there are certain quality characteristics of a
product, such as surface roughness, that can not be accurately evaluated
before the manufacturing process is completed [5]. Surface roughness is
quantified by the vertical deviations of a real surface from its ideal form.
Surface roughness plays an important role in the performance of a finished
part. It has an enormous influence on several relevant characteristics of the
final product such as dimensional accuracy, friction coefficient, wear, ther-
mal resistance, electric resistance, fatigue limit and behaviour, corrosion,
post-processing requirements, appearance and cost [30].

The final roughness of a milled workpiece will depend on many pa-
rameters and the interactions or cause-effect relationships between them.
Benardos and Vosniakos [5] divided these factors into 4 main groups: 1)
cutting tool properties such as tool material, tool shape and nose radius; 2)
machining parameters such as process kinematics, feed rate, cutting speed,
cooling fluid, step over, depth of cut and tool angle; 3) cutting phenomena
such as cutting force variation, vibrations, friction in the cutting zone and
chip formation; and 4) workpiece properties such as length, diameter and
hardness.

The complexity of the roughness formation mechanism means it is diffi-
cult to find a simple and general solution to optimize the milling process
parameters. Therefore, the process engineer prefers to select conservative
cutting conditions in a real industrial context, which neither guarantee a
desired surface quality, nor guarantee high metal removal rates [5]. In the
moulds and dies industry, for instance, it is standard practice to apply a
final manual polishing operation, in order to achieve the required surface
roughness. Obviously, this solution is a time-consuming process that radi-
cally increases the cost of the mould and depends greatly on the skills of
the workers that perform the manual polishing operation [41].

The optimization of surface quality under industrial conditions entails
a further difficulty: surface roughness can only be measured off-line after
the part has been machined. This is an out-of-process quality evaluation

198 7.1. Introduction

Table 7.1: Roughness levels according to ISO Standard 4288:1996.

Level Ra (µm)

N1 [0.000,0.025)
N2 [0.025,0.050)
N3 [0.050,0.100)
N4 [0.100,0.200)
N5 [0.200,0.400)
N6 [0.400,0.800)
N7 [0.800,1.600)
N8 [1.600,3.200)

process that inevitably results in a loss of time and money, as there is no
other alternative than to remove defective parts from the production line.

Surface quality is usually evaluated using the average surface roughness
parameter (Ra). In accordance with ISO standard 4287:1997 [36], Ra
is calculated as an arithmetic average of absolute values of the vertical
deviations from the nominal surface (y) for a certain distance over which
the surface deviations are measured (Lm), as shown in Eq.7.1.

Ra =
∫ Lm

0

|y|
Lm

dx (7.1)

Although surface roughness could take any continuous value, its eval-
uation is usually done in a discrete way to assure the functionality of the
manufactured component. For example, if holes for ejector pins or surface
of gear’s teeth do not have a roughness quality of N6 (ISO 4288:1996 [37]),
they fail to guarantee correct ejection of mould components following plas-
tic injection or smooth movement of the gears in a gearbox. ISO standard
4288:1996 [37] is the international reference for measured roughness qual-
ity in machining processes, establishing 12 roughness levels from 0.006 to
50 µm. Table 7.1 summarizes the first 8 levels of this scale.

In consequence, a great deal of literature has been generated on the
surface generation process, due to its high complexity and the evident
industrial interest in its improvement. There are four broad lines of research
into surface roughness prediction [5] based on: 1) machining theory [45,
35, 48, 2]; 2) experimental investigations [4, 52]; 3) designed experiments
[15] and 4) artificial intelligence [17, 6, 9, 18, 49, 42, 33, 34, 50, 16, 10, 47,
11]. Nevertheless, the classifications in much of the literature, where no one
single methodology is followed, are not always straightforward.

7. Boosting Projections to improve surface roughness prediction in high-torque
milling operations 199

The first category, based on machining theory, considers process kine-
matics, cutting tool properties and chip formation mechanisms, among
others. An essential reference is the approach to peripheral milling opera-
tions proposed by Martellotti, in 1941, [44] whose mathematical treatment
of peripheral milling operations showed that a cutting tool path is a tro-
choid arc. A trochoid arc is described by an equation that is formulated
from known cutting variables in such a way that, when considering a rigid
tool and a rigid workpiece system, a maximum feed mark height may be
easily calculated. With regard to the second category, experimental in-
vestigations usually examine the effects of various factors through results
obtained from experimentation and their subsequent analysis. Designed ex-
periments, which form the third category, apply systematic methodologies
such as response surface methodology or Taguchi techniques for planning
and analyzing experimentation.

The fourth group is composed of those approaches that use artificial
intelligence methods: Artificial Neural Network (ANN) models, genetic al-
gorithms, fuzzy logic or expert systems. These techniques simulate the way
in which human beings process information and take decisions. Different al-
ternative approaches to the industrial task of roughness prediction in milling
operations have been tested with good results: neuro-fuzzy inference system
[42, 33, 34, 50], Bayesian networks [17, 16], genetic algorithms [10, 9] and
support vector machines [47]. However, the neural networks approach [49,
15, 6, 16, 11] is the most widely used solution. Its most common config-
uration is a Multilayer Perceptron (MLP) with a single hidden layer [30].
Unfortunately, the results obtained are highly dependent on the parameters
of the neural networks [11]. The process of fine-tuning these parameters
requires a lot of work and experience and there are no general rules that
may be followed as a guide, which means the scientific process is somewhat
of an art.

All of the above soft-computing techniques developed over the past 20
years are becoming standard practice in manufacturing and are incorporated
in commercial software. New techniques have also been developed over the
past 10 years, although their suitability for this kind of industrial task has
still to be demonstrated. Their potential to improve process optimization
accuracy is an active research line [13]. One of these techniques is ensemble
learning: a learning paradigm where multiple learners (or classifiers, or, in
the ensemble learning context, base classifiers) are combined to solve a

200 7.1. Introduction

problem. A classifier ensemble can significantly improve the generalization
ability of a single classifier and can provide better results than an individual
classifier [46] in many applications. Algorithms are used to construct
ensembles from the generation of the base classifiers (different models,
or more usually a single model with different initialization parameters)
as well as from combinations of their results to give the final prediction
model (for example, by majority voting) [40]. There are a few examples
of the use of ensembles to improve milling processes due to the novelty of
this technique. These examples refer to breakage detection [14, 7] and to
roughness prediction in laser polishing [12] and in end-mill finishing [11]
of milled surfaces.

Most of the existing literature describes finishing operations using ball-
end mills that only require a low torque. This work refers to face mills
working under high torque and high-power finishing operations on steel,
which are nowadays widely employed for the manufacture of wind turbine
components. Face mills achieve a better roughness surface if no strong
vibrations appear during the milling process, and if the mill is able to
machine all the required surface in one pass, avoiding third order deviations
from the nominal surface in surface roughness [5]. These requirements are
possible on the critical surfaces of many different wind turbines components,
such as the main frame and the hub, if face mills with diameters greater
than 35 mm are used.

The aim of this work is to demonstrate that new algorithms of ensembles
could improve the accuracy of surface roughness prediction models and
also avoid the time-consuming task of tuning ANN models to a certain
data set. Ensemble modelling has been applied as an interpolator for the
calculation of the average surface roughness parameter, considering the
complex phenomena that influences surface roughness generation and the
large number of factors that interact in the milling process. The data set
used for training and validation of the new algorithm was obtained from
experimental tests performed under industrial conditions, varying all of the
cutting conditions that the machine operator would usually adjust during
the manufacturing process.

The paper is structured as follows: Section 7.2 explains the experimental
procedure and the data set generated to validate the new algorithm pro-
posed in this work; Section 7.3 reviews the ensemble learning techniques
tested for the prediction model; Section 7.4 provides the background on

7. Boosting Projections to improve surface roughness prediction in high-torque
milling operations 201

Boosting Projections; Section 7.5 explains some questions about ordered
classification; Section 7.6 shows the results obtained with these techniques
and includes an in-depth comparison with an ANN approach for the same
data set. Finally, the conclusions and future lines of work are summarized
in Section 7.7.

7.2 Experimental procedure and data set description

All of the four groups of parameters that influence surface roughness -
machining parameters, cutting tool properties, workpiece properties, and
cutting phenomena- can not be modified under real workshop conditions. In
a workshop, the workpiece properties will not usually be modified, because
they will be specified by the client in the order for the machined workpiece.
Cutting phenomena include all the phenomena that can not be controlled
by the operator, such as vibrations, cutting forces, etc. These can only
be measured during the cutting process but not directly changed. Cutting
tool properties depend on the cutting tool selected from those available
in the workshop, therefore the operator only has a limited possibility of
influencing workpiece roughness changing this third group of parameters,
and none at all when the cutting tool is already selected. The machining pa-
rameters include all the parameters that may be changed when the operator
designs the machining CAM (Computer Aided Manufacturing) program.
The main machining parameters are cooling fluid, depth of cut, feed rate,
cutting speed, and stepover [5]. The experiments presented in this paper
were designed to take the majority of these parameters into account. This
approach will allow us to include the main factors that affect surface rough-
ness in the prediction system, which may be controlled by the machine
operator; thereby guaranteeing a reliable prediction system clearly focused
on industrial needs.

The experimental procedure and data collection has been already de-
scribed elsewhere for ball-end milling [49]. The experiments consisted
of a simple raster along the machine tool’s Y axis. During the experi-
ments, process vibrations were captured with piezoelectric unidirectional
accelerometers. The following parameters were considered: milling head
speed, feed rate, feed per tooth and axial depth of cut. The experimental
design aims to evaluate the wide range of values for cutting parameters
under real industrial conditions. A sufficiently large number of parametric

202 7.2. Experimental procedure and data set description

Table 7.2: Cutting conditions selected for the experimental tests.

Cutting parameter (units) Range

Coolant system Dry milling
Tool radius (mm) 20
Radial depth of cut (mm) 40
Axial depth of cut (mm) 0.1, 1, 1.5, 2, 3,
Milling head speed (rpm) 1655, 1759, 1862,

1966, 2069, 2172,
2276, 2379, 2483

Feed per tooth 10, 10.4, 10.6, 10.9,
(×10−2 mm/tooth) 11.1, 11.2, 11.4, 11.6,

11.7, 11.9, 12, 12.1,
12.2, 12.4, 12.5,
12.6, 12.8

combinations were considered in this research and data gathered on surface
roughness proved useful. A total of 141 experiments were designed and
performed. Cutting parameters and levels are summarized in Table 7.2.

The experimental data were taken from a Nicolas Correa Axis floor-
type moving column milling machine. It was equipped with a universal
automatic milling head specially designed for high-torque operations: 32
kW power up to 6000 rpm and 1045 Nm maximum torque. The cutting
tool was a Walter F4042.B.040.Z04.15 face mill with ADMT160608R-D56
WKP25-type inserts. This model has 4 inserts (Z) and a diameter of 40 mm.
The cast iron (EN-GJS-400-18U-LT) blank used for the tests is typically
used for the manufacture of wind turbines components such as the hub and
the main frame.

Vibrations were captured by two unidirectional piezoelectric accelerom-
eters placed along the X and Y axis of the machine tool, both of which were
placed on the milling head. The sampling frequency was 10 kHz. After
experimentation, the vibration signals were analyzed to split the data be-
tween the rapid traverses along the Y axis, where acceleration is maximum,
and during the effective cut when the tool removes material. Only those
vibrations that occurred when the tool was engaged in the workpiece were
included in the data sets. Different vibration variables were considered:
low, medium and high-frequency vibration amplitudes, temporal domain
vibration amplitude and tooth passing frequency amplitude, all of which on
the X and Y axes.

7. Boosting Projections to improve surface roughness prediction in high-torque
milling operations 203

Once the experiments had been performed, a Diavite DH5 roughness
tester with a nominal 2 µm stylus tip was used to measure surface roughness.
The evaluation length was 4.8 mm composed of 6 basic lengths of 0.8mm.
The Ra parameter was calculated as a mean value of measured roughness,
as shown in Eq.7.1, in accordance with ISO standard 4287:1997 [36].
The calculated roughness was then discretized according to ISO standard
4288:1996 [37], as is often done in the literature before applying any
artificial intelligence technique [17, 16, 49, 11]. Table 7.1 shows the
intervals in which the final roughness was discretized; only four of these
intervals, from level 5 to level 8, are presented in the data set with the
following distribution: 17 experiments had N5 level final roughness, 136
experiment N6 level, 250 experiments N7 and 20 experiments N8 level.
Surface roughness was measured 3 times for each experiment at different
locations to increase the size of the data set: at the beginning, midway along
its length and close to the end of the simple raster. The vibrations varied in
these 3 measurements, even though the cutting conditions did not vary.

The experiments generated a data set of 423 records that contain infor-
mation on the following 18 variables: axial depth of cut (Ap), feed rate (f),
milling head speed (N), feed per tooth (fz), cutting speed (Vc), tooth passing
frequency (ft), cutting section (Cs), low frequency vibration amplitude on
X and Y axes (lx, ly), medium frequency vibration amplitude on X and Y
axes (mx, my), high frequency vibration amplitude on X and Y axes (hx, hy),
temporal domain vibration amplitude on X and Y axes (tdx, tdy), tooth pass-
ing frequency amplitude on X and Y axes (t px, t py), and material removal
rate (MRR). It should be underlined that many of these input variables are
determined by the others. Table 7.3 also shows which of the input variables
are non-deterministic and which are deterministic and their relation with
the non-deterministic variables, based on the definition given in [48] and
after some ordering described in detail in [11].

7.3 Introduction to ensembles

The choice of which film to see at the cinema may be influenced by film
reviews, by Oscar nominations, and even by box-office statistics. The
purchase of a new vehicle may involve quizzing friends who already have
one, reading specialist automobile magazines, or consulting specialized
webpages. Indeed, prior to the publication of a scientific article, it will

204 7.3. Introduction to ensembles

Table 7.3: Ranges of the input and output variables and relationship between them (ndpp:
non-deterministic-process parameter, ndctc: non-deterministic-cutting tool characteristic,
ndipmd: non-deterministic-in-process measured data, det: deterministic).

Variable (Units) Range Relationship

Ap (mm) 0.1–3 ndpp
f (mm/min) 993–2978 ndpp
N (rpm) 1655–2483 ndpp
tdx (mm/s2) 0.095–0.105 ndipmd
tdy (mm/s2) 0.130–0.150 ndipmd
t px (×10−3 mm/s2) 0.02–0.19 ndipmd
t py (×10−3 mm/s2) 0.02–0.19 ndipmd
lx (×10−3 mm/s2) 0.20–0.36 ndipmd
ly (×10−3 mm/s2) 0.10–0.27 ndipmd
mx (×10−3 mm/s2) 0.25–0.40 ndipmd
my (×10−3 mm/s2) 0.10–0.26 ndipmd
hx (×10−3 mm/s2) 0.51–0.73 ndipmd
hy (×10−3 mm/s2) 0.24–0.41 ndipmd
ft (Hz) 110–165 det (N·Z/60)
Cs (mm2) 4–120 det (see [11])
MRR (mm3/min) 3970–89360 det (= f·Cs)
fz (mm/tooth) 0.1–0.127 det (= f/N·Z)
V c (m/min) 208–312 det (= 2π·R·N/10−3)
Ra (µm) 0.24–1.96 output

7. Boosting Projections to improve surface roughness prediction in high-torque
milling operations 205

be reviewed by various experts and in accordance with their opinions, the
editor will decide either to accept or to reject it. These examples, taken
from everyday life, all apply the same raison-d’être that justifies the use of
ensembles: the assimilation of various expert opinions and/or sources of
information for the purpose of taking a decision.

Formally, an ensemble of classifiers consisted of a combination of dif-
ferent, homogeneous or heterogeneous classifiers that jointly performed
a classification task. Ensemble construction is one of the fields of ma-
chine learning that is receiving most research attention at present, which is
mainly due to the significant way in which ensemble methods are reported
to outperform single classifiers [3, 53, 40, 43].

A classification problem of K classes and n training observations consists
of a labelled data set

S = {(x1,y1),(x2,y2), . . . ,(xn,yn)}

where, each instance xi belongs to a domain X and each class label, yi, is
an integer from the set Y = {1, . . . ,K}. A classifier is a function f : X → Y
that maps an instance x ∈ X ⊆ RD onto an element of Y . The difficulty
consists in finding a definition for the unknown function f (x). In the
case of ensembles we have a set of base classifiers C = C1,C2, . . . ,Cm,
each of which map x ∈ RD onto a label in the set Y = {1, . . . ,K}. The
construction of an ensemble must fulfil two main tasks: the construction
of the individual classifiers Ci, and the design of the combination rule that
allows the ensemble to get the label of the instance x from the outputs
of the individual classifiers {C1(x),C2(x), . . . ,Cm(x)}. A more detailed
description of the process may be found in [53, 40, 43, 19, 22].

There are several reasons for using a classifier ensemble instead of a
single classifier, as described in [19]:

• Statistical reason: to obtain a classifier only one subset of all possible
instances that can occur in practice is used. Only one part from that
subset is used for training purposes, while the other part is used for
estimating the generalization error. This error, though, is an estimate
that only partially guarantees good classifier performance when dealing
with new instances. Using this estimate could lead us to choose a non-
optimal classifier, a problem that is even more acute when the set of
instances is too small. The combination of the outputs from several
classifiers may reduce this risk.

206 7.3. Introduction to ensembles

• Computational reason: many algorithms used to obtain classifiers
may often be trapped in local optima. For example, neural networks
use gradient descent to minimize the error function over the training
set, while decision trees use a greedy algorithm to grow the tree.
The final classifier is strongly dependent on the initial conditions.
Also, in some cases, convergence will gradually slow down, adding
considerably to the time needed for computation of the last phase
of the learning process. In such cases, it is difficult to find the best
classifier. An ensemble constructed from classifiers that have started
their training under different initial conditions may lead to a classifier
that approximates optimal conditions in better way than any of the
individual classifiers.

• Representational reason: the decision boundary that separates data
from different classes may be too complex for a single classifier, but
can be approximated from an appropriate combination of different in-
dividual classifiers. For example, non-linear data may not be correctly
classified by a single linear classifier. However, a group of several
linear decision classifiers can be combined, in order to solve the prob-
lem. Also, for certain problems, an ensemble of simple classifiers will
perform faster and is more easily implemented than a single complex
classifier.

A combination of diverse multiple classifiers makes sense wherever the
instances in which they make erroneous predictions differ. The underlying
logic is that if they all gave the same output, the whole ensemble could
be replaced by a single classifier. In contrast, the correct predictions in a
proper combination of classifiers will be able to compensate its incorrect
predictions, when the ensemble classifier predictions are wrong for different
instances. Hence, the most common strategy for building ensembles is to
ensure diversity among the base classifiers in the ensemble [39, 19].

Two of the most successful and widely used heuristics are: i) train each
classifier with a different sample of the data set, ii) train each classifier with
different subsets of the data set features. Bagging and Boosting are two
strategies that use the first approach, Bagging [8] trains each base classifier
in the ensemble with a different bootstrap sample of the original training.
Bootstrap sampling is sampling with replacement. Boosting [24] is similar
to bagging, in that each classifier is trained with a different bootstrap sample
of the original training set, but with two differences: i) each sample is built

7. Boosting Projections to improve surface roughness prediction in high-torque
milling operations 207

in order to attribute greater importance to the instances that have been
misclassified by the previous classifiers (that is, the instance probability
of being chosen as part of next sample is higher when the instance has
been misclassified by previous classifiers); ii) in the final ensemble, each
classifier is given a weight associated with its specific accuracy. Initially, all
the instances have the same weight and have the same probability of being
chosen to form the training set of a classifier. During the boosting procedure,
the weights are adjusted after the training of each classifier. The weights
of the misclassified instances are increased, whereas they are reduced for
correctly classified instances. Random Subspace method [32] is an example
of the second heuristic. These methods have been quite successful and their
comparision with new algorithms is common practice.

7.4 Introduction to boosting projections

In a previous work [29], we presented a method based on the use of the
misclassified instances to obtain a supervised projection of the data set,
which assisted correct classification of these instances, but without putting
too much pressure on their correct classification.

This approach is able to incorporate the advantages of boosting without
its main drawbacks; boosting is very sensitive to noise and does not usually
perform well on small data sets [20] (noise and small data set sizes are both
characteristics of data sets in the field of machining).

The construction of the projection taking into account only instances that
have been misclassified by a previous classifier enables the new classifier
to focus on difficult instances. Nevertheless, as this classifier receives a
uniform distribution of the training instances, sensitivity to noise and the
effect of small data sets is greatly reduced. The proposed method at each
step t considers only the subset of instances, S′ ⊂ S, misclassified by the
classifier added in step t−1. It uses the instances in S′ to obtain a super-
vised projection that is focused only on misclassified instances. In [28],
the supervised projection was non linear and used the hidden layers of a
Multilayer Perceptron(MLP). In [27], the projection was linear, the results
were equally good, but the projection was obtained much faster, because
there was no need to train an MLP. The proposed method is shown in Algo-
rithm 9. The next section explains how the supervised linear projections are
obtained.

208 7.4. Introduction to boosting projections

Algorithm 9: Linear Boosting Projections algorithm.
Input: A training set S = {(x1,y1), . . . ,(xn,yn)}, a base learning algorithm, L, and

the number of iterations T .
Output: The final classifier: C∗(x) = argmaxy∈Y ∑t:C(x)=y 1.

1 C0 = L(S)
for t = 1 to T −1 do

2 S′ ⊂ S, S′ = {xi ∈ S : Ct−1(xi) 6= yi}.
3 Obtain supervised linear/non-linear projection P(x) using S′.
4 Ct = L(P(S))

end

7.4.1 Linear Supervised Projections

One of the most widely used methods for linear projection is Principal
Component Analysis (PCA). PCA projects the data set onto the directions
which explain most of the variance in the data set. Assuming Gaussian
distribution, these are the directions with more information. The main
drawback of PCA is that it is an unsupervised technique and does not take
into account the class labels of the data set. PCA tries to find the linear
transformation W that maximizes

J(W) =W T
Σ̂W (7.2)

where Σ̂ is the sample covariance matrix for the whole data set

Σ̂ =
N

∑
i=1

(xi−µ)(xi−µ)T

It can be shown that PCA solves the eigenproblem

Σ̂v = λv

PCA is more a method for efficient representation rather than a method
for efficient discrimination. A typical example where PCA fails is shown in
Figure 7.1. In such cases we need a supervised technique such as Linear
Discriminant Analysis.

7.4.1.1 Linear Discriminant Analysis

Linear Discriminant Analysis (LDA) was first used for two classes. It
identifies a linear subspace that maximizes the class separability. The

7. Boosting Projections to improve surface roughness prediction in high-torque
milling operations 209

Class A

Class B

PCA

LDA

Figure 7.1: PCA fails when the class labels are not used.

objective is to find a projection W that maximizes the ratio of between-class
scatter SB as against within-class scatter SW [26].

argmax
W

=

∣∣WSBW T
∣∣

|WSWW T | (7.3)

where

SW =
L

∑
i=1

PiΣ̂i (7.4)

SB =
L

∑
i=1

Pi(µi−µ)(µi−µ)T (7.5)

Pi is the a priori probability of class i, Σ̂i is the sample covariance matrix
for class i, L is the number of classes, µi is the sample mean vector of class
i, and µ is the global sample mean vector µ = ∑

L
i=1 Piµi.

The maximization can be performed solving the generalized eigenprob-
lem

SBv = λSW v
LDA has three important disadvantages: i) it assumes a Gaussian dis-

tribution over the class distribution of the data samples; and ii) the dimen-
sionality of the subspaces obtained is limited by the number of classes;
for an L classes data set, at most L−1 dimensional, iii) if SW is singular
(which often occurs in high dimensional problems), LDA performs poorly
for classification.

One simple method to overcome the constraints of LDA is a method
called Hybrid Discriminant Analysis, which is explained in the next subsec-
tion.

7.4.1.2 Hybrid Discriminant Analysis

Tian et al. presented Hybrid Discriminant Analysis (HDA) in [51] as a
framework that unifies PCA and LDA. The ratio to maximise in HDA is

210 7.5. Ordinal Classification

argmax
W

∣∣∣W T
(
(1−λ)SB +λ Σ̂

)
W
∣∣∣

|W T ((1−η)SW +ηI)W |
(7.6)

where I is the identity matrix and Σ̂ the covariance matrix. The combination
of values (λ = 0,η = 0) gives LDA. PCA can be obtained with values
(λ = 1,η = 1). For other values, equation (7.6) provides a set of alternatives
between PCA and LDA.

The main advantages of the method are: i)the matrix (1−λ)SB +λ Σ̂ is
full rank with values λ 6= 0, such that HDA overcomes one of the limitations
of LDA that is restricted to projections of L−1 dimensions at most; and
ii) values η 6= 0 give us a simple regularization scheme that avoids the
singularity of (1−η)SW +ηI.

7.5 Ordinal Classification

In recent years, classifier ensembles have been studied and have developed
considerably. In the majority of these methods, it is assumed that the class
values are not ordered, however many problems exist in which the class
values are ordered. For example, a person may be classified by age as a
child, adolescent, adult or elderly person. It is easy to appreciate that these
classes have an order in which the adolescent comes before the adult and
the adult before the elderly person.

Multiclass classification methods are commonly used to work with data
in which the class is ordered, but the information that relates to the order is
simply not taken into account. However, in some cases this information that
is habitually ignored could be used to improve the precision of the classifier
[23] [1]. In this work, the method described in [23] is used. It is a classic
method that is based on a transformation of data to convert an ordered k
class problem to a k-1 binary classification problem. It may be thought of
as an ensemble in which the acceptable transformations are firstly made to
obtain the k-1 binary classification problems, and then a base classifier is
used, which moves as a parameter to the ensemble, in order to resolve each
of these k-1 binary problems. In the training stage, the k-1 new data sets are
obtained. Each one of them is formed of all the instances and the value of
their class has simply been modified. In the example of age, 3 data sets will
be generated:

7. Boosting Projections to improve surface roughness prediction in high-torque
milling operations 211

1. (target > child) Instances labelled as child will be labelled as 0 and
the rest as 1.

2. (target > adolescent) Instances labelled as child and adolescent will
be labelled as 0 and the rest as 1.

3. (target > adult) Instances labelled as child, adolescent and adult will
be labelled as 0 and the instances labelled as elderly will be labelled
as 1.

In the following stage, a classifier is constructed for each one of the
data sets that are generated. And finally, at the prediction stage, for each
new instance, the probabilities are obtained of the k-1 base classifiers in the
following way:

Pr(V1) = 1−Pr(Target >V1)

Pr(Vi) = Pr(Target >Vi−1)−Pr(Target >Vi), 1< i<k

Pr(Vk) = 1−Pr(Target >Vk−1)

And it returns the class with the highest probability.

7.6 Results and discussion
We compared Boosting Projections with the most commonly used types of ensembles and,
we evaluated both the classical and the ordinal approach for each method:

1. Random Committee: An ensemble of randomizable base classifiers. Each base
classifier is built using the same data but a different seed for the generation of ran-
domness. The final predicted probabilities are simply the average of the probabilities
generated by the individual base classifiers.

2. Bagging [8].

3. Boosting: AdaBoost.M1 [25] and Multiboost [53]. The variant with reweighting
was used. For Multiboost the approximate number of subcommittees was 3 and 10.

4. Random Subspaces [32]: with two different configurations, with 50% and 75% of
the original set of attributes.

5. Boosting Projections, using HDA projection with parameters λ = 0.5 and η = 0.1.

Base classifiers are neural networks, because they are the most widely used type
of classifier in this type of problems, and decision trees, because they are efficient and
unstable. The training and testing time and memory requirements of an ensemble are a
direct function of the corresponding values of the base classifier. It is not practical to
construct an ensemble of many classifiers if they are slow or need too much memory.
Instability means that, with relatively small changes in the data set, it is possible to obtain
very different classifiers, which is desirable because successful ensembles need diverse
base classifiers [38].

212 7.6. Results and discussion

Table 7.4: Accuracy for the different base classifiers: (a) Multilayer perceptron with
default training parameters, (b) Multilayer perceptron with optimal training parameters,
(c) J48 decision tree with prunning, (d) J48 decision tree without prunning. (A) Ordinal-
Multilayer perceptron with default training parameters, (B) Ordinal-Multilayer perceptron
with optimal training parameters, (C) Ordinal-J48 decision tree with prunning, (D) Ordinal-
J48 decision tree without prunning

MLP Decision trees ORD-MLP ORD-Decision trees
Default (a) Optimal (b) Pruned (c) Unpruned (d) Default(A) Optimal (B) Pruned (C) Unpruned (D)

69.976 71.183 68.758 68.236 68.868 70.870 69.604 68.488

The evaluated method, Boosting Projections, was implemented in the Weka library
[31]1 and the other base classifiers and ensembles are also taken from this library.

Both the base classifiers as well as the ensembles were used by themselves and as base
classifiers within the Ordinal Class Classifier, which is the name given in Weka to the
method that implements the ideas of [23] outlined in section 7.5.

The parameter for the base classifiers is the default training parameter for the classifier
in Weka; in the case of MLP: learning rate=0.3, momentum=0.2, number of epochs=500,
number of neurons in the hidden layer=(number of attributes+number of classes)/2. As
was done in [11] for a similar industrial task (Roughness prediction for ball-end milling
operations), in order to obtain a further reference value for comparison of the accuracy
of the ensembles, we searched within 255 different training parameter combinations for
the optimal neural network parameters for this data set: number of neurons in the hidden
layer=18, learning rate=0.1, momentum=0.075 (although we do not use the optimal neural
network as base classifiers in the ensembles). That same search procedure was performed
to optimize the parameters of the neural network used within the Ordinal Class Classifier,
finding the following optimal values: number of neurons in the hidden layer=18, learning
rate=0.5, momentum=0.375.

The results for the base classifiers and the optimal MLP are shown in Table 7.4.
The size of the ensembles (including the Random Committee) was set to 50. All

experiments were performed using 10×10 cross validation [21] (each prediction method
is trained on nine tenths of the total data and tested on the remaining tenth. This process
was repeated a further nine times until all 10 subsamples had been used once for training,
and the whole process was repeated with 10 different partitions, in order to account for the
variance between partitions).

Table 7.5 shows the results for the different ensembles.
Various conclusions may be drawn from the contents of the table. For this data set in

particular, the ordered classification contributes no improvements in the performance of
the classifiers. The variants of the methods that perform the classification without taking
the order of classes into account outperform their equivalent methods with ordering on 15
occasions, 10 of which significantly. Many ensembles yield better results than the optimal
neuronal network, among which all those marked with the symbol ◦ obtained significantly
better precision than the optimal neuronal network in accordance with the paired t-test to a
level of significance of 10%.

1http://www.cs.waikato.ac.nz/ml/weka/

http://www.cs.waikato.ac.nz/ml/weka/

7. Boosting Projections to improve surface roughness prediction in high-torque
milling operations 213

Table 7.5: The following table presents the results of the different ensembles in terms of
percentage precision. In the rows we can see the types of ensembles and in the columns, the
different base classifiers: Multilayer Perceptron, Decision Trees and Unpruned Decision
Trees. The data situated below columns headings of “Ordinal”, correspond to the results of
the Ordinal Classifier which takes as the base classifier the ensemble and the corresponding
base classifier. All the results marked ◦ are significantly better than the optimal neuronal
network. Equally, all the results marked • are significatively better than the best of
the traditional ensembles (in this case Random SubSpaces 50%) the value of which is
underlined. When comparing the classic and ordered versions of each method, < y > is
used to identify simple achievements and� y� to identify significant achievements in
accordance with the paired Student’s t test. The best value appears in bold.

Type Ensemble MLP Decision trees Decision trees (U)
Ordinal Ordinal Ordinal

Random Commite 71.634 � 70.217
Bagging ◦72.667 � 71.824 70.929 > 70.787 70.952 > 70.667
RS 50 ◦72.295 < 72.414◦ 72.110 < 72.767◦ 71.990 < 72.274◦
RS 75 ◦73.520 � 71.916 69.678 � 70.671 69.673 < 70.340
Adaboost 70.931 � 68.611 71.321 � 70.539 71.414 > 70.989
Multiboost C=3 71.588 � 69.273 71.488 > 70.971 71.089 < 71.274
Multiboost C=10 ◦72.508 � 71.164 71.229 < 71.607 71.578 > 71.466
Boosting Projections ◦74.162 � 72.180◦ •75.462 � 73.976◦ •75.534 � 73.947◦

It was noted that Boosting Projections achieves an accuracy that is superior to other
traditional ensembles, especially when the base classifiers are decision trees. Using
the results from the cross-validations and a paired t-test with 10% significance level, the
accuracy of the Boosting Projections using trees as base classifiers significantly outperforms
the accuracy of the best of the classical ensemble methods (highlighted in bold in the
table).

7.7 Conclusions

Surface roughness has a strong influence on the performance of a finished part. It is a
characteristic that is nowadays evaluated out-of-process when the defective part has been
already completely machined and may no longer be removed from the production chain. If
the machined parts are very large, such as the hub or the main frame of a wind turbine, poor
surface quality will imply costly losses owing to the manufacture of defective components,
a situation which may be avoided through improvements to data mining algorithms, leading
to more accurate on-line process information.

A recent ensemble method, Boosting Projection, has been used for surface roughness
prediction in a vertical milling machine. The method has been applied to high-torque,
high-power milling operations; operations that are nowadays in great demand by wind
turbine manufacturers. The data set was obtained from 141 experiments performed under
real industrial conditions. The experiments consider 18 parameters that play a central
role in surface generation under industrial conditions and include cutting tool properties,

214 7.8. Acknowledgements

machining parameters and cutting phenomena.
In this data set, Boosting Projection obtained better results than the classical ensemble

methods. The best method was Boosting Projection with unpruned trees as the base
classifier. Regarding to the use of ordinal classification, in this data set, the technique has
not shown any advantage compare to the use of multiclass classification which does not
take into account the order of the class labels.

Future work will focus on the application of Boosting Projections to other materials
of industrial interest, especially aeronautical aluminium because of the immense number
of face milling tasks involved in the manufacture of different structural aeronautical
components, such as aeroplane ribs. Moreover, this model will be applied to optimize
slightly different industrial problems such as the contouring of multicomponent plates
for the aeronautical industry. In this paper, roughness prediction has been addressed as a
classification problem because, as explained in the introduction, roughness quality in an
industrial context is always given in terms of the discrete values defined in ISO standard
4288:1996 [37]. However, an interesting future line of work would also be to compare the
results of this paper with the results of using ensembles of regressors. Instead of directly
predicting the level of the standard, they would first predict the exact roughness value and
would then use this value to determine the roughness level.

7.8 Acknowledgements
This investigation has been partially supported by the CENIT project MAGNO (Ref.
2008–1028) funded by the Spanish Ministry of Science and Innovation. The authors would
especially like to thank Mr. Desiderio Sutil from Nicolas Correa S.A. for his kind-spirited
and useful advice.

References
[1] A. Agresti. Analysis of Ordinal Categorical Data. Wiley Series in Probability and

Statistics. Wiley, 2010. ISBN: 9780470082898. URL: http://books.google.es/
books?id=VVIe4BPDR7kC.

[2] M. Arizmendi et al. “Effect of tool setting error on the topography of surfaces
machined by peripheral milling”. In: International Journal of Machine Tools and
Manufacture 49.1 (2009), pp. 36 –52. ISSN: 0890-6955. DOI: DOI:10.1016/j.
ijmachtools.2008.08.004.

[3] E. Bauer and R. Kohavi. “An empirical comparison of voting classification algo-
rithms: Bagging, boosting, and variants”. In: Machine learning 36.1 (1999), pp. 105–
139.

[4] C. Beggan et al. “Using Acoustic Emission to Predict Surface Quality”. In: The
International Journal of Advanced Manufacturing Technology 15 (10 1999), pp. 737–
742. ISSN: 0268-3768.

http://books.google.es/books?id=VVIe4BPDR7kC
http://books.google.es/books?id=VVIe4BPDR7kC
http://dx.doi.org/DOI: 10.1016/j.ijmachtools.2008.08.004
http://dx.doi.org/DOI: 10.1016/j.ijmachtools.2008.08.004

7. Boosting Projections to improve surface roughness prediction in high-torque
milling operations 215

[5] P. G. Benardos and G. C. Vosniakos. “Predicting surface roughness in machining: a
review”. In: International Journal of Machine Tools and Manufacture 43.8 (2003),
pp. 833 –844. ISSN: 0890-6955. DOI: DOI:10.1016/S0890-6955(03)00059-2.
URL: http://www.sciencedirect.com/science/article/B6V4B-48BKNN7-
8/2/67f1ad26e976f978e073fb0c6ff513ef.

[6] PG Benardos and GC Vosniakos. “Prediction of surface roughness in CNC face
milling using neural networks and Taguchi’s design of experiments”. In: Robotics
and Computer-Integrated Manufacturing 18.5-6 (2002), pp. 343–354. ISSN: 0736-
5845.

[7] S. Binsaeid et al. “Machine ensemble approach for simultaneous detection of tran-
sient and gradual abnormalities in end milling using multisensor fusion”. In: Jour-
nal of Materials Processing Technology 209.10 (2009), pp. 4728 –4738. ISSN:
0924-0136. DOI: DOI:10.1016/j.jmatprotec.2008.11.038. URL: http:
/ / www . sciencedirect . com / science / article / B6TGJ - 4V34D5P - 4 / 2 /
73586df93b0247b4275db4288e1b1a3e.

[8] L. Breiman. “Bagging predictors”. In: Machine learning 24.2 (1996), pp. 123–140.

[9] M. Brezocnik and M. Kovacic. “Integrated Genetic Programming and Genetic Al-
gorithm Approach to Predict Surface Roughness”. In: Materials and Manufacturing
Processes 18.3 (2003), pp. 475–491. ISSN: 1042-6914.

[10] M. Brezocnik, M. Kovacic, and M. Ficko. “Prediction of surface roughness with ge-
netic programming”. In: Journal of Materials Processing Technology 157-158 (Dec.
2004), pp. 28–36. ISSN: 0924-0136. URL: http://www.sciencedirect.com/
science/article/B6TGJ-4DHXJR6-3/2/a7ca428ffbf6c10027da075b63009b2a.

[11] A. Bustillo et al. “Avoiding neural network fine tuning by using ensemble learn-
ing: application to ball-end milling operations”. In: The International Journal of
Advanced Manufacturing Technology 57 (5 2011). 10.1007/s00170-011-3300-z,
pp. 521–532. ISSN: 0268-3768. URL: http://dx.doi.org/10.1007/s00170-
011-3300-z.

[12] A. Bustillo et al. “Modelling of process parameters in laser polishing of steel com-
ponents using ensembles of regression trees”. In: International Journal of Computer
Integrated Manufacturing 24.8 (2011), pp. 735–747. ISSN: 0951-192X,1362-3052.
DOI: http://dx.doi.org/10.1080/0951192X.2011.574155.

[13] M. Chandrasekaran et al. “Application of soft computing techniques in machining
performance prediction and optimization: a literature review”. In: The International
Journal of Advanced Manufacturing Technology 46.5 (Jan. 2010), pp. 445–464.
URL: http://dx.doi.org/10.1007/s00170-009-2104-x.

[14] S. Cho, S. Binsaeid, and S. Asfour. “Design of multisensor fusion-based tool
condition monitoring system in end milling”. In: The International Journal of
Advanced Manufacturing Technology 46.5 (Jan. 2010), pp. 681–694. URL: http:
//dx.doi.org/10.1007/s00170-009-2110-z.

http://dx.doi.org/DOI: 10.1016/S0890-6955(03)00059-2
http://www.sciencedirect.com/science/article/B6V4B-48BKNN7-8/2/67f1ad26e976f978e073fb0c6ff513ef
http://www.sciencedirect.com/science/article/B6V4B-48BKNN7-8/2/67f1ad26e976f978e073fb0c6ff513ef
http://dx.doi.org/DOI: 10.1016/j.jmatprotec.2008.11.038
http://www.sciencedirect.com/science/article/B6TGJ-4V34D5P-4/2/73586df93b0247b4275db4288e1b1a3e
http://www.sciencedirect.com/science/article/B6TGJ-4V34D5P-4/2/73586df93b0247b4275db4288e1b1a3e
http://www.sciencedirect.com/science/article/B6TGJ-4V34D5P-4/2/73586df93b0247b4275db4288e1b1a3e
http://www.sciencedirect.com/science/article/B6TGJ-4DHXJR6-3/2/a7ca428ffbf6c10027da075b63009b2a
http://www.sciencedirect.com/science/article/B6TGJ-4DHXJR6-3/2/a7ca428ffbf6c10027da075b63009b2a
http://dx.doi.org/10.1007/s00170-011-3300-z
http://dx.doi.org/10.1007/s00170-011-3300-z
http://dx.doi.org/http://dx.doi.org/10.1080/0951192X.2011.574155
http://dx.doi.org/10.1007/s00170-009-2104-x
http://dx.doi.org/10.1007/s00170-009-2110-z
http://dx.doi.org/10.1007/s00170-009-2110-z

216 REFERENCES

[15] S. K. Choudhury and G. Bartarya. “Role of temperature and surface finish in
predicting tool wear using neural network and design of experiments”. In: In-
ternational Journal of Machine Tools and Manufacture 43.7 (2003), pp. 747 –
753. ISSN: 0890-6955. DOI: DOI:10.1016/S0890- 6955(02)00166- 9. URL:
http : / / www . sciencedirect . com / science / article / B6V4B - 484V7NB -
1/2/1f70e50137375b665510badcc773d63a.

[16] M. Correa, C. Bielza, and J. Pamies-Teixeira. “Comparison of bayesian networks
and artificial neural networks for quality detection in a machining process”. In:
Expert Systems with Applications 36.3 (2009), pp. 7270–7279. DOI: http://dx.
doi.org/10.1016/j.eswa.2008.09.024.

[17] M. Correa et al. “A Bayesian network model for surface roughness prediction in
the machining process”. In: Intern. J. Syst. Sci. 39.12 (2008), pp. 1181–1192. DOI:
http://dx.doi.org/10.1080/00207720802344683.

[18] V. G. Dhokia et al. “An intelligent approach for the prediction of surface roughness
in ball-end machining of polypropylene”. In: Robotics and Computer-Integrated
Manufacturing 24.6 (2008). FAIM 2007, 17th International Conference on Flexible
Automation and Intelligent Manufacturing, pp. 835 –842. ISSN: 0736-5845. DOI:
DOI:10.1016/j.rcim.2008.03.019.

[19] T. Dietterich. “Ensemble methods in machine learning”. In: Multiple classifier
systems (2000), pp. 1–15.

[20] T.G. Dietterich. “An experimental comparison of three methods for constructing
ensembles of decision trees: Bagging, boosting, and randomization”. In: Machine
learning 40.2 (2000), pp. 139–157. ISSN: 0885-6125.

[21] T.G. Dietterich. “Approximate statistical tests for comparing supervised classifica-
tion learning algorithms”. In: Neural computation 10.7 (1998), pp. 1895–1923.

[22] S. Dzeroski and B. Zenko. “Is Combining Classifiers with Stacking Better than
Selecting the Best One?” In: Machine Learning 54.3 (2004), pp. 255–273.

[23] E. Frank and M. Hall. “A simple approach to ordinal classification”. In: Machine
Learning: ECML 2001 (2001), pp. 145–156.

[24] Y. Freund and R.E. Schapire. “A Decision-Theoretic Generalization of On-Line
Learning and an Application to Boosting”. In: Journal of Computer and System
Sciences 55.1 (1997). cited By (since 1996) 2237, pp. 119–139. URL: http://www.
scopus.com/inward/record.url?eid=2-s2.0-0031211090&partnerID=
40&md5=6aa263ad916f3130742d61a6bf8337c3.

[25] Y. Freund and R.E. Schapire. “Experiments with a new boosting algorithm”. In:
MACHINE LEARNING-INTERNATIONAL WORKSHOP THEN CONFERENCE-.
Citeseer. 1996, pp. 148–156.

[26] K. Fukunaga and JM Mantock. “Nonparametric discriminant analysis”. In: IEEE
Transactions on Pattern Analysis and Machine Intelligence 5.6 (1983), pp. 671–678.

[27] C. García-Osorio and N. García-Pedrajas. “Constructing ensembles of classifiers
using linear projections based on misclassified instances”. In: 16th European Sym-
posium on Artificial Neural Networks (ESANN 2008). Ed. by Michel Verleysen.
Bruges, Belgium: d-side publications, 2008, pp. 283–288. ISBN: 2-930307-08-0.

http://dx.doi.org/DOI: 10.1016/S0890-6955(02)00166-9
http://www.sciencedirect.com/science/article/B6V4B-484V7NB-1/2/1f70e50137375b665510badcc773d63a
http://www.sciencedirect.com/science/article/B6V4B-484V7NB-1/2/1f70e50137375b665510badcc773d63a
http://dx.doi.org/http://dx.doi.org/10.1016/j.eswa.2008.09.024
http://dx.doi.org/http://dx.doi.org/10.1016/j.eswa.2008.09.024
http://dx.doi.org/http://dx.doi.org/10.1080/00207720802344683
http://dx.doi.org/DOI: 10.1016/j.rcim.2008.03.019
http://www.scopus.com/inward/record.url?eid=2-s2.0-0031211090&partnerID=40&md5=6aa263ad916f3130742d61a6bf8337c3
http://www.scopus.com/inward/record.url?eid=2-s2.0-0031211090&partnerID=40&md5=6aa263ad916f3130742d61a6bf8337c3
http://www.scopus.com/inward/record.url?eid=2-s2.0-0031211090&partnerID=40&md5=6aa263ad916f3130742d61a6bf8337c3

7. Boosting Projections to improve surface roughness prediction in high-torque
milling operations 217

[28] N. Garcıa-Pedrajas, C. Garcıa-Osorio, and C. Fyfe. “Nonlinear boosting projections
for ensemble construction”. In: Journal of Machine Learning Research 8 (2007),
pp. 1–33.

[29] N. García-Pedrajas and C. García-Osorio. “Constructing ensembles of classifiers
using supervised projection methods based on misclassified instances”. In: Expert
Systems with Applications 38.1 (2011), pp. 343–359. ISSN: 0957-4174. DOI: DOI:
10.1016/j.eswa.2010.06.072.

[30] M. P. Groover. Fundamentals of modern manufacturing: materials, processes, and
systems. 3rd. ISBN: 0471744859; ISBN-13: 9780471744856, 978-0471744856;
Binding: Hardcover; Number of Pages: 1022. John Wiley & Sons, 2006.

[31] Mark Hall et al. “The WEKA data mining software: an update”. In: SIGKDD Explor.
Newsl. 11.1 (Nov. 2009), pp. 10–18. ISSN: 1931-0145. DOI: 10.1145/1656274.
1656278.

[32] T.K. Ho. “The random subspace method for constructing decision forests”. In: IEEE
Transactions on Pattern Analysis and Machine Intelligence 20.8 (1998), pp. 832–
844.

[33] W. H. Ho et al. “Adaptive network-based fuzzy inference system for prediction of
surface roughness in end milling process using hybrid Taguchi-genetic learning
algorithm”. In: Expert Systems with Applications 36.2 (2009), pp. 3216–3222. ISSN:
0957-4174. DOI: http://dx.doi.org/10.1016/j.eswa.2008.01.051.

[34] A. Iqbal et al. “A fuzzy expert system for optimizing parameters and predicting per-
formance measures in hard-milling process”. In: Expert Systems with Applications
32.4 (May 2007), pp. 1020–1027. ISSN: 0957-4174.

[35] F. Ismail et al. “Generation of Milled Surfaces Including Tool Dynamics and Wear”.
In: Journal of Engineering for Industry 115.3 (1993), pp. 245–252. DOI: 10.1115/
1.2901656. URL: http://link.aip.org/link/?MSE/115/245/1.

[36] ISO-4287. Geometrical Product Specifications (GPS) — Surface texture: Profile
method — Terms, definitions and surface texture parameters. International Organi-
zation for Standardization. 1997.

[37] ISO-4288. Geometrical Product Specifications (GPS): Rules and procedures for the
assessment of surface texture. International Organization for Standardization. 1996.

[38] L. I. Kuncheva. “Diversity in multiple classifier systems”. In: Information Fusion
6.1 (2005), pp. 3–4.

[39] L.I. Kuncheva. “Combining classifiers: Soft computing solutions”. In: Pattern
Recognition: From Classical to Modern Approaches (2001), pp. 427–451.

[40] L.I. Kuncheva. Combining pattern classifiers: methods and algorithms. Wiley-
Interscience, 2004.

[41] H.S. Lee et al. “Systematic finishing of dies and moulds”. In: International Journal
of Machine Tools and Manufacture 46.9 (2006), pp. 1027 –1034. ISSN: 0890-6955.
DOI: DOI:10.1016/j.ijmachtools.2005.07.049.

http://dx.doi.org/DOI: 10.1016/j.eswa.2010.06.072
http://dx.doi.org/DOI: 10.1016/j.eswa.2010.06.072
http://dx.doi.org/10.1145/1656274.1656278
http://dx.doi.org/10.1145/1656274.1656278
http://dx.doi.org/http://dx.doi.org/10.1016/j.eswa.2008.01.051
http://dx.doi.org/10.1115/1.2901656
http://dx.doi.org/10.1115/1.2901656
http://link.aip.org/link/?MSE/115/245/1
http://dx.doi.org/DOI: 10.1016/j.ijmachtools.2005.07.049

218 REFERENCES

[42] S. P. Lo. “An adaptive-network based fuzzy inference system for prediction of
workpiece surface roughness in end milling”. In: Journal of Materials Processing
Technology 142.3 (2003), pp. 665 –675. ISSN: 0924-0136. DOI: DOI:10.1016/
S0924-0136(03)00687-3. URL: http://www.sciencedirect.com/science/
article/B6TGJ-495VKPK-H/2/c3f09b7f079528786a234bd4986cc6c6.

[43] O. Maimon and L. Rokach, eds. Data Mining and Knowledge Discovery Handbook,
2nd ed. Springer, 2010. ISBN: 978-0-387-09822-7.

[44] M.E Martellotti. “An analysis of the milling process”. In: Transaction of ASME 63
(1941), pp. 667–700.

[45] D. Montgomery and Y. Altintas. “Mechanism of Cutting Force and Surface Gener-
ation in Dynamic Milling”. In: Journal of Engineering for Industry 113.2 (1991),
pp. 160–168. DOI: 10.1115/1.2899673. URL: http://link.aip.org/link/
?MSE/113/160/1.

[46] N. Oza and K. Tumer. “Classifier ensembles: Select real-world applications”. In:
Information Fusion 9.1 (2008), pp. 4–20. ISSN: 15662535.

[47] C. Prakasvudhisarn, S. Kunnapapdeelert, and P. Yenradee. “Optimal cutting condi-
tion determination for desired surface roughness in end milling”. In: The Interna-
tional Journal of Advanced Manufacturing Technology 41.5 (Mar. 2009), pp. 440–
451. URL: http://dx.doi.org/10.1007/s00170-008-1491-8.

[48] G. Quintana, J.de Ciurana, and J. Ribatallada. “Surface roughness generation and
material removal rate in ball end milling operations”. In: Materials and Manufactur-
ing Processes 25.6 (2010), pp. 386–398. URL: http://www.informaworld.com/
10.1080/15394450902996601.

[49] G. Quintana, M. Garcia-Romeu, and J. Ciurana. “Surface roughness monitoring
application based on artificial neural networks for ball-end milling operations”. In:
Journal of Intelligent Manufacturing (2009). 10.1007/s10845-009-0323-5, pp. 1–11.
ISSN: 0956-5515. URL: http://dx.doi.org/10.1007/s10845-009-0323-5.

[50] B. Samanta, W. Erevelles, and Y. Omurtag. “Prediction of workpiece surface rough-
ness using soft computing”. In: Proceedings of the Institution of Mechanical Engi-
neers, Part B: Journal of Engineering Manufacture 222.10 (Oct. 2008), pp. 1221–
1232. URL: http://dx.doi.org/10.1243/09544054JEM1035.

[51] Q. Tian, J. Yu, and T. S. Huang. “Boosting Multiple Classifiers Constructed by
Hybrid DiscriminantAnalysis”. In: Multiple Classifier Systems. Ed. by N. C. Oza
et al. Vol. 3541. Lecture Notes in Computer Science. Springer, 2005, pp. 42–52.
ISBN: 3-540-26306-3.

[52] J. Vivancos et al. “Analysis of factors affecting the high-speed side milling of
hardened die steels”. In: Journal of Materials Processing Technology 162-163
(2005). AMPT/AMME05, pp. 696 –701. ISSN: 0924-0136. DOI: DOI:10.1016/j.
jmatprotec.2005.02.155. URL: http://www.sciencedirect.com/science/
article/B6TGJ-4FPN9W8-4/2/974eb1172f01767d744204e04c554b31.

[53] G.I. Webb. “Multiboosting: A technique for combining boosting and wagging”. In:
Machine learning 40.2 (2000), pp. 159–196.

http://dx.doi.org/DOI: 10.1016/S0924-0136(03)00687-3
http://dx.doi.org/DOI: 10.1016/S0924-0136(03)00687-3
http://www.sciencedirect.com/science/article/B6TGJ-495VKPK-H/2/c3f09b7f079528786a234bd4986cc6c6
http://www.sciencedirect.com/science/article/B6TGJ-495VKPK-H/2/c3f09b7f079528786a234bd4986cc6c6
http://dx.doi.org/10.1115/1.2899673
http://link.aip.org/link/?MSE/113/160/1
http://link.aip.org/link/?MSE/113/160/1
http://dx.doi.org/10.1007/s00170-008-1491-8
http://www.informaworld.com/10.1080/15394450902996601
http://www.informaworld.com/10.1080/15394450902996601
http://dx.doi.org/10.1007/s10845-009-0323-5
http://dx.doi.org/10.1243/09544054JEM1035
http://dx.doi.org/DOI: 10.1016/j.jmatprotec.2005.02.155
http://dx.doi.org/DOI: 10.1016/j.jmatprotec.2005.02.155
http://www.sciencedirect.com/science/article/B6TGJ-4FPN9W8-4/2/974eb1172f01767d744204e04c554b31
http://www.sciencedirect.com/science/article/B6TGJ-4FPN9W8-4/2/974eb1172f01767d744204e04c554b31

Chapter 8

Imbalanced Learning Ensembles for
Defect Detection in X-ray Images

Authors José-Francisco Díez-Pastor, Cesar García-Osorio, Víctor Barbero-
García, Alan Blanco-Álamo

Type Conference

Published in The 26th International Conference on Industrial, Engineering
& Other Applications of Applied Intelligent Systems. (IEA/AIE 2013),
pages 654-663.

Year 2013

Abstract

This paper describes the process of detection of defects in metallic pieces
through the analysis of X-ray images. The images used in this work are
highly variable (several different pieces, different views, variability intro-
duced by the inspection process such as positioning the piece). Because of
this variability, the sliding window technique has been used, an approach
based on data mining. Experiments have been carried out with various
window sizes, several feature selection algorithms and different classifica-
tion algorithms, with a special focus on learning unbalanced data sets. The
results show that Bagging achieved significantly better results than decision
trees by themselves or combined with SMOTE or Undersampling.

Index terms— Non Destructive testing, ensemble learning, X-ray, Bag-
ging, Undersampling, SMOTE

219

220 8.1. Introduction

8.1 Introduction

The inspection of defects is a very important task to ensure the quality of
industrial processes. Quality control has become an essential prerequisite for
companies to remain competitive. The Non-Destructive Testings [6](NDT)
are among the most commonly used tests, because they do not destroy or
alter the material on which they are applied. The Radiography is one of the
oldest NDT methods but it remains the most widely used. The inspection
performed by human operators have the advantage that can be adapted to
many different situations, many of which have not been previously seen
[28]. Unfortunately, human inspection is not as consistent as an automated
process since it is a process that requires high concentration, besides it is
affected by the occurrence of fatigue, different levels of skill, experience or
ways of working of each operator. In an extreme case, the inspection of a
casting by an operator may determine that a pore or bubble is large enough
to cause the breakage of the casting and another operator may determine
that the casting is correct. There is a need of objective automatic inspection
systems. It is considered that there are two types of problems, the detection
of defects (defect or non-defect) and the classification of defects (porosity,
lack of penetration, etc.)[20], in this case it is the first.

8.2 Problem description and methodology

This paper describes the process of detecting defects in magnesium alloys
castings. Magnesium alloys are approximately 60% lighter than aluminium
casting alloys and 80% lighter than steel, in spite of this advantage its
adoption is slowed due to the internal porosity in the magnesium casting
components [26]. In this paper, we analize the problem of defect detection
in the context of high variability images: pieces of different types, multiple
views for each piece, variability between views of the same piece due to the
manual process of positioning the piece in the X-ray inspection system and
the mechanical imprecision of the positioning system. In this regard the
images used in this work are very different from the images used in previous
works, as seen in Figure 8.2. Along recent years, a large number of methods
for automatic detection of defects in X-ray images have been developed,
but many of them do not work properly when the variability in the images is
too high. The defect detection methods can be classified into: a) methods
based on the subtraction of a reference image (this reference image can be

8. Imbalanced Learning Ensembles for Defect Detection in X-ray Images 221

obtained by applying specific image processing operations to the image
where defects are being sought [17], obtaining the reference image can
automatically be obtained from a set of images [26]), b) methods based on
digital image processing: automatic thresholding [23, 27], Mathematical
morphology [1], or watershed [30, 2]. The first approach was tested,
obtaining a reference image from the median of a set of images of the same
view, to mitigate the problem that the images are not taken from exactly the
same prespective due to manual placement process and positioning system
imprecision a stitching process was attempted, using the algorithm SURF
[3], however the quality expected in the alignment was not achieved. The
methods in the second approach were also considered, but these methods
are highly dependent on the type of images and could not find one that
worked well for processing all the pieces and views used in this work.

Figure 8.1: Top left: x-ray image of a piece, Botton left: points of interest found using
SURF, Botton right: new image aligned with the first

In many computer vision problems, the solution has evolved from an ap-
proach based on image processing tailored to the specific characteristics of
the problem at hand, to a more general approach called "Appearance-based
method" in which learning methods are applied to a data set, transforming
the detection problem into a binary classification problem. This approach
allows to work with images of poor quality and can deal with more generic
problems. For example, a system can detect vehicle license plates using
image processing and heuristics techniques as [13] or detect faces using a
skin color model [19] or it can detect license plates [11] or faces [29] trans-
forming the problem into a classification problem. This Appearance-based
approach is receiving considerable attention and has been applied to the

222 8.2. Problem description and methodology

detection of defects in radiography images in [31] and [21].

Figure 8.2: Differences between images: a) Images used in previous works [2, 4, 21] b)
Images used in this work

8.2.1 Sliding Window

The sliding window technique consists of extracting features from a subim-
age, the window, of the image that is being procesed. This window is
sistematically moved along the image. The features extracted together with
a label, the presence or not of defects inside the window, are used to train a
classifier. In the predictions stage the classifier is used to detect windows
with defect inside them. Figure 8.3 describes how the technique works,
there is an image I, which is scanned with a window of size N×N, starting
from an initial position it moves horizontally at intervals of step_h and ver-
tically at intervals of step_v. This window is passed to one or more feature
extractors. The set of one or more feature extractors returns a vector of
features for each of the windows. This technique can be applied on the raw
grayscale image or on the result of applying some processing to this image.
The window at coordinates x,y can be represented as the concatenation
of the feature vector extracted from the original grayscale image and the
feature vector extracted from images obtained from processing the original
image. As in [21], in this work characteristics have been extracted both
on the original image in grayscale and on the saliency Map [22] (an image
transformation based on a biologically inspired attention system) of the
grayscale image.

8. Imbalanced Learning Ensembles for Defect Detection in X-ray Images 223

...
(Feature Extractor) +

Feature vector D (D1, D2... DN)

Classifier

Defect / No defect

N x N window

S
te

p
 v

Step h

Image I

Figure 8.3: Sliding window

Type Names Number
Standard 1. mean, 2. standard desviation, 3. first

derivative, 4. second derivative
4

Haralick 1. Angular Second Moment 2. Contrast,
Correlation, 4. Sum of squares, 5. In-
verse Difference Moment, 6. Sum Aver-
age, 7. Sum Entropy, 8. Sum Variance,
9. Entropy, 10. Difference Variance, 11.
Difference Entropy, 12-13. Information
Measures of Correlation,

13 features x 5 differ-
ent pixel distances x 2
(mean and range of each
vectors) =130

LBP LBP(1) . . . LBP(59) 59
193 features per channel
2 channel (normal and
saliency) x 193 = 387
features

Table 8.1: Features used in the experiments.

8.2.2 Features

In artificial vision problems is unusual to train classifiers directly with
the intensity values of the pixels. Typically, different types of features
are extracted from these intensity values. These characteristics are often
dependent on the images and type of problem. In this work, a subset of the
characteristics used in [21] has been selected (see Table 8.1).

Standard features includes average and standard deviation of the inten-
sities of the region and the average of the first and second derivative of
the region. Haralick features [18], represent textural information, these
features are computed from the co-occurrence matrix that represents second
order texture information, these features are 14, but Maximal Correlation
Coefficient was excluded due to its elevated computation time and because
the system is desired to operate in near real-time. The local Binary Patterns

224 8.2. Problem description and methodology

Dataset
FCBF

Total Standard Haralick LBP Standard(S) Haralick(S) LBP(S)
Size 8 4 1 1 1 1 0 0
Size 16 7 0 1 5 0 1 0
Size 24 4 0 0 1 0 1 2
Size 32 4 0 0 1 0 1 2
Size 40 5 1 0 2 0 1 1

Dataset
SVM Att Eval

Total Standard Haralick LBP Standard(S) Haralick(S) LBP(S)
Size 8 30 0 8 0 3 18 1
Size 16 30 0 11 0 2 15 2
Size 24 30 0 8 3 2 13 4
Size 32 30 0 11 2 2 13 2
Size 40 30 0 7 3 1 17 2

Dataset
CFS-Best First

Total Standard Haralick LBP Standard(S) Haralick(S) LBP(S)
Size 8 52 1 17 0 0 20 14
Size 16 39 0 15 0 1 13 10
Size 24 31 2 11 0 1 11 6
Size 32 33 1 13 1 0 11 7
Size 40 31 0 11 6 1 9 4

Table 8.2: Features selected characteristics of each type

texture descriptors are extracted from an histogram elaborated from the
relationship between each pixel intensity value with its eight neighbors.

8.2.3 Atribute selection

Due to the large number of attributes, an attribute selection process is neces-
sary to reduce the classifiers training time and for improving its performance.
We tested three methods:

1. Correlation Feature Selection (CFS)[15] in conjunction with best first
search. Evaluates a subset of attributes by considering the individual
predictive ability of each feature along with the degree of redundancy
between them. Subsets of features that are highly correlated with the
class while having low intercorrelation are preferred.

2. FCBF [32] (Fast Correlation-Based Filter Solution) is a feature selec-
tion method based on correlation measure, relevance and redundancy
analysis especially oriented to sets of high dimensionality.

3. SVM attribute evaluator [14] evaluates attributes by using an SVM

8. Imbalanced Learning Ensembles for Defect Detection in X-ray Images 225

classifier.

The first two methods return a subset of attributes. The third elaborates a
ranking, so it is necessary to specify N, the number of selected attributes;
N = 30 was used in the experiments. To perform the atribute selection, a
dataset for each window size was elaborated, this dataset was obtained from
10 different images. In each image 500 samples were obtained through
a random window. Half the windows including defects, the other half
without any defect inside them. Table 8.2 show the total number of
selected attributes and the number of selected attributes for each type of
features and attribute selection algorithm. The suffix (S) indicates that
these characteristics have been calculated on the saliency Map. It can be
seen that FCBF is a very aggressive attribute selector that selects very small
subsets. Attributes selected in a greater number according to the CFS and
SVM Att EVal algorithms are those of Haralick. It is generally observed
that the characteristics calculated on the saliency map are selected slightly
more times.

8.2.4 Ensemble learning for inbalanced datasets

The class-imbalance problem occurs when there are many more instances
of some classes than others [7]. X-ray images are unbalanced datasets
because the proportion of regions with defects is much smaller than regions
without them. This proportion must also exist in the training set, because
it is not a good practice to train a classifier with a dataset with a very
different proportion of classes that the proportion that will be found in the
exploitation phase.

In unbalanced data sets, precision should not be used, since this measure
provides the same value to the hits and misses, regardless of the distribution
of classes. Commonly used measure of performance for imbalanced data
is the Area Under the ROC (Receiver Operation Characteristic) curve [12].
There are several strategies for dealing with unbalanced sets, the most used
is to preprocess the data set to reduce its imbalance, either by removing
random instances of the majority class (Random undersampling) or by
adding artificial instances of the majority class the technique is more repre-
sentative of the latter is SMOTE [8]. In Machine Learning, the ensembles
of classifiers are known to increase the performance of single classifiers by
combining several of them. The ensemble of classifiers can be combined

226 8.2. Problem description and methodology

Dataset Non-defect Windows Defect Windows Imbalance Ratio
Size 8 205702 10618 19,3730
Size 16 201566 14754 13.6618
Size 24 197600 18720 10.5556
Size 32 193647 22673 8.5409
Size 40 189774 26546 7.1489

Table 8.3: Instances of the datasets

with the previous preprocessing techniques, to handle the problem of the
imbalance better than any individual classifier.

8.2.5 Experimental setup

A total of 15 different data sets were elaborated using 5 different window
sizes and 3 attribute selection algorithms for each of them. These data sets
were obtained from 10 different images, using the sliding window procedure,
with step_h y step_v = 4. Table 8.3 shows the number of instances of each
class and the imbalance ratio for each window size. And as previously
mentioned, the tables 8.2 show the number of attributes depending on the
attributes selection algorithm used.

Weka [16] was used for the experiments. J48, the Weka’s re-implementation
of C4.5 [25], was chosen as the base classifier in all ensembles. As recom-
mended for imbalanced data [9], it was used without pruning and collapsing
but with Laplace smoothing at the leaves. C4.5 with this options is called
C4.4 [24]. We tested various ensembles methods such as Bagging [5],
Bagging + undersampling (eliminating as many instances of the majority
class as necessary to achieve an imbalance ratio IB = 1 and IB = 2), Bagging
+ SMOTE (generating an artificial number of instances equal to 100% and
200% of the size of the minority class). The size of the ensembles was 20.
We also tested the performance of J48 by itself and in combination with
undersampling and SMOTE, with the same settings as those used in the
ensembles.

The Area Under the ROC results were obtained with a 5×2-fold cross
validation [10]. The data set is halved in two folds. One fold is used for
training and the other for testing, and then the roles of the folds are reversed.
This process is repeated 5 times. The results are the averages of these 10
experiments. Cross validation was stratified.

8. Imbalanced Learning Ensembles for Defect Detection in X-ray Images 227

8.2.6 Results

The results of the area under the ROC for J48 and Bagging of J48, with
the features selected by different feature selection methods and different
window sizes are shown in Figure 8.4 It can be seen how the classifiers built
with features extracted by CFS + Best First and SVM Att Eval perform
significantly better than those built with features extracted by FCBS, which
is understandable since FCBS is a very strict attribute selector which selects
a very small number of attributes.

8 16 24 32 40
0,8

0,82

0,84

0,86

0,88

0,9

0,92

0,94

0,96

0,98

1

CFS Best First – Bagging
FCBS – Bagging
SVM Att Eval – Bagging
CFS Best First – J48
FCBS – J48
SVM Att Eval – J48

Window Size

A
re

a
 U

n
d

e
r

R
O

C

Figure 8.4: Area Under ROC vs. Window Size for Bagging and J48 classifiers

It is also noted that for window size 8, Bagging of J48 built with FCBS
features get surprisingly good results despite using only 4 attributes, beating
J48 built with CFS and SVM Att Eval features.

In general, it is observed that, as the window size increases the area
under the ROC also increases, which can be explained in part because as
seen in Table 8.3, as window size increases the imbalance between classes
is reduced. Given that by increasing window size, the chances of a window
covering a defect is greater. However increasing the window size leads to a
less accurate defect detection.

Figure 8.5 show the difference (improvement or deterioration) between
the area under ROC obtained by J48 with respect to that obtained by Un-
dersampling + J48 (A and B), SMOTE (C and D), Bagging (E), Bagging
+ Undersampling (F and G) and Bagging + SMOTE (H and I). Bagging
of J48 is significantly better than J48 in each of the data sets. Contrary to
what would be expected, neither SMOTE nor undersampling, J48 improve
performance for virtually any of the combinations of window size and the
set of attributes used. Combinations of Bagging + Undersampling and Bag-
ging + SMOTE outperforms Bagging in some datasets, Bagging + smote
100% is in general the classifier which obtains better results, although the
differences are not significant compared to Bagging.

The results of the predictions of the classifiers are combined as shown

228 8.2. Problem description and methodology

A B C D E F G H I

-0,02

-0,01

0

0,01

0,02

0,03

0,04

0,05

CFS Best First

8

16

24

32

40

A
U

R
O

C
 d

iff
e

re
n

ce
s

A B C D E F G H I

-0,02

-0,01

0

0,01

0,02

0,03

0,04

FCBS

8

16

24

32

40

A
U

R
O

C
 d

iff
e

re
n

ce
s

A B C D E F G H I

-0,02

-0,01

0

0,01

0,02

0,03

0,04

SVM Att Eval

8

16

24

32

40

A
U

R
O

C
 d

iff
e

re
n

ce
s

Figure 8.5: Area under ROC Difference of between J48 and the other classifiers

Figure 8.6: Results of the detection process

in Figure 8.6. When a pixel is covered by a window which the classifier
predicts as defect, this window receives a vote. Following this, a threshold
is set to determine the minimum number of votes required to consider that a
pixel actually belongs to a defect. This threshold depends on the size of the
window, the larger the window, the higher the threshold, and in the current
implementation is not calculated automatically, instead, the user can adjust
it, making the predicted region widens or fit to the true defect.

8. Imbalanced Learning Ensembles for Defect Detection in X-ray Images 229

8.3 Conclusions and future lines

The results show that Bagging achieved significantly better results than
decision trees by themselves or combined with SMOTE or undersampling.
Contrary to expectations, no improvements are obtained by combining
Bagging with preprocessing techniques as SMOTE or Undersampling.

Since the real-time operation is a relatively important constraint for the
system, a possible future line would be to incorporate the computation
time of each attribute to the attribute selection algorithm, in order to obtain
subsets of attributes with a good trade-off between their usefulness in
predicting the class and its speed to be calculated. Next, add the following
stages of the inspection process: quantifying the characteristics of the
defects, classifying the type of defect in terms of its features, obtaining
defect statistics for each piece and finally using all previous data, designing
a system that is capable of providing a measure of the quality of the piece
from the analysis of this x-ray image.

References
[1] RS Anand, P. Kumar, et al. “Flaw detection in radiographic weld images using

morphological approach”. In: NDT & E International 39.1 (2006), pp. 29–33.

[2] RS Anand, P. Kumar, et al. “Flaw detection in radiographic weldment images using
morphological watershed segmentation technique”. In: NDT & E International 42.1
(2009), pp. 2–8.

[3] H. Bay, T. Tuytelaars, and L. Van Gool. “Surf: Speeded up robust features”. In:
Computer Vision–ECCV 2006 (2006), pp. 404–417.

[4] S. Belaifa, M. Tridi, and N. Nacereddine. “Weld defect classification using EM
algorithm for Gaussian mixture model”. In: SETIT Tunisia 2005. 2005.

[5] L. Breiman. “Bagging predictors”. In: Machine learning 24.2 (1996), pp. 123–140.

[6] Louis Cartz. Nondestructive Testing: Radiography, Ultrasonics, Liquid Penetrant,
Magnetic Particle, Eddy Current. Asm International, 1995. ISBN: 9780871705174.
URL: http://books.google.es/books?id=pnk0AzwNSEsC.

[7] N.V. Chawla, N. Japkowicz, and A. Kotcz. “Editorial: special issue on learning
from imbalanced data sets”. In: ACM SIGKDD Explorations Newsletter 6.1 (2004),
pp. 1–6.

[8] N.V. Chawla et al. “SMOTE: synthetic minority over-sampling technique”. In:
Journal of Artificial Intelligence Research 16.1 (2002), pp. 321–357.

[9] David A. Cieslak et al. “Hellinger distance decision trees are robust and skew-
insensitive”. In: Data Min. Knowl. Discov. 24.1 (Jan. 2012), pp. 136–158. ISSN:
1384-5810. DOI: 10.1007/s10618-011-0222-1.

http://books.google.es/books?id=pnk0AzwNSEsC
http://dx.doi.org/10.1007/s10618-011-0222-1

230 REFERENCES

[10] T.G. Dietterich. “Approximate statistical tests for comparing supervised classifica-
tion learning algorithms”. In: Neural computation 10.7 (1998), pp. 1895–1923.

[11] L. Dlagnekov. “License plate detection using adaboost”. In: Computer Science and
Engineering Department, San Diego (2004).

[12] T. Fawcett. “An introduction to ROC analysis”. In: Pattern recognition letters 27.8
(2006), pp. 861–874.

[13] Cesar García-Osorio et al. “License Plate Number Recognition - New Heuristics
and a Comparative Study of Classifiers”. In: ICINCO 2008, Proceedings of the
Fifth International Conference on Informatics in Control, Automation and Robotics,
Robotics and Automation 1. 2008, pp. 268–273.

[14] I. Guyon et al. “Gene selection for cancer classification using support vector ma-
chines”. In: Machine learning 46.1 (2002), pp. 389–422.

[15] M.A. Hall. “Correlation-based feature selection for machine learning”. PhD thesis.
The University of Waikato, 1999.

[16] Mark Hall et al. “The WEKA data mining software: an update”. In: SIGKDD Explor.
Newsl. 11.1 (Nov. 2009), pp. 10–18. ISSN: 1931-0145. DOI: 10.1145/1656274.
1656278.

[17] RF Hanke, U. Hassler, and K. Heil. “Fast automatic X-ray image processing by
means of a new multistage filter for background modelling”. In: Image Processing,
1994. Proceedings. ICIP-94., IEEE International Conference. Vol. 1. IEEE. 1994,
pp. 392–396.

[18] R.M. Haralick, K. Shanmugam, and I.H. Dinstein. “Textural features for image
classification”. In: Systems, Man and Cybernetics, IEEE Transactions on 6 (1973),
pp. 610–621.

[19] M.J. Jones and J.M. Rehg. “Statistical color models with application to skin detec-
tion”. In: Computer Vision and Pattern Recognition, 1999. IEEE Computer Society
Conference on. Vol. 1. IEEE. 1999.

[20] TW Liao. “Classification of welding flaw types with fuzzy expert systems”. In:
Expert Systems with Applications 25.1 (2003), pp. 101–111.

[21] Domingo Mery. “Automated Detection of Welding Discontinuities without Segmen-
tation”. In: Materials Evaluation June (2011), pp. 657–663. URL: http://web.
ing.puc.cl/~dmery/Prints/ISI-Journals/2011-MatEval-Welding.pdf.

[22] S. Montabone and A. Soto. “Human detection using a mobile platform and novel
features derived from a visual saliency mechanism”. In: Image and Vision Computing
28.3 (2010), pp. 391–402.

[23] H.F. Ng. “Automatic thresholding for defect detection”. In: Pattern recognition
letters 27.14 (2006), pp. 1644–1649.

[24] F. Provost and P. Domingos. “Tree induction for probability-based ranking”. In:
Machine Learning 52.3 (2003), pp. 199–215.

[25] J.R. Quinlan. C4. 5: programs for machine learning. Morgan Kaufmann, 1993.

http://dx.doi.org/10.1145/1656274.1656278
http://dx.doi.org/10.1145/1656274.1656278
http://web.ing.puc.cl/~dmery/Prints/ISI-Journals/2011-MatEval-Welding.pdf
http://web.ing.puc.cl/~dmery/Prints/ISI-Journals/2011-MatEval-Welding.pdf

8. Imbalanced Learning Ensembles for Defect Detection in X-ray Images 231

[26] V. Rebuffel, S.C. Sood, and B. Blakeley. “Defect Detection Method in Digital Ra-
diography for Porosity in Magnesium Casting”. In: Materials Evaluation. ECNDT
2006. 2006.

[27] T. Saravanan et al. “Segmentation of defects from radiography images by the
histogram concavity threshold method”. In: Insight-Non-Destructive Testing and
Condition Monitoring 49.10 (2007), pp. 578–584.

[28] F.W. Spencer. Visual Inspection Research Project Report on Benchmark Inspections.
Tech. rep. Office of Aviation Research Washington, D.C. 20591: U.S. Department
of Transportation, Federal Aviation Administration,Washington, DC, 1996.

[29] P. Viola and M. Jones. “Rapid object detection using a boosted cascade of simple
features”. In: Computer Vision and Pattern Recognition, 2001. CVPR 2001. Pro-
ceedings of the 2001 IEEE Computer Society Conference on. Vol. 1. IEEE. 2001,
pp. I–511.

[30] M. Wang and L. CHAI. “Application of an improved watershed algorithm in welding
image segmentation”. In: Transactions China Welding Institution 28.7 (2007), p. 13.

[31] Y. Wang et al. “Detection of line weld defects based on multiple thresholds and
support vector machine”. In: NDT & E International 41.7 (2008), pp. 517–524.

[32] L. Yu and H. Liu. “Feature selection for high-dimensional data: A fast correlation-
based filter solution”. In: Machine Learning-International Workshop Then Confer-
ence. Vol. 20. 2. 2003, pp. 856–863.

232 REFERENCES

Chapter 9

Segmentación de defectos en piezas de
fundido usando umbrales adaptativos y
ensembles

Authors José-Francisco Díez-Pastor, Álvar Arnaiz-González, Cesar García-
Osorio, Juan J. Rodriguez

Type Conference

Published in XVII Congreso Español sobre Tecnologías y Lógica Fuzzy
(ESTYLF 2014), pages 345-349

Year 2014

Abstract

La inspección de imágenes de rayos X es uno de los métodos más utilizados
para la detección de poros y burbujas de aire en piezas de fundido. En este
artículo de describe el proceso de localización y segmentación de este tipo
de defectos en imágenes que presentan una gran variabilidad: múltiples
piezas con formas complejas y varias perspectivas para cada una de ellas. Es
un proceso dividido en dos etapas. La primera de ellas identifica regiones
susceptibles de ser un defecto y la segunda clasifica éstas regiones en
defecto/no defecto, mediante la extracción de características morfológicas
y de textura. El proceso ha sido validado en un estudio experimental con
imágenes reales, evaluando la semejanza entre el «ground truth» o máscara
de defectos reales y la imagen de defectos predicha, obteniendo buenos
resultados en cuanto a precisión y tiempo.

233

234

Index terms— Test No-Destructivos, rayos X, segmentación de imá-
genes, PSO, umbrales adaptativos, rotation forest.

9. Segmentación de defectos en piezas de fundido usando umbrales adaptativos y
ensembles 235

9.1 Introducción

Este artículo describe el proceso de detección y segmentación de defectos
en piezas de fundido de magnesio. El magnesio es más ligero que el acero
y el aluminio, pero puede presentar porosidad interna en los fundidos [17].
El control de calidad es imprescindible para que una empresa permanezca
competitiva y la radiografía es uno de los TND (Test No-Destructivos)
más ampliamente utilizados. En el proceso de inspección de imágenes
de rayos X, habitualmente un operador humano examina la calidad, pero
desafortunadamente este proceso es caro e inconsistente, los resultados
pueden variar según la fatiga, la experiencia y la subjetividad de cada
operador. Existe una necesidad de sistemas de inspección automáticos y
objetivos.

A lo largo de los últimos años se han desarrollado una gran cantidad de
métodos para la detección automática de defectos en imágenes de rayos X.

En el caso del análisis de imágenes de rayos X, al igual que en otros
problemas de visión artificial, se pueden clasificar los métodos en:

a) Métodos dependientes del problema basados en procesamiento de imá-
genes, son soluciones a medida para un problema especifico, por lo que
no funcionan correctamente cuando la variabilidad en las imágenes es
muy grande, como es el caso. Utilizan técnicas muy variadas como
por ejemplo: Sustracción de una imagen de referencia obtenida a partir
de aplicar procesamientos a la imagen actual [10] u obtenida a par-
tir de un conjunto de imágenes[17], Binarización automática [15, 21],
operaciones morfológicas [1], watershed [23, 2].

b) Métodos basados en minería de datos utilizando la técnica de ventana
deslizante [14, 24], consistente en recorrer la imagen usando una ventana
rectangular, extrayendo para cada posición una serie de características
dentro de dicha ventana. En la fase de entrenamiento se extraen todas
las ventanas y se etiquetan como positivas si cubren un defecto y como
negativas en caso contrario. En la etapa de predicción se combinan
los resultados usando un umbral, dado que cada pixel esta cubierto por
múltiples ventanas. Esta técnica de la ventana deslizante ha demostrado
robustez frente a distintos tipos de imágenes y ha sido utilizada en [6]
con resultados satisfactorios con las mismas imágenes que las utilizadas
en este trabajo, pero es un proceso muy lento, dado que involucra la
evaluación de miles de instancias para cada imagen.

236 9.2. Descripción del método

En este artículo se presenta un método que es combina ambos enfoques:
la simplicidad y velocidad de los métodos basados en procesamiento de
imágenes y la robustez frente a la variabilidad de los métodos basados en
minería de datos.

9.2 Descripción del método

Visualmente un defecto en una imagen de radiografía se puede definir como
una región que muestra una gran disimilaridad con su vecindad. El método
propuesto está compuesto por dos etapas, en la primera de ellas se detectan
todas aquellas regiones candidatas de ser un defecto mediante del uso de
algoritmos de umbrales locales. Debido a la gran complejidad y variabilidad
de las imágenes, en esta etapa se detectan gran cantidad de elementos como
bordes o ruido que no son defectos. En la segunda se realiza la extracción
de características y clasificación de estas regiones candidatas en defectos y
no defectos.

9.2.1 Umbrales locales para la detección de regiones candidatas

Los métodos de binarización pueden ser agrupados en dos categorías: Bi-
narización con umbrales globales y con umbrales locales. Los métodos
de binarización global calculan un único umbral para toda la imagen, son
métodos rápidos y obtienen buenos resultados en gran cantidad de proble-
mas. Sin embargo existen casos en los que debido a la complejidad de la
imagen, su degradación, la presencia de ruido etc los métodos globales no
funcionan correctamente. Como solución a este problema se han propuesto
los métodos locales, en los que se calcula un umbral diferente para cada
pixel usando información de los pixels que forman una vecindad, en función
de un determinado radio [20].

Existen varios algoritmos de binarización local, que además del radio
pueden tener uno o dos parámetros. Los métodos probados en este trabajo
han sido Bernsen [3], Mean [8], Niblack [16] y Sauvola [22], todos estos
métodos tiene un tamaño de radio y uno o dos parámetros adicionales.

La binarización de una radiografía de una pieza de fundido da como
resultado una imagen en blanco y negro, con las zonas susceptibles de ser
defectos en blanco (Figura 9.1 b). Para separar regiones que hayan quedado
pegadas a otras adyacentes y para eliminar ruido se ha utilizado la operación
morfológica Closing, una dilatación seguida de una erosión [12].

9. Segmentación de defectos en piezas de fundido usando umbrales adaptativos y
ensembles 237

La selección del método y sus parámetros se hizo con optimización
por enjambre de partículas o PSO (Particle Swarm Optimization) [7], la
función de ajuste a maximizar fue la precisión T P

T P+FP , donde T P son los
pixels marcados como defecto en el «ground truth» y también blancos en la
imagen binarizada y FP los blancos en la imagen binarizada pero no en el
«ground truth».

El resultado de esta primera etapa es una imagen con una gran can-
tidad de regiones señaladas como potenciales defectos (Figura 9.1 c), a
continuación se utilizará un proceso de extracción de características y de
clasificación para seleccionar entre estas regiones aquellas que efectiva-
mente son un defecto.

9.2.2 Clasificación de regiones candidatas en defecto/no-defecto

En esta etapa se va a crear una instancia para cada región candidata. En
los sistemas de visión artificial es necesario obtener un conjunto de carac-
terísticas con los que trabajar, dado que no es una buena práctica utilizar
directamente los valores de los pixels, dado los valores de los pixels no
describen texturas ni otras propiedades de las imágenes. En este trabajo se
han utilizado las siguientes características:

• Básicas: Este grupo incluye la media y desviación de las intensidades
de la región y las medias de la primera y segunda derivada de la región.

• Haralick: Características de textura. Son 14 características calculadas
a partir de la matriz de co-occurrencia [11]. En este trabajo no se
usa el coeficiente de correlación máximo debido a que su alto coste
computacional no lo hace apropiado para una aplicación que funcione
en tiempo real. La matrix de co-ocurrencia tiene como parámetros
una orientación y una distancia. En este trabajo se han usado 4 ori-
entaciones 0o, 45o, 90o y 135o y 5 distancias (de 1 a 5). Con lo cual
para cada una de las 13 características usadas existen 5 vectores, de
los que se ha obtenido la media y el rango. En total se tienen 130
características de Haralick (13 x 5 x 2 = 130).

• Medidas geométricas y de tamaño: área, perímetro, Major, Minor (lon-
gitud del eje mayor y menor de la elipse que circunscribe a la región),
altura y anchura de la región, Feret (4 características), redondez, circu-
laridad, solidez y razón de aspecto. [18].

238 9.2. Descripción del método

Figure 9.1: Proceso de detección de defectos. De arriba a abajo y de izquierda a derecha
(a) Imagen original, (b) Binarización con umbrales adaptativos, (c) Closing de b, (d)
predicción de defectos, (e) máscara o «ground truth» , (f) original con predicción de
defectos superpuesta.

9. Segmentación de defectos en piezas de fundido usando umbrales adaptativos y
ensembles 239

Al igual que en [14], las características básicas y de Haralick, se extraen
de la imagen original en escala de grises y de su Saliency Map [14], una
transformación basada en el sistema biológico de atención visual. Se han
obtenido un total de 282 características: ((4 básicas + 130 Haralick) × 2
canales) + 14 medidas geométricas y de tamaño = 282 características.

Al trabajar con grandes conjuntos de características puede ocurrir el
problema de que algunas de ellas sean irrelevantes, redundates o bien el
clasificador no puede funcionar apropiadamente o sea lento de entrenar.
Para ello se suelen usar algoritmos de selección de características. En este
caso se ha utilizado el algoritmo SVM attribute evaluator [9], que evalúa
los atributos usando un SVM para elegir los 50 mejores atributos de entre
todos.

Hay otro aspecto que hay que tener en cuenta. Este es un problema
desequilibrado, el problema de los conjuntos desequilibrados ocurre cuando
existen muchas más instancias de una clase que de las demás [4].

Este es un problema desequilibrado desde 2 puntos de vista:

1. El número de regiones candidatas que realmente son defectos es mucho
menor que el número de falsos positivos.

2. Considerando una imagen de radiografía como un conjunto de datos,
el número de pixels pertenecientes a un defecto es mucho menor que
el número de pixels correspondiente a zonas sin defecto.

Teniendo en cuenta el primer punto, se debe usar un clasificador es-
pecialmente preparado para lidiar con el problema del desequilibrio. Y
teniendo en cuenta el segundo punto se tiene que usar una medida que tenga
en cuenta el desequilibrio para evaluar el funcionamiento del sistema.

El clasificador y la metodología experimental utilizada se describen en
la siguiente sección.

9.3 Metodología experimental y resultados

En esta sección se describe el proceso de validación experimental real-
izado. Se tiene un conjunto de diez imágenes en escala de grises con
su correspondiente ground truth o máscara de defectos. Se va a eval-
uar la calidad final de la predicción de defectos en términos de la media
geométrica, ya que esta medida es independiente de la distribución de
ejemplos entre clases [13]. Considerando los pixels pertenecientes a un

240 9.4. Conclusiones y líneas futuras

Image no Media G Image no Media G
Image 1 0.687 Image 6 0.255
Image 2 0.888 Image 7 0.721
Image 3 0.619 Image 8 0.641
Image 4 0.619 Image 9 0.438
Image 5 0.587 Image 10 0.510

Table 9.1: Media geométrica de la predicción para cada imagen

defecto como positivos y el resto como negativos, la media geométrica es√
Acierto positivos×Acierto negativos
Se ha realizado una validación cruzada a nivel de imagen: De las diez

imágenes se toman 9 para extraer las regiones candidatas, construir el
conjunto de datos, realizar la selección de atributos y entrenar el clasificador
y se usa la imagen restante para evaluar la media geométrica comparando
la predicción con la máscara. Este proceso se repite diez veces, utilizando
para test una imagen distinta cada vez.

El clasificador utilizado ha sido Rotation Forest dado que en varios
estudios experimentales con conjuntos desequilibrados ha resultado ser el
mejor método [19]. El número de iteraciones fue 100. Como clasificador
base se ha usado J48, la implementación de Weka de C4.5, se ha usado sin
poda, sin colapsar pero con suavizado de Laplace, tal y como se recomienda
para problemas desequilibrados [5].

Los resultados obtenidos aparecen en la Tabla 9.1.

9.4 Conclusiones y líneas futuras

Este artículo presenta un método para la detección de defectos en imágenes
de fundido. Se basa en la detección de zonas candidatas mediante un
proceso de binarización adaptativa y la posterior clasificación de estas zonas
en defecto/no-defecto.

Si bien el método presentado es rápido y obtiene unos buenos resultados
para la mayoría de las imágenes, existen varias líneas futuras. En la primera
etapa del método se ha utilizado un PSO para la elección del algoritmo de
binarización y sus parámetros. Esta etapa se podría sofisticar, en lugar de
optimizar únicamente los parámetros de una operación, se podrían optimizar
varias operaciones y su orden. Con la intención de obtener en esta etapa
una imagen con más T P y menos FP, facilitando el trabajo posterior del
clasificador y mejorando la calidad total del sistema.

9. Segmentación de defectos en piezas de fundido usando umbrales adaptativos y
ensembles 241

References
[1] RS Anand, P. Kumar, et al. “Flaw detection in radiographic weld images using

morphological approach”. In: NDT & E International 39.1 (2006), pp. 29–33.

[2] RS Anand, P. Kumar, et al. “Flaw detection in radiographic weldment images using
morphological watershed segmentation technique”. In: NDT & E International 42.1
(2009), pp. 2–8.

[3] J. Bernsen. “Dynamic Thresholding of Grey level Images”. In: Proceedings of the
8th International Conference on Pattern Recognition. 1986, pp. 1251–1255.

[4] N.V. Chawla, N. Japkowicz, and A. Kotcz. “Editorial: special issue on learning
from imbalanced data sets”. In: ACM SIGKDD Explorations Newsletter 6.1 (2004),
pp. 1–6.

[5] David A. Cieslak et al. “Hellinger distance decision trees are robust and skew-
insensitive”. In: Data Min. Knowl. Discov. 24.1 (Jan. 2012), pp. 136–158. ISSN:
1384-5810. DOI: 10.1007/s10618-011-0222-1.

[6] J. F. Diez-Pastor et al. “Imbalanced Learning Ensembles for Defect Detection in
X-Ray Images”. In: Proceedings of the 26th International Conference on Industrial,
Engineering & other Applications of Applied Intelligent Systems (IEA/AIE). 2013,
654–663.

[7] Russell Eberhart and James Kennedy. “A new optimizer using particle swarm
theory”. In: Micro Machine and Human Science, 1995. MHS’95., Proceedings of
the Sixth International Symposium on. IEEE. 1995, pp. 39–43.

[8] R.C. Gonzalez and R.E. Woods. Digital image processing. Pearson/Prentice Hall,
2008. ISBN: 9780131687288. URL: http://books.google.es/books?id=
8uGOnjRGEzoC.

[9] I. Guyon et al. “Gene selection for cancer classification using support vector ma-
chines”. In: Machine learning 46.1 (2002), pp. 389–422.

[10] RF Hanke, U. Hassler, and K. Heil. “Fast automatic X-ray image processing by
means of a new multistage filter for background modelling”. In: Image Processing,
1994. Proceedings. ICIP-94., IEEE International Conference. Vol. 1. IEEE. 1994,
pp. 392–396.

[11] R.M. Haralick, K. Shanmugam, and I.H. Dinstein. “Textural features for image
classification”. In: Systems, Man and Cybernetics, IEEE Transactions on 6 (1973),
pp. 610–621.

[12] Robert M Haralick, Stanley R Sternberg, and Xinhua Zhuang. “Image analysis using
mathematical morphology”. In: Pattern Analysis and Machine Intelligence, IEEE
Transactions on 4 (1987), pp. 532–550.

[13] Miroslav Kubat, Stan Matwin, et al. “Addressing the curse of imbalanced training
sets: one-sided selection”. In: ICML. Vol. 97. 1997, pp. 179–186.

[14] Domingo Mery. “Automated Detection of Welding Discontinuities without Segmen-
tation”. In: Materials Evaluation June (2011), pp. 657–663. URL: http://web.
ing.puc.cl/~dmery/Prints/ISI-Journals/2011-MatEval-Welding.pdf.

http://dx.doi.org/10.1007/s10618-011-0222-1
http://books.google.es/books?id=8uGOnjRGEzoC
http://books.google.es/books?id=8uGOnjRGEzoC
http://web.ing.puc.cl/~dmery/Prints/ISI-Journals/2011-MatEval-Welding.pdf
http://web.ing.puc.cl/~dmery/Prints/ISI-Journals/2011-MatEval-Welding.pdf

242 REFERENCES

[15] H.F. Ng. “Automatic thresholding for defect detection”. In: Pattern recognition
letters 27.14 (2006), pp. 1644–1649.

[16] Wayne Niblack. An introduction to digital image processing. Strandberg Publishing
Company, 1985.

[17] V. Rebuffel, S.C. Sood, and B. Blakeley. “Defect Detection Method in Digital Ra-
diography for Porosity in Magnesium Casting”. In: Materials Evaluation. ECNDT
2006. 2006.

[18] Séverine Rivollier, Johan Debayle, and J Pinoli. “Shape representation and analysis
of 2D compact sets by shape diagrams”. In: Image Processing Theory Tools and
Applications (IPTA), 2010 2nd International Conference on. IEEE. 2010, pp. 411–
416.

[19] Juan José Rodríguez, José-Francisco Díez-Pastor, and Cesar García-Osorio. “En-
sembles of Decision Trees for Imbalanced Data”. In: MCS. 2011, pp. 76–85.

[20] Bulent Sankur and Mehmet Sezgin. “Image thresholding techniques: A survey over
categories”. In: Pattern Recognition 34.2 (2001), pp. 1573–1583.

[21] T. Saravanan et al. “Segmentation of defects from radiography images by the
histogram concavity threshold method”. In: Insight-Non-Destructive Testing and
Condition Monitoring 49.10 (2007), pp. 578–584.

[22] Jaakko Sauvola and Matti Pietikäinen. “Adaptive document image binarization”. In:
Pattern Recognition 33.2 (2000), pp. 225–236.

[23] M. Wang and L. CHAI. “Application of an improved watershed algorithm in welding
image segmentation”. In: Transactions China Welding Institution 28.7 (2007), p. 13.

[24] Y. Wang et al. “Detection of line weld defects based on multiple thresholds and
support vector machine”. In: NDT & E International 41.7 (2008), pp. 517–524.

Bibliography

[1] D. Anil Kumar and V. Ravi. “Predicting credit card customer churn in banks using
data mining”. In: International Journal of Data Analysis Techniques and Strategies
1.1 (2008), pp. 4–28.

[2] G.E. Batista, R.C. Prati, and M.C. Monard. “A study of the behavior of several meth-
ods for balancing machine learning training data”. In: ACM SIGKDD Explorations
Newsletter 6.1 (2004), pp. 20–29.

[3] R. Batuwita and V. Palade. “microPred: effective classification of pre-miRNAs for
human miRNA gene prediction”. In: Bioinformatics 25.8 (2009), pp. 989–995.

[4] E. Bauer and R. Kohavi. “An empirical comparison of voting classification algo-
rithms: Bagging, boosting, and variants”. In: Machine learning 36.1 (1999), pp. 105–
139.

[5] P. G. Benardos and G. C. Vosniakos. “Predicting surface roughness in machining: a
review”. In: International Journal of Machine Tools and Manufacture 43.8 (2003),
pp. 833 –844. ISSN: 0890-6955. DOI: DOI:10.1016/S0890-6955(03)00059-2.
URL: http://www.sciencedirect.com/science/article/B6V4B-48BKNN7-
8/2/67f1ad26e976f978e073fb0c6ff513ef.

[6] A. Blum and R. Rivest. “Training a 3-node neural network is NP-complete”. In:
Machine Learning: From Theory to Applications (1993), pp. 9–28.

[7] L. Breiman. “Bagging predictors”. In: Machine learning 24.2 (1996), pp. 123–140.

[8] L. Breiman. “Random forests”. In: Machine learning 45.1 (2001), pp. 5–32. ISSN:
0885-6125.

[9] Carla E Brodley and Mark A Friedl. “Identifying Mislabeled Training Data”. In:
Journal of Artificial Intelligence Research 11 (1999), pp. 131–167.

[10] G. Brown, J.L. Wyatt, and P. Tiňo. “Managing diversity in regression ensembles”.
In: The Journal of Machine Learning Research 6 (2005), p. 1650.

[11] C. Bunkhumpornpat, K. Sinapiromsaran, and C. Lursinsap. “Safe-level-SMOTE:
Safe-level-synthetic minority over-sampling technique for handling the class imbal-
anced problem”. In: Pacific-Asia Conference on Knowledge Discovery and Data
Mining(PAKDD09). Vol. 5476. Lecture Notes on Computer Science. Springer-
Verlag, 2009, pp. 475–482.

243

http://dx.doi.org/DOI: 10.1016/S0890-6955(03)00059-2
http://www.sciencedirect.com/science/article/B6V4B-48BKNN7-8/2/67f1ad26e976f978e073fb0c6ff513ef
http://www.sciencedirect.com/science/article/B6V4B-48BKNN7-8/2/67f1ad26e976f978e073fb0c6ff513ef

244 BIBLIOGRAPHY

[12] Andrés Bustillo and Juan J. Rodríguez. “Online breakage detection of multitooth
tools using classifier ensembles for imbalanced data”. In: International Journal of
Systems Science 45.12 (2014), pp. 2590–2602. DOI: 10.1080/00207721.2013.
775378. eprint: http://dx.doi.org/10.1080/00207721.2013.775378. URL:
http://dx.doi.org/10.1080/00207721.2013.775378.

[13] N.V. Chawla, N. Japkowicz, and A. Kotcz. “Editorial: special issue on learning
from imbalanced data sets”. In: ACM SIGKDD Explorations Newsletter 6.1 (2004),
pp. 1–6.

[14] N.V. Chawla et al. “Learning ensembles from bites: A scalable and accurate ap-
proach”. In: The Journal of Machine Learning Research 5 (2004), p. 451.

[15] N.V. Chawla et al. “SMOTE: synthetic minority over-sampling technique”. In:
Journal of Artificial Intelligence Research 16.1 (2002), pp. 321–357.

[16] N.V. Chawla et al. “SMOTEBoost: Improving prediction of the minority class in
boosting”. In: 7th European Conference on Principles and Practice of Knowledge
Discovery in Databases(PKDD 2003). 2003, pp. 107–119.

[17] J. Demšar. “Statistical comparisons of classifiers over multiple data sets”. In: The
Journal of Machine Learning Research 7 (2006), p. 30.

[18] Matias Di Martino et al. “Improving Electric Fraud Detection using Class Imbalance
Strategies.” In: ICPRAM (2). 2012, pp. 135–141.

[19] T. Dietterich. “Ensemble methods in machine learning”. In: Multiple classifier
systems (2000), pp. 1–15.

[20] Thomas G. Dietterich and Ghulum Bakiri. “Solving multiclass learning problems
via error-correcting output codes”. In: Journal of Artificial Intelligence Research 2
(1995), pp. 263–286.

[21] J. F. Diez-Pastor et al. “Imbalanced Learning Ensembles for Defect Detection in
X-Ray Images”. In: Proceedings of the 26th International Conference on Industrial,
Engineering & other Applications of Applied Intelligent Systems (IEA/AIE). 2013,
654–663.

[22] T. Fawcett. “An introduction to ROC analysis”. In: Pattern recognition letters 27.8
(2006), pp. 861–874.

[23] Usama Fayyad, Gregory Piatetsky-Shapiro, and Padhraic Smyth. “From data mining
to knowledge discovery in databases”. In: AI magazine 17.3 (1996), p. 37.

[24] Y. Freund and R. Schapire. “A desicion-theoretic generalization of on-line learning
and an application to boosting”. In: Computational learning theory. Springer. 1995,
pp. 23–37.

[25] Y. Freund and R.E. Schapire. “Experiments with a new boosting algorithm”. In:
MACHINE LEARNING-INTERNATIONAL WORKSHOP THEN CONFERENCE-.
Citeseer. 1996, pp. 148–156.

[26] Yoav Freund and Robert E. Schapire. “Experiments with a New Boosting Algo-
rithm”. In: Machine Learning, Proceedings of the Thirteenth International Confer-
ence (ICML ’96), Bari, Italy, July 3-6, 1996. 1996, pp. 148–156.

http://dx.doi.org/10.1080/00207721.2013.775378
http://dx.doi.org/10.1080/00207721.2013.775378
http://dx.doi.org/10.1080/00207721.2013.775378
http://dx.doi.org/10.1080/00207721.2013.775378

BIBLIOGRAPHY 245

[27] Vicente García, Ana Isabel Marqués, and Jose Salvador Sánchez. “Improving risk
predictions by preprocessing imbalanced credit data”. In: Neural Information Pro-
cessing. Springer. 2012, pp. 68–75.

[28] Nicolás García-Pedrajas and César García-Osorio. “Constructing ensembles of
classifiers using supervised projection methods based on misclassified instances”.
In: Expert Systems with Applications 38.1 (2011), pp. 343 –359. ISSN: 0957-4174.

[29] Nicolás García-Pedrajas and Aida de Haro-García. “Scaling up data mining algo-
rithms: review and taxonomy”. In: Progress in Artificial Intelligence 1.1 (2012),
pp. 71–87.

[30] Nicolás García-Pedrajas et al. “Class imbalance methods for translation initiation
site recognition in DNA sequences”. In: Knowl.-Based Syst. 25.1 (2012), pp. 22–34.

[31] Nicolás García-Pedrajas et al. “Supervised subspace projections for constructing
ensembles of classifiers”. In: Information Sciences 193.0 (2012), pp. 1 –21. ISSN:
0020-0255.

[32] Guang-Gang Geng et al. “Boosting the performance of web spam detection with
ensemble under-sampling classification”. In: Fuzzy Systems and Knowledge Dis-
covery, 2007. FSKD 2007. Fourth International Conference on. Vol. 4. IEEE. 2007,
pp. 583–587.

[33] P. Geurts, D. Ernst, and L. Wehenkel. “Extremely randomized trees”. In: Machine
Learning 63.1 (2006), pp. 3–42. ISSN: 0885-6125.

[34] K. Gowda and G. Krishna. “The condensed nearest neighbor rule using the con-
cept of mutual nearest neighborhood (Corresp.)” In: Information Theory, IEEE
Transactions on 25.4 (1979), pp. 488–490.

[35] R.W. Hamming. “Error detecting and error correcting codes”. In: Bell System
Technical Journal 29.2 (1950), pp. 147–160.

[36] Haibo He and Edwardo A. Garcia. “Learning from Imbalanced Data”. In: IEEE
Trans. on Knowl. and Data Eng. 21.9 (Sept. 2009), pp. 1263–1284. ISSN: 1041-4347.
DOI: 10.1109/TKDE.2008.239. URL: http://dx.doi.org/10.1109/TKDE.
2008.239.

[37] T.K. Ho. “Multiple classifier combination: Lessons and next steps”. In: Hybrid
methods in pattern recognition 74.1 (2002), pp. 171–198.

[38] T.K. Ho. “The random subspace method for constructing decision forests”. In: IEEE
Transactions on Pattern Analysis and Machine Intelligence 20.8 (1998), pp. 832–
844.

[39] Y. Hochberg. “A sharper Bonferroni procedure for multiple tests of significance”.
In: Biometrika 75 (1988), pp. 800–803.

[40] L. Hyafil and R.L. Rivest. “Constructing optimal binary decision trees is NP-
complete”. In: Information Processing Letters 5.1 (1976), pp. 15–17.

[41] R.L. Iman and J.M. Davenport. “Approximations of the critical region of the fbietkan
statistic”. In: Communications in Statistics-Theory and Methods 9.6 (1980), pp. 571–
595.

http://dx.doi.org/10.1109/TKDE.2008.239
http://dx.doi.org/10.1109/TKDE.2008.239
http://dx.doi.org/10.1109/TKDE.2008.239

246 BIBLIOGRAPHY

[42] Taeho Jo and Nathalie Japkowicz. “Class imbalances versus small disjuncts”. In:
ACM SIGKDD Explorations Newsletter 6.1 (2004), pp. 40–49.

[43] M. Kubat and Matwin. “Addressing the Curse of Imbalanced Training Sets : One-
Sided Selection”. In: Proceedings of the 14th International Conference on Machine
Learning. 1997, pp. 179–186.

[44] L.I. Kuncheva. “Combining classifiers: Soft computing solutions”. In: Pattern
Recognition: From Classical to Modern Approaches (2001), pp. 427–451.

[45] L.I. Kuncheva. Combining pattern classifiers: methods and algorithms. Wiley-
Interscience, 2004.

[46] L.I. Kuncheva and J.J. Rodriguez. “Classifier ensembles with a random linear
oracle”. In: IEEE Transactions on Knowledge and Data Engineering 19.4 (2007),
p. 500.

[47] T. Warren Liao. “Classification of weld flaws with imbalanced class data”. In: Expert
Systems with Applications 35.3 (2008), pp. 1041 –1052. ISSN: 0957-4174. DOI:
10.1016/j.eswa.2007.08.044.

[48] Carlos López, Esperanza Manso, and Yania Crespo. “Evaluación de la eficiencia
de métodos de identificación del defecto de diseño GodClass”. In: XVII Jornadas
de Ingeniería del Software y Bases de Datos.Almeria. ISBN: 978-84-1587-28-9.
Universidad de Almería. 2012. URL: http://sistedes2012.ual.es/sistedes/
jisbd.

[49] Victoria López et al. “An insight into classification with imbalanced data: Empirical
results and current trends on using data intrinsic characteristics”. In: Information
Sciences 250.0 (2013), pp. 113 –141. ISSN: 0020-0255. DOI: http://dx.doi.
org/10.1016/j.ins.2013.07.007. URL: http://www.sciencedirect.com/
science/article/pii/S0020025513005124.

[50] Carlos López Nozal. “Detección de defectos de diseño mediante métricas de código”.
spa. Departamento de Informática. PhD thesis. 2012. URL: http://uvadoc.uva.
es:80/handle/10324/2719 (visited on 05/03/2013).

[51] J. Maudes, J. J. Rodríguez, and C. García-Osorio. “Disturbing neighbors diversity
for decision forests”. In: Applications of Supervised and Unsupervised Ensemble
Methods. Ed. by Oleg Okun and Giorgio Valentini. Vol. 245. Studies in Computa-
tional Intelligence. Springer, 2009, pp. 113–133. ISBN: 978-3-642-03998-0. URL:
http://dx.doi.org/10.1007/978-3-642-03999-7_7.

[52] J. Maudes et al. “Random Feature Weights for Decision Tree Ensemble Construc-
tion”. In: Information Fusion In Press, Accepted Manuscript (2010). ISSN: 1566-
2535. DOI: DOI:10.1016/j.inffus.2010.11.004.

[53] Jesús Maudes et al. “Random feature weights for decision tree ensemble construc-
tion”. In: Information Fusion 13.1 (2012), pp. 20–30.

[54] P. Melville and R.J. Mooney. “Constructing diverse classifier ensembles using
artificial training examples”. In: Proceedings of the IJCAI. Citeseer. 2003, pp. 505–
510.

http://dx.doi.org/10.1016/j.eswa.2007.08.044
http://sistedes2012.ual.es/sistedes/jisbd
http://sistedes2012.ual.es/sistedes/jisbd
http://dx.doi.org/http://dx.doi.org/10.1016/j.ins.2013.07.007
http://dx.doi.org/http://dx.doi.org/10.1016/j.ins.2013.07.007
http://www.sciencedirect.com/science/article/pii/S0020025513005124
http://www.sciencedirect.com/science/article/pii/S0020025513005124
http://uvadoc.uva.es:80/handle/10324/2719
http://uvadoc.uva.es:80/handle/10324/2719
http://dx.doi.org/10.1007/978-3-642-03999-7_7
http://dx.doi.org/DOI: 10.1016/j.inffus.2010.11.004

BIBLIOGRAPHY 247

[55] M Molinara, MT Ricamato, and F Tortorella. “Facing imbalanced classes through
aggregation of classifiers”. In: Image Analysis and Processing, 2007. ICIAP 2007.
14th International Conference on. IEEE. 2007, pp. 43–48.

[56] Krystyna Napierała, Jerzy Stefanowski, and Szymon Wilk. “Learning from im-
balanced data in presence of noisy and borderline examples”. In: Rough Sets and
Current Trends in Computing. Springer. 2010, pp. 158–167.

[57] S.J. Nowlan and G.E. Hinton. “Evaluation of adaptive mixtures of competing
experts”. In: Advances in neural information processing systems 3 (1991), pp. 774–
780.

[58] C. Phua, D. Alahakoon, and V. Lee. “Minority report in fraud detection: classification
of skewed data”. In: ACM SIGKDD Explorations Newsletter 6.1 (2004), pp. 50–59.

[59] R. Polikar. “Ensemble based systems in decision making”. In: IEEE Circuits and
systems magazine 6.3 (2006), pp. 21–45.

[60] J.R. Quinlan. “Bagging, boosting, and C4. 5”. In: Proceedings of the National
Conference on Artificial Intelligence. 1996, pp. 725–730.

[61] Joaquin Quionero-Candela et al. Dataset Shift in Machine Learning. The MIT Press,
2009. ISBN: 0262170051, 9780262170055.

[62] JJ Rodriguez, LI Kuncheva, and CJ Alonso. “Rotation forest: A new classifier ensem-
ble method”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence
28.10 (2006), pp. 1619–1630.

[63] L. Rokach. “Ensemble-based classifiers”. In: Artificial Intelligence Review 33.1
(2010), pp. 1–39.

[64] R.E. Schapire. “The strength of weak learnability”. In: Machine learning 5.2 (1990),
pp. 197–227.

[65] Alon Schclar and Lior Rokach. “Random Projection Ensemble Classifiers”. In:
Enterprise Information Systems. Ed. by Joaquim Filipe and Jose Cordeiro. Vol. 24.
Lecture Notes in Business Information Processing. Springer Berlin Heidelberg,
2009, pp. 309–316. ISBN: 978-3-642-01346-1.

[66] A. Seewald and J. Furnkranz. “An evaluation of grading classifiers”. In: Advances
in Intelligent Data Analysis (2001), pp. 115–124.

[67] C. Seiffert et al. “RUSBoost: A hybrid approach to alleviating class imbalance”. In:
Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions
on 40.1 (2010), pp. 185–197.

[68] Paolo Soda. “A multi-objective optimisation approach for class imbalance learning”.
In: Pattern Recognition 44.8 (2011), pp. 1801–1810.

[69] Yang Song, Aleksander Kołcz, and C Lee Giles. “Better Naive Bayes classification
for high-precision spam detection”. In: Software: Practice and Experience 39.11
(2009), pp. 1003–1024.

[70] Jerzy Stefanowski. “Overlapping, rare examples and class decomposition in learning
classifiers from imbalanced data”. In: Emerging Paradigms in Machine Learning.
Springer, 2013, pp. 277–306.

248 BIBLIOGRAPHY

[71] Jerzy Stefanowski and Szymon Wilk. “Selective pre-processing of imbalanced data
for improving classification performance”. In: Data Warehousing and Knowledge
Discovery. Springer, 2008, pp. 283–292.

[72] Giorgio Valentini and Thomas G Dietterich. “Bias-variance analysis of support
vector machines for the development of SVM-based ensemble methods”. In: The
Journal of Machine Learning Research 5 (2004), pp. 725–775.

[73] C.J. Van Rijsbergen. Information Retrieval. Butterworths, 1979.

[74] Sofia Visa and Anca Ralescu. “Issues in mining imbalanced data sets - a review
paper”. In: Proceedings of the Sixteen Midwest Artificial Intelligence and Cognitive
Science Conference. 2005, pp. 67–73.

[75] S. Wang and X. Yao. “Diversity analysis on imbalanced data sets by using ensemble
models”. In: IEEE Symposium Series on Computational Intelligence and Data
Mining(IEEE CIDM 2009). 2009, pp. 324–331.

[76] Shuo Wang and Xin Yao. “Relationships between diversity of classification ensem-
bles and single-class performance measures”. In: Knowledge and Data Engineering,
IEEE Transactions on 25.1 (2013), pp. 206–219.

[77] M. Wasikowski and Xue wen Chen. “Combating the Small Sample Class Imbalance
Problem Using Feature Selection”. In: Knowledge and Data Engineering, IEEE
Transactions on 22.10 (2010), pp. 1388–1400. ISSN: 1041-4347.

[78] Geoffrey I. Webb. “MultiBoosting: A Technique for Combining Boosting and
Wagging”. In: Machine Learning 40.2 (2000), pp. 159–196.

[79] Gary M Weiss. “The impact of small disjuncts on classifier learning”. In: Data
Mining. Springer. 2010, pp. 193–226.

[80] D.L. Wilson. “Asymptotic properties of nearest neighbor rules using edited data”.
In: Systems, Man and Cybernetics, IEEE Transactions on 2.3 (1972), pp. 408–421.

[81] D.H. Wolpert. “Stacked generalization”. In: Neural networks 5.2 (1992), pp. 241–
259.

[82] Hualong Yu et al. “Mining and integrating reliable decision rules for imbalanced
cancer gene expression data sets”. In: Tsinghua Science and Technology 17.6 (2012),
pp. 666–673.

[83] C.X. Zhang and J.S. Zhang. “RotBoost: A technique for combining Rotation Forest
and AdaBoost”. In: Pattern Recognition Letters 29.10 (2008), pp. 1524–1536.

	Introduction
	Introduction to ensemble based systems
	Reasons for using ensembles based systems
	Statistical reasons
	Computational reasons
	Representational reasons
	Big Data
	Too few data
	Divide and conquer
	Data fusion

	Ensembles: Taxonomy and most common techniques
	Methods of generating diverse classifiers
	Manipulating the training set vertically
	Manipulating the training set horizontally
	Manipulating the class representation.
	Manipulating the behavior of the learning algorithm.
	Hybrid methods

	Methods of combining multiple classifiers
	Methods without learned combination rules.
	Methods in which the combination rules are learned.

	Introduction to imbalanced learning
	Classification methods for imbalanced problems
	Random Undersampling.
	Oversampling
	SMOTE
	SMOTEBagging
	SMOTEBoost and RUSBoost
	Partitioning

	Experimental methodology
	Performance measures
	Training and test datasets
	Method comparison
	Student's t-test
	Comparison of 2 models on several datasets
	Comparison of various models over multiple datasets

	Applications
	Motivations and objectives
	Discussion of results
	GRASP Forest: A New Ensemble Method for Trees
	GRASP Forest for regression: GRASP metaheuristic applied to the construction of ensembles of regression trees
	Tree ensemble construction using a GRASP-based heuristic and annealed randomness
	Random Balance: Ensembles of Variable Priors Classifiers for Imbalanced Data
	Diversity techniques improve the performance of the best imbalance learning ensembles
	Boosting Projections to improve surface roughness prediction in high-torque milling operations
	Imbalanced Learning Ensembles for Defect Detection in X-ray Images
	Segmentación de defectos en piezas de fundido usando umbrales adaptativos y ensembles (Segmentation of defects in castings using adaptive thresholds and ensembles)

	Conclusions
	Standard classification
	Regression
	Imbalance classification
	Applications

	Future lines
	Multiclass classification
	Imbalance classification
	Applications

	GRASP Forest: A New Ensemble Method for Trees
	Introduction
	Method
	Results
	Conclusion and future lines

	GRASP Forest for regression: GRASP metaheuristic applied to the construction of ensembles of regression trees
	Introduction
	The GRASP metaheuristic applied to the construction of regression trees
	Method

	Results
	Conclusion and future lines

	Tree ensemble construction using a GRASP-based heuristic and annealed randomness
	Introduction
	Decision trees and their use as ensembles members
	The use of the GRASP metaheuristic as a means of increasing diversity in the tree construction

	Experimental setup and results
	Noise Robustness
	Optimized version

	Kappa-error diagrams
	Influence of the parameter
	Conclusion and future lines

	Random Balance
	Introduction
	Measures of performance for imbalanced data
	Classification methods for imbalanced problems
	Random Balance and RB-Boost ensembles
	Random Balance
	Instance inclusion probability
	Intuition behind the method

	RB-Boost

	A simulation experiment
	Experimental setup and results
	Fusion Rules
	Base Classifiers
	Ensemble Size

	Conclusion

	Diversity techniques improve the performance of the best imbalance learning ensembles
	Introduction
	Ensemble learning for imbalanced problems
	Ensembles of classifiers
	Preprocessing techniques for imbalance learning
	Ensemble methods specially designed for imbalance
	Diversity-enhancing techniques

	Experimental Set-up and Results
	Ensemble methods tested in the experimental set-up
	Datasets and Tools
	Comparison between basic and enhanced ensembles
	Basic ensembles versus enhanced variants and enhanced variants among themselves.
	The overall winner.

	Ensemble size.
	Trying to predict when to apply diversity techniques
	The impact of noisy and borderline examples

	Lessons learned
	Concluding remarks
	Future research directions

	Boosting Projections to improve surface roughness prediction in high-torque milling operations
	Introduction
	Experimental procedure and data set description
	Introduction to ensembles
	Introduction to boosting projections
	Linear Supervised Projections
	Linear Discriminant Analysis
	Hybrid Discriminant Analysis

	Ordinal Classification
	Results and discussion
	Conclusions
	Acknowledgements

	Imbalanced Learning Ensembles for Defect Detection in X-ray Images
	Introduction
	Problem description and methodology
	Sliding Window
	Features
	Atribute selection
	Ensemble learning for inbalanced datasets
	Experimental setup
	Results

	Conclusions and future lines

	Segmentación de defectos en piezas de fundido usando umbrales adaptativos y ensembles
	Introducción
	Descripción del método
	Umbrales locales para la detección de regiones candidatas
	Clasificación de regiones candidatas en defecto/no-defecto

	Metodología experimental y resultados
	Conclusiones y líneas futuras

