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 Graphical Abstract 

 

Highlights 

 Film shaped sensory polymeric materials change their color in presence of phenols 

 The polymers main chains have pendant diazonium moieties 

 The sensory materials are manageable and stable along time 

 The detection is achieved visually and also using pictures taken with smartphones 

 The limits of detection were of the order of ppb 

Abstract 

We have prepared polymeric films as easy-to-handle sensory materials for the colorimetric detection and 

quantification of phenol derivatives (phenols) in water. Phenols in water resources result from their 

presence in pesticides and fungicides, among other goods, and are harmful ecotoxins. Colorless polymeric 

films with pendant diazonium groups attached to the acrylic polymer structure were designed and 
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prepared for use as sensory matrices to detect phenol-derived species in water. Upon dipping the sensory 

films into aqueous media, the material swells, and if phenols are present, they react with the diazonium 

groups of the polymer to render a highly colored azo group, giving rise to the recognition phenomenon. 

The color development can be visually followed for a qualitative determination of phenols. Additionally, 

quantitative analysis can be performed by two different techniques: a) by using a UV-Vis 

spectrophotometer (limit of detection of 0.12 ppm for 2-phenylphenol) and/or b) by using a smartphone 

with subsequent RGB analysis (limit of detection of 30 ppb for 2-phenylphenol). 

Keywords: Polymeric sensors; film shaped sensors; colorimetric sensors; phenol sensors 

Introduction 

Phenols are harmful ecotoxins with both natural [1] and anthropogenic origins. They are mutagenic and 

carcinogenic products, exhibit hepato- and hematotoxic activity toward all kinds of living beings, and their 

elimination through oxidation and/or degradation processes has been widely studied [2-6]. From a human 

activity viewpoint, environmental pollution related to phenol derivatives comes from the petrochemical, 

chemical and pharmaceutical industries that produce goods in which phenols are used, such as drugs, 

household chemicals, dyes, and polymers. In particular, the presence of phenols in the ecosystem is 

worryingly related to the use and degradation of pesticides and biocides (the germicidal activity of phenol 

was discovered in 1865 by Joseph Lister). Among all kinds of phenolic products, the most widespread are 

chlorophenols, formed from the chlorination of mono- and polyaromatic phenols present in the water 

and soil. Other relevant phenol-derived families are nitrophenols, alkylphenols, bisphenols and 

aminophenols [7-9]. 

Currently, phenols in the environment are detected by GC/MS (gas chromatography coupled with 

mass spectrometry) or HPLC (high-performance liquid chromatography) coupled to different detectors 

[10]. These techniques require, in addition to expensive instrumentation and trained personnel, laborious 

and time-consuming microextraction steps (SPME or LPME) [11,12]. Additionally, biosensors have been 

proposed [12,13], along with a number of electrochemical methods [14-16], including the use of quantum 

dots [17]. Systems based on colorimetric or fluorimetric detection of different contaminants are a good 

alternative to these conventional methods [18-24]. 

We propose the in situ visual detection and quantification of phenols in aqueous media by 

untrained personnel by using inexpensive and rapid colorimetric sensory films. These sensory films are 

acrylic polymers with stable diazonium salts chemically anchored to the polymeric structure. The films 

swell in water, where the phenols penetrate by diffusion before undergoing azo coupling with the 

diazonium salts to give the strongly colored azo compounds. The azo coupling reaction is the well-known 

basis for the preparation of synthetic azo dyes, which have been intensively used since the third quarter 

of the 19th century [25-28]. In this regard, the noteworthy stability under laboratory temperature and 

light conditions of polymer materials with diazonium groups should be mentioned compared to that of 

the discrete benzenediazonium chloride derivatives, which are an interesting chemical species used in the 

preparation of a number of chemicals that decompose above 5 °C and, accordingly, are prepared in ice-

cold solutions and used immediately, without isolation. 

EXPERIMENTAL 

Materials 
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All materials and solvents were commercially available and used as received unless otherwise indicated. 

The following materials and solvents were used: sodium hydroxide (VWR, 99%), 2,2′-azobis(2-

methylpropionitrile) (AIBN) (Aldrich, 98%), 1-vinyl-2-pyrrolidone (VP) (Aldrich, 99%), methylmethacrylate 

(MMA) (Aldrich, 99%), 4-aminostyrene (Aldrich, 99%), sodium nitrite (VWR, 99.5%), m-cresol (Alfa Aesar, 

>99%), 2-chlorophenol (Alfa Aesar, >99%), bisphenol-A (Acros Organics, >97%), 2-nitrophenol (Alfa Aesar, 

>98%), 2,4-dinitrophenol (Alfa Aesar, >96%), fenhexamid (Aldrich, 99%), 2,4-dichlorophenol (Alfa Aesar, 

>99%), 4-chlorophenol (Alfa Aesar, >99%), 4-chloro-2-methylphenol (Aldrich, 97%), 2,4-dimethylphenol 

(Aldrich, 98%), 2-phenylphenol (Aldrich, 99%), 1-naphthol (Aldrich, >99%), and 1,8-

dihydroxyanthraquinone (Aldrich, 96%). 

In the tests carried out with the product, the commercial pesticide DECCO® OPP and a fungicide 

widely used for postharvest treatment of fungi causing rot (Penicillium spp, Rhizopus spp), mainly in citrus 

fruits, were used. This pesticide is formulated as an emulsifiable concentrate and contains as an active 

component 2-phenylphenol (concentration: 10% w/v (100 g/L)), in addition to other elements in very low 

concentrations such as Si (15080.5 ppb), Mn (1.8 ppb), Zn (622.3 ppb), Pd (49.4 ppb) and Ba (7.2 ppb). 

Measurements and instrumentation 

The optical analysis was carried out by taking digital pictures of the sensory films with a smartphone 

Samsung J7 prime after immersion in aqueous media with different concentrations of phenols. This 

procedure allowed for the quantification of each phenol concentration using the “B” (blue) and the “R” 

(red) parameters of the RGB (red, green and blue) color model [29,30]. The “B” and “R” color parameters 

for each disc were obtained immediately after taking the pictures with the smartphone using the 

ColorMeter app to automatically average the data over an 11 X 11 (121) pixel area. Due to the possible 

influence of ambient light on the image quality, a homemade retro-illumination box was used, which 

allowed good repeatability for the imaging analysis [30]. In addition, the UV-Vis spectra were recorded 

using a U-3900 UV/Vis spectrophotometer. 

The starting materials were thermally and mechanically characterized using thermogravimetric 

analysis (TGA, 10-15 mg of sample under a synthetic air and nitrogen atmosphere with a TA Instruments 

Q50 TGA analyzer at 10 °C min-1), differential scanning calorimetry (DSC, 10-15 mg of sample under 

nitrogen atmosphere with a TA Instruments Q200 DSC analyzer at 20 °C min-1), and tensile properties 

analysis (5 x 9.44 x 0.122 mm samples using a Shimadzu EZ Test Compact Table-Top Universal Tester at 1 

mm min-1). 

The infrared spectra of the sensor films were recorded using a synchrotron light beam coming 

from a particle accelerator (ALBA synchrotron, Barcelona-Spain), utilizing the FTIRM (Fourier transform 

infrared microspectroscopy) technique in transmission mode, employing a Hyperion 3000 microscope 

coupled to the Vertex 70 spectrometer (Bruker, Germany, 4000-400 cm-1). High-resolution electron-

impact mass spectrometry (EI-HRMS) was carried out on a Micromass AutoSpect Waters mass 

spectrometer (ionization energy: 70 eV; mass resolving power: >10000). The 1H and 13C NMR spectra were 

recorded with a Varian Inova 400 spectrometer operating at 399.92 and 100.57 MHz, respectively, with 

deuterated dimethyl sulfoxide as the solvent. 

The weight percentage of water taken up by the films upon soaking in pure water at 20 °C until 

reaching equilibrium (water-swelling percentage, WSP) was obtained from the weight of a dry sample film 

(ωd) and its water-swelled weight (ωs) using the following expression: WSP = 100 × [(ωs - ωd)/ωd]. 
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Polymer synthesis 

The starting material was obtained by radical copolymerization of the different monomers: 

vinylpyrrolidone (VP) as the hydrophilic monomer, methylmethacrylate (MMA) as the hydrophobic 

monomer, and 4-aminostyrene (SNH2) as the anchorage monomer. The bulk radical polymerization was 

carried out in a silanized glass mold (100 m thick) in an oxygen-free atmosphere at 60 °C overnight. In 

regard to the molar ratio of the monomers, this can be adjusted for different purposes. In our case, the 

colorimetric response of the material toward phenols was modulated by adjusting this molar ratio, i.e., 

49.975/49.975/0.05 (VP/MMA/SNH2) (F005, for preparing sensory films for sensing phenols that produce 

strong colors upon interaction with the sensory film), 49.875/49.875/0.25 (VP/MMA/SNH2) (F025, for 

preparing sensing films for detecting phenols that produce soft colors upon interaction with the sensory 

film), and 45/45/10 (VP/MMA/SNH2) (F10, for FT-IR characterization. The high molar content of SNH2 

allows for following by infrared spectroscopy both the preparation of the sensory material and the sensing 

mechanism). The chemical structure of the films used to prepare the sensory materials is depicted in 

Scheme 1. Additionally, the thermally initiated bulk polymerization procedure for polymers prepared with 

VP results in crosslinked materials [31], which limits conventional NMR or GPC analysis. Thus, we have 

prepared a linear polymer with the same monomer feed ratio. The 1H NMR analysis of the linear polymer, 

which is soluble, confirms that the structural units conforming the polymers structure corresponds with 

the ratio of monomers used to prepare the macromolecule. The synthesis and characterization of the 

linear polymer is showed in ESI, Section S4. 

 
Scheme 1 Chemical structure of the polymer films. 

The sensory materials were prepared from the films F005, F025 or F10 with a solid-state reaction by 

dipping 8 mm discs of these films into 10 mL of an aqueous solution containing 1 mL of HCl (37%) and 40 

mg of NaNO2 at RT for 90 min (see Scheme 2). In this way, materials with pendant benzenediazonium salt 

motifs (F005B, F025B and F10B) were readily prepared. 

RESULTS AND DISCUSSION 

The reactions between phenols and diazonium salts in basic aqueous media have been studied for 

decades [32,33]. These reactions give rise to highly colored products that are commonly used in the 

pigments and dyes industry. 

In this work, we prepared polymeric film materials from two main commercially available 

comonomers (VP, MMA) and a third comonomer (SNH2), added in small ratios to the others, which acts 
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as an anchorage monomer providing pendant aniline groups to the polymeric structure. The main 

comonomers (VP, hydrophilic; MMA, hydrophobic) provide the polymer films with the correct 

hydrophilicity balance needed for sensory purposes in aqueous media, i.e., the ability to swell in water 

without losing mechanical behavior in the swollen state [34,35]. 

As shown in Scheme 2, the amine groups of the aniline moieties react with sodium nitrite in acidic 

aqueous media to produce the sensory materials, with pendant benzenediazonium groups (F005B, F025B 

and F10B). These colorless materials are stable for weeks and are capable of detecting phenols in basic 

aqueous media, with low limits of detection (LOD) and quantification (LOQ), by the reaction of the 

benzenediazonium groups with the target phenols to produce colored films, where the colors come from 

the formation of pendant azo groups (F005C, F025C and F10C). This chemical reaction is intrinsically non-

reversible; thus, the sensor is actually a chemical dosimeter. 

 

Scheme 2. Example of the preparation of the sensory films (a) by dipping an 8 mm disc of the film into 10 mL of an aqueous 

solution containing 1 mL of HCl (37%) and 40 mg of NaNO2 at RT for 90 min, and (b) example of the sensing process for 1-

naphthol carried out by dipping the sensory film into 10 mL of an aqueous solution containing 40 mg of NaOH and 130 mg of 

1-naphthol. 

Water uptake 

Usually known as the water swelling percentage (WSP) [33,34], water uptake is a critical parameter for 

these kinds of materials and is intimately related to both the manageability properties and the transport 

PREPARATION OF

THE SENSORY MATERIAL

SENSORY PROCESS
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of water soluble target species into the swelled sensory materials, where the chemical reactions that give 

rise to sensing take place. Thus, the higher the water uptake is, the higher the transport rate and, at the 

same time, the worse the manageability properties. Thus, it is very important to achieve the best balance 

between both properties. For this application, F005, F025, and F10 exhibited WSPs of 64%, 54% and 20%, 

respectively, with good manageability in the water-swollen state and rapid response of the sensory 

materials derived from them, especially F005 and F025. 

Thermal and mechanical analysis 

The thermogravimetric analysis (TGA) of the materials was carried out under an inert (nitrogen) 

atmosphere at a scan rate of 10 °C min-1 by measuring samples of 10–15 mg of film for F005, F025 and F10. 

The data for the 5% (T5) and 10% (T10) weight loss under nitrogen atmosphere were (T5/ T10) 353 ºC/364 

ºC, 353 ºC/366 ºC, and 311 ºC/370 ºC, respectively. The T5 of F10 is significantly lower due to the high 

content of aniline moieties derived from the SNH2 monomer, as is graphically depicted in the ESI, Section 

S1. 

The glass transition temperatures (Tg) of the materials were calculated by DSC analysis at 20 ºC 

min-1, obtaining values for F005, F025 and F10 at approximately 140 ºC, i.e., the content of SNH2 does not 

meaningfully influence the Tg. 

The Young´s modulus values for F005, F025 and F10 were obtained by mechanical analysis of 10 strips 

of each material (5 mm width, 30 mm length, and 100−120 μm thick) after drying at 60 ºC for 1 h. The 

speed of the method was 5 mm min-1, with a gauge length of 10 mm. Higher molar ratios of SNH2 increased 

the Young´s modulus, obtaining values for F005, F025, and F10 of 494, 566, and 873 MPa, respectively. 

Response time 

The prepared materials are intended to be used as sensors in real-world applications; thus, the response 

times must be as low as possible. We have studied the response times of a number of sensory films in 

previous works [30,33,36], and this parameter depends on multiple variables, such as the thickness of the 

films, the molar ratio of the sensory motifs, and the hydrophilicity of the material. For example, the higher 

the molar ratio of the sensory motif is, the lower the response time, and complementarily, the higher the 

WSP is, the lower the response time. In this case, we worked with 100 m thickness films with a WSP 

between 20 and 60%, depending on the molar ratio of the sensory motif provided by films prepared from 

0.05 to 10%. The response times for F005B, F025B, and F10B are 120, 5, and 3 min, respectively (additional 

information in the ESI, Section S2). Considering the economic aspects related to the use of widely available 

commercial comonomers (VP and MMA), the optimal material for this application is F025B. Table 1 shows 

the figures of merit for comparing the performance of this sensory material with other techniques and 

methods for the detection of phenols. 
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Stability of the sensory materials 

To study the stability of the formed diazonium salt moieties within the material, we prepared 60 discs of 

F005B (8 mm diameter) and kept them wet (water swollen) in commercial zipper storage bags at room 

temperature and without special care (without protecting from light). To test the performance of the 

material as a phenol sensor over time, three discs were dipped into 10 mL of an aqueous solution of NaOH 

(0.1 M) and 1-naphthol (0.01 M) for 1 h at different times (up to 13 days). The discs were thoroughly 

washed with an aqueous solution of 0.1 M NaOH before taking a photograph with a smartphone to study 

its color. The results of the three discs tested at each timepoint were averaged. The response of the 

material was virtually the same over the testing period (13 days), as shown in Figure 1. Accordingly, the 

benzenediazonium salt motifs are stable within the material, and this result is noteworthy because these 

types of salts are considered inherently unstable and used without isolation in conventional organic 

chemistry. 

 

Figure 1. R (red), G (green), and B (blue) parameters defining the digital color of the film, F005B, after storage for different 
amounts of time and then submergence in an aqueous solution of phenols. The stored 8 mm discs of F005B were dipped in 10 
mL of aqueous solution of NaOH (0.1 M) and 1-naphthol (0.01 M). The pictures were taken with a conventional smartphone 
and the RGB parameters defining the color of each film were measured. 

Characterization of the solid-state reaction 

Infrared spectra were collected using synchrotron radiation on 10 m thick films of F10 and F10C (1-

naphthol), obtained from the interaction of F10 with 1-naphthol. The band observed between 20050 and 

2300 cm-1 in F10B corresponds with the stretching of N≡N, whereas the observed band centered at  

1576 cm-1 in the F10C (1-naphthol) spectrum confirms the formation of the diazo compound (see Figure 

2). 
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Figure 2. a) FT-IR spectra of the sensory materials F10, F10B and F10C (1-naphthol); b) Expansion of interesting regions. 

Additionally, we prepared and characterized a model compound from p-toluidine and 1-naphthol 

under the same conditions, obtaining high yield and purity. The chemical characterization of the model is 

described in the ESI, Section S3. To further study the material, we performed various SEM measurements 

on the surface of the films, but we did not find remarkable results due to the dense nature of the films.  

Phenol detection performance 

We decided to test the performance of the sensory materials using 13 of the most common harmful 

phenols in pesticides, fungicides and other applications (see Table 2). 

Thus, aqueous solutions (NaOH 0.1 M) of each phenol at different concentrations were prepared. 

Discs (8 mm diameter) of F005B were dipped into 10 mL of each phenol solution at room temperature for 

60 min. After that, the discs were thoroughly washed with aqueous NaOH (0.1 M) and photographed with 

a smartphone, and their UV-Vis was recorded. Figure 3 shows, as an illustrative example, the results for 

sensing 1-naphthol. Note that preliminary interference tests with metal cations and organic/inorganic 

anions were performed as depicted in previous work [30], and no relevant results were observed. 

4000 3000 2000 1000
0

20

40

60

80

100

 

 

 
T

ra
n

s
m

it
ta

n
c
e
 (

%
)

Wavenumbers (cm-1)

 F10

 F10B

 F10C

2400 2300 2200 2100

70

80

90

Wavenumbers (cm-1)

T
ra

n
s

m
it

ta
n

c
e

 (
%

)

 

 

 

1785 1700 1615 1530

30

60

90

Wavenumbers (cm-1)

T
ra

n
s

m
it

ta
n

c
e

 (
%

)

 

 

 

a)

b) c)

ACCEPTED M
ANUSCRIP

T



 
Figure 3. a) Digital photograph of F005 discs after immersion for 60 min at RT in aqueous solutions (NaOH 0.1 M) containing 
concentrations of 1-naphthol between 2.5x10-6 and 1.00x10-2 M; b) UV-Vis spectra obtained from the discs (LOD and LOQ of 
8.44x10-7 M and 2.57x10-6 M, respectively); c) titration curve for the blue component (RGB) of the discs (LOD and LOQ of 
1.25x10-6 M and 3.80x10-6 M, respectively; the blue component is not sensitive to higher concentrations of 1-naphthol, which 
are neither depicted nor used in the curve fitting). 

Figure 4 shows the colorimetric response of sensory materials for the analyzed phenols. When 

the colorimetric response was not clearly visible with F005B, a material with a higher concentration of the 

sensory motifs was used (F025B). 
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Figure 4. Color matrix of sensory discs after being in contact with phenols in water. A set of vials with 
solutions of aqueous 0.1 M NaOH and varying phenol concentrations was freshly prepared, and one disc 
(8 mm diameter) of F005B or F025B was dipped into each solution for 60 min at RT. The UV-Vis spectra 
and RGB parameters of each sensory disc were obtained (see the ESI, Section S6). F005B discs were 
dipped into solutions with phenol concentrations ranging from 2.5x10-6 M to 1x10-2 M to obtain F005C 
discs: (A) m-cresol, (B) 2-chlorophenol, (C) bisphenol-A, (D) 4-chloro-2-methylphenol, (E) 2,4-
dimethylphenol, (F) 2-phenylphenol and (G) 1-naphthol. F025B discs were dipped into solutions with 
phenol concentrations ranging from 2.5x10-6 M to 1x10-2 M to obtain F025C discs: (H) 2,4-dinitrophenol, 
(I) 4-chlorophenol and (J) 1,8-dihydroxyanthraquinone. F025B discs were dipped into solutions with 
phenols concentration ranging from 1x10-5 M to 1x10-2 M to obtain F025C discs: (K) 2-nitrophenol, (L) 
fenhexamid and (M) 2,4-dichlorophenol. 

A summary of the performance of each sensory material in terms of the LOD and LOQ for each 

studied phenol is shown in Table 3 (additionally, the individual RGB and UV-Vis data and analysis of each 

phenol is shown in the ESI, Section S6). 

 

 

Application to a commercial product 

After the analysis of the performance of the sensory materials for sensing phenols in water, we carried 

out a test with a commercial product, specifically, a fungicide based on 2-phenylphenol. In the data sheet 

of the product (ESI, Section S5), the manufacturer specifies that the product contains 100 g of 2-

phenylphenol per liter (0.5875 M). Therefore, we diluted the sample to reach a concentration of 4x10-5 M 

with aqueous 0.1 M NaOH prepared with tap water. Then, one 8 mm diameter disc of F005B was dipped in 

10 mL of this solution at room temperature for 60 min. Then, the film was thoroughly washed with 

aqueous 0.1 M NaOH and photographed with a smartphone. The “B” parameter (RGB parameter) 

obtained from the photograph was used to calculate the concentration of 2-phenylphenol in the 

commercial product, DECCO® OPP 20 using the equation obtained from the titration of 2-phenylphenol 

(ESI, Section S6 (K)). Figure 5 shows the result of the calculated concentration of 2-phenylphenol, which 

is in agreement with the concentration provided by the manufacturer. 

Additionally, we have checked the stability of the material dipped in DECCO (see ESI, Section S2-

d), by dipping one disk of F005B in DECCO and registering the absorbance at 464 nm each minute during 5 

days, and the material remains stable once reached the equilibrium of the system. 
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Figure 5 Left: Image of the container of the tested commercial product. Right: titration curve using the analysis of pictures 
taken of the sensory discs (B parameter). The concentration of 2-phenylphenol in the commercial product was calculated using 
the titration curve (logarithmic fitting). 

Interference study 

ICP-MS analysis of a prepared sample of 2-phenylphenol (0.58 M in aqueous 0.1 M NaOH) and the 

commercial product (DECCO® OPP) was carried out. The results are shown in Table 4. 
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As described previously, the concentration of 2-phenylphenol within the commercial product, DECCO® 

OPP, was correctly calculated using the titration curve obtained from the color of the sensory films of 

F005B after dipping into a lab-made solution of 2-phenylphenol. Thus, no interference of the different 

elements found in the commercial product was observed. 

Conclusions 

We prepared polymer films with diazonium moieties pendant to the main acrylic chains. The diazonium 

groups within the solid materials are stable over time and can be handled without special care by 

untrained personnel. The materials have a gel-like behavior, and swell upon dipping in water. The colorless 

films react with any phenol present in the water, developing color, due to the formation of azo groups, 

which we have used to visually signal the presence of phenols. Additionally, we have titrated the phenols 

using both a conventional analytical technique, UV-Vis, and an analysis of the colors of pictures taken of 

the sensory films with a handheld device (e.g., a smartphone); detection limits ranged from ppb to ppm. 

In short, we have used a well-known organic reaction for sensory purposes. To achieve this objective, we 

prepared materials with chemical groups considered inherently unstable under ambient conditions, 

exploiting the solid-state chemistry within a macromolecular environment that usually exhibits 

completely different chemical behavior both in solution and for low molecular mass species. 
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Table 1 Comparative table of different phenol analytical methods. 

Sensor 
Cost of the 

analyses/materials 
Detection method 

Response 
Time (min) 

LOD 
(ppm) 

Naked-eye 
detection 

Ref. 

I High UV-Vis 5.00 <0.005 Yes 37 
II Low SPEM/ATR-IR  20.0 <5.47 No 38 
III High GC–MS ND <159 No 39 
IV High GC-FID  30.0 <50 No 40 
V High HPLC-ED  6.00 <3.48 No 41 
VI High HPLC-DAD 9.56 ND No 42 
VII High CE ND <0.05 No 43 

F025B Low UV-Vis 3.33 0.12a Yes 
This 
work 

F025B  Low 
Digital picture (RGB 
parameters defining 
the digital colors) 

3.33 0.03b Yes 
This 
work 

a LOD for 2-phenylphenol. 
b LOD for m-cresol. 

 

 

Table 2. Tested phenols and their uses.  

Phenol derivate Use Ref. 

2,4-dimethylphenol Pesticide 44 
fenhexamid Fungicide 45 
2-phenylphenol Fungicide 46 
1-naphthol Derived from the degradation of the pesticide carbaryl. 47,48 
1,8-
dihydroxyanthraquinone 

Pesticide 49 

2-chlorophenol Pesticide 50,51 
4-chlorophenol Pesticide 49,50 

2,4-dichlorophenol 
Derived from the degradation of the pesticide 2-(2,4-dichlorophenoxy)acetic 
acid 

49,50 

2-methyl-4-chlorophenol Derived from the degradation of the pesticide MCPA 49 
2-nitrophenol Byproduct in the synthesis of pesticides 7 
4-nitrophenol Byproduct in the synthesis of pesticides 52 
2,4-dinitrophenol Byproduct in the synthesis of dyes 7 
bisphenol A Used in polymers for the alimentary industry  53 
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Table 3. Limit of detection and quantification for phenols, using the sensory materials F005B and F025B, calculated using UV-Vis 
analysis and the blue parameter (B) of the digital definition of the color of the films. 

Phenol code Phenol derivative 
UV-Vis analysis RGB analysis 

LOD LOQ LOD LOQ 

A m-cresol 135 ppb 408 ppb 27 ppb 82 ppb 
B 2-chlorophenol 366 ppb 1.1 ppm 123 ppb 373 ppb 
C bisphenol-A 217 ppb 657 ppb 221 ppb 670 ppb 
D 4-chloro-2-methylphenol 203 ppb 614 ppb 253 ppb 766 ppb 
E 2,4-dimethylphenol 151 ppb 457 ppb 300 ppb 910 ppb 
F 2-phenylphenol 133 ppb 402 ppb 207 ppb 627 ppb 
G 1-naphthol 121 ppb 369 ppb 181 ppb 547 ppb 
H 2,4-dinitrophenol 299 ppb 905 ppb 410 ppb 1.2 ppm 
I 4-chlorophenol 326 ppb 987 ppb 782 ppb 2.4 ppb 
J 1,8-dihydroxyanthraquinone 276 ppb 836 ppb *1.8 ppm *5.6 ppm 
K 2-nitrophenol 76 ppm 229 ppm 43 ppm 131 ppm 
L fenhexamid 193 ppm 584 ppm 49 ppm 150 ppm 
M 2,4-dichlorophenol 38 ppm 85 ppm 80 ppm 242 ppm 

*The red component of the RGB parameters was used in this case instead of the blue due to the different color change observed in comparison 
to the rest of phenols. 

 

 

Table 4. ICP-MS analysis for the lab-made solution of 2-
phenylphenol (0.58 M in aqueous 0.1 M NaOH) and the 
commercial product. 

 Lab-made solution Commercial product  

Si (ppb) 25.7 15080.5 

Mn (ppb) -- 1.8 

Zn (ppb) 1.2 622.3 

Pd (ppb) 0.2 49.4 

Ba (ppb) 0.1 7.2 
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