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Abstract 

We prepared microporous aramid films through a simple, inexpensive and green way, 

using ionic liquids (IL) as porosity promoters. Commercial poly(m-phenylene 

isophthalamide) (MPIA) films with different IL proportions were prepared, and then 

microporous films were obtained by removing the IL in distilled water. Microporous 

films presented density values between 0.34 and 0.71 gcm-3 (around five times lower 

to commercial MPIA), with a homogeneous and controlled cellular morphology 

dependent on the proportion of the IL, showing cell sizes in the microcellular range 

(radii between 1 and 8 µm). Thermal, mechanical and electrical properties (specifically 

ionic conductivity) of the aramid films were analyzed to evaluate the influence of the IL 

proportion. Finally, it was observed that the MPIA/IL system presented a reversible 

thermally induced phase-separation process around 60 C, which was characterized 

through AFM-Raman images and spectra, together with the variation of the ionic 

conductivity. 
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1. Introduction 

Aromatic polyamides, also known as aramids, are polymers with excellent thermal and 

mechanical properties, and they are considered high performance materials. These 

materials first appeared in the patent literature in the late 1950s and early 60s with a 

number of compositions by DuPont researchers. However, the commercially important 

aramids nowadays is reduced to poly(m-phenylene isophthalamide) (MPIA) and poly(p-

phenylen terephthalamide) (PPTA), due to their outstanding properties combined with 

their low density. [1] Current research efforts are directed into the improvement of the 

properties of these materials, [2] including lowering their weight without impairing their 

high-performance properties, which is important for applications related to the 

aeronautic and automotive industries and in human protection clothing. The 

preparation of polymers with cellular structure is a means for lowering the weight of 

materials. However, a vast control of their morphology is needed to produce these 

materials at an industrial scale, and thus, research efforts have been focused to reach 

that goal.  

In our previous work, [3] we reported the development of foamed aramids using a non-

volatile ionic liquid (1-allyl-3-methylimidazolium chloride) and supercritical CO2 (ScCO2) 

for the first time. We successfully lowered the density of commercial MPIA from 1.48 to 

0.31 g·cm-3 while maintained the exceptional mechanical and thermal properties. 

ScCO2 foaming process is widely employed to obtain micro and nanocellular polymers, 

due to the low critical conditions of ScCO2 (31.1 C and 73.8 bar), which offers many 

advantageous properties, like a tunable solvent power, plasticization of glassy 

polymers and higher diffusion rates. [4,5] On the contrary, the production of cellular 

polymers using ScCO2 requires a specific experimental set-up, with a high-pressure 

reactor, and also high processing times (up to several hours), depending on the CO2 

affinity of the polymer.  

We decided to explore the possibility of using ionic liquids due to their plasticization 

effect combined to their good affinity for the CO2, two of the most important properties 

of these compounds. Traditionally, ionic liquids (IL) have been employed as green 

replacements for traditional volatile organic solvents as they are considered 

environmentally friendly and easily recyclable. [6] As a result, many examples can be 

found in aramids literature concerning the use of IL in many different applications, such 

as compatibilizers in composites, [7] as solvent for dry-jet-wet-electrospinning, [8] or as 
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solvents in the synthesis of PPTA or solution of its oligomers. [9,10] Furthermore, most 

of the ionic liquids are hygroscopic, [11,12] and they absorb water at different extents 

either from wet surfaces or from the air. [13-17] Concerning the specific relation 

between ionic liquids and aramids, we only found a work reported in 2007 about the 

use of different ionic liquids in the production of poly(m-phenylene isophtalamide) 

fibers. [18] 

Although our initial goal was to evaluate the influence of the IL in the ScCO2 foaming 

process, we surprisingly observed that only the removal of this specific IL to the aramid 

solution in dimethylacetamide (DMAc) during the preparation of cast films led to the 

development of a homogeneous microporous structure. In fact, when IL was removed, 

aramid films showed a high opacity, a classical effect of foamed materials, which is 

related to the diffraction of the light inside the microporous structure. The porosity could 

be explained through a thermally induced phase separation process due to the 

presence of the IL, a phenomenon described previously in the literature, [19,20] but 

which has not been reported as an alternative fabrication process of porous aramids. 

For this reason, we started this novel research line, which is presented in this work, 

focusing our efforts in the use of ILs to prepare microcellular aramids with controlled 

structure, avoiding the whole ScCO2 foaming process, thus simplifying as much as 

possible the obtention of microporous aramid films. 

Bearing these ideas in mind, we easily prepared five porous aramid films containing 

different proportions of ILs and a commercial dense MPIA film for comparison purpose, 

and we studied them in terms of cellular structure, density, mechanical, thermal and 

ionic conductivity measurements, evaluating the relation between the proportion of the 

IL added and the final characteristics of the microporous aramid films. 

2. Experimental part 

 

2.1. Materials and measurements 

1-allyl-3-methylimidazolium chloride (≥ 97 %) was used as ionic liquid (Sigma-Aldrich, 

used as received). N,N-dimethylacetamide (DMAc, Aldrich, >99%) was vacuum-

distilled over phosphorous pentoxide twice and then stored over 4 Å molecular sieves. 

Isophthalic dichloride (IPC) (Aldrich, >99%) was purified by double crystallization from 

dry heptane. m-Phenylenediamine (MPD) is commercially available (Aldrich, >99%) 

and was purified by double vacuum sublimation. 
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The number average molecular weight (Mw) of the polyamides was measured using the 

Mark-Houwink equation, [η] = k Mw
, where the values of the constant k and  for 

polymer solutions in 96% sulfuric acid are 0.00013 dL g-1 and 0.84, respectively. The 

intrinsic viscosity [η] was calculated by measuring the inherent viscosities, ηinh, of the 

aramid at different polymer concentrations (0.5, 0.3, 0.1 and 0.05 g·dL-1) with a 

Ubbelohde viscometer using sulfuric acid (96%) as the solvent at 30 ºC ± 0.1 ºC and 

extrapolating to zero concentration. 

Differential Scanning Calorimetry (DSC) measurements of the polyamide films were 

carried out in a DSC Q200 TA Instruments equipment. The analysis of the glass 

transition temperatures was carried out following a four-cycle procedure. First, after 5 

min of stabilization at 30 C, films were heated up to 350 C at 20 C/min. Then, after 5 

min of stabilization at 350 C, films were cooled down to RT at the same rate. Third, a 

second heating cycle was performed following the same conditions of the first cycle, 

concluding with a final cycle to cool down the samples to RT at 20 C/min.  

The AFM-RAMAN images and spectra were taken using a confocal AFM-RAMAN 

model Alpha300R – Alpha300A AFM Witec, using a laser wavelength of 532 nm with 2 

mW, at 100X. The area of the image was fixed at 5x5 µm2. Images and spectra were 

taken at RT and 70 C. On the other hand, video images were recorded with the same 

equipment, at 10X, from RT to 70 C, at a heating rate of 10 Cmin-1, to observe the 

formation of the single MPIA-IL phase. 

The thermogravimetric analysis data were recorded on a TA Instrument Q50 TGA 

analyzer. Films were first dried in vacuum overnight at 40 C, and then TGA tests were 

performed under O2 atmosphere using the next procedure: First, films were heated 

from RT to 100 C at 10 Cmin-1, and then kept during 5 min to eliminate the moisture 

content. Finally, TGA analysis was completed by heating up to 800 C at 10 Cmin-1. 

To determine the mechanical properties 5x40 mm2 strips were cut from the polyamide 

membrane and tensile tests were performed on a SHIMADZU EZ Test Compact Table-

Top Universal Tester. Mechanical clamps were used and an extension rate of 5 

mmmin-1 was applied using a gauge length of 9.44 mm. At least 5 samples were 

tested for each film, and the data was then averaged. 

Cellular structural determination of the microcellular films was carried out in a scanning 

electron microscopy model JEOL JSM-6460LV. Films were frozen in liquid nitrogen, 

fractured and gold coated in vacuum to assure the electrical conductivity of the films. 
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Cellular structural characterization determining the average bubble radius and average 

cell density from SEM images, measured using the Image® software, counting the 

number of bubbles in each image ni and its radius Ri. The average radius    is 

calculated from Equation 1: 

                                                         
     
 
   

   
 
   

                                                        (1) 

where N represents the bubble count. Three different SEM images were analyzed from 

each material, averaging the data. The estimation of the cell density Nc was calculated 

using the Kumar’s approximation, according to Equation 2:  

                                                           
 

 
 
   

                                                       (2) 

 where n is the number of cells in the image and A is the area of the image.  

Taking into account the average radius value and cell density, the gas volume fraction 

Vf  was obtained using Equation 3: 

                                                            
      

 
                                                        (3) 

where    is the average diameter. Then, gas volume fraction Vf and foam density SEM 

are related throughout Equation 4, in which s is the solid material density: 

                                                 
   

  
                                         (4) 

The theoretical calculations were carried out using the quantum chemical software 

ORCA 4.0.1.2.1, using the PBEh-3c method. [21] This method, that shows excellent 

performance for non-covalent interaction energies in small and large complexes, 

includes geometrical counterpoise correction, gCP, [22] for removing the BSSE (Basis 

Set Superposition Error), and the atom-pairwise dispersion correction with the Becke-

Johnson damping scheme (D3BJ). [23,24] The basis set used is def2-mSVP [25] in 

combination with auxiliary basis set RI-J. [26]  Def2-mSVP is defined as the Valence 

double-zeta basis set of the Karlsruhe group with polarization function, whereas RI-J 

means the Resolution of Identity approximation (also called Density Fitting), applied to 

Coulomb Integrals (J). In this case, we are using the auxiliary basis def2/J. The 

Cartesian coordinates of the optimized geometries can be found in the ESI. 
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2.2. Preparation and testing of polyamide films 

Aromatic polyamide MPIA was synthetized following the procedure described in our 

previous work by the conventional solution low temperature polycondensation method 

from IPC and MPD [27,28]. Thus, the polycondensation was carried out in a three 

necked flask fitted with a mechanical stirrer and nitrogen inlet. It was then charged with 

39.40 mL of DMAc under a blanket of nitrogen at rt and 4.26 g (39.40 mmol) of MPD 

were added. After the solution of the diamine at rt under stirring, the system was then 

cooled to 0 °C, and 8.00 g (39.40 mmol) of IPC was added portion wise over 5 min 

(about four amounts). The reaction conditions were maintained for 30 min, and then the 

cooling was discontinued, and the reaction proceed for additional 3.5 h. The solution 

was slowly poured into distilled water, giving rise to a fibrous and swollen precipitate 

that was filtered, washed thoroughly with water and acetone. The yield was 

quantitative. 

To prepare the porous aramid films with ILs a simple method was followed: 0.21 g of 

MPIA was dissolved portion wise in 3 mL of DMAc and stirred until full dissolution is 

observed. The corresponding amount of the IL was added then to the solution and 

stirred for an additional hour. After that, the mixture was filtered off and cast in a glass 

placed inside an air-circulating oven at 60 C for 16 hours. To remove the ILs, the films 

were washed by immersing them in distilled water for 24 hours, replacing every 8 hours 

the distilled water solution to assure the complete removal of the IL. The tensile tests 

and the scanning electron microscopy images were obtained before and after removal 

the IL, whereas the thermal tests (TGA and DSC) were performed only after removing 

the IL. Finally, ionic resistivity tests were carried out in films containing the ILs. 

3. Results and discussion 

3.1. Preparation of aromatic polyamides 

Aramids are high-performance polymers that are usually prepared in the lab using high 

and low temperature solution methods. The former from direct condensation of 

aromatic diacids and aromatic diamines, and the later by condensation of aromatic 

diacid dichlorides and aromatic polyamides. Commercially, these materials are 

synthesized following the low temperature methodology and processed into fibers 

(pulp, staple fibers, and continuous multifilament yarns) by dry-spinning, wet-spinning, 

and dry-jet wet-spinning [1]. In our case, we have prepared MPIA in solution upon 

polymerization IPC and MPDA (ηinh = 1.12 dL g−1; [η] = 1.35 dL g−1; Mw = 60 × 104).  
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For comparative studies we prepared a dense aromatic polyamide film was prepared 

by casting, called from now on dense MPIA, with a conventional density for aramids 

(1.43 g·cm-3). Then, another five aramid films were prepared having 50, 60, 75, 80 and 

90 % wt. of the IL 1-allyl-3-methylimidazolium chloride. It is important to remark that in 

a previous study, [3] lower percentages of IL were loaded to the polyamide, but no 

porous structure was observed. 

3.2. Density and morphological parameters 

After, we removed chemically the IL by immersion of the aramid films in distilled water 

for 24h. We denoted these films as 50MPIA/50LI-R, 40MPIA/60LI-R, 25MPIA/75LI-R, 

20MPIA/80LI-R and 10MPIA/90LI-R. Then, the porous structure was originated due to 

the elimination of the IL in distilled water over 24h, causing the development of the 

porosity inside the polyamide film. Figure S1 in the Electronic Supplementary 

Information (ESI) presents two photographs of the film containing 50 % of IL, before 

and after the IL removal process in distilled water during 24 h, in which an increase of 

the opacity of the film is evidenced, due to the formation of the microporous structure 

after the removal of the IL. To assure that all the DMAc and IL were completely 

removed after evaporating the solvent at 60 ºC during 16 h and lately placing the film in 

distilled water during 24 h, 1H-RMN of the films were carried out using DMSO as 

solvent. Figure S2 in the ESI presents, as an example, the 1H-RMN spectrum of the 

40MPIA/60LI-R film, in which no traces of DMAc or IL are observed. It is important to 

remark that the results were similar in all the films.  

In Table 1 we present the density of the microporous aramid films and the density of 

the dense MPIA film, together with the morphological parameters. In all the cases 

density vales are reduced compared to the dense film MPIA. Microporous aramid films 

present density values between 0.34 and 0.71 g·cm-3, thus reaching a reduction 

between 2- and 4.5-times respect to the density of the dense MPIA. Concerning the 

morphology, all films present a well-defined microporous structure, with cell sizes 

between 1 and 8 µm, and cell densities in the range of 108-1011 cellscm-3. In addition, 

the film density was also estimated from the average cell size and cell density 

measurements (SEM), obtaining values which are comparable to the volumetric 

density, obtained directly from weight and geometrical dimensions, then validating the 

morphological calculation procedure.  

 

Aramid Film 

 e    Nc Vf SEM 
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(gcm-3) (µm) (µm) (cellscm-3)  (gcm-3) 

Dense MPIA 1.43 27 n/a n/a n/a n/a 

50MPIA/50IL-R 0.71 66 1.64  0.08 3.52 x 1011 0.47 0.75 

40MPIA/60IL-R 0.57 82 3.21  0.23 4.41 x 1010 0.57 0.61 

25MPIA/75IL-R 0.38 171 8.32  4.19 7.15 x 108 0.69 0.43 

20MPIA/80IL-R 0.40 181 1.34  0.18 1.37 x 1011 0.70 0.42 

10MPIA/90IL-R 0.34 269 n/a n/a n/a n/a 

Table 1. Morphological parameters of microporous aramid films. ( is the foam density 

measured from dimensions and weight of the film and e is the film thickness. ImageJ® 

software was employed to determine the average cell radius   , the cell density NC, the 

gas volume fraction Vf and the foam density from morphological parameters, SEM). 

SEM micrographs of the cut section of the microporous aramid films were taken 

following the preparation procedure presented in section 2.1. Figure 1 presents the 

micrographs taken on the cut section of the aramid films after the removal of the IL. On 

the other hand, different SEM images were taken of the surface of the aramid films, 

showing in all the cases a solid outer skin without any porosity (See Figure S3 of the 

ESI). 

  

a) b)
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Having a look at the SEM micrographs in Figure 1, some specific conclusions can be 

extracted. Concerning the morphology of the microporous aramids, all the films 

prepared showed a very homogeneous structure with closed-cells. Only the aramid film 

with 90 % wt. of IL shows a very different morphology, with connected microchannels 

of a few microns width, in which the calculation of the different morphological 

parameters is not simple (see Figure 1e). This is probably due to the high proportion of 

the IL employed. The proportion of the IL is also crucial to control the average cell size. 

For example, there is a direct relation between the increase of cell size and the 

proportion of IL up to values of 75 % wt., but on the other hand, adding 80 % wt. of IL 

reduces drastically the cell size, then obtaining closed-cell microporous aramids with 

excellent homogeneity and cell sizes around 1 µm (see Figure 1d). These structures 

are specially interesting when compared to films with 75 % wt. of IL, which, although 

they are fabricated with almost the same quantity of IL, present a very inhomogeneous 

  

 

Figure 1. SEM micrographs of the microporous aramid films. All pictures taken at 

1000x. a) 50MPIA/50IL-R; b) 40MPIA/60IL-R; c) 25MPIA/75IL-R; d) 20MPIA/80IL-R; 

e) 10MPIA/90IL-R (magnification taken at 3000x).  

c) d)

e)

e)
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structure, with bi-modal morphologies and also fractured cell walls (See Figure 1c). 

Several films were fabricated using the 75 % wt. of IL, obtaining the same 

inhomogeneous morphologies in all the cases, then confirming the very different 

behavior of this composition. 

3.3. Thermally induced phase-separation process 

Different literature works can be found in which ILs are used to obtain polymeric porous 

materials using several mechanisms. In this sense, a recent review analyzing the 

preparation of porous membranes for gas separation applications using ILs has been 

presented by Wang et al. [20] in 2016. Another interesting work was presented recently 

by Täuber et al. [29]  in which porous polymer membranes were obtained from water 

soluble ionic liquids, via electrostatic complexation. Another fabrication route, based on 

the phase inversion process promoted by the ILs has been reported by Lakshmi et al. 

[30] as a very effective fabrication process of porous polyethersulfone membranes, 

using 1-butyl-3-methylimidazolium hexafluorophosphate as IL. 

However, considering the specific fabrication of polymeric porous membranes using ILs 

as thermal phase-separation inducers, only a few works can be found in the literature. 

A classical review concerning the physic-chemical aspects of the phase-separation 

process in polymer solutions to produce porous membranes was presented by Van de 

Witte et al. [31] in 1996. More recently, different authors analyze the phase-separation 

process using ILs to obtain porous polymeric membranes. For example, Liu et al. [32] 

presented the preparation of porous poly(vinylidene fluoride) membranes using 1-butyl-

2,3-dimethylimidazolium tetrafluoroborate as IL, and Chen et al. [33] showed the 

fabrication of porous poly(ethylene oxide) membranes employing 1-ethyl-3-

methylimidazolium tetrafluoroborate as IL. Concerning the specific fabrication of porous 

aramid membranes, there is a lack of scientific literature up to date, due to the intrinsic 

difficulties associated to the production of these materials, then conferring to our work 

an excellent starting point to obtain porous aramid membranes.  

As it has been commented in the introduction section, in our case, during the film 

preparation we observed that samples were transparent at 60 C when they were 

extracted from the oven in which DMAc was evaporated, but after a few minutes at RT, 

the films turned completely opaque. We believe that the polyamide and the ionic liquid 

system (MPIA-IL) at 60 C were completely mixed in a single phase, and then cooling 

down to RT caused the formation of a two-phase material via the phase-separation 

mechanism, originating the opacity. The phase-separation process is reversible, and 
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several heating-cooling cycles has been carried out changing from opaque to 

transparent samples when MPIA-IL phases were mixed or segregated, respectively. 

The effect of the phase-separation process in the aramid films properties was 

investigated from different and complementary perspectives. In this section, we will 

focus our analysis in the AFM-Raman technique to study the IL distribution in the 

MPIA, and its relation to the microporous structure in the aramid film after the IL 

removal, following the protocol presented in section 2.1. The Raman analysis has been 

also previously employed by Lakshmi et al. [30], to analyze the distribution of 1-butyl-3-

methylimidazolium hexafluorophosphate in polyethersulfone membranes. However, our 

objective was not only to analyze the distribution of the IL in the MPIA, but also to 

determine the relation between the IL presence and the microporous structure of the 

aramid film. The 50MPIA/50IL film was also selected as example, collecting two 

different Raman images and spectra (one at RT, in which both phases are clearly 

visible, and another at 70 C, when a single-phase PA-IL is formed). Figure 2 presents 

the obtained results. 

The phase transition process is clearly demonstrated from the AFM Raman images 

and spectra taken at different temperatures. Figure 2a presents the Raman mapping 

taken from the 50MPIA/50IL at RT, in which both phases are separated, presenting 

each of the phases the Raman spectra of pure IL and pure MPIA. Heating the sample 

up to 70 C leads to the formation of a single MPIA/IL phase, which is reflected in 

Figure 2b, in which the Raman mapping shows a homogeneous aspect, with a unique 

Raman spectrum corresponding to the mixed MPIA/IL phase. The formation of the 

single-phase is captured in Figure S4 of the ESI, which shows several optical 

photographs of the 50MPIA/50IL film taken at different temperatures.  
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Figure 2. AFM Raman images and spectra of the 50MPIA/50IL film at different 

temperatures. a) 30 C ; b) 70 C.  

As stated before, the formation of the microporous structure seems to be related to the 

removal of the IL, which could originate the porosity. Figure S5 of the ESI presents the 

AFM Raman mapping taken at 30 C of the 50MPIA/50IL film together with a SEM 

micrograph of the microporous 50MPIA/50IL-R after the IL removal, in which it is 

demonstrated that the IL distribution and the resultant porosity are directly related.  

In order to get insight into the interaction of IL with the polymer, DFT calculations were 

performed (see experimental part for details). The structure of a polyamide dimer 

(mimicking the polymer structure) interacting with two ionic pairs of the IL, two 

interacting dimers, and an ionic liquid species were optimized. The two dimers display 

interactions of hydrogen bond and -stacking between the two chains (see Figure S6 

of the ESI). The optimization of the dimer interacting with two ionic pairs of the ionic 

liquid displays how the chloride anions orientate towards the N-H bonds of the 

polyamide whereas the cationic 1-ethyl-3-methylimidazolium cation (IL) orientates 

towards the carboxylic oxygen of the polyamide (see Figures S7 and S8 in the ESI). 

The calculated free energy at 60 ºC for the reaction in which the two dimers interacts 

with the ionic liquid [(polyamide)2 + 4 IL  2 polyamide/(IL)2] yields a value of -41.03 

kcal·mol-1, indicating that the interaction is thermodynamically favorable, in agreement 

MPIA

IL

a)

30 C

70 C 50MPIA/50IL

b)
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with experimental observation (the cartesian coordinates of the modelized structures 

are shown in the ESI, Tables S1 to S3). 

3.4. Thermal and mechanical properties 

The key parameters of the aramids that makes them high performance materials are 

essentially the thermal and the mechanical behavior. The thermal behavior of the 

microporous films after the removal of the IL was evaluated in terms of 5 % and 10 % 

of weight loss through a thermogravimetric analysis (TGA), and the glass transition 

temperature (Tg) was determined with differential scanning calorimetry (DSC). 

Regarding the thermal resistance, the excellent performance of the commercial 

aromatic polyamides is practically maintained, with 5 % and 10 % weight loss around 

430 C and 460 C (values of the dense MPIA film are 453 C and 477 C), regardless 

of the amount of ionic liquids, thus indicating that the removal of the ILs was practically 

completed. We only observed a small reduction of the thermal stability in film 

25MPIA/75IL-R, (around 15 C in T5% and T10% values), that could be related to the 

inhomogeneous microporous structure and the presence of fractured walls, as it was 

observed in the SEM micrograph presented in Figure 1c. Thus, it seems to be an 

influence of the microporous structure in the thermal stability of this aramid film, 

probably due to the different oxygen content trapped inside the cells, which can affect 

to the thermal resistance. Thermal properties are presented in Table 2. On the other 

hand, Tg values of the different films were maintained compared to the commercial 

MPIA, around 275 ºC. TGA and DSC curves of all aramid films can be found in 

Figures S9 and S10 of the ESI. 

 

Aramid Film 

T5% 

(C) 

T10% 

(C) 

Tg 

(C) 

Dense MPIA 453 477 273 

50MPIA/50IL-R 438 462 271  

40MPIA/60IL-R 438 465 275 

25MPIA/75IL-R 423 438 276 

20MPIA/80IL-R 433 466 275 

10MPIA/90IL-R 431 463 276 

 

Table 2. Thermal properties of aramid films. (T5% and T10% are the temperatures where 

5 and 10 % wt. of mass loss, and Tg is the glass transition temperature) 
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The mechanical properties of the microporous aramid films were tested concerning the 

relative Young’s moduli (Er) and relative stress at break point (bp
r), (ratio between 

measured values and film density, extracted from the data in Table 1). Relative values 

were employed in order to compare effectively the mechanical behavior of the 

microporous films and dense films obtained from commercial MPIA. All the stress-

strain curves obtained in the tensile tests can be found in Figure S11 of the ESI, 

whereas the mechanical data is presented in Table 3. (Mechanical data of dense MPIA 

film was extracted from our previous work. [3]) 

 

Aramid Film 

Er 

(MPa(gcm-3)-1) 

bp
r 

(MPa(gcm-3)-1) 

Dense MPIA 1231 ± 47 53 ± 4 

50MPIA/50IL-R 1013 ± 61 16 ± 4  

40MPIA/60IL-R 922 ± 45 15 ± 1 

25MPIA/75IL-R 490 ± 32 18 ± 3 

20MPIA/80IL-R 1114 ± 59 15 ± 5 

10MPIA/90IL-R 320 ± 23 12 ± 4 

 

Table 3. Mechanical properties of aramid films obtained from the tensile tests. (Er is the 

relative Young’s modulus and bp
r  is the relative stress at break point). 

 

Data presented in Table 3 indicates a direct correlation between the microporous 

structure of the films and the relative mechanical values measured. As expected, the 

dense aramid film presents the best mechanical performance, with the highest values 

of both Young’s modulus and stress at break relative values (1231 and 53 MPa(gcm-

3)-1, respectively). When microporous structure appears, there is a general reduction of 

the values of stress at break around four times, down to values between 12 and 18 

MPa(gcm-3)-1, then showing a ductile behavior compared to dense aramid film. 

However, the Young’s modulus parameter does not follow the expected behavior, 

presenting some remarkable results, with a clear influence of the cell size and the 

homogeneity of the microporous structure. For example, in the case of the film 

20MPIA/80IL-R, the relative Young’s modulus lies around the value measured for the 

dense aramid film (1114 and 1231 MPa(gcm-3)-1, respectively, indicating that it is 

possible to reduce the aramid’s density from 1.43 to 0.40 gcm-3 without losing 

mechanical resistance, then pointing out the role of the microporous structure created 

by simply eliminating the IL. On the contrary, we observed that the aramid microporous 
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film with 75 % wt. of IL (25MPIA/75IL-R) which presented a very inhomogeneous 

porous structure, with larger cell sizes and broken cell walls (see Figure 1c), shows a 

poor mechanical resistance, with values around 490 MPa(gcm-3)-1. Both results 

indicate the influence of the microporous structure in the mechanical behavior of the 

aramid films, then giving the possibility of tuning easily their mechanical properties in 

terms of the initial proportion of IL employed.  

 

3.5. Ionic conductivity  

Ionic liquids are usually employed in the design of solid electrolytes with 

electrochemical characteristics comparable to those of liquid ones, in order to obtain 

self-standing materials combining high ionic diffusivity (and hence high ionic 

conductivity) and dimensional stability. For these reasons, in the last years the ideal 

candidates have been polymer-based materials in which the ionic diffusivity is 

enhanced with the presence of different ionic liquids, such as 1-ethyl-3-

methylimidazolium bis(fluorosulfonyl)imide, 1-butyl-1-methylpyrrolidinium 

bis(fluorosulfonyl)imide or bis(trifluoromethane)sulfonimide lithium salt. [34,35] 

Polyamides are essentially non-conductive materials, and they must be combined with 

different charges to obtain conducting materials with excellent mechanical and thermal 

properties. [36] In our case, we decided to analyze the ionic conductivity of the 

polyamide films using a four-point probe already employed in our group to determine 

the electrical properties of porous aramid films. [37] Films were cut in samples of 40x40 

mm2 and fixed to a glass plate. Then, the four-point probe was put in contact with the 

surface of the samples, obtaining the ionic resistivity. Five different measurements 

were carried out in each sample, to also observe the homogeneity of the surface, then 

averaging the results. Figure 3 presents the ionic resistivity () obtained for each 

sample as a function of the proportion of ionic liquid.  
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Figure 3. Ionic resistivity of porous aramids as a function of the quantity of ionic 

liquid.  

The influence of the IL in the ionic transport properties of the aramid films is clearly 

observed in Figure 3. As expected, dense MPIA film shows a high ionic resistivity 

value due to the isolating behavior of the neat polymer. Increasing the quantity of the IL 

results in a decrease of the ionic resistivity, conferring a conductive behavior to the 

aramid films. Adding 50 % wt. of IL reduces four times the ionic resistivity compared to 

dense MPIA film (from 4107 to 1107 
/sqr). The reduction in the ionic resistivity is 

proportional to the quantity of IL, and, for example, aramid film with 90 % wt. of IL 

presents an ionic resistivity value around 105 /sqr, then two magnitude orders lower 

than the dense MPIA. However, it is important to remark that measurement in aramid 

films with 90 % wt. were especially problematic, due to the great flexibility of the films 

the high quantity of IL, then hindering the contact between the tips of the probe and the 

surface of the material. 

Additionally, aramid films with 75 % wt. do not seem to follow the expected correlation, 

presenting a very low value of the ionic resistivity ( 5104 /sqr), compared to films 

with 80 % wt ( 2105 /sqr). We already observed that this proportion of IL resulted in 

a very inhomogeneous cellular morphology (see Figure 1c), reflected also in the poor 
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tensile properties obtained (see Figure S11 of the ESI). Thus, it seems that the 

proportion of the IL plays a key role in the resulting mechanical and ionic transport 

properties, demonstrating a direct relation microstructure-properties and opening the 

possibility of a controlled, simple and inexpensive fabrication of conductive aramid films 

with excellent mechanical properties.   

To conclude, we also investigated the phase-separation process reversibility 

measuring the ionic resistivity during a heating-cooling cycle, using a controlled-

temperature furnace. 50MPIA/50IL aramid sample was heated from RT to 80 C and 

then cooling down to RT registering the ionic resistivity evolution. Results are 

presented in Figure 4. It can be observed that the ionic resistivity drops from 9106 

/sqr to 2106 /sqr due to the formation of the single MPIA-IL phase between 50 and 

70 C. The reversibility is clearly demonstrated when aramid sample is cooled to RT 

and ionic resistivity recovers to 1.2107 /sqr. The difference between the initial 

resistivity and the value after the heating-cooling cycle could be due to a different 

distribution of the IL in the MPIA matrix, which affects to the ionic transport ability of the 

film. From these results, we can conclude that reversibility of the phase-separation 

process is directly reflected in the ionic conductivity of the aramid films, obtaining 

conductive aramid films when a single MPIA/IL phase is formed at temperatures 

around 60 C. 
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Figure 4. Ionic resistivity evolution in a heating-cooling cycle from RT to 80 C in 

50MPIA/50IL aramid film. 

 

4. Conclusions 
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In short, we present an easy and inexpensive method to produce microporous aramid 

films with controlled morphology, adding ILs to commercial MPIA, which originated the 

microporous structure after removal in distilled water. Microcellular aramid films 

presented values of density between two and five times lower than dense MPIA. In 

addition, microporous morphology was controlled by the IL proportion, which was 

varied between 50 and 90 % wt., presenting in all the cases cell sizes below 8 µm.  

Thermal properties of microporous films were analyzed from TGA and DSC 

measurements, finding that thermal resistance was maintained compared to dense 

MPIA film, then showing the positive effect of the microporous structure in low density 

films. Concerning the mechanical properties, tensile tests were carried out, showing 

that microporous aramid films presented a reduction of the values of stress at break 

value around four times, but on the other hand, Young’s modulus parameter was 

surprisingly elevated, compared in relative terms to the value of the dense MPIA for 

samples with 80 % wt. of IL, then detecting a direct and clear influence of the cell size 

and the homogeneity of the microporous structure in the mechanical performance of 

the films. Ionic conductivity of the MPIA/IL films was also analyzed, detecting that the 

addition of the IL turned the MPIA film conductive.  

Finally, we deeply investigated the reversible thermally-phase separation process 

associated to the presence of the IL in the MPIA matrix. It was observed that MPIA and 

IL formed a single phase around 60 ºC, detected in several experimental and 

theoretical ways: visually from different optical photographs taken at several 

temperatures, through AFM Raman images and spectra at different temperatures and 

also by measuring the evolution of the ionic resistivity in a heating-cooling cycle, finding 

that ionic resistivity decreased drastically due to the single-phase formation and turning 

the aramid film conductive. Also, numerical modelling confirmed that the reaction was 

thermodynamically favorable in good agreement with a strong interaction between the 

ionic liquid and the polyamide to form a single phase by heating up at 60 ºC, obtaining 

conductive aramid films when a unique MPIA/IL phase was formed, reversing the ionic 

transport ability when film was cooled to RT (two segregated MPIA/IL phases). 
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Highlights 

 Microcellular aramid films have been obtained using exclusively ionic liquids 

 Density has been diminished from 1.4 gcm
-3

 down to 0.37 gcm
3
  

 Average cell size lies in the microcellular range (between 1 and 8 m) 

 Cellular morphology can be controlled through the ionic liquid proportion  

 Thermally induced phase-separation process has been investigated 


