The formation, alteration and significance of pyrogenic magnetic fabric in mid-paleolithic burnt cave facies

Balázs Bradák¹, Ángel Carrancho Alonso¹, Ángela Herrejon Lagunilla¹, Juan J. Villalain Santamaria¹, Carolina Mallol^{2,3}, Gilbert Tostevin⁴ and Gilliane F. Monnier⁴

Magiber XI

Condeixa-a-nova, Coimbra, Portugal 4-7th September, 2019

¹ Paleomagnetic Laboratory, Department of Physics, Burgos University, Spain
² UDI de Prehistoria, Arqueología e Historia Antigua, Facultad de Geografía e Historia, Universidad de La Laguna, La Laguna, Spain.
³ Archaeological Micromorphology and Biomarker Research Lab, University of La Laguna, La 10 Laguna, Spain.
⁴ Department of Anthropology, University of Minnesota Twin Cities, United States

Site and sampling – Why ash?

In situ (anthropogenic) (gravitational-falling?) + 'post-burning'

Provide pioneering information to archaeologists about the forming and alteration of pyrogenic anthropic cave sediments.

The aims

→ to evaluate the potential of cave ashes to record the Earth's magnetic field variations

→ to reconstruct the burning conditions studying their magnetic properties

identifying the syn/post-burning taphonomical processes

The rock shelter of Crvena Stijena (Montenegro) is one of the longest and best-preserved Middle Paleolithic sequences in southeastern Europe.

Crvena Stijena (meaning 'Red Rock') / Dinaric Karst

а

(Post)pyrogenic mineral forming – characteristics of magnetic contributors

(Post)pyrogenic mineral forming – characteristics of magnetic contributors

- **a** \rightarrow *Type1*; quasi reversible curve and inflection around 300-400 °C
- **b** → *Type2;* quasi reversible curve with a hump between 105-112°C and 218-245 °C and inflection around 300-400 °C
- $C \rightarrow$ same as Type1 (a) and Type2 (b) irreversible curve with mineral neoforming
- $d \rightarrow$ repeating measurements of Type2 (b) curve no hump at the second time: mineral neoforming
- **e, f** \rightarrow experiments in reduced and zero background field same inflections [M(T) curves]

Magnetic contributors of ash (?) – the preliminary candidates

Magnetite \rightarrow indicated in all sample by its Tc: 585°C

~110 °C hump and the inflection between 300-400 °C (candidates):

Transition from **SD to SP behavior** \rightarrow transition from SD to SP behavior in magnetic grains close to the SSD/SP (Day, 1975):

(+) supported by hysteresis and IRM; (++) result of mineral forming by burning;

(-) thermal experiments in various DC fields did not show significant change;

Siderite → decomp. ~250 °C (Pan et al. 2002). Additional Mn and Mg comp. decrease the decomp. T (Gallagher and Warne, 1981):

(+) authigenic minerals by precipitation from groundwater;

(-/+) inverse fabric

(-) no significant paramagnetic comp [hysteresis and M(T) curves]

Goethite → 'broad minor peak' just above 100 °C and defined as antiferromagneti (AFM)/paramagnetic (PM) transition (Néel temperature - TN) (Özdemir and Dunlop 1996);

(+) imperfect burning;

(-) non-significant amount of high coercivity component

Pyrrhotite and magnetite forming from **greigite** \rightarrow ~95 °C the creation of pyrrhotite from greigite \rightarrow ~125-250 °C the neoformation of magnetite (Aubourg and Pozzi 2010).

Theory: loose ash + (saturated) pore water + intense decomposition of organic matter \rightarrow dissolved iron and sulphide \rightarrow greigite/greigite-producing magnetotactic bacteria (+) decomp of IRM.

Basic low field anisotropy of magnetic susceptibility (AMS) parameters

Fabric forming processes

CS5 and CS7

- initial pyrogenic MF, formed on slope
- influenced by gravity and slow slope processes

Infiltrating water into the loose ash strengthen \rightarrow the influence of slope processes, triggered by the change in the consistency of the ash

ightarrow the realignment of the grains toward vertical

Gravity + slope processes + sheet wash (water-lain)

\checkmark

Strengthening of the grains' alignment:

- slopeward orientation of the grains
- discrepancy of κ_{min} from vertical (\rightarrow imbrication; Nawrocki et al. 2006)

Fabric forming processes II. – Under pressure

a, b → Flow-transverse fabric (e.g.
Mammoth Cave, Kentucky, Ellwood 1984)
flowing water along the passages (CS2, CS4).

 $a \rightarrow$ may indicate stress field, triggered by rockfalls and the impact of a huge block.

Analogue:

- L-type tectonites (Borradaile, 2001)
- Rock deformed by e.g. meteorite impacts (Yokoyama et al., 2012) (~huge block impacts into the ash.

Common in all type: mark of forming /accumulation/redeposition on slope.

Fabric forming processes III. – Versions for vertical

Inverse fabric can be formed by:

→ water infiltration → vertical migration triggered re-orientation of grains (e.g. Bradák-Hayashi et al., 2016).

→ freezing thawing (+gelifluction and frost-creep on slope) → tension, triggered by the expansion of frozen pore water → vertical reorientation the grains

+→ the segregation of ice lenses further lead to vertical translocation, rotation and deformation of the material (Van Vliet-Lanoë, 2010).

Exclusively SD magnetic grains (Hrouda, 1984) \rightarrow inverse fabric 'looking' MF \rightarrow BUT the kmax in fact indicates the shortest crystallographic axis \rightarrow therefore the fabric is quasi-horizontally oriented (-) Day-plot shows mixed SD and MD character

Forming and alteration of 'pyrogenic MF' – theoretical model

Scattering alignment of grains and discrepancy of the foliation plane from vertical (dip) \rightarrow forming on slope

Mixed quasi-horizontal and vertical, and also poor orientation \rightarrow lack of current or stress field \rightarrow no strengthening force on the alignment of the grains

The referred MFs may influenced by

- rheomorphic processes deformation of the MF due to the change in the (Tarling and Hrouda, 1993)
- low velocity slope processes (creeping, solifluction)
- water-lain processes (sheetwash, water infiltration)
- stress field related mechanism.

Thank you for your attention

B. Bradák acknowledges the financial support of project BU235P18 (Junta de Castilla y Leon, Spain) and the European Regional Development Fund (ERD).