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  “We cannot fathom the marvelous complexity of an organic being; but on the 
hypothesis here advanced this complexity is much increased. Each living creature 
must be looked at as a microcosm- a little universe, formed of a host of self-
propagating organisms, inconceivably minute and as numerous as the stars in 
heaven.” 

 

 

̶ Charles Darwin 



TABLE OF CONTENTS 
 
Acknowledgements  
Background, Scope and Approach, Key Objectives ................................................................................................ i 
Summary .................................................................................................................................................................... iv 
Abbreviations ............................................................................................................................................................. vi 
Index of tables ............................................................................................................................................................. x 
Index of figures .......................................................................................................................................................... xi 
 
PART 1. INTRODUCTION  
 

CHAPTER 1. Staphylococcus aureus and Its Main Characteristics ............................................................ 1 
1.1. History ......................................................................................................................................................... 1 
1.2. Taxonomy ................................................................................................................................................... 1 
1.3. Distribution and Transmission ................................................................................................................ 2 
1.4. Growth Requirements and Metabolism .................................................................................................. 3 
1.5. Virulence Factors ....................................................................................................................................... 4 
1.6. Antimicrobial Resistance .......................................................................................................................... 7 

1.6.1. Methicillin-Resistant Staphylococcus aureus .......................................................................... 9 
1.6.2. Epidemiology of MRSA ........................................................................................................... 11 

1.7. Presence of Staphylococcus aureus, Particularly MRSA in The Food Chain .................................... 17 
1.8. Biofilm Formation and Composition Correlated with S. aureus Isolated from Food Sources...... 21 
1.9. Strategies of Prevention and Control .................................................................................................... 24 
1.10. Surveillance Programs in the European Union .................................................................................. 25 

 
CHAPTER 2. Procedures Used for Detection and Identification of Staphylococcus aureus ............... 27 

2.1. Conventional Detection and Identification Methods ......................................................................... 27 
2.2. Molecular Amplification-Based Methods ............................................................................................. 27 

 
PART 2. MATERIALS, EQUIPMENTS AND METHODS  
 

CHAPTER 3. Materials and Equipments ...................................................................................................... 32 
3.1. Bacterial Strains ........................................................................................................................................ 32 
3.2. Bacterial Culture Media .......................................................................................................................... 38 
3.3. Enzymes, Reagents and Materials .......................................................................................................... 39 
3.4. Oligonucleotides ....................................................................................................................................... 42 
3.5. Commercial Kits....................................................................................................................................... 45 
3.6. Equipments and Apparatus .................................................................................................................... 45 
3.7. Sequencing, Bioinformatics Tools and Database Used ....................................................................... 46 

 
CHAPTER 4. Methods ....................................................................................................................................... 48 

4.1. Food Sampling Strategy ........................................................................................................................... 48 



4.2. Detection and Isolation Procedures for S. aureus ............................................................................... 48 
4.3. Isolation of MRSA Strains ...................................................................................................................... 49 
4.4. Genomic DNA Extraction ...................................................................................................................... 49 
4.5. Quantification of Nucleic Acids in Terms of Concentration, Yield and Purity .............................. 51 
4.6. DNA Fragments Separation by Electrophoresis .................................................................................. 51 
4.7. DNA Genotyping by PCR Amplification ............................................................................................. 54 
4.8. DNA Sequencing ..................................................................................................................................... 56 
4.9. Biofilm Formation Capacity ................................................................................................................... 58 
4.10. Biofilm Matrix Characterization by Chemical and Enzymatic Treatments .................................. 59 
4.11. Biofilm Matrix Composition and Structural View by Confocal Laser Scanning Microscopy .... 59 
4.12. Antimicrobial Resistance Profile ......................................................................................................... 60 
4.13. Statistical Analysis  ................................................................................................................................ 60 

 
PART 3. RESULTS AND DISCUSSIONS  
 

CHAPTER 5. Detection and Identification of Staphylococcus aureus in Food Isolated from Black 
Market .................................................................................................................................................................. 62 

Sampling and bacterial isolates ..................................................................................................................... 62 
Screening for the presence of MRSA ............................................................................................................ 63 
Antimicrobial susceptibility testing .............................................................................................................. 63 
Genetic fingerprinting .................................................................................................................................... 63 
Typing and subtyping of the SCCmec element ........................................................................................... 64 
Detection of Panton–Valentine leukocidin (PVL) virulence factors ....................................................... 64 
Detection of enterotoxin genes ..................................................................................................................... 64 
Results and discussion .................................................................................................................................... 64 

 
CHAPTER 6. Compositional Analysis of Biofilms Formed by Staphylococcus aureus Isolated from 
Food Sources ....................................................................................................................................................... 70 

Bacterial strains ............................................................................................................................................... 70 
Media screening and biofilm formation overtime ...................................................................................... 71 
Matrix characterization .................................................................................................................................. 71 
Biofilm composition by CLSM ...................................................................................................................... 71 
Results and discussions .................................................................................................................................. 72 
Conclusions and perspectives ....................................................................................................................... 73 

 
CHAPTER 7. Tracking MRSA in food entering to the European Union via cross border traffic and 
international flights ........................................................................................................................................... 76 

Food sample collection ................................................................................................................................... 77 
Detection and isolation of S. aureus ............................................................................................................. 77 
Screening for the presence of MRSA ............................................................................................................ 77 
Antibiotic susceptibility testing ..................................................................................................................... 77 
Characterization of the genetic background ............................................................................................... 77 
Detection of Panton-Valentine leukocidin virulence factors .................................................................... 78 



Enterotoxin profiling ...................................................................................................................................... 78 
Results ............................................................................................................................................................... 79 
Discussions ....................................................................................................................................................... 85 

CHAPTER 8. Biofilm Formation by MRSA Isolates Recovered from Passenger’s Luggage from Non-
EU Flights ............................................................................................................................................................. 88 

MRSA collection and their characteristics ................................................................................................... 89 
Biofilm formation and quantification .......................................................................................................... 89 
Cell viability by CFU and dry weight determination ................................................................................. 90 
Structural matrix composition evidenced by CLSM .................................................................................. 90 
Statistical analysis ............................................................................................................................................ 91 
Results ............................................................................................................................................................... 91 
Discussions ....................................................................................................................................................... 95 
Conclusions ...................................................................................................................................................... 96 

CHAPTER 9. Case study- Oxacillin-Susceptible mecA-positive Staphylococcus aureus Associated to 
Processed Food in Europe ................................................................................................................................. 99 

Bacterial strain ............................................................................................................................................... 100 
Phenotypic testing of mecA positive isolate ............................................................................................... 100 
Whole genome sequencing .......................................................................................................................... 100 
Data analysis .................................................................................................................................................. 100 
Results and discussions ................................................................................................................................. 101 
Conclusions .................................................................................................................................................... 105 

CHAPTER 10. Chromogenic Media Evaluation for Confirmation of MRSA Isolated from Humans, 
Animals and Food Samples ............................................................................................................................ 110 

Bacterial isolates ............................................................................................................................................ 110 
Growth of bacterial isolates .......................................................................................................................... 111 
Statistical analysis .......................................................................................................................................... 111 
Results and discussion .................................................................................................................................. 111 

PART 4. GENERAL DISCUSSION ............................................................................................................. 114 

PART 5. CONCLUDING REMARKS ......................................................................................................... 122 

Appendixes .............................................................................................................................................................. 126 
References ............................................................................................................................................................... 149 
Results publication during the doctoral studies ................................................................................................. 176 
Curriculum vitae .................................................................................................................................................... 245 

Key words: 
Staphylococcus aureus, methicillin-resistant Staphylococcus aureus, antibiotics, food contamination, food 
safety, illegal import, food industry, biofilm, transmission, surveillance, EU. 



Acknowledgements 

Looking back, I cannot believe how time flies away, and at this stage in my life I cannot help but 
remember the special moments I lived and the good things which happened to me during my Master and 
Doctoral Studies. Being now in the position of presenting my PhD thesis, I would like to thank the people 
who supported me and significantly contributed to my professional development. 

My first thoughts go to my beloved coordinators Prof. Eng. Anca Ioana Nicolau, PhD and Prof. David 
Rodríguez-Lázaro, PhD, who guided my research throughout this period. Professor Anca Ioana Nicolau ’s 
precious help remains immeasurable. If it had not been for her professionalism, patience and constant 
scientific guidance, I would not have become what I am today. As regards Professor David Rodríguez-
Lázaro, one of the top food microbiologists in Europe, who introduced me to the branch of antibiotic 
resistance, I will always be grateful to him for the motivation he gave me and the immense knowledge he 
passed to me. It was a great honor for me to work with Professor David Rodríguez-Lázaro and I am deeply 
grateful for the innovative approaches he suggested in my experimental research. 

My very special thanks also go to Prof. Marta Hernández, PhD who facilitated my understanding of the 
molecular biology techniques used in the food microbiology and who made insightful comments which 
helped me a lot in my research.   

I would like to express my sincere gratitude to the thesis committee: Prof. Eng. Daniela Borda, PhD, Prof. 
Eng. Gabriela Bahrim, PhD and Assoc. Prof. Vasilica Barbu, for all the advice they gave me during my 
PhD studies. 

I would also like to thank the people whom I worked with at Dunarea de Jos University of Galati 
(Romania) and at Universidad de Burgos (Spain) for their professional support, guidance and precious 
advice, in particular. Among others, I am thanking Lecturer Eng. Iulia Bleoancă and Secretary Eng. 
Gabriela Gavrilă, for the suggestions and recommendations made throughout my studies and research. 

Special thanks to all the people who offered me precious support in the research institutions from the 
Center of Biological Engineering (Portugal), Universidad de Burgos and Instituto Tecnológico Agrario de 
Castilla y León (Spain) during my mobility periods. 

Thank you, my lab mates Andrei, Narciso and Florentina. We shared numerous sleepless nights and many 
fruitful working sessions. Thank you, Bernar, David, Jaime, Lorena, Patricia, Julian, MariCruz and Raul 
for the friendship you showed me at ITACyL, in my “second home”. And thank you, Monica, Nicole, 
Gislaine, Zoe, Mariela and my Romanian friend, Alina, for constantly being by my side.   

Finally, I would like to thank to my beloved family who have given me constant support over these years, 
whom I love unconditionally and who represent the most important people in my life: my parents, Laura 
Felicia and Eugen, my sister, Ana Maria, my beloved grandparents and future parents, Andreea and to my 
other half, Alexandru. 

Elena-Alexandra Oniciuc 



Mulțumiri 

Nu îmi vine să cred cât de repede au trecut toți acești ani iar acum, uitându-mă înapoi, retrăiesc cu emoție 
toate momentele deosebite care mi s-au întâmplat pe toată perioada studenţiei, de la studiile de licență până 
la cele de doctorat. Fiind acum în poziția de a-mi prezenta teza de doctorat, îmi doresc să adresez câteva 
cuvinte de mulțumire celor care m-au îndrumat, m-au sprijinit și au contribuit în mod semnificativ la 
dezvoltarea mea profesională. 

Primele gânduri se îndreaptă către coordonatorii mei ştiinţifici, doamna prof. dr. ing. Anca Ioana Nicolau 
și domnul prof. dr. David Rodríguez-Lázaro, cărora le mulțumesc pentru permanenta lor îndrumare, 
sprijinire și încurajare de-a lungul perioadei de pregătire a doctoratului și de elaborare a tezei. Doresc să 
îmi exprim recunoştinţa faţă de doamna profesor Anca Ioana Nicolau, care mă călăuzește încă din al doilea 
an de licență, pentru profesionalismul dumneai, pentru răbdarea și îndrumarea științifică constantă. Dacă 
nu ar fi fost dumneai, nu aș fi devenit ceea ce sunt astăzi. 

În egală măsură, doresc să îi mulțumesc domnului prof. dr. David Rodríguez-Lázaro, unul dintre 
microbiologii de top din Europa, cel care m-a introdus în ramura legată de rezistența bacteriilor la 
antibiotice, pentru modul în care m-a motivat, pentru cunoștințele transmise și pentru abordările 
inovatoare sugerate în cercetarea mea îi sunt profund recunoscătoare. A fost o mare onoare pentru mine să 
lucrez cu domnia sa. 

În aceeași măsură, adresez mulțumiri deosebite doamnei prof. dr. Marta Hernández pentru facilitarea 
înțelegerii tehnicilor de biologie moleculară utilizate în microbiologia alimentară și pentru toate sfaturile 
contructive oferite pe perioada cercetării mele.  

Doresc să îmi exprim gratitudinea față de membrii comisiei de evaluare a lucrării: doamna prof. dr. ing. 
Daniela Borda, doamna prof. dr. ing Gabriela Bahrim și doamna conf. biol. Vasilica Barbu, pentru sfaturile 
și sugestiile oferite dar și pentru diferitele perspective de extindere a cercetării experimentale. 

Aș dori, de asemenea, să le mulțumesc celor cu care am lucrat, atât la Universitatea „Dunarea de Jos“ din 
Galați (România), cât şi la Universidad de Burgos (Spania) pentru sfaturile și sprijinul acordat pe toată 
perioada cercetării. Mulţumesc în mod deosebit doamnei lector dr. ing. Iulia Bleoancă şi doamnei ing. 
Gabriela Gavrilă, pentru sfaturile prietenoase pe care mi le-au oferit. 

Tuturor colegilor mei din laborator: Andrei, Narciso și Florentina, le datorez mulțumiri, pentru nopțile albe 
petrecute înainte de orice deadline al vreunei lucrări. Mulțumesc lui Bernar, David, Jaime, Lorena, Patricia, 
Julian, MariCruz și Raul pentru prietenia arătată la ITACyL, „a doua mea casă". Mulţumesc Monicăi, lui 
Nicole, Gislainei, lui Zoe, Marielei și nu în ultimul rând, îi mulţumesc Alinei, pentru sprijinul moral acordat. 

În încheiere, aș dori să mulțumesc în mod special familiei mele iubite, care m-a sprijinit necondiţionat pe 
toată perioada studiilor doctorale şi care a subliniat întotdeauna importanța unei bune educații. Părinților, 
Laura Felicia și Eugen, surorii mele, Ana Maria, bunicilor și viitoriilor părinți, Andreei și, nu în ultimul rând, 
celui care mă întregeşte, Alexandru. 

Elena-Alexandra Oniciuc 



Agradecimientos 

Mirando hacia atrás, no puedo creer cómo el tiempo se aleja, y en esta etapa de mi vida no puedo evitar 
recordar los momentos especiales que viví y las cosas buenas que me sucedieron durante mis estudios de 
licenciatura y doctorado. Al estar ahora en la posición de presentar mi tesis de doctorado, quisiera agradecer 
a las personas que me apoyaron y contribuyeron significativamente a mi desarrollo profesional. 

Mis primeros pensamientos van a mis queridos coordinadores Prof. Eng. Anca Ioana Nicolau y el Prof. 
David Rodríguez-Lázaro, quienes guiaron mi investigación a lo largo de este período. La preciosa ayuda del 
profesor Anca Ioana Nicolau sigue siendo inconmensurable. Si no hubiera sido por su profesionalismo, 
paciencia y constante orientación científica, no me habría convertido en lo que soy hoy. En cuanto al 
profesor David Rodríguez-Lázaro, uno de los mejores microbiólogos de Europa, que me ha presentado a la 
rama de la resistencia a los antibióticos, le agradeceré siempre por su motivación que me ha dado y el 
inmenso conocimiento que me ha transmitido. Fue un gran honor para mí trabajar con el profesor David 
Rodríguez-Lázaro y estoy profundamente agradecido por los enfoques innovadores que sugirió en mi 
investigación experimental. 

Mi agradecimiento muy especial también para Prof. Marta Hernández, que me facilitó mi comprensión de 
las técnicas de biología molecular utilizadas en la microbiología alimentaria y que me hizo comentarios 
perspicaces que me ayudaron mucho en mi investigación. 

Quisiera expresar mi sincera gratitud al comité de tesis: Prof. Eng. Daniela Borda, PhD, Prof. Eng. Gabriela 
Bahrim, PhD y Asoc. Prof. Vasilica Barbu, por todos los consejos que me dieron durante mis estudios de 
doctorado. 

También quiero agradecer a las personas con las que trabajé en la Universidad de Dunarea de Jos de Galati 
(Rumania) y en la Universidad de Burgos (España) por su apoyo profesional, orientación y preciosos 
consejos, en particular. Entre otras cosas, estoy agradeciendo al Prof. Eng. Iulia Bleoancă y el Eng. Gabriela 
Gavrilă, por las sugerencias y recomendaciones hechas a lo largo de mis estudios e investigaciones. 

A todas las personas que me ofrecieron un valioso apoyo en las instituciones de investigación del Centro de 
Ingeniería Biológica (Portugal), la Universidad de Burgos y el Instituto Tecnológico Agrario de Castilla y León 
durante mis periodos de movilidad. 

Gracias, mis compañeros de laboratorio Andrei, Narciso y Florentina. Compartimos muchas noches sin 
dormir y muchas sesiones de trabajo fructíferas. Gracias, Bernar, David, Jaime, Lorena, Patricia, Julián, 
MariCruz y Raúl por la amistad que me mostraste en ITACyL, en mi "segunda casa". Y gracias, Mónica, 
Nicole, Gislaine, Zoe, Mariela y mi amiga rumana, Alina, por estar constantemente a mi lado. 

Por último, quisiera dar las gracias a mi amada familia que me ha dado un apoyo constante durante estos 
años, a quienes amo incondicionalmente y que representan las personas más importantes de mi vida: mis 
padres, Laura Felicia y Eugen, mi hermana Ana María, mis amados abuelos y futuros padres, Andreea y mi 
otra mitad, Alexandru. 

Elena-Alexandra Oniciuc



 

i 
 

 

Background, Scope and Approach, Key Objectives 
 

Staphylococcus aureus is an opportunistic bacterium which has drawn great interest for its high potential 
risks that may acquire as a clinical and epidemiological pathogen. Over the years, it has also been established 
that its potential pathogenic role as a foodborne pathogen should not be neglected. 

Apart of its enterotoxigenic capacity and the leading cause of almost all food poisoning outbreaks 
worldwide, antimicrobial resistance is another major challenge of which methicillin-resistant 
Staphylococcus aureus (MRSA) is a particularly problematic nosocomial pathogen. 

The first staphylococcal infections from clinical settings appeared in the late ‘50s, shortly after the 
introduction of antimicrobial drugs such as penicillins, so the urgent need of alternative ones was 
imperative. Soon, an increasing number of staphylococcal outbreaks demanded alternative semi-synthetic 
drugs of which methicillin and oxacillin, belonging to penicillin family group, started to be used. Not 
surprisingly, the first strains resistant to methicillin emerged and started to be associated with nosocomial 
infections. Resistance to methicillin is conferred by the acquisition of mecA or mecC genes, central elements 
of staphylococcal chromosomal cassettes, which are codifying a penicillin-binding protein designated as 
PBP2a or PBP2’, with low affinity for β-lactam drugs. However, the resistance determinants are not yet clear 
since studies suggested that mec gene might be transmitted between S. aureus strains and other coagulase 
negative staphylococcal species. For example, the principal epidemic clones of MRSA might have, on its 
origins, a mecA-carrying SCCmec element coming from methicillin-susceptible S. aureus (MSSA) strains. 

In the early ‘90s, MRSA started to be found in non-healthcare settings and, for differentiating community 
isolated strains from hospital strains, they were called community acquired methicillin-resistant S. aureus 
(CA-MRSA). More recently, other new MRSA strains emerged with a zoonotic potential being recognized 
and designated as livestock-associated MRSA (LA-MRSA). 

Looking back to its origin and the high number of outbreaks caused by, we can assume that MRSA 
represents a relevant nosocomial and foodborne pathogen of which Public Health Systems and Food Safety 
Agencies, on a worldwide level, are nowadays not neglecting it. Likewise, until recently, the relevance of its 
emergency in the food chain has not been fully considered, as zoonotic transmission had not been yet 
demonstrated and food-related transmission was not evident. 

More and more scientific studies document the involvement of such strains in the dissemination of different 
MRSA lineages among the food chain. The current knowledge about MRSA coming from food producing 
animals (raw materials for food industry) and associated foodstuffs demonstrate that antibiotic resistant 
strains can be transmitted to humans, along the food chain, by the consumption of such foods. Moreover, 
the overuse/or misuse of antibiotics in feed to promote growth, and in veterinary and human medicine 
could also be contributors to the emergence of MRSA resistance. Then, an array of questions may rise: 
Should population be aware of the possible emerging risks associated to MRSA in the food chain? What are 
the consequences, from a food safety perspective, if foods are not having any traceability in place? Should 
we expect other new mechanisms of resistance that can burst into new variants of MRSA, by enforcing 
developments in MRSA’s epidemiology?  
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In the present thesis, which is entitled “Characterization of methicillin-resistant Staphylococcus aureus 
strains isolated from foods”, are discussed recent literature findings about developments in the 
epidemiology of MRSA, from hospital (human) settings and primary food production, to MRSA spread 
along the food chain. Devising this, the thesis approach was to investigate presence of MRSA in food 
samples confiscated from air and ground border traffic from different travelers entering to the European 
Union (EU), as nowadays is a growing concern regarding potential routes in which MRSA can be 
distributed.  

In this context, the research activities during doctoral studies had the main objective focused on 
dissemination of MRSA from food illegally imported to EU from non-EU countries. High number of 
foreigners are illegally coming with food in their personal luggage, further being confiscated by the border 
inspection posts in different points of entering (ports, airports, terrestrial borders) to EU. By any 
carelessness, they declare that foods are brought by them for personal consumption and end up being 
illegally sold afterwards (known as “contraband” or “smuggled” food). As neither raw material origin and 
quality, nor technological process and hygienic conditions during food processing are known, illegally 
imported food poses a potential health risk. Additionally, the lack of refrigeration conditions and/or 
adequate packaging during transportation and sale might violate the safety rules. Usually little information 
is available regarding associated risks and prevalence of pathogens in these foods.  

This retrospective thesis emphasizes the impact of such strains on public health, by discussing the potential 
routes of illegally food introduced into the EU space by travelers, either by air or ground border posts. A 
special situation exists at the Eastern EU border, ratified by Romanian Law 10/2010 (Monitorul Oficial), in 
which cross-border traffic between Romania and the Republic of Moldova is allowed based on an 
agreement. However, foods that are officially declared for personal use are legally brought into EU, but 
illegally sold in local Romanian markets organized to sell fresh fruits and vegetables. Even though selling 
food of animal origin is forbidden in these markets and that the local authorities are often checking such 
markets, animal origin foods are daily sold. A total of 210 food products have been analyzed at ground 
border traffic between Republic of Moldova and Romania (Giurgiulești-Galați).  

Additionally, foods coming from passengers’ luggage from non-EU countries has been confiscated by the 
border inspection posts in International Bilbao Airport (Spain) (269 food products) and Vienna 
International Airport (Austria) (600 food products). 

In both cases, foods, either homemade or industrially produced, were kept at ambient temperature and 
often displayed out of the original package. Moreover, as these food products were transported, stored, and 
sold under conditions that facilitated the growth of pathogens, they might represent a potential threat to 
consumers’ health. Besides investigating neglected routes of MRSA transmission to the EU, this thesis aims 
to analyze the routes of pathogenic genotypes involved in the illegally sold food.  

The research activities carried out during the doctoral studies have been targeted the following key 
scientific objectives, presented below: 

 Overview on the recent findings regarding the actual problematic of MRSA in the food chain, 
highlighting the need for adequate control and prevention programmes by providing current 
information from EU surveillance programmes; 



 

iii 
 

 Focal point on neglected routes of transmission of MRSA via foods introduced from non-EU 
countries as personal goods but meant to be illegally sold to EU consumers, highlighting the role 
that food could play in the prevalence and dissemination of MRSA; 

 Global results obtained regarding identification, isolation and characterization of MRSA strains 
following phenotypical and genotypical approaches; 

 Correlation of genotypic aspects of MRSA strains and their biofilm formation and composition, by 
bringing improvements of better strategies for cleaning surfaces or cross-contamination events; 

 Investigation based on whole genome sequencing (WGS) for identification of virulence factors and 
genes associated with antimicrobial resistance in an oxacillin-susceptible (OS)-MRSA strain; 

 Evaluation of two commercially available chromogenic media for confirmation of MRSA from 
human, animal, and food samples; 

 Integration of results obtained in the present thesis in the framework of the worldwide studies 
focused on dissemination of different lineages of MRSA together with the necessary information 
for understanding potential risks that S. aureus resistant to antimicrobials may represent. 

The research provided in the present thesis would not have been possible without a strong communication 
between research institutions, from Romania, Spain, Portugal or Austria, both in the frame of FP7 
PROMISE project and beyond. 
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Context actual și obiective cheie 
 

Staphylococcus aureus este o bacterie oportunistă, căreia i se acordă un interes deosebit din cauza riscurilor 
de a produce infecții, a căror gravitate pot pune în pericol sănătatea omului. De-a lungul anilor, incidența 
acesteia a crescut în alimentele de origine animală, motiv pentru care a început să fie privită și ca agent 
patogen alimentar. 

Pe lângă capacitatea acestei bacterii de a produce enterotoxine, motivul principal al apariției toxinfecțiilor 
alimentare la nivel mondial, rezistența la antibiotice constituie o altă problemă, prin tulpinile de 
Staphylococcus aureus meticilino-rezistent (MRSA). 

Primele infecții stafilococice din mediul clinic au apărut la finele anilor '50, la scurt timp după introducerea 
medicamentelor antimicrobiene, cum ar fi penicilinele, astfel că nevoia urgentă de medicamente alternative 
a fost absolut necesară. La scurt timp, din cauza numărului mare de infecții stafilococice apărute, s-au 
introdus medicamente semisintetice alternative, cum sunt meticilina și oxacilina, ce aveau să fie utilizate la 
scară largă. Desigur, la scurt timp după introducerea lor în terapie, au început să apară primele tulpini 
rezistente la meticilină, acestea fiind asociate cu infecțiile nosocomiale.  

Rezistența la meticilină este cauzată de prezența genelor mecA sau mecC, elemente centrale mobile ale 
casetelor cromozomiale stafilococice, ce codifică sinteza unei proteine denumită PBP2a sau PBP2', cu 
afinitate scăzută pentru medicamentele β-lactamice, protejând asftel sinteza peptidoglicanului și a peretelui 
celular bacterian față de acțiunea antibioticelor din această clasă. Cu toate acestea, determinanții ce codifică 
rezistența nu sunt încă clar identificați, deoarece studiile au sugerat că gena mec ar putea fi transmisă între 
tulpini de S. aureus și alte specii de stafilococi coagulazo-negativi. De exemplu, principalele clone epidemice 
de MRSA ar putea avea, la origine, un element SCCmec, mecA provenind de la tulpinile de S. aureus 
sensibile la meticilină (MSSA). 

La începutul anilor '90, tulpinile de MRSA au început să fie izolate din comunități, iar pentru diferențierea 
acestora de cele clinice (HA-MRSA), au fost denumite community-acquired (CA-MRSA). Recent au apărut 
alte tulpini noi de MRSA, cu potențial zoonotic, denumite livestock-associated (LA-MRSA). 

Privind originea sa și numărul mare de focare cauzate, putem admite faptul că MRSA reprezintă un patogen 
nosocomial și alimentar relevant, pe care sistemele de sănătate publică și agențiile de siguranță alimentară, 
la nivel mondial, îl iau în considerare. De asemenea, până în prezent, relevanța acestuia în lanțul alimentar 
nu a fost pe deplin analizată, deoarece transmisia zoonotică nu a fost încă demonstrată, iar transmisia prin 
intermediul alimentelor nu a fost încă evidențiată. 

Din ce în ce mai multe studii științifice evidențiază implicarea unor astfel de tulpini în diseminarea 
diferitelor linii genealogice de MRSA în lanțul alimentar. Cunoștințele actuale despre tulpinile de MRSA 
izolate de la animalele de la care provin materiile prime utilizate în industria alimentară și produsele 
alimentare asociate demonstrează faptul că astfel de tulpini rezistente la antibiotice pot fi transmise 
oamenilor, de-a lungul lanțului alimentar, prin consumul alimentelor contaminate. 

Mai mult decât atât, excesul/utilizarea abuzivă a antibioticelor în hrana pentru creșterea animalelor și în 
medicina veterinară și umană ar putea contribui, de asemenea, la apariția rezistenței. Apoi, o serie de 
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întrebări sunt adresate: Ar trebui populația să fie conștientă de posibilele riscuri emergente asociate 
tulpinilor de MRSA în lanțul alimentar? Care sunt consecințele, din perspectiva siguranței alimentare, în 
cazul în care alimentele nu au nicio trasabilitate? Ar trebui să ne așteptăm la noi mecanisme de rezistență 
care ar putea conduce la noi variante de MRSA? 

În prezenta teză, intitulată "Caracterizarea tulpinilor de Staphylococcus aureus meticilino-rezistente 
izolate din produsele alimentare", se discută recentele descoperiri din literatura de specialitate cu privire la 
evoluția epidemiologică a tulpinilor de MRSA. În această teză, abordarea a avut ca scop investigarea 
prezenței MRSA în alimente confiscate de la diferiți călători care intră în Uniunea Europeană (UE) prin 
intermediul vamelor din aeroporturi sau a celor situate în punctele de trecere a frontierelor terestre. 

În acest context, activitățile de cercetare desfășurate pe parcursul studiilor doctorale au avut ca obiectiv 
principal studiul MRSA din alimentele importate ilegal în UE. Un număr mare de călători traversează ilegal 
granița UE cu alimente ascunse în bagajele personale, acestea fiind ulterior confiscate de autorități în 
punctele de control la frontieră asociate porturilor, aeroporturilor sau frontierelor terestre. 

Cu o oarecare indiferență, aceștia comunică agenților vamali că produsele aduse sunt pentru consum 
personal, însă ajung să fie vândute ilegal (fenomen cunoscut sub numele de "contrabandă"). Deoarece nu se 
cunoaște originea/calitatea materiilor prime, nici procesul tehnologic și nici condițiile de igienă din timpul 
procesării alimentelor, aceste produse alimentare importate ilegal prezintă un risc potențial pentru sănătate. 
În plus, lipsa condițiilor de refrigerare și/sau a ambalajului adecvat în timpul transportului și vânzării 
încalcă regulile de igienă. De obicei, puține informații sunt disponibile cu privire la riscurile asociate și la 
prevalența agenților patogeni în aceste alimente. 

Teza pune accentul pe impactul acestor tulpini asupra sănătății publice, discutând posibilele căi de 
transmitere ca urmare a introducerii acestor alimente în mod ilegal în spațiul UE de către călători. O situație 
specială, ratificată prin Legea 10/2010 (Monitorul Oficial), există în România, unde este permis micul trafic 
la frontieră între România și Republica Moldova. Astfel, alimentele declarate oficial pentru consum propriu 
sunt introduse legal în UE, dar vândute ilegal pe piețele locale din România. Chiar dacă autoritățile locale 
verifică deseori astfel de piețe, produsele alimentare provenind din micul trafic de frontieră sunt vândute 
zilnic. În acest sens, au fost analizate 210 probe prelevate dintr-o astfel de piață și probe din alimentele găsite 
în bagajele pasagerilor călătorind din țările non-UE și confiscate la posturile de control la frontieră din 
Aeroportul Internațional Bilbao, Spania, (269 produse alimentare) și de la Aeroportul Internațional Viena, 
Austria, (600 de produse alimentare). 

În ambele cazuri, aceste produse alimentare, fie produse în casă sau industriale, au fost păstrate la 
temperatura camerei și adesea scoase din pachetul original. În plus, deoarece acestea au fost transportate, 
depozitate și vândute în condiții care facilitează creșterea agenților patogeni, ar putea reprezenta un risc 
crescut la adresa sănătății consumatorilor. În afară de investigarea rutelor de transmitere a tulpinilor de 
MRSA către UE, această teză urmărește să analizeze liniile genealogice care ar putea fi implicate prin 
intermediul acestor produse alimentare. 

Activitățile de cercetare desfășurate pe parcursul studiilor doctorale au vizat următoarele obiective 
științifice cheie: 
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 Prezentarea generală a descoperirilor privind situația actuală a tulpinilor de MRSA în lanțul 
alimentar, subliniind necesitatea unor programe adecvate de control și prevenire și furnizarea de 
informații actuale pentru programele de supraveghere ale UE; 

 Controlul rutelor de transmitere a MRSA prin intermediul alimentelor introduse din țările din 
afara UE ca bunuri personale, dar care sunt ilegal vândute consumatorilor din UE, subliniind rolul 
pe care aceste alimente l-ar putea avea în prevalența și diseminarea MRSA; 

 Identificarea, izolarea și caracterizarea tulpinilor de MRSA pe baza tehnicilor fenotipice și 
genotipice; 

 Corelarea aspectelor genotipice ale tulpinilor de MRSA cu formarea și compoziția biofilmelor 
produse de acestea, pentru a putea îmbunătăți strategiile în ceea ce privește curățarea suprafețelor 
din fabricile de industrie alimentară sau a evita episoadele de contaminare încrucișată; 

 Investigarea bazată pe secvențierea genomului complet (WGS) în vederea identificării factorilor de 
virulență și a genelor asociate cu rezistența la antibiotice a unei tulpini susceptibile la oxacilină 
(OS)-MRSA; 

 Evaluarea mediilor cromogenice disponibile în comerț pentru confirmarea MRSA din probele 
provenite de la om, animal și aliment; 

 Integrarea rezultatelor obținute în prezenta teză în cadrul studiilor la nivel mondial, axate pe 
diseminarea diferitelor linii genealogice ale MRSA, împreună cu informațiile necesare pentru 
înțelegerea riscurilor potențiale pe care MRSA le poate reprezenta. 

Cercetarea oferită în teza de față nu ar fi fost posibilă fără o strânsă comunicare între instituțiile de cercetare 
din România, Spania, Portugalia sau Austria, atât în cadrul proiectului PROMISE FP7, cât și dincolo de 
acesta. 
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Enfoque 
 

Staphylococcus aureus es una bacteria oportunista que ha despertado gran interés por sus riesgos de alto 
potencial que pueden adquirir como patógeno clínico y epidemiológico. A lo largo de los años, también se 
ha establecido que su posible desarrollo patogénico como uno alimentario no debe ser descuidado. 

Aparte de su capacidad enterotoxigénica y la principala causa de casi todos los brotes de intoxicación 
alimentaria en todo el mundo, la resistencia a los antimicrobianos es otro de las rutas principales donde 
Staphylococcus aureus resistente a la meticilina (MRSA), es un patógeno nosocomial particularmente 
problemático. 

Las primeras infecciones estafilocócicas en contexto clínico aparecieron a finales de los años cincuenta; 
poco después de la introducción de fármacos antimicrobianos como las penicilinas, la necesidad urgente 
de otras alternativas fuera necesaria. Después, un número mayor de brotes de estafilococos exigieron y por 
esto, fármacos semisintéticos empezaron a utilizarse como meticilina y oxacilina. No es sorprendente que 
las primeras cepas resistentes a la meticilina surgieran y comenzaran a asociarse con infecciones 
nosocomiales.  La resistencia a meticilina se confiere mediante la adquisición de genes mecA o mecC, 
elementos centrales de las casetes cromosómicas estafilocócicas, que codifican una proteína de unión a la 
penicilina PBP2a o PBP2 ', con baja afinidad por los fármacos β-lactámicos. Sin embargo, los determinantes 
de la resistencia aún no están claros ya que los estudios sugieren que el gen mec podría transmitirse entre 
las cepas de S. aureus y otras especies estafilocócicas coagulasa negativas. Por ejemplo, los principales clones 
epidémicos de MRSA podrían tener, en sus orígenes, un elemento SCCmec portador de mecA procedente 
de cepas de S. aureus susceptibles a la meticilina (MSSA). 

A principios de los años 90, el MRSA empezó a encontrarse en entornos no sanitarios y, para diferenciar 
las cepas aisladas de la comunidad de las cepas del hospital, les llamó S. aureus resistente a la meticilina 
adquirido en la comunidad (CA-MRSA). Más recientemente, surgieron otras nuevas cepas de MRSA con 
un potencial zoonótico reconocido y designado como MRSA asociado con el ganado (LA-MRSA). 

Mirando hacia atrás a su origen y al elevado número de brotes causados por, podemos suponer que MRSA 
representa un patógeno nosocomial y de origen alimentario relevante de los cuales los Sistemas de Salud 
Pública y Agencias de Seguridad Alimentaria, a nivel mundial, no lo descuidan. Del mismo modo, hasta 
hace poco, la relevancia de su emergencia en la cadena alimentaria no se ha considerado plenamente, ya 
que la transmisión zoonótica aún no se había demostrado y la transmisión alimentaria no era evidente. 

Más y más estudios científicos documentan la participación de estas cepas en la diseminación de diferentes 
linajes de MRSA entre la cadena alimentaria. Los conocimientos actuales sobre MRSA procedentes de 
animales productores de alimentos (materias primas para la industria alimentaria) y alimentos asociados 
demuestran que las cepas resistentes a los antibióticos pueden transmitirse a los humanos, a lo largo de la 
cadena alimentaria, por el consumo de estos alimentos. Además, el uso excesivo o abusivo de antibióticos 
para promover el crecimiento y en medicina veterinaria y humana también podría contribuir a la aparición 
de resistencia a MRSA. Entonces, puede surgir una serie de preguntas: ¿Debería la población ser consciente 
de los posibles riesgos emergentes asociados al MRSA en la cadena alimentaria? ¿Cuáles son las 
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consecuencias, desde el punto de vista de la inocuidad de los alimentos, de que los alimentos no tienen 
trazabilidad? ¿Debemos esperar otros nuevos mecanismos de resistencia que puedan irrumpir en nuevas 
variantes de MRSA, al hacer cumplir los desarrollos en la epidemiología de MRSA? 

En esta tesis, titulada "Caracterización de las cepas de Staphylococcus aureus resistentes a la meticilina 
aisladas de los alimentos", se discuten los recientes resultados de la literatura acerca de los desarrollos en la 
epidemiología del MRSA, desde los entornos hospitalarios (humanos) a la cadena alimentaria. El enfoque 
de la tesis fue a investigar la presencia de MRSA en muestras de alimentos confiscados del tráfico aéreo y 
terrestre de diferentes viajeros que ingresan a la Unión Europea, ya que hoy en día es una preocupación 
creciente respecto a las posibles rutas en las que se puede distribuir MRSA. 

En este contexto, las actividades de investigación durante los estudios de doctorado tuvieron como objetivo 
principal la difusión de MRSA de los alimentos importados ilegalmente a la UE procedentes de países no 
pertenecientes a la UE. Un número elevado de extranjeros cruce ilegalmente alimentos en su equipaje 
personal, además de ser confiscados por los puestos de inspección fronterizos en diferentes puntos de 
entrada (puertos, aeropuertos, fronteras terrestres) a la UE. Por cualquier descuido, dicen que los alimentos 
son traídos por ellos para consumo personal y terminan siendo vendidos ilegalmente después (conocidos 
como "contrabando"). 

Dado que no se conocen ni el origen ni la calidad de las materias primas, ni los procesos tecnológicos y las 
condiciones higiénicas durante el procesamiento de los alimentos, los alimentos importados ilegalmente 
representan un riesgo potencial para la salud. Además, la falta de condiciones de refrigeración y un embalaje 
adecuado durante el transporte y la venta podría violar las normas de seguridad. Por lo general, hay poca 
información disponible sobre los riesgos asociados y la prevalencia de patógenos en estos alimentos. 

Esta tesis retrospectiva está centrada en el impacto de estas cepas en la salud pública, además debatir las 
rutas potenciales de los alimentos introducidos ilegalmente en el espacio de la UE por los viajeros, ya sea 
por vía aérea o terrestre. Existe una situación especial en la frontera sureste de la UE, ratificada por la Ley 
10/2010 (Monitorul Oficial), en que se permite el tráfico transfronterizo entre Rumania y la República de 
Moldova sobre un acuerdo. Sin embargo, los alimentos oficialmente declarados para uso personal son 
legalmente introducidos en la UE, pero vendidos ilegalmente en los mercados locales rumanos organizados 
para vender frutas y hortalizas frescas. A pesar de que la venta de alimentos de origen animal está prohibida 
en estos mercados y que las autoridades locales están comprobando esos mercados, los alimentos de origen 
animal se venden diariamente. Un total de 210 productos se han analizado en el tráfico fronterizo terrestre 
entre la República de Moldova y Rumania (Giurgiuleşti-Galaţi).  Además, los puestos de inspección 
fronterizos en el Aeropuerto Internacional de Bilbao (269 productos alimenticios) y el Aeropuerto 
Internacional de Viena (Austria) (600 productos alimenticios) han confiscado los alimentos procedentes de 
los países no pertenecientes a la UE. 

En ambos casos, los alimentos, fabricados en casa o producidos industrialmente, se mantuvieron a 
temperatura ambiente y, a menudo, se presentaron fuera del envase original. Además, dado que estos 
productos se transportan y venden en condiciones que facilitan el crecimiento de patógenos, podrían 
representar una amenaza potencial para la salud de los consumidores. Además de investigar las rutas de 
transmisión de MRSA a la UE, esta tesis tiene, como objetivo, analizar las rutas de genotipos patógenos 
involucrados en la venta ilegal de alimentos. 
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Las actividades de investigación realizadas durante los estudios de doctorado se han centrado en los 
siguientes objetivos científicos, presentados a continuación: 

 Visión general de las recientes conclusiones sobre la problemática real de MRSA en la cadena 
alimentaria, destacando la necesidad de programas adecuados de control y prevención, 
información actual de los programas de vigilancia de la UE; 

 Punto focal sobre las vías de transmisión de MRSA desatendidas a través de alimentos introducidos 
de países no comunitarios como productos personales, pero destinados a ser vendidos ilegalmente 
a los consumidores de la UE, destacando las rutas que los alimentos pueden desempeñar en la 
prevalencia y diseminación de MRSA; 

 Resultados globales obtenidos en relación con la identificación, aislamiento y caracterización de 
cepas de MRSA utilizando métodos fenotípicos y genotípicos; 

 Correlación de los aspectos genotípicos de las cepas de MRSA y su formación y composición de 
biofilms, aportando para mejorar estrategias para limpiar superficies o eventos de contaminación 
cruzada; 

 Investigación basada en la secuenciación completa del genoma (WGS) para la identificación de los 
factores de virulencia y los genes asociados con la resistencia a los antimicrobianos en una cepa 
susceptible a la oxacilina (OS)-MRSA; 

 Evaluación de dos medios cromogénicos comercialmente disponibles para la confirmación de 
MRSA de muestras de humanos, animales y alimentos; 

 Integración de los resultados obtenidos en la presente tesis en los estudios mundiales centrados en 
la diseminación de diferentes linajes de MRSA, junto con la información necesaria para la 
comprensión de los riesgos potenciales que S. aureus resistente a los antimicrobianos pueden 
representar. 

La investigación realizada en la presente tesis no habría sido posible sin una fuerte comunicación entre 
instituciones de investigación de Rumania, España, Portugal o Austria, tanto en el marco del proyecto 
PROMISE FP7 y otros. 
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Summary 
 

The present doctoral thesis comprises a total of 250 pages, including 28 figures and 20 tables. For a good 
managing and better representation, has been divided into five main parts, as following: 

Part I speaks about S. aureus as foodborne pathogen in a general context. For this, Part I has been divided 
into two chapters. Chapter 1 entitled Staphylococcus aureus and Its Main Characteristics presents the 
recent literature about S. aureus whereas history, taxonomy, distribution and transmission, growth 
requirements and metabolism are given. Moreover, various factors associated with adherence-associated 
proteins, exotoxins and exoenzymes expressed or other factors associated with antimicrobial resistance in 
S. aureus are underlined. At the same time, characteristics of different lineages of MRSA isolated from 
farms, farm animals, food products and human carriers are presented, particularly considerable interest 
being focused on presence of MRSA in the food producing animals (raw materials for food industry) and 
associated foodstuff. Recent literature about surveillance programs in the EU and strategies of prevention 
and control are presented.  

Chapter 2 describes Procedures Used for Detection and Identification of S. aureus beginning with 
conventional microbiological methods and ending with molecular biology techniques such as WGS. A 
special attention is conferred for decoding mechanisms involved in the phenotypic expression of methicillin 
resistance in S. aureus strains. 

Part II points out the Materials, Equipments and Methods part. General information regarding strains 
used, bacterial culture media, enzymes, reagents, commercial kits, equipments and apparatus is presented 
in Chapter 3. Information regarding sequencing, bioinformatic tools or database used are also enumerated. 
Chapter 4 provides information about food sampling strategy adopted, about methods for isolation, 
detection and confirmation. Phenotypic and genotypic methods for characterization of MRSA strains 
collected are also detailed. 

Part III discuss the original experimental results achieved during doctoral stage and is organized into six 
chapters, as followed: 

Detection and Identification of Staphylococcus aureus in Food Isolated from Black Market is presented 
in Chapter 5, in which have been assessed presence of MRSA in foods illegally sold in a black market in 
Galati. This study highlights the presence of a livestock-associated (LA)-MRSA strain isolated from an 
animal origin food, constituting a neglected route of transmission to humans since such strains came into 
attention due to their rapid emergence and different epidemiology. This study is important especially for 
food safety authorities in designing their surveillance and control plans. 

Chapter 6 entitled Compositional Analysis of Biofilms Formed by Staphylococcus aureus Isolated from 
Food Sources is focused on the capacity of such S. aureus strains to form biofilms as well as their biofilm 
composition. This study emphasizes the protein abundance in biofilms formed by S. aureus isolated from 
food sources, which is an important finding when designing solutions for fighting against biofilm both in 
food industry and medicine.  
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Tracking MRSA in food entering to the European Union via cross border traffic and international flights 
aim to highlight once again the potential risks for consumers on animal origin foods illegally introduced 
into the EU space (Chapter 7). The presence of enterotoxigenic lineages of MRSA identified in confiscated 
foods should not be neglected as can lead to possible outbreaks due to people’s indifference. Additionally, 
isolation of a new variant OS-MRSA can be problematic as such strains show to have a different phenotype 
in comparison with the classical MRSA variants. This study justifies and encourages authorities to take 
adequate measures for food safety reasons at control borders.  

Biofilm Formation by MRSA Isolates Recovered from Passenger’s Luggage from Non-EU Flights is 
described in Chapter 8. By correlating information gathered in previous chapter and their biofilm capacity 
we can put into evidence if any interrelationship exists between biofilm formation and composition and 
their molecular features. Food safety managers, either working in food industry or industrial kitchens, can 
base their safety plans on such studies. 

Case study- Oxacillin-Susceptible mecA-positive Staphylococcus aureus Associated to Processed Food in 
Europe is shown in Chapter 9. The certain problem of such strains has been described, for the first time, by 
WGS in which genetic factors critical in regulating the expression of methicillin resistance in S. aureus are 
examined, by identifying mechanisms which are conferring its oxacillin susceptibility. 

Chapter 10 presents a Chromogenic Media Evaluation for Confirmation of MRSA Isolated from Humans, 
Animals and Food Samples. Diagnostic performance of two commercially chromogenic media specific for 
confirmation of MRSA have been compared- Brilliance MRSA 2 agar (ThermoFisher Scientific) and 
ChromID MRSA agar (bioMérieux). Different S. aureus isolates from human, animal and food sources have 
been used in which lower diagnostic performance have been assessed for the food origin MRSA isolates. 
Such media are useful for food industry when microbiological food control is applied as they allowed rapid 
detection of presumptive MRSA. 

Each chapter presented in the original experimental part has been mainly structured following subheadings 
such as Introduction, in which specific objectives and main characteristics were presented; Materials and 
Methods, where material, reagents, as well as procedures and data interpretation are given; Results and 
Discussions, in which original results accomplished and their comparison with similar data from literature 
are conferred; and Conclusions. 

Part IV includes the General Discussion based on the results obtained and communicated to the 
international scientific community. Findings presented in the actual thesis highlight the potential risk that 
dissemination and prevalence of MRSA represents for consumers if hygienic and preventive measures are 
missing. New insights regarding MRSA transmission and epidemiology, in a food safety context, may 
provide a better understanding about neglected routes to Europe (international airports and markets close 
to EU borders), lowering the economic impact associated with health treatments on the EU community as 
well as on measures that food industry should take to avoid biofilm formation. 

Part V synthetize the results of the entire research in Concluding Remarks part. Original contributions 
brought in the present thesis and future perspectives are also presented.  
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Sumar 
 

Prezenta teză de doctorat cuprinde un total de 250 de pagini, inclusiv 28 figuri și 20 tabele. Pentru o bună 
gestionare și reprezentare a rezultatelor, a fost împărțită în cinci părți, după cum urmează: 

În Partea I se discută despre S. aureus ca agent patogen alimentar într-un context general. Pentru aceasta, 
partea I a fost la rândul ei împărțită în două capitole. Capitolul 1 intitulat Staphylococcus aureus and Its 
Main Characteristics prezintă date recente din literatura de specialitate despre S. aureus, trecând de la 
istoric, taxonomie, distribuție și transmitere, până la cerințele necesare pentru creștere și metabolismul 
acestuia. Mai mult decât atât, în acest capitol sunt prezentați factorii asociați cu aderența, producerea de 
exotoxine și exoenzime sau alți factori asociați cu rezistența la antibiotice a bacteriei S. aureus. În același 
timp, sunt prezentate caracteristicile diferitelor linii genealogice de MRSA izolate din ferme, ferme de 
animale, produse alimentare și oameni, comentariile concentrându-se asupra prezenței MRSA în animalele 
de la care se obțin alimente (materii prime pentru industria alimentară) și produsele asociate. Sunt 
prezentate date din literatura de specialitate referitoare la programele de supraveghere din UE și strategiile 
de prevenire și control.  

Capitolul 2 descrie Procedures Used for Detection and Identification of S. aureus începând cu metode 
convenționale și terminând cu tehnici de biologie moleculară, cum ar fi secvențierea totală a genomului. O 
atenție deosebită este acordată mecanismelor de decodare implicate în exprimarea fenotipică a rezistenței 
la meticilină în tulpinile de S. aureus. 

Partea a II-a subliniază partea de Materials, Equipments and Methods. În capitolul 3 sunt prezentate 
informații generale privind tulpinile utilizate, mediile de cultură, enzimele, reactivii, kiturile comerciale, 
echipamentele și aparatele. Sunt enumerate informații cu privirea la secvențierea, instrumentele 
bioinformatice sau baza de date utilizate. Capitolul 4 oferă informații despre strategia de prelevare a 
probelor de alimente, despre metodele de izolare, detectare și cele de confirmare a bacteriei S. aureus. 
Metodele fenotipice și genotipice utilizate pentru caracterizarea tulpinilor MRSA sunt, de asemenea, 
detaliate. 

Partea a III-a discută rezultatele experimentale obținute în timpul stagiului doctoral și este organizată în 
șase capitole, după cum urmează: 

Detection and Identification of Staphylococcus aureus in Food Isolated from Markets este prezentată în 
Capitolul 5. Acesta este capitolul în care este evaluată prezența MRSA în alimentele vândute ilegal pe piața 
din Galați. Acest studiu evidențiază prezența unei tulpini cu potențial zoonotic (LA)-MRSA izolată dintr-
un produs de origine animală, ceea ce constituie o dovadă că alimentele pot reprezenta o cale de transmitere 
la oameni. Astfel de tulpini au intrat în atenția cercetătorilor datorită apariției lor rapide și epidemiologiei 
diferite. Acest studiu este important, în special, pentru autoritățile din domeniul siguranței alimentare, în 
vederea elaborării de planuri de supraveghere și control. 

Capitolul 6 intitulat Compositional Analysis of Biofilms Formed by Staphylococcus aureus Isolated from 
Food Sources investighează capacitatea unor astfel de tulpini de a forma biofilme, precum și compoziția 
acestora din urmă. Acest studiu evidențiază abundența proteinelor ca fiind implicate în menținerea 
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structurii biofilmelor formate de S. aureus izolate din surse alimentare. Compoziția biofilmelor trebuie să 
fie cunoscută atunci când sunt dezvoltate noi soluții care sunt alese pentru combaterea biofilmelor, atât în 
industria alimentară, cât și în medicină. 

Tracking MRSA in food entering to the European Union via cross border traffic and international flights 
este titlul Capitolului 7, cel care urmărește să sublinieze încă o dată potențialele riscuri pe care aceste 
alimente de origine animală introduse ilegal în spațiul UE le reprezintă pentru consumatorii finali. Prezența 
diferitelor linii genealogice de MRSA capabile să producă enterotoxine, identificate în alimentele confiscate, 
poate duce la apariția unor focare cauzate de inconștiența oamenilor. În plus, izolarea unei noi variante de 
OS-MRSA poate constitui o problemă de siguranță alimentară, deoarece astfel de tulpini sunt diferite din 
punct de vedere fenotipic față de variantele clasice de MRSA. Acest studiu justifică și încurajează autoritățile 
să ia măsuri adecvate din motive de siguranță alimentară. 

Biofilm Formation by MRSA Isolates Recovered from Passenger’s Luggage from Non-EU Flights este 
descrisă în Capitolul 8. Prin corelarea informațiilor adunate în capitolul precedent și a capacității acestora 
de a forma biofilme, putem pune în evidență dacă există o legătură între formarea biofilmului și compoziția 
acestuia cu caracteristicile sale moleculare. Managerii în siguranța alimentelor, care lucrează fie în industria 
alimentară, fie în bucătăriile industriale, își pot baza planurile de siguranță pe astfel de studii. 

Case study- Oxacillin-Susceptible mecA-positive Staphylococcus aureus Associated to Processed Food in 
Europe este prezentat în Capitolul 9. Problema acestor tulpini a fost descrisă, pentru prima dată, prin 
secvențierea întregului genom, în care factorii genetici esențiali în vederea exprimării rezistenței la 
meticilină în S. aureus este examinată, prin identificarea mecanismelor care conferă susceptibilitatea la 
oxacilină. 

Capitolul 10 prezintă Chromogenic Media Evaluation for Confirmation of MRSA Isolated from Humans, 
Animals and Food Samples. Au fost comparate două medii cromogene pentru confirmarea MRSA- 
Brilliance MRSA 2 Agar (ThermoFisher Scientific) și ChromID MRSA (bioMérieux). Astfel de medii sunt 
utile în industria alimentară atunci când se realizează controlul microbiologic al alimentelor, deoarece 
acestea permit detectarea rapidă a tulpinilor prezumptive de MRSA.  

Fiecare capitol prezentat în partea experimentală a fost structurat în subcapitole: Introducere, în care au fost 
prezentate obiectivele specifice și caracteristicile principale; Materiale și Metode, în care sunt prezentate 
materialele, reactivii, precum și procedurile folosite și interpretarea datelor; Rezultate și Discuții, în care 
sunt trecute rezultatele obținute și compararea acestora cu date similare din literatură; Concluzii. 

Partea a IV-a cuprinde General Discussion. Această parte este bazată pe rezultatele obținute și comunicate 
comunității științifice internaționale. Rezultatele prezentate în teza actuală evidențiază riscul potențial pe 
care diseminarea și prevalența MRSA îl reprezintă pentru consumatori dacă măsurile de igienă lipsesc.  

Perspectivele viitoare privind transmiterea și epidemiologia MRSA, în contextul siguranței alimentare, pot 
oferi o mai bună înțelegere a rutelor de transmitere în Europa (aeroporturi internaționale și piețe apropiate 
granițelor UE), a modului în care se poate diminua impactul economic asociat tratamentelor medicale 
asupra comunității UE, precum și a măsurilor pe care industria alimentară ar trebui să le ia pentru a evita 
formarea biofilmelor. 

Partea a V-a sintetizează rezultatele întregii cercetări în partea de Concluding Remarks. Contribuțiile 
originale aduse de prezenta teza sunt subliniate, împreună cu perspectivele de continuare a cercetărilor. 
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Sumario 
 

La tesis doctoral comprende un total de 250 páginas, incluyendo 28 figuras y 20 tablas. Para una buena 
gestión y mejor representación, se ha dividido en cinco partes principales, como sigue: 

En la Parte I se habla de S. aureus como patógeno transmitido por los alimentos en un contexto general. 
Para esto, la Parte I se ha dividido en dos capítulos. El Capítulo 1 titulado Staphylococcus aureus and Its 
Main Characteristics presenta la reciente literatura sobre S. aureus, mientras la historia, taxonomía, 
distribución y transmisión, las necesidades de crecimiento y el metabolismo. Además, se subrayan varios 
factores asociados con las proteínas asociadas a la adherencia, exotoxinas y exoenzimas expresadas y otros 
factores asociados con la resistencia antimicrobiana en S. aureus. Al mismo tiempo, se presentan 
características de diferentes linajes de MRSA aislados de granjas, animales de granja, alimentos y humanos, 
particularmente con un interés considerable en la presencia de MRSA en los animales productores de 
alimentos (materias primas para la industria alimentaria) y productos alimentarios asociados. Se presentan 
publicaciones recientes sobre programas de vigilancia en la UE y estrategias de prevención y control. 

El Capítulo 2 describe Procedures Used for Detection and Identification of S. aureus comenzando con 
métodos microbiológicos convencionales y terminando con técnicas de biología molecular. Una atención 
especial está dada a los mecanismos de decodificación implicados en la expresión fenotípica de la resistencia 
a la meticilina en cepas de S. aureus. 

La Parte II señala la parte de Materials, Equipments and Methods. En el Capítulo 3 se presenta información 
general sobre cepas utilizadas, medios de cultivo, enzimas, reactivos, kits comerciales, equipos y aparatos. 
El Capítulo 4 disponer de información sobre la estrategia de muestreo de alimentos adoptada, sobre 
métodos de aislamiento, detección y confirmación. También se detallan los métodos fenotípicos y 
genotípicos para la caracterización de las cepas de MRSA recogidas. 

En la Parte III se analizan los resultados experimentales originales obtenidos durante la etapa de doctorado 
y se organiza en seis capítulos: 

Detection and Identification of Staphylococcus aureus in Food Isolated from Black Market se presenta en 
el Capítulo 5, en el que se ha evaluado la presencia de MRSA en los alimentos vendidos ilegalmente en un 
mercado en Galati. Este estudio está hablando sobre la presencia de una cepa asociada al ganado (LA)-
MRSA aislada de un alimento de origen animal, constituyéndose una vía de transmisión descuidada a los 
humanos, ya que estas cepas se han puesto de manifiesto por su rápida aparición y diferente epidemiología. 
Este estudio es importante especialmente para las autoridades de seguridad alimentaria en el diseño de sus 
planes de vigilancia y control. 

El Capítulo 6 titulado Compositional Analysis of Biofilms Formed by Staphylococcus aureus Isolated from 
Food Sources se centra en la capacidad de cepas de S. aureus para formar biofilms y análisis de su 
composición. Este estudio muestra la abundancia de proteínas en los biofilms formados por aislados de S. 
aureus, que es un importante aspecto al diseñar soluciones para la lucha contra la biopelícula tanto en la 
industria alimentaria y medicina. 
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Tracking MRSA in food entering to the European Union via cross border traffic and international flights 
tienen como objetivo los riesgos potenciales para los consumidores sobre los alimentos de origen animales 
introducidas ilegalmente en el espacio de la UE (Capítulo 7). La presencia de los linajes de MRSA 
identificados en los alimentos confiscados puede despreciarse como posibles brotes debido a la indiferencia 
de la gente. Además, el aislamiento de una nueva variante OS-MRSA puede ser problemático para tener un 
fenotipo diferente en comparación con el fenotipo de clásico variantes de MRSA. En este estudio se justifica 
y estimula autoridades para tomar medidas adecuadas para la seguridad alimentaria en el control de 
fronteras. 

Biofilm Formation by MRSA Isolates Recovered from Passenger’s Luggage from Non-EU Flights se 
describe en el Capítulo 8. Al correlacionar la información recogida en el capítulo anterior y su capacidad de 
formar biofilms podemos evidenciar cualquier interrelación entre la formación de biopelículas y la 
composición y sus características moleculares. Los responsables de seguridad de los alimentos, ya sea 
trabajando en la industria alimentaria o en cocinas industriales, se pueden basar en estos ensayos. 

Case study- Oxacillin-Susceptible mecA-positive Staphylococcus aureus Associated to Processed Food in 
Europe se muestra en el Capítulo 9. El problema de estas cepas se ha descrito, por primera vez por WGS en 
que los factores genéticos críticos por la expresión de resistencia a la meticilina en S. aureus se ha 
examinado, y la identificación de mecanismos que está confiriendo susceptibilidad a oxacilina. 

Capítulo 10 presenta Chromogenic Media Evaluation for Confirmation of MRSA Isolated from Humans, 
Animals and Food Samples. Diagnóstico de dos medios cromogénicos específicos para la confirmación de 
MRSA haber sido comparado- Brilliance MRSA 2 agar (ThermoFisher Scientific) y ChromID MRSA agar 
(bioMérieux). Diferentes S. aureus fueron aislados de humanos, animales y alimentos. Diagnóstico han sido 
más bajos para los MRSA aislado de los alimentos cuando hemos utilizado Brilliance. Estos medios son 
útiles para la industria alimentaria cuando un control de los alimentos microbiológico es necesario porque 
permite una detección rápida de MRSA presuntiva. 

Cada capítulo presentado en la parte experimental original se ha estructurado principalmente en subtítulos 
como Introduction, donde los objetivos específicos y las principales características se presentaron; Materials 
and Methods, donde los materiales, reactivos, como los procedimientos y la interpretación de datos se da; 
Results and Discussions, en original, y su comparación con datos en literatura; y Conclusions. 

Parte IV incluye General Discussion basadas en los resultados obtenidos y comunicados a la comunidad 
científica internacional. Los datos presentados en esta tesis informe sobre el riesgo potencial y la prevalencia 
de MRSA que representa para los consumidores si las medidas higiénicas y preventivas no se encuentra. 
Nuevos conocimientos en relación con la transmisión del MRSA y su epidemiología, en un contexto de 
seguridad de los alimentos, pueden proporcionar una mejor comprensión acerca de las rutas a Europa 
(aeropuertos internacionales y los mercados cerca de las fronteras de la UE), la reducción de los efectos 
económicos asociados con los tratamientos de salud en la comunidad de la UE, así como industria 
alimentaria en las medidas que debe tomar para evitar la formación de biopelículas. 

Parte V sintetizo los resultados de la investigación en parte de Concluding Remarks. Contribuciones 
originales en esta tesis y futuros perspectivas se presentan también.  
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A Adenine 
AAD Antibiotic Associated Diarrhea 
AIV Avian Influenza 
AT Austria 
ATCC American Type Culture Collection 
Bap Biofilm associated protein 
BHIA Brain Heart Infusion Agar 
BHIB Brain Heart Infusion Broth  
BIOHAZ EFSA’s Panel on Biological Hazards 
BLAST Basic Local Alignment Search Tool 
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BP Baird Parker  
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C Citosine
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CDC Center for Disease and Control 
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CIP Clean-In-Place 
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CLSI Clinical and Laboratory Standards Institute 
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CO2 Carbon dioxide 
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CV Crystal Violet  
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dATP Deoxyadenosine Triphosphate 
dCTP Deoxycytosine Triphosphate
DEPC Diethylpyrocarbonate  
dGTP Deoxyguanosine Triphosphate 
DHFR Dihydrofolate Reductase 
DNA Deoxyribonucleic Acid 
dNTPs Deoxynucleotides 
dTTP Deoxythymidine Triphosphate
DW Dry Weight 
Eap Extracellular adherence protein 
EBI European Bioinformatics Institute 
ECDC European Center for Disease and Control 
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Efb Extracellular fibrinogen binding protein 
EFSA European Food Safety Authority  
ELISA Enzyme-Linked Immunosorbent Assay  
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ES Spain 
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FnBPA Fibronectin/ fibrinogen Binding Protein A 
FnBPB Fibronectin/ fibrinogen Binding Protein B 
G Guanine 
GHP Good Hygiene Practices 
GMP Good Manufacturing Practices 
H2 Hydrogen 
HA-MRSA Hospital-Associated MRSA 
HMP Hexose Monophosphate 
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IS Insertion Sequences 
ISO International Organization for Standardization 
IUPAC International Union of Pure and Applied Chemistry 
IWG International Working Group 
kb Kilobase  
kbp Kilobase pairs 
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LA-MRSA Livestock-Associated MRSA 
M Maximum 
MBC Minimum Bactericidal Concentration 
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MEGA Molecular Evolutionary Genetics Analysis
mg Milligrams 
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MLST Multilocus Sequence Type 
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NaCl Sodium Chloride 
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RNA Ribonucleic Acid 
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Staphylococcus aureus and Its Main Characteristics 

 

1.1. History 

Staphylococci were firstly identified in 1881 as a cause of surgical abscess in a knee joint by the Scottish 
surgeon, Sir Alexander Ogston (Orenstein, 1998). Four years later, Staphylococcus aureus and 
Staphylococcus epidermidis were isolated by the German scientist, Anton Julius Rosenbach who named 
them after the pigmented appearance of colonies: S. aureus (lat. aurum for gold), and S. albus (lat. albus for 
white). Later, S. albus was renamed due to its ubiquitous presence on human skin to S. epidermidis 
(Orenstein, 1998; Gilden, 2013). Current taxonomic hierarchy (www.itis.gov) of the Staphylococcus is as 
follows: 

 
1.2. Taxonomy 

Staphylococci are Gram positive, mesophilic bacteria, aerobic or facultatively anaerobic with a respiratory 
and fermentative metabolism (Foster, 1996; Batt and Tortorello, 2014). They gave rise to cocci-shaping 
forms, grouped in clusters similar to grapes or individual cells of maximum 1 μm in diameter, non-motile 
and non-spore forming (Foster, 1996; Le Loir et al., 2003). 

The genus Staphylococcus currently includes 48 species and 27 subspecies (http://www.bacterio.net/), of 
which only sixteen are having real and potential risk in foods (Table 1). Staphylococci differ in their 
potential to trigger human and animal health, ranging from non-pathogenic to medium and highly 
pathogenic species, with different grades of severity and showing resistance when commonly antibiotics for 
a certain treatment are applied (Dobrindt et al., 2013). 

Staphylococci are divided into two groups depending on coagulase activity, in which this extracellular 
product interacts with prothrombin, inducing transformation of fibrinogen into fibrin (Bodén and Flock, 
1989; Ivana, 2011; Dobrindt et al., 2013). There are seven staphylococcal species producing this enzyme ̶  S. 

aureus, S. intermedius, S. pseudintermedius, S. hyicus, S. delphini, S. schleiferi spp. coagulans, and S. 

lutrae, from which S. aureus is the most studied of its group. The rest of the species are designed as coagulase 
negative staphylococci (CoNS), of which S. epidermidis is the one with major importance in human 
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medicine as many publications listed this pathogen as being related to indwelling devices or being involved 
in nosocomial diseases (John and Harvin, 2007; Otto, 2009). From their groups, S. aureus and S. epidermidis 
have the greatest pathogenic potential on humans and animal species (Foster, 1996). 

Table 1. Staphylococci known to be associated with food (Jay et al., 2005) 

Specie Coagulase Nuclease Enterotoxin Hemolysin Mannitol G+C of DNA 
S. aureus subsp. 
        anaerobius + ts ̶  + ̶  31.7 
              aureus + ts + + + 32-36 

S. intermedius + ts  + + (+) 32-36 
S. hyicus (+) ts + ̶  ̶  33-34 
S. delphini + ̶    + + 39 
S. schleiferi subsp. 

coagulans + ts  + (+) 35-37 
schleiferi ̶   ts  + ̶  37 

S. caprae ̶   tl + (+) ̶  36.1 
S. chromogens ̶   ̶ w + ̶  v 33-34 
S. cohnii ̶   - + ̶  v 36-38 
S. epidermidis ̶   - + v ̶  30-37 
S. haemolyticus ̶   tl + + v 34-36 
S. lentus ̶    + ̶  + 30-36 
S. saprophyticus ̶   - + ̶  + 31-36 
S. sciuri ̶    + ̶  + 30-36 
S. simulans ̶   v  v + 34-38 
S. warneri ̶   tl + ̶ w + 34-35 
S. xylosus ̶   - + + v 30-36 

Note: + positive;  ̶  negative;  ̶  w- negative to weakly positive; (+) weak reaction; v- variable; ts- thermostable; tl- 
thermolabile. 

 

1.3. Distribution and Transmission 

S. aureus is one of the most known and studied of its genus. It is an opportunistic bacterium which can be 
found in air, dust, sewage, water, environmental surfaces  (Hennekinne et al., 2012) but also colonizing skin 
and mucous membranes of humans or animal species, especially mammals (Kluytmans et al., 1997; 
Dobrindt et al., 2013; Brown et al., 2014; Mustapha et al., 2014; Grema et al., 2015). The most common site 
of colonization remains the nasal cavities but may also be found on human epithelia, axillae (8%), 
chest/abdomen (15%), head, nares (nostrils), perineum (22%), pharynx, or intestinal tract (17-31%) (Foster, 
1996; Kluytmans et al., 1997; Frank et al., 2010; Otto, 2010; Chen et al., 2013; Sollid et al., 2014; Grema et 
al., 2015; van Belkum, 2016).  

Healthy persistent carriers (20%) may be colonized with this pathogen, while 30% of the population carry 
S. aureus transiently and the rest (50%) are non-carriers (Otto, 2010). In persistent S. aureus carriers, the 
frequency of colonization is higher than the rest of the population, affecting children more frequently than 
adults (Otto, 2010; Blumental et al., 2013), improved hygiene overtime explaining this.  

Moreover, host-pathogen interactions evolved when humans started animal and plant breeding, favoring 
sharing bacterial species between (Pantosti, 2012). Companion animals such as dogs, cats, horses have been 
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also considered potential reservoirs (Mustapha et al., 2014). Even though some studies revealed that certain 
clones of S. aureus were associated with animals such as goats, poultry or sheep, in fact were originated 
from human strains following profound genetic modifications (Lowder et al., 2009; Lozano et al., 2011; 
Price et al., 2012; Pantosti, 2012). However, successful S. aureus colonization is the outcome of a process 
determined by multiple factors contributing to the host-pathogen interaction showing global variation 
among population (Sollid et al., 2014). 

In apparent contrast to its ability to colonize both humans and animals, can be a potential lethal pathogen 
(Brown et al., 2014), colonization being a subsequent risk factor for acquiring infections (Gorwitz et al., 
2008; Brown et al., 2014). This opportunistic pathogen can cause broad-spectrum infections (Deurenberg 
et al., 2007; Kadariya et al., 2014), ranging from diverse skin and soft tissue infections (SSTI) to severe and 
even fatal invasive disease, severe sepsis, toxic shock syndrome (TSST), endocarditis, pneumonia, 
meningitis, bacteremia or osteomyelitis (Monecke et al., 2009; Frank et al., 2010; Monecke et al., 2011; 
Lozano et al., 2011; Dobrindt et al., 2013; Szczuka et al., 2013; Brown et al., 2014). 

 

1.4. Growth Requirements and Metabolism 

Staphylococci are multiplying when they encounter a proper environment with a certain chemical 
composition and a convenient substrate. However, their growth rate is proportionally with the substrate 
concentration, temperature, pH, and organic matter (Banville, 1964; Mah et al., 1967). 

S. aureus growth takes place between 7-47.8°C, having an optimum growth between 35-37°C. Although is 
a mesophilic bacterium, some S. aureus strains can grow as low as 6.7°C (Jay et al., 2005). The pH interval 
varies between 4.0-10 with an optimum of 6.0-7.0 (Banville, 1964; Jay et al., 2005). Moreover, S. aureus is 
halotolerant, resistant to chemical compounds e.g. mercuric chloride, polymyxin and capable to grow below 
aw < 0.83. However, S. aureus can grow well in culture media without NaCl but it can grow readily in 7-10% 
concentration (Stone, 2017), and some strains even at 25% concentration of salts (Valero et al., 2009). Its 
capacity to tolerate such huge amount of salts is shared by other bacteria such as Micrococcus and Kocuria, 
which are widely distributed in nature and occur in foods in larger numbers than staphylococci (Jay et al., 
2005). 

S. aureus can tolerate chemical compounds such as tellurite, neomycin, polymyxin, mercuric chloride, and 
sodium azide, all of which can be found as selective agents in culture media used for their growth. However, 
other staphylococci can differentiate S. aureus due to its increased resistance to acriflavine (Jay et al., 2005). 
With respect to aw, S. aureus can grow at values lower than other nonhalophilic bacteria (Jay et al., 2005).  

Regarding its metabolism, S. aureus uses a variety of carbohydrates and obtain energy via glycolysis, 
utilizing the hexose monophosphate shunt and the tricarboxylic acids (Krebs cycle) (Vasu et al., 2014; 
Rogatzki et al., 2015). The glycolytic pathway (Embden-Meyerhof-Parnas; EMP) and the oxidative hexose 
monophosphate (HMP) are the two central pathways used for glucose metabolism. S. aureus metabolizes 
glucose mainly by glycolysis and to a limited extent by the HMP, resulting in lactate which is the major end 
product of anaerobic glucose metabolism (Sivakanesan and Dawes, 1980). Congruently, in the presence of 
adequate oxygenation, pyruvate has been viewed as the end product of glycolysis which can enters into 
Krebs cycle and regulates the energy levels linked to pathogenicity of organism (Vasu et al., 2014; Rogatzki 
et al., 2015). 
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1.5. Virulence Factors  

S. aureus is the most opportunistic pathogen affecting human and animals and its virulence depends on 
multiple factors associated with extracellular proteins, contributing to skin infections, food poisoning or 
certain diseases (Haveri et al., 2007). The pathogenicity of S. aureus (Figure 1) is characterized by the 
production of specific enzymes (coagulase, catalase, thermonuclease, hyaluronidase) and exotoxins (Table 
2). S. aureus strains can harbor different virulence genes coding for staphylococcal enterotoxins (SEs), 
leukocidins, exfoliatins, toxic shock syndrome toxin 1 (TSST-1), accessory gene regulator alleles and 
antibiotic resistance (Spanu et al., 2012). Moreover, cell wall adhesion (CWA) components (adhesins, 
protein A, teichoic acid, peptidoglycan) of S. aureus are also involved in virulence (Gordon and Lowy, 
2008). This can be associated with the capacity of S. aureus to produce biofilms; once attached to tissue or 
matrix-covered devices, S. aureus biofilms starts to grow by proliferation and produces a scaffolding 
extracellular matrix (Speziale et al., 2014). The expression of all these virulence factors favorize bacteria to 
adapt to hostile environmental conditions, allowing its survival and promoting infection by invading and 
destroying host tissues and metastasize to other sites (Gordon and Lowy, 2008). However, the presence or 
absence of these genes is essential to determine the potential virulence of S. aureus strains (Spanu et al., 
2012). 

 
Figure 1. Virulence factors in Staphylococcus aureus  

 

Exotoxins described so far to be involved in pathogenesis of S. aureus can be classified into three main 
categories: cytotoxins (leukocidins, hemolysins), exfoliatins and pyrogenic toxin superantigens (TSST, 
enterotoxins). 

Leukocidins. One of the most virulent toxin of its group is represented by the Panton-Valentine leukocidin 
(PVL) produced by S. aureus causing leukocyte destruction and tissue necrosis (Lina et al., 1999; Adler et 
al., 2006). This cytotoxin is composed of two protein subunits, LukS-PV and LukF-PV respectively, which 
act together in order to damage membranes of host defense cells and erythrocytes (Lina et al., 1999). Less 
than 5% of S. aureus- wild type isolates produce this pore-forming toxin (Löffler et al., 2010). 
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PVL appears to be associated with necrotic lesions of the skin and subcutaneous tissues (e.g. furuncles) 
produced by community-acquired methicillin-resistant S. aureus (CA-MRSA) strains (Adler et al., 2006). 
Moreover, it has been demonstrated its role as a major determinant of virulence in an acute pneumonia 
mouse model (Dumitrescu et al., 2007). Meanwhile, lukED genes encodes the biocomponent leukotoxin 
LukE and LukD (Gharsa et al., 2012) with a weak leukotoxic activity. 

Hemolysins. To date, there are five hemolysins known to be involved as virulence factors in overcoming 
the host defenses. S. aureus lysis of red blood cells is mediated by the hemolysins known as alpha (α-
hemolysin), beta (β-hemolysin), delta (δ-hemolysin), gamma (γ-hemolysin) and gamma variant encoding 
genes such as hla, hlb, hld, hlg and hgv, respectively (Burnside et al., 2010). Alpha-hemolysin is by far the 
most studied of all S. aureus cytotoxins (Dinges et al., 2000). Upon binding to the cell surface, α-hemolysin 
monomer assembles into a homoheptamer, forming a prepore and subsequently a mature β-barrel 
transmembrane pore (Vandenesch et al., 2012). This pore allows the transport of molecules smaller than 2 
kDa, such as K+ and Ca2+ ions, leading to necrotic death of targeted cells (Vandenesch et al., 2012). 

Beta-hemolysin is an exotoxin with a molecular weight of 35 kDa (Wiseman, 1975; Dinges et al., 2000) 
which does not form pores in the plasma cell membrane but instead is a neutral sphingomyelinase 
hydrolyzing sphingomyelin (Vandenesch et al., 2012). However, sphingomyelin is enriched in lipid-
ordered membrane microdomains with high content in cholesterol but the mechanism leading to 
cytotoxicity is poorly understood (Vandenesch et al., 2012).  

Delta-hemolysin is a small amphipathic peptide which can bind to the cell surface and aggregate to form 
transmembrane pores or to affect the membrane curvature, thus destabilizing the plasma membrane. 
Moreover, at higher concentration, could act as a detergent to solubilize the membrane (Vandenesch et al., 
2012). Delta-hemolysin is produced by 97% of S. aureus strains (Dinges et al., 2000). 

Gamma-hemolysin together with PVL represents two types of bicomponent toxins produced by S. aureus 
(Dinges et al., 2000). In contrast with α-hemolysin, the formation of a mature pore involves two 
polypeptides which have been named S (slow) and F (fast), based on their electrophoretic activity. Later, 
the mature hetero-octamer forms a trans-membrane β-barrel pore across the plasma membrane, leading to 
host cell lysis (Vandenesch et al., 2012). To note, S. aureus secretes numerous different types of hemolysins 
capable of damaging the host cell plasma membrane. 

Exfoliatins. There are three types of exfoliative toxins most known to be implicated in humans such as 
exfoliative toxin A (eta), exfoliative toxin B (etb) and exfoliative toxin D (etd) (Yamaguchi et al., 2002) and 
a later one, exfoliative toxin C (etc) with implications in animals, firstly being described in horses (Sato et 
al., 1994). The exfoliatins are proteases which cleave the peptide bonds by inactivating the action of 
antibodies, in vivo and in vitro, and in the same time protects against antimicrobial peptides such as 
neutrophil defensing proteins and bactericidal platelet proteins (Mustapha et al., 2014). However, they are 
exhibiting tissue specificity to different animal species (Harrison et al., 2013). All these factors are 
contributing to tissue proteins destruction during invasion (Postier et al., 2004; Mustapha et al., 2014). 

The first two S. aureus exfoliative toxin isoforms, exfoliative toxin A and B, are primarily responsible for 
the skin appearance of staphylococcal scalded skin syndrome and bullous impetigo (Yamaguchi et al., 2002; 
Mustapha et al., 2014). Only 5% of the clinical S. aureus isolates are responsible to produce these exfoliative 
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toxins, either A or B or both toxins. (Yamaguchi et al., 2002; Mustapha et al., 2014). It has been shown that 
CA-MRSA produce these types of toxins (Hososaka et al., 2007). 

Pyrogenic toxin superantigens (PTSAgs). This group comprises the TSST and the staphylococcal 
enterotoxins of serotypes A-E (Carfora et al., 2015) and enterotoxin-like toxins G-U, IV (Hennekinne et 
al., 2012; Dobrindt et al., 2013). Besides their pyrogenic properties, they are also super antigenic and have 
the capacity to be enteropathogenic, thus their implications in staphylococcal toxic shock syndrome (TSS) 
and food poisoning (Dinges et al., 2000; Mustapha et al., 2014). The PTSAgs are exotoxins secreted by S. 
aureus or Streptococcus pyogenes disturbing the host defense reaction by immunosuppression and 
nonspecific T-cell proliferation (Haveri et al., 2007; Kadariya et al., 2014). As superantigens, can facilitate 
transcytosis allowing the toxin to enter the bloodstream, thus enabling it to interact with antigen-presenting 
cells and T cells (Ortega et al., 2010). 

Enterotoxins are single-chain secreted proteins (Lauchlin et al., 2000), soluble in water and saline solution, 
and responsible for most of the food poisoning episodes registered so far due to their unique biochemical 
and structural properties and remarkable resistance to heat (Ortega et al., 2010). Heat stable SEs are resistant 
to most proteolytic enzymes, retaining their activity in the digestive tract after ingestion (Ortega et al., 
2010). The predominant regulon in S. aureus for the expression of SE and TSST is represented by the agr 
system (accessory gene) whereas in vitro, upon activation, agr downregulates the gene expression for 
encoding surface proteins and upregulates genes encoding exoproteins such as SEB, SEC, SED or TSST 
(Ortega et al., 2010). However, this cannot apply for all types of SE because environmental factors may 
influence in triggering their expression (Tseng et al., 2004; Ortega et al., 2010).  

Staphylococcal food poisoning (SFP) is characterized by intoxication resulting from the ingestion of food 
or beverages containing preformed SE (Lauchlin et al., 2000). The symptoms of a SFP episode usually is 
developed within four to six hours after the ingestion of contaminated food and generally lasts from twelve 
to forty-eight hours, characterized by sudden onset of nausea, vomiting, abdominal cramps, and diarrhea 
within two to six hours of ingestion of toxin (Jay et al., 2005; Lauchlin et al., 2000). 

The toxic shock syndrome (TSS) represents a systemic illness associated with acute intoxication with the 
main causative agent which is the TSST (Mehrotra et al., 2000). The TSS pathophysiology consist in a 
capillary leak syndrome stemming from toxin- and cytokine-mediated endothelium damage (Ortega et al., 
2010). Mainly has been associated with an acute onset of high fever, headache, desquamation of the skin, 
hypotension and organ system failure (Ortega et al., 2010). 

Table 2. Virulence factors involved in the pathogenesis of S. aureus (Gordon and Lowy, 2008; Costa et al., 2013) 

Name Gene (s) Function (s)
MSCRAMMs  

Clumping factor proteins clfA, clfB mediate clumping and adherence to fibrinogen in the 
presence of fibronectin

Fibronectin-binding 
proteins 

fnbA, fnbB attach to fibronectin and plasma clot 

Collagen binding proteins cna adhere to collagenous tissue and cartilage 
Surface-binding proteins  spa bind to IgG interfering with opsinization and phagocytosis

Capsular polysaccharides 
Biofilm accumulation (e.g. 
PIA) 

ica locus, hemB 
mutation 

reduce phagocytosis by neutrophils; enhance bacterial 
colonization and persistence on mucosal surfaces 
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Cytotoxins 

α-hemolysin hla induce lysis on a wide spectrum of cells, mainly platelets 
and monocytes

β-hemolysin hlb 
hydrolyze of sphingomyelin of the plasmatic membrane of 
monocytes, erythrocytes, neutrophils, and lymphocytes, 
cells becoming sensitive to other lytic agents 

Leukocidins  
E/D and M/F-PV 

lukE/D induce lysis on leukocytes 

PVL lukS-PV, lukF-PV induce lysis on leukocytes 

Pyrogenic toxin superantigens 
Enterotoxins sea-seq  massively activate T cells and antibody presenting cells 

TSST-1 tst massively activate T cells and antibody presenting cells 

Exoenzymes 
Proteases 
Serine (e.g. exfoliative toxins 
ETA and ETB) 

eta, etb inactivate neutrophil activity; activate T cells (in case of 
ETA and ETB) 

Cysteine (e.g. staphopain) cysM block neutrophil activation and chemotaxis 
Aureolysin aur inactivate antimicrobial peptides 
Lipases geh inactivate fatty acids 
Nucleases  nuc cleave nucleic acids 
Hyaluronidase hysA degrade hyaluronic acid 
Staphylokinase sak activate plasminogen; inactivate antimicrobial peptides 
Other proteins 
CHIPS chp inhibit chemotaxis and activation of neutrophils 
Eap eap inhibit neutrophil migration 
Efb efb inhibit complement activation 
FLIPr  inhibit chemotaxis of neutrophils 
SCIN scn inhibit complement activation 

Note: CHIPS- chemotaxis inhibitory protein of staphylococci; Eap- extracellular adherence protein; Efb- extracellular 
fibrinogen binding protein; FLIPr- formyl peptide receptor-like inhibitory protein; MSCRAMMs- microbial surface 
components recognizing adhesive matrix molecules; SCIN- staphylococcal complement inhibitor. 

 

1.6. Antimicrobial Resistance  

The discovery of antibacterial agents revolutionized the management dealing with infections both in human 
and animal medicine, reducing drastically the mortality rates (ECDC, 2009). However, soon after their 
introduction, bacteria evolved and become resistant to antibiotics raising a global threat among public 
health (ECDC, 2009) (Table 3). Looking back in the past on their rapid adaptability and resistance 
capability, bacteria could endanger the efficacy of antibiotics and perhaps in the future we will be facing 
with ineffective antibiotics for several types of bacteria causing infections in humans. 

The discovery of the first three antibiotics ̶  Salvarsan, Prontosil and penicillin ̶  set up the pillars for future 
drug research; later on, during the golden era of antimicrobials discovery (between 1950s and 1970s), 
several researchers developed other new antibiotics. However, the discovery rate stopped as bacteria were 
becoming resistant to antimicrobial agents and nowadays only modification of existing antibiotics are 
available (Aminov et al., 2010; Ventola, 2015) (Figure 2). 
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Figure 2. Timeline of antibiotic history and key events when resistance developed  

(adapted after Wright, 2010; Ventola, 2015) 
 

The intensive use of antimicrobials in human and animal medicine led to different selective pressures on 
the bacterial populations favoring appearance of mutations corresponding to a level of antibiotic resistance 
(Davies and Davies, 2010). This may lead to life-threatening infections complicating treatment and, if 
drastic measures must to be taken, then it is possible to appeal for “last resort” antibiotics and use them in 
rational combinations to overcome multi-drug resistant bacterial infections (Yeh et al., 2009; Davies and 
Davies, 2010). 

Table 3. Mechanisms of S. aureus resistance to antimicrobials (Lowy, 2003; Reygaert, 2013)  

Antibiotic Gene (s) Gene product (s) Function 

β-lactams 
blaZ β-lactamase enzymatic hydrolysis of β-lactam nucleus 

mecA, mecC PBP2a altered PBP2a targets 

Glycopeptides  
unknown  VISA-altered peptidoglycan trapping of vancomycin in the cell wall 

vanA VRSA-modified target synthesis of dipeptide with reduced affinity for 
vancomycin 

Quinolones  
parC 

ParC (or GrlA) component 
of topoisomerase IV mutations in the QRDR region, reducing 

affinity of enzyme-DNA complex for 
quinolone gyrA, gyrB GyrA or GyrB components 

of gyrase 
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Aminoglycosides aac, aph, ant acetyltransferase, 
phosphotransferase 

acetylating and/or phosphorylating enzymes 
modify aminoglycosides 

Tetracyclines tetK, tetM active efflux ribosomal protection- competitive binding 

Chloramphenicol cat  acetylation of drug- inactivation 

Trimethoprim-
sulfamethoxazole 

sulA dihydropteroate synthase overproduction of p-aminobenzoic acid by 
enzyme 

dfrB DHFR reduced affinity for DHFR 

Oxazolidinones rrn 23S rRNA 
mutations in domain V of 23S rRNA
component of the 50S ribosome; interferes 
with ribosomal binding 

Quinupristin-
dalfopristin 

ermA, ermB, 
ermC 

ribosomal methylases reduce binding to the 23S ribosomal subunit 

vat, vatB acetyltransferase enzymatic modification of dalfopristin 

Note: DHFR- dihydrofolate reductase; PBP-penicillin binding protein; rRNA- ribosomal RNA; QRDR- quinolone 
resistance-determining region; VISA- vancomycin- intermediate S. aureus; VRSA- vancomycin- resistant S. aureus. 

 

In this thesis, we are targeting methicillin resistance in S. aureus, for which, World Health Organization 
(WHO) listed MRSA as a superbug of high priority who urgently needs to be combated (WHO, 2017). Over 
the years, MRSA has shown outstanding versatility at thriving and spreading in different environments over 
time such as in hospitals, communities, and/ or animals (Ventola, 2015). 

MRSA can easily adapt to the selective pressure of antibiotics by developing multiple mechanisms of 
resistance with implications in the bacterial cell wall structure alteration, production of enzymes which may 
modify antibiotic targets or active efflux of the antimicrobial agent from inside the cell (Wright, 2010). The 
evolution of different types of antimicrobial resistance elements in S. aureus generated numerous research 
studies with the purpose of defining the effects and which factors may contribute to its resistance (Cameron 
et al., 2011). Although a variety of integrated genetic processes are known to be involved, little is known 
about phenotypic characteristics contributing too (Davies and Davies, 2010; Cameron et al., 2011). 

 

1.6.1. Methicillin-Resistant Staphylococcus aureus 

Resistance to penicillinase-stable penicillins, also called “methicillin resistance” or “oxacillin resistance”, in 
S. aureus is manifested as resistance to all β-lactam antimicrobial agents including cephalosporins and 
carbapenems and potential susceptibility to the newest class of MRSA-active cephalosporins (e.g. 
ceftaroline). 

The appearance of methicillin-resistant Staphylococcus aureus (MRSA) dates back to 1961 in the United 
Kingdom (Petinaki and Spiliopoulou, 2012), one year after the first introduction of methicillin in clinical 
practice to treat infections with penicillin-resistant S. aureus (Jevons, 1961). MRSA became a serious threat 
in the early 90s in the USA and UK (Kluytmans, 2010). Resistance is conferred by a mobile genetic element, 
named the staphylococcal chromosomal cassette (SCCmec) (Milheiriço et al., 2007), carrying mecA or mecC 
genes, encoding a penicillin-binding protein 2a (PBP2a) (Paterson et al., 2014a; Petinaki and Spiliopoulou, 
2012). Beta-lactam drugs bind to PBPs, essential for cell wall peptidoglycan synthesis, leading to bacterial 
cell lysis. However, PBP2a has low affinity for β-lactam agents, such that peptidoglycan synthesis can 
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continue in MRSA strains (Paterson et al., 2014a) even in the presence of diverse β-lactam inhibitor 
combinations.  

The mecA gene can be found on one of the eleven SCCmec types (I-XI) (Figure 3), which carry five different 
mec gene complexes, composed of mecA and its regulatory genes mecI and mecR1, and eight different ccr 
gene complexes, containing two different ccr recombinases responsible for the mobility of the element 
(Kondo et al., 2007).  

 
Figure 3. Features of the different types of the Staphylococcal Cassette Chromosome mec (SCCmec). The 

structures of SCCmec elements illustrated are based on the following published nucleotide sequences: 
AB033763 (Type I-1B); D86934 (Type II-2A); AB037671 (Type III-3A); AB063172 (Type IV-2B); 

WBG8318 (Type V-5C2); AF411935 (Type VI-4B); AB373032 (Type VII-5C1); FJ390057 (Type VIII-4A); 
AB505628 (Type IX-1C2); AB505630 (Type X-7C1); FR821779.1 (Type XI-8E) 

 

The ancestry of mecA has been elucidated: MRSA is generated by the integration of a mecA-carrying 
SCCmec element into a methicillin-susceptible S. aureus (Enright et al., 2002). A novel methicillin-



 

11 
 

resistance gene, named mecC by the International Working Group (IWG) on the Classification of SCCmec 
elements (formerly mecALGA251), was first described in a S. aureus isolated from dairy cattle in England in 
2011 (García-Álvarez et al., 2011); it has since been isolated from clinical human samples in England, 
Scotland, and Denmark (van Duijkeren et al., 2014). This mecC gene is located in a novel SCCmec element, 
type XI-SCCmec, and shares only 70% nucleotide sequence identity with mecA (Figure 4).  

 
Figure 4. Comparison between amino acid sequences of MecA (Genbank accession number 

AGC51118.1) and MecC (Genbank accession number WP_000725529.1). Identity is 63.17% (422 
identical positions and 187 similar positions). * (asterisk) indicates positions which have a single, fully 

conserved residue; : (colon) indicates residues with strongly similar properties- scoring > 0.5 in the 
Gonnet PAM 250 matrix; . (dot) indicates residues with weakly similar properties- scoring =< 0.5 in the 

Gonnet PAM 250 matrix. The online Clustal Omega tool, hosted at www.uniprot.org, was used 
 

In addition to the MRSA strains’ adaptation to selective beta-lactam antibiotic drugs pressure, their 
potential for production of enterotoxins has also been investigated. However, the prevalence of 
enterotoxigenic MRSA in food-producing facilities and associated foodstuffs is low and usually related to 
milk or dairy products. Three MRSA strains (1.2%) isolated from raw milk and dairy products were found 
to be enterotoxigenic in one study in Italy (Carfora et al., 2015), and similarly 2 MRSA (1.33%) isolated 
from milk tanks were found to produce multiple staphylococcal enterotoxins in US (Haran et al., 2012). 

 

1.6.2. Epidemiology of MRSA 

MRSA can be transmitted in several ways so the epidemiology is complicated; numerous and diverse stages 
of Public Health Systems and food production processes are implicated (Figure 5). MRSA has long been 
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considered a major hospital multidrug-resistant pathogen, and has become a serious threat in hospitals 
worldwide (Crombé et al., 2013). Hospital-associated MRSA (HA-MRSA) has been extensively 
documented in industrialized countries and is associated with septicaemia, pneumonia, and surgical site 
infections (Diekema et al. 2001). In the USA, the Centers for Diseases Control and Prevention (CDC) 
reported that, compared to 2013, the incidence of HA-MRSA decreased by 5.36%, while the incidence of 
community-associated MRSA (CA-MRSA) increased by 1.57% (CDC, 2016). In Europe, countries with 
proactive “Search and Destroy” control programmes— Netherlands, Finland, Norway, Sweden, and 
Denmark —reported that MRSA incidence has now stabilized or decreased significantly over the last four 
years. However, MRSA remains a public health priority as its incidence is still above 25% in seven of 29 
reporting countries, mainly in Southern and Eastern Europe (ECDC, 2015). 

 
Figure 5. Potential routes of transmission of MRSA 

 

MRSA is found in other, non-healthcare, ecological niches. Various MRSA lineages have been increasingly 
detected in community settings such as nursing homes and kindergartens, and are known as community-
associated MRSA (CA-MRSA). CA-MRSA can cause infections with nonspecific virulence and spread 
behavior (Pantosti, 2012); many are susceptible to several narrow-spectrum antimicrobial agents (Bassetti 
et al., 2009). CA-MRSA strains differ from HA-MRSA strains: they have a different accessory genome, 
which carries different SCCmec elements, and cause different clinical symptoms (Crombé et al., 2013; 
Enright et al., 2002).  

A new MRSA lineage has emerged, the so-called livestock-associated MRSA (LA-MRSA) (Voss et al., 2005), 
belonging to the Clonal Complex 398 (CC398) as determined by multi-locus sequence typing (MLST). This 
lineage arose as the result of a jump from humans to an animal host, associated with both the loss of phage-
borne human virulence genes, which reduced its zoonotic potential, and the acquisition of tetracycline and 
methicillin resistance (Price et al., 2012). Sequence type 398 (ST398) is the most prevalent LA-MRSA in 
Europe and North America (Pu et al., 2009; Chuang and Huang, 2015); MRSA ST9 is the most prevalent in 



 

13 
 

Asian farms and animal-derived products (pork, chicken, and raw milk) (Wagenaar et al., 2009; Chuang 
and Huang, 2015). A variant of ST9 has been identified indicating that the food chain allows continuous 
evolution and transmission of different MRSA lineages. ST9 and ST398 MRSA have become more 
widespread (Table 4); the prevalence of CC398 MRSA increased from 0.3% in 2004-2005 to 5.4% in 2010-
2011 in Germany, suggesting that LA-MRSA could become a serious health risk for humans (Cuny et al., 
2013; Fromm et al., 2014). There have been two human cases of mecC MRSA infection in Denmark, 
evidence that some S. aureus lineages are not strongly host-species restricted (García-Álvarez et al., 2011; 
Petersen et al., 2013; Angen et al. 2016). 
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Table 4. Recently described prevalence and characteristics of MRSA isolated from farms, farm animals, food products, and human carriage, 2000-2013 

Year of study Country/ State 
No. of 

samples 
Prevalence of 

MRSA, % 
Major outlines Reference 

Animal carriage 

2004-2007 Germany 138 43 
Most (57/60) of the MRSA isolates found in affected porcine tissue were spa-types 
associated with MRSA ST398. Three MRSA were ST97. (Meemken et al., 2010) 

2005-2006 The Netherlands 540 39 
MRSA isolated from pigs belonged to one clone, ST398 and closely related spa types 
t011, t108, t1254. (de Neeling et al., 2007) 

2007-2008 The Netherlands 2151 28 
Cross-sectional survey revealed lower risk of LA-MRSA in calves from rose veal farms 
than calves from white farms. (Bos et al., 2012) 

2008 Italy 118 38 
Eleven different spa-types were found among 102 MRSA pig isolates, clustering in 
lineages associated with farm animals (ST398, ST9, ST(CC)97 in 36 farms) and 
humans (ST1 in 7 farms). 

(Battisti et al., 2010) 

2009 Denmark 789 13 
MRSA was isolated from nasal swabs from pigs at the slaughter line. Ninety-three % 
were CC398 (spa t011, t034, t1451, t2876, t2974), 4% to CC30 (t1333) and one isolate 
to CC1 (t0127). 

(Agersø et al., 2012) 

2010 Italy 461 61 
Prevalence of MRSA carriage in humans significantly correlated with the % of 
positive cows on the farm, the number of livestock units and positive bulk tank milk 
samples. 

(Antoci et al., 2013) 

2011-2012 The Netherlands 411 3.9 
All MRSA isolated from healthy dairy cattle were CC398, with spa type t011 being 
predominant. 

(van Duijkeren et al., 
2014) 

2012-2013 Italy 82 26* 
First samples from rabbits and humans contained spa types t5210 and t034 belonging 
to MLST ST398 (Agnoletti et al., 2014) 

2013 Japan 100 8 Nasal swabs from pigs revealed ST97/spa t1236/SCCmec V and ST5/spa t002. (Sato et al., 2015) 
Farm environment 

2008 China 46 89 
From 4/9 pig farms the MRSA isolates of spa type t899 were assigned to ST9 whereas 
on one farm the MRSA spa type t899 isolates belonged to a single locus variant of 
MLST ST9 (ST1376). 

(Wagenaar et al., 2009) 

2013 Meta-analysis 400 53.5 
Pooled analysis of pig herds confirmed known risk factors (herd size, herd type) and 
identified other factors such as role of treatment of fattening pigs with antimicrobial 
drugs and effect of housing fattening pig herds. 

(Fromm et al., 2014) 

Food products 
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2003-2009 Japan 197 1.5 
Seven isolates from three meat and four stool samples exhibited the same ST8, spa 
type 606 (t1767). (Ogata et al., 2012) 

2007-2008 The Netherlands 2217 11.9 
85% of isolates from raw meat samples belonged to spa types t011, t034, t108 
corresponding to ST398.A few of these strains were found to be of other STs, possibly 
of human origin. 

(de Boer et al., 2009) 

2007-2009 Spain 318 1.6 

The two strains from pork and veal were to ST398-SCCmecV (spa type t011 and 
t1197, respectively), the two strains from chicken and rabbit were ST125-
SCCmecIVa-t067, and the strain from a wild boar was ST217-SCCmecIVa-t032. All 
MRSA were PVL negative 

(Lozano et al., 2009) 

2008 United States 120 5 
Six retail meat samples (5%) contained MRSA strains, which were members of two 
unique human epidemic clones, USA100 and USA300. (Pu et al., 2009) 

2008-2009 Germany 150 6 
At the slaughter line, 6% of the 150 pig carcass samples were positive for MRSA. In 
most cases, only one sample was positive per carcass, but one carcass had two positive 
samples with MRSA of different spa types (t011, t034). 

(Beneke et al., 2011) 

2008-2009 Spain 601* 1.7 
A sample from one (0.44%) of 229 farms (1 of 601 S. aureus isolates) harboured mecC 
MRSA, and three (1.31%) farms (9 of 601 isolates) tested positive for mecA-MRSA. 

(Ariza et al., 2014a) 

2009 Iowa 165 1.2 
The MRSA strains from meat were t008/ST8 and t034/ST398, with the t008 isolate 
found to be SCCmec type IV and the t034 isolate SCCmec type V. The t008 MRSA 
isolate carried the pvl gene. 

(Hanson et al., 2011) 

2009 Denmark 865 18 

Imported broiler meat had the highest occurrence (18%) of MRSA, followed by 
imported pork (7.5%) and Danish pork (4.6%). MRSA ST398 was found for the first 
time in Danish beef (1.4%). The finding of MRSA CC30 (spa t1333) suggests possible 
spread of the SCCmec cassette associated with ST398 into another S. aureus lineage 
common in pigs. 

(Agersø et al., 2012) 

2009 Georgia 100 7 
One retail beef MRSA isolate belonged to ST8, and the other three were ST5. In retail 
pork MRSA ST5, ST9, and ST30 were also detected. (Jackson et al., 2013) 

2010 Italy 48 44 
MRSA carrier prevalence in humans significantly correlated with the % of positive 
cows on the farm, the number of livestock units and positive bulk tank milk samples. (Antoci et al., 2013) 

2011-2012 
England and 

Wales 465 2.15 
mecC MRSA prevalence was 2.15% with seven isolates being ST425, and the other 
three being CC130. mecA MRSA was identified in a single farm in Worcestershire 
giving a prevalence of 0.27% (95% CI 0.05%-1.50%). This isolate was ST398. 

(Paterson et al., 2014a) 

2012-2013 non-EU flights 195 9.1 
Five MRSA food isolates were ST8 and harboured SCCmec type IVc and PVL genes. 
One isolate was ST1649, harbored SCCmec type IVc and tested negative for pvl. 

(Rodríguez-Lázaro et al., 
2015) 
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2012-2013 non-EU flights 200 0.5 
MRSA isolated from pork lard was ST398, harboured SCCmec type V, and tested 
negative for pvl. 

(Oniciuc et al., 2015) 

Human carriage 

2000-2011 Spain 164 20 
Ten patients (30%) were infected; cancer was the most frequent underlying disease. 
In one case, death was caused by a MRSA-ST398-related infection. (Camoez et al., 2013) 

2005 UK 78 17.9 
Evidence of EMRSA-15 mucosal carriage in veterinary staff and hospitalized dogs 
(9%). (Loeffler et al., 2005) 

2005-2011 Switzerland 1062 7.5 
mecC MRSA was recovered from a 59-year-old man admitted to the ICU for 
community-acquired septic shock secondary to a perforated duodenal ulcer. The 
isolate belonged to ST130 (CC130) with spa type t11150. 

(Basset et al., 2013) 

2006 Denmark 272 12.5 
Thirty-one veterinarians carried a PFGE non-typeable strain with spa types (t011, 
t034, t108, t571, t567, t899); spa type t899 was found in Dutch pigs, pig farmers and/or 
vets. 

(Wulf et al., 2008b) 

2006-2008 Austria 1098 1.9 
All 21 patients (14 males, 7 females; median age 58 years, range 1–83 years) harboured 
MRSA ST398. Only five patients were infected, and 15 were colonized. The 
prevalence of MRSA ST398 in Austria increased from 1.3% (2006) to 2.5% (2008). 

(Krziwanek et al., 2009) 

2007-2009 The Netherlands 117 24 Nasal swabs from human revealed spa types t108, t011, t567, t3934. (Feßler et al., 2011) 

2007-2008 Spain 70 68* 

ST5-MRSA-IV predominated (33.8%), followed by ST125-MRSA-IV (23.5%), ST8-
MRSA-IV (23.5%), and ST125-MRSA-IV/VI (14.7%). ST228-MRSA-I and 2, novel 
STs, were each isolated once (1.5%). Neither CA-MRSA nor LA-MRSA isolates were 
observed.

(Ariza et al., 2014b) 

2008 The Netherlands 155 38 
The spa-types were heterogeneous; although 92.7% were LA-MRSA CC398, a 
surprisingly high proportion (7.3%) were not. 

(Graveland et al., 2011) 

2008-2010 USA 148 20.9 
t034, a common spa type within the ST398 lineage of LA-MRSA was the predominant 
spa type found among human isolates. 

(Smith et al., 2013) 

2009 Australia 771 5.9 
The prevalence was 11.8% among vets specializing on horses and 4.9% among those 
working with dogs and cats. (Jordan et al. 2011) 

2009-2010 Germany 341 3.2 
Most nasal isolates (73%) from workers at Dutch pig slaughterhouses were the LA-
MRSA clone ST398. (Doyle et al., 2012) 

2010 Italy 113 36 
MRSA carriage prevalence in humans significantly correlated with the per cent of 
positive cows on the farm, the number of livestock units and positive bulk tank milk 
samples. 

(Antoci et al., 2013) 

2012 Taiwan 100 13 Pig workers carried LA-MRSA ST9 in nares. (Fang et al., 2014) 
*no of isolates 
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Epidemiology of different variants of MRSA  

Oxacillin-susceptible MRSA (OS-MRSA) 

Oxacillin-susceptible strains carrying a mecA gene have been described by conventional phenotypic 
methods as oxacillin-susceptible mecA-positive (OS-MRSA). Saeed et al. (2014) demonstrated by the 
MicroScan method that such strains are fully susceptible to oxacillin, but show intermediate susceptibility 
by disk diffusion tests; chromogenic media detect them only poorly. Conventional microbiology tests can 
easily misidentify OS-MRSA strains, questioning the mecA gene’s contribution to their level of resistance 
(or susceptibility) (Pournaras et al., 2013). Based on pulsed field gel electrophoresis (PFGE), recent reports 
have revealed that OS-MRSA strains are genetically highly diverse and distinct from some common UK 
epidemic MRSA strains (Saeed et al., 2014), while in OS-MRSA clonal spread in Brazil is related to epidemic 
clones such as USA400, USA100/New York/Japan, USA800/PC and BEC (Andrade-Figueiredo and Leal-
Balbino, 2016). However, it is not known whether OS-MRSA strains could carry mecC genes. 

OS-MRSA have been found among clinical isolates (Chen et al., 2012; Conceiçao et al., 2015), in animals 
and associated foodstuffs— bovine mastitis milk samples —(Pu et al., 2014), and food imported into Europe 
illegally (Rodríguez-Lázaro et al., unpublished data). Among 103 bovine mastitis milk isolates, 37 out of 49 
mecA-positive isolates were OS-MRSA by conventional diagnostic tests, and belonged to different spa and 
SCCmec types (Pu et al., 2014). Although rare, OS-MRSA should not be neglected because it may develop 
unusual resistance under antibiotic selection due to its mecA gene (Saeed et al., 2014). 

 

Borderline oxacillin-resistant S. aureus (BORSA) 

S. aureus strains acquiring resistance through hyperproduction of β-lactamase are called borderline 
oxacillin-resistant S. aureus (BORSA); their minimum inhibitory concentration is near the oxacillin 
breakpoint (MIC >2 mg/L according to EUCAST). They are not resistant to multiple antimicrobial agents, 
and do not carry mecA or mecC genes (Dien Bard et al., 2014). The clinical significance of this type of 
resistance is not yet known and laboratories should routinely test for both cefoxitin and oxacillin resistance, 
in addition to using PCR methods for mecA and mecC genes testing. Like the situation for OS-MRSA, 
chromogenic plates are of decreasing diagnostic value (Buchan and Ledeboer, 2010). BORSA has been also 
isolated from food products (minced pork meat), and is genetically closely related to human strains 
(Bystroń et al., 2010). 

 

1.7. Presence of Staphylococcus aureus, Particularly MRSA in The Food Chain 

MRSA in food producing animals and associated foodstuff 

MRSA has been isolated from food products, implicating food as a pathway for MRSA dissemination. 
Information about the potential zoonotic transmission of MRSA variants to humans is limited, but the issue 
is of public health interest because MRSA can cause life-threatening disease and cannot be detected by 
standard testing procedures (Ariza et al., 2014a). MRSA has also been found in a wide range of companion 
animals, from dogs, cats, and horses to rabbits, guinea pigs, turtles, bats, and parrots, but the primary 
reservoir remains in food production animals (Loeffler et al., 2005; EFSA, 2009a; Pantosti, 2012; Petinaki 
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and Spiliopoulou, 2012). An unexpectedly high prevalence was found in the Netherlands with 39% of 
screened pigs (229 out of 540) being positive for MRSA (de Neeling et al., 2007).  

The MRSA presence in pigs and workers at industrial abattoirs in southern Italy was also found to be as 
high as 37.6% (99 out of 215 pig nasal swabs) (Normanno et al., 2015). Similarly, MRSA prevalence in milk 
and dairy products has been studied: 45 dairy farms from southeastern part of Sicily (Italy) were tested in 
2010 for the presence of MRSA among farmers, cattle, and bulk tank milk samples, and a high MRSA rate 
was found (55%; 344 out of 622); 61% (283 out of 461) of bovine samples tested positive for MRSA, in 
comparison with 36% (40 out of 113) in human samples and 44% (21 out of 48) of bulk tank milk samples 
(Antoci et al., 2013). In Germany, the highest fraction of MRSA positive samples was found in nasal swabs 
from veal calves in 2012 (45%; 144 out of 320) and the lowest rate in bulk tank milk in 2009 (4.1%; 14 out 
of 388) (Tenhagen et al., 2014). In the Netherlands, van Duijkeren et al. (2014) found a MRSA prevalence 
of 3.9% (16 out of 411) in cattle, although none of the isolates harbored the mecC gene. Meanwhile, 
(Paterson et al., 2014a) found a mecC MRSA prevalence rate of 2.15% among 465 bulk milk samples in 
England and Wales, but no mecC was detected in 625 farms sampled in Scotland. 

Transmission of zoonotic MRSA to humans can occur via either animal contact or contaminated food 
(Schoder et al., 2015). The first reported zoonotic transmission episodes from pig to human were early last 
decade in the Netherlands (Voss et al., 2005): a 6-month-old child admitted to hospital for thoracic surgery 
was positive for MRSA, as well the parents who were pig farmers; all were colonized with the same identical 
MRSA isolate. Also, a veterinarian, his child, and the nurse who treated the child were all colonized with 
the same spa type 108 MRSA isolate. This was the first reported case of apparent zoonotic transmission 
from pigs to a vet, and from the vet to family members (Voss et al., 2005). 

The prevalence of CC398 MRSA in food-producing animals is increasing and people in direct contact with 
live animals are at higher risk of colonization or infection than the general population (EFSA, 2009a). In 
the Netherlands, Europe´s largest exporter of live pigs (Petinaki and Spiliopoulou, 2012), contact with pigs 
is recognized as a risk factor for MRSA nasal carriage (de Boer et al., 2009). With an annual production of 
25 million pigs, Denmark is also a large potential reservoir for MRSA ST398 (Lewis et al., 2008). Ten per 
cent of Belgian farms had a MRSA problem originating from cases of subclinical or clinical mastitis 
(Vanderhaeghen et al., 2010). Livestock-associated ST398 has been found in bulk tanks in dairy farms in 
the UK (Paterson et al., 2014a), swine, and environmental holdings in Italy (Locatelli et al., 2016), in veal 
calves (Tenhagen et al., 2014) and poultry (Feßler et al., 2011) in Germany, in raw food samples in Spain 
(Lozano et al., 2009) and in food products illegally imported into the European Union (EU) (Oniciuc et al., 
2015). MRSA was recently isolated from retail pork meat sold in a British supermarket (Hadjirin et al., 
2015), and MRSA contamination of retail meat has been demonstrated in several studies.  

The diversity of MRSA lineages, which varies not only with the animal species but within and between 
different farm units suggests the existence of an active and dynamic sharing of MRSA lineages among 
isolates (Locatelli et al., 2016). However, only a small proportion of all MRSA in humans is MRSA ST398 
(van Cleef et al., 2011). Epidemiological data suggest that LA-MRSA have lower transfer rates, and are less 
virulent than other STs. Price et al. (2012) suggest that the low transmission rates of porcine CC398 strains 
to humans is due to poor adhesion of CC398 to human cells. 
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Although the origin of mecC in MRSA isolates from dairy cattle in England (García-Álvarez et al., 2011) is 
not clear, it is obvious that contact with animals poses a zoonotic risk; mecC can be transmitted between 
species and therefore may be found in LA-MRSA (Paterson et al., 2014b). 

Human clones can colonize pigs, for example ST5 (USA100) was found in Canada, ST22 in Ireland 
(Pantosti, 2012), and variants of ST9 in Italy and China (Battisti et al., 2010; Fang et al., 2014). The presence 
of human clones in pigs can result from human-to-pig contamination, but some strains, such as the 
t127/ST1 clone, may be animal-adapted (Pantosti, 2012). MRSA strains with a “typical” human genetic 
background (ST5, ST8, ST22, ST30, and ST45) have been reported in pigs or pig farms in Europe, USA, and 
Africa (Crombé et al., 2013). Ruminants (dairy cattle and sheep) can be healthy carriers of mecC MRSA 
CC130, evidence that they serve as a zoonotic reservoir allowing MRSA transmission to humans. Such 
transmission is increasing and now accounts for 2% of human MRSA cases annually in Denmark (Petersen 
et al., 2013). OS-MRSA isolates have been identified in milk samples collected from cows with mastitis in 
four different regions in China (Pu et al., 2014) and BORSA in pork meat (Bystroń et al., 2010). 

Incorrect handling during animal slaughter can lead to MRSA contamination of carcasses (Argudín et al., 
2015), and consequently a risk for human consumption and dissemination in the community. CA-MRSA 
is a public heath challenge because it spreads effectively in both urban and rural settlements, and meat may 
contribute to the spread of both CA-MRSA (Ogata et al., 2012) and HA-MRSA (Feßler et al., 2011). CA-
MRSA clones have been also reported in farm animals and associated foodstuffs in the USA, and in foods 
confiscated from passengers on non-EU flights (Rodríguez-Lázaro et al., 2015). Thus, MRSA 
contamination via food is associated not only with zoonotic transmission but also with unsafe food 
handling: CA-MRSA strains are by definition from a human source. Consequently, control and prevention 
measures are required throughout the entire meat chain, from primary production to retail (Normanno et 
al., 2015). 

 

Evolution and emergence of LA-MRSA 

Intensive livestock farming has been developing since the mid-twentieth century in response to the demand 
for meat. This has included the overuse of antibiotics as growth promoters and as preventive therapy, which 
has facilitated the emergence of new pathogens, including those resistant to antibiotics. One consequence 
is the transmission of such pathogens to humans via food of animal origin. The food production chain, 
from farm to fork, may contribute to transmission of MRSA: MRSA has been already found in pigs (Fromm 
et al., 2014) and workers in contact with them, particularly farmers, abattoir workers and vets (Cuny et al., 
2013).  

CC398 has been found repeatedly in pigs since 2005 (Voss et al., 2005; Lewis et al., 2008) (Table 4). MRSA 
CC398 has been isolated in Germany from farmers (86%) and vets (45%), as well as a small proportion of 
their close relatives, evidencing inter-human transmission, albeit at a low rate (Cuny et al., 2009). The 
prevalence is higher among people in contact with live animals (5.2%), especially those hanging broilers on 
the slaughter line (20.0%), than among other workers (1.9%) (Mulders et al., 2010). MRSA prevalence is 
significantly higher among men than women (39.8% vs. 6.6%, p<0.05) (Antoci et al., 2013). 

MRSA isolates of ST2077 (Lozano et al., 2012) and ST398 belong to CC398, and ST398 is the principal clone 
shared by animals and humans (Pantosti, 2012). Generally, MRSA CC398 emerged in the USA and Europe 
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(O’Brien et al., 2012; Buyukcangaz et al., 2013). Countries with a higher density of pig farms have a higher 
rate of MRSA (EFSA, 2009a). It was first reported in the Netherlands and confirmed elsewhere in Europe 
and beyond that living or working on a farm was a risk factor for acquiring LA-MRSA (Voss et al., 2005). 
ST398 is present on up to 70% of German pig farms, and includes more than 90% of all European porcine 
strains (Köck et al., 2012). MRSA ST398 has been found on cattle, turkey, rabbit, and poultry farms (Spohr 
et al., 2011; Richter et al., 2012; Agnoletti et al., 2014) and even in companion animals (Pantosti, 2012), 
leading to the recognition of a third epidemiological form of MRSA (Paterson et al. 2014a) that can cause 
severe human infections (Pan et al., 2009) and even death (Camoez et al., 2013). 

Most LA-MRSA ST398 are susceptible to antibiotics other than β-lactams, but resistant to tetracycline; 
presumably the massive use of tetracycline in pig farming favored the emergence of this clone (Moodley et 
al., 2011). ST398 typically carries SCCmec type IV or, more frequently, type V (Monecke et al., 2011) or 
type VII (Price et al., 2012), and can be distinguished by its particular resistance to digestion by SmaI, the 
macro restriction enzyme most frequently used in S. aureus typing by PFGE (Chung et al., 2000). LA-MRSA 
ST398 classified as non-typeable (NT)-MRSA can however be typed by PFGE using the SmaI isoschizomer, 
Cfr91 (Molla et al., 2012). Although there is less nosocomial transmission of this LA-MRSA genotype than 
other genotypes (Cuny et al., 2013), its rapid emergence and epidemiological trajectory make it of public 
health relevance. MRSA ST398 has been increasingly frequently isolated from patients in the Netherlands 
since 2003 (Lewis et al., 2008) and a hospital outbreak has been reported (Wulf et al., 2008a). 

 

Emergence of MRSA via neglected routes of transmission 

Neglected pathways in terms of MRSA transmission and spread may occur. Few information is available 
regarding prevalence of enterotoxigenic antibiotic-resistant strains associated with food subjected to 
international trade. Moreover, illegal food transportation by travelers flying from different parts of the globe 
could lead to successful dissemination of MRSA lineages (Oniciuc et al., 2015; Rodríguez-Lázaro et al., 2015; 
Schoder et al., 2015). The USA custom office asked all passengers when arriving at the airport to fulfill a 
form saying if they have been in direct contact with animals (Category A referring to zoonotic disease 
transmissible through animal contact) or if they carry any animal food originated product which can 
potentially harm/ contaminate or animals infected with zoonotic agents (Category B) (Noordhuizen et al., 
2013).  

Referring to the EU, several regulations have been issued regarding the imports of animals and associated 
foodstuff. Most of these regulations refer to the importation of animals and products of animal origin, 
which were previously subjected to veterinary controls, however most of the directives mentions 
commercial trade, subsequently referring to large quantities which may be subjected to transportation (EC 
275/2007; EC 206/2009). Therefore, small volumes of foods intended for personal consumption which are 
potentially present in traveler luggage are exempted from customs control (Schoder et al., 2015). 

Unfortunately, few data are available concerning associated risks but also no attempts have been made to 
perform a meta-analysis on the actual prevalence of MRSA carried by travelers. In addition, travelers must 
understand and learn to accept the prohibition regarding the food traffic, consequently the risk of 
foodborne pathogens spreading. Unfortunately, the increased number of people travelling and the 
increased global trade will contribute to future outbreaks regardless the measures which will be taken. 
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1.8. Biofilm Formation and Composition Correlated with S. aureus Isolated From Food 
Sources 

S. aureus has been considered as one of the world’s leading cause of foodborne illnesses (Kim et al., 2016), 
and the primary staphylococcal niche for human body colonization, subsequently being involved in 
appearance of infections ranging from folliculitis to septicemia, pneumonia, TSS, endocarditis, and other 
(Otto, 2010; Szczuka et al., 2013; Brown et al., 2014).  

Nowadays, biofilm formation by this bacterium draws considerable attention since many infections are 
mediated by the ability of S. aureus to adhere to catheters or other medical devices (Szczuka et al., 2013). S. 
aureus, together with S. epidermidis are commonly found on cardiovascular devices, with 40%-50% causing 
prosthetic heart valve infections and 50%-70% catheter biofilm infections, consequently increasing the 
health care associated costs (Chen et al., 2013). 

In addition, S. aureus biofilm formation (Figure 6) represents a hidden pathway for food processing plants 
and human handlers, for which has got increased attention in the last twenty years (Rode et al., 2007; 
Gutiérrez et al., 2012). Since then, many studies demonstrated S. aureus ability to adhere and form biofilms 
on food-contact surfaces of different kinds such as stainless steel, polystyrene or glass. However, the 
literature about biofilm formation by food-related S. aureus strains is still scarce as many environmental 
conditions and/or food handlers microbiota could interfere and contribute in their development (Vázquez-
Sánchez et al., 2013; Santos et al., 2014; Di Ciccio et al., 2015). 

Moreover, biofilms came into attention as they have been shown increased tolerance to antimicrobial 
agents. MRSA strains adopt survival strategies by gaining several advantages when are disposed in biofilm 
state of growth, thus being protected from antibiotics, disinfectants, or various environmental conditions 
(Garrett et al., 2008; Uršič et al., 2008) which may be found in medical and food sectors. The gene expression 
is altered, in response to different environmental changes such as temperature, osmolarity, dryness, high 
pressure, high salt concentration, pH, oxygen supply, source of nutrients and other (Rode et al., 2007; 
Szczuka et al., 2013; Vázquez-Sánchez et al., 2013; Kim et al., 2016).  

In other words, biofilm growing cells have distinct properties from their planktonic counterparts by 
adopting an altered phenotype (Garrett et al., 2008). In a study conducted by Williams et al. (1997), ten 
times more the minimal bactericidal concentration (MBC) of vancomycin was necessary for a 3-log 
reduction for S. aureus biofilms. The metabolic rates may be explained by the capability of biofilms to act 
as a diffusion barrier to slow down the infiltration of some antimicrobial agents (Archer et al., 2011). 
Another study conducted by Singh and coworkers (2010) showed diminished penetration of antibiotics 
(e.g. oxacillin, cefotaxime or vancomycin) against biofilms formed by S. aureus and S. epidermidis. 
However, S. aureus and S. epidermidis biofilms remained unaffected when amikacin and ciprofloxacin were 
introduced in the assay (Singh et al., 2010). 

Since first known use of the term “biofilm” in 1981, and Antoine van Leeuwenhoek’s first discovery of 
microorganisms on tooth1 surface in 1684, several general definitions of biofilms were adopted: 

                                                           
1 “The number of these animicules in the scurf of a man’s teeth are so many that I believe they exceed the number of men in a 
kingdom.” 



 

22 
 

Donlan and Costerton (2002) ̶   “biofilm is a microbial derived sessile community characterized by cells that 
are irreversibly attached to a substratum or interface or to each other, are embedded in a matrix of 
extracellular polymeric substances (EPS) that they have produced, and exhibit an altered phenotype with 
respect to growth rate and gene transcription” 

Azeredo et al. (2014) ̶   “biofilms are microbial communities embedded in a self-produced polymeric matrix 
formed by EPS and present on the surface of biotic or abiotic materials or even in an air/ liquid interface” 

S. aureus biofilm can be viewed as a fortress that it is constructed gradually until it becomes an emergent 
form of microbial life. During biofilm growth, S. aureus adopts a biofilm-specific phenotype, completely 
different from their counterparts ̶  planktonic cells. For this irreversible switch, S. aureus must go through 
different complex metabolic, phenotypic, and physiological transformations (Azeredo et al., 2014). 

 
Figure 6. Biofilm formation steps (Donlan, 2001) 

 
The development of a S. aureus biofilm is a complex, multifactorial process triggering a multitude of 
mechanisms (Speziale et al., 2014) (Figure 7). Bacteria living in biofilms expresses a variety of 
macromolecular products, including exopolysaccharides, enzymes, proteins, extracellular DNA (eDNA), 
and other low mass solutes. All these components, known as EPS are responsible for the biofilm matrix 
forming, contributing to its architecture and stability (Flemming et al., 2016). The EPS molecules can trap 
sources of nutrients and other molecules, enhancing biofilm’s ability to survive in situations of starvation 
(Azeredo et al., 2014; Flemming et al., 2016). 

Moreover, S. aureus biofilms undertake specific changes in protein secretions. The S. aureus surface 
proteins C and G (SasC and SasG), clumping factor B (ClfB), serine aspartate repeat protein (SdrC), the 
biofilm associated protein (Bap), and the fibronectin/ fibrinogen-binding proteins (FnBPA and FnBPB) are 
known to be individually implicated in the biofilm matrix formation (Speziale et al., 2014). Its metabolic 
behavior may also change due to the altered phospholipids’ synthesis and exopolysaccharide production 
(Azeredo et al., 2014). These properties can trigger mechanisms related with virulence, resistance to 
antimicrobial agents and capacity for intracellular persistence, thus providing an ideal strategy for 
counteracting with external factors. 
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Figure 7. Emergent properties of biofilms and habitat formation  

 

Many in vitro studies concluded that Staphylococcus spp. can produce strong biofilms. The effect of different 
incubation atmospheres using limited-nutrient media (Uršič et al., 2008), different materials similarly to 
food processing surfaces (polystyrene and stainless steel) (Di Ciccio et al., 2015), or the effect of NaCl, 
glucose addition to the original growing media ̶  all of this proved to show the production of a significant 
higher biofilm biomass (Oniciuc et al., 2016), or an improved medium for biofilm growing (Brain Heart 
Infusion-BHI plus 10% human plasma) (Chen et al., 2012). However, low biomass has been observed in 
aerobic atmosphere rather than CO2-rich environments (aerobic with 5% CO2 or anaerobic using 10% CO2, 
10% H2 and 80% N2) (Chen et al., 2012).  

Knowing what drives a bacterium to produce a biofilm is the key element for applying proper and efficient 
hygienic measures for their removal. For example, the best strategy for improving the safety of meat 
products is by applying proper good manufacturing practices (GMP) and good hygiene practices (GHP) 
together with the application of antimicrobials at preharvest, postharvest, processing, storage, distribution, 
and consumption stages (Gutiérrez et al., 2012). Moreover, milk processing equipments may get 
contaminated through water used for cleaning them. However, cleaning-in-place (CIP) procedures engaged 
in milk processing lines can have a limited effectiveness against residual microorganisms, which can regrow 
and form new biofilms (Bremer et al., 2006).  

To note, we are only beginning to scratch the surface regarding properties of the biofilm matrix in which 
their tolerance to antimicrobials sets the pilons on their lifestyle (Figure 8). Their biofilm-specific 
phenotype seems to be acquired by the hiding living cells in the matrix, in this way gaining protection from 
antimicrobials. However, these mechanisms are not fully understood as antimicrobial tolerance remains at 
concentrations of antimicrobials that are above the saturation point of diffusion–reaction inhibition 
(Flemming et al., 2016). 
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Figure 8. Tolerance of, and resistance to, antimicrobials 

 

1.9. Strategies of Prevention and Control 

MRSA is a problem worldwide. Antimicrobial agents have been used for intensive livestock production (as 
therapeutic and preventive treatment, and to promote growth), and for humans in the community and in 
hospital, and consequently the development of antibiotic-resistant strains became inevitable. The resulting 
risks to public health include food safety aspects, as many food products are ready-to-eat without 
subsequent cooking. LA-MRSA, CA-MRSA and even HA-MRSA can be present in food for human 
consumption. Food and feed safety is essential, and the presence of MRSA in the food chain may contribute 
to the increasing dissemination of MRSA worldwide. Moreover, their ability to form biofilms must be 
considered as well as it represents a big challenge for the food industry, as some strains in their sessile state 
may tolerate antimicrobial agents, making the bacterium extremely difficult to eradicate (Basanisi et al., 
2017).  

Figure 5 shows MRSA dissemination pathways, from hospitals to the environment and livestock, and in the 
opposite direction from farms, farmers, people in contact with animals and associated foodstuffs along the 
food production chain to the community and hospital settings. Clearly, individuals in direct contact with 
MRSA-positive animals can acquire MRSA, and occupational livestock contact contains the risk of MRSA 
colonization for farmers, veterinarians, and abattoir staff: 87% of pig farmers in Denmark and Belgium were 
found to be colonized over a six-month monitoring period, 13% being intermittent carriers (Köck et al., 
2013). CC398 can be transmitted by direct exposure to animals but indirect exposure is also possible: 12.8% 
of household contacts of MRSA-positive veterinarians were also colonized with MRSA, and 77.8% of them 
with the same strain (Köck et al., 2013). LA-MRSA (CC398) isolates are, however, increasingly colonizing 
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people with no contact with livestock, indicating that this lineage is successfully spreading into the 
community (Larsen et al., 2015). 

MRSA introduced into the slaughterhouse on animals or abattoir personnel can lead to contamination of 
raw meat. There can be cross contamination in the primary food production chain involving animal 
products or staff. Food contamination by human handling may contribute to the spread of MRSA in 
hospitals and other institutional environments. For food safety and consumer protection, it is important to 
determine the origin of MRSA, its dissemination in the food chain, and vectors (air, water) of transmission 
and spread. Various routes of MRSA transmission to community have been neglected, such as the illegal 
introduction and commerce of food contaminated with MRSA (Oniciuc et al., 2015; Rodríguez-Lázaro et 
al., 2015). Illegal commerce is by its nature difficult to assess, so the risk of MRSA transmission by this route 
is unknown but probably high. 

Measures for controlling MRSA spread are necessary. LA-MRSA is a particular problem for the food sector 
related to the use of antimicrobials, but HA- and CA-MRSA must also be considered. Communication 
between medical and veterinary practitioners, the agro-food sector and consumers is insufficient, and a 
“one health” approach or holistic strategy is required to encompass all relevant aspects of the food chain in 
the community as a whole, from primary production to final consumers. Control and prevention strategies 
and monitoring programmes should be implemented from farm to hospital, in the same way as food safety 
applies from farm to fork. International action is needed to control cross-border MRSA spread. Monitoring 
and surveillance programmes should not be regarded as options but as essential for MRSA control. 
Prevention of zoonotic transmission from livestock to human requires biosecurity and hygiene control 
measures (Petersen et al., 2013), and good farming practice involving in particular the rational use of 
antibiotics (Vázquez-Sánchez et al., 2012).  

Finally, the meat production chain should be subject to rigorous monitoring and preventive measures, 
including strict hygiene standards for staff in contact with meat carcasses and meat products. 

 

1.10. Surveillance Programs in the European Union 

MRSA is present all along the food chain in Europe and elsewhere, indicating the need for surveillance 
programmes. The incidence of HA-MRSA infections in many European countries has been decreasing or 
has remained low due to programmes aimed to control its spread. However, few European countries have 
national strategies for controlling CA- or LA-MRSA (Köck et al., 2010). Although the prevalence of these 
MRSA is still low, such strains can be found in diverse sectors: home care, travel industries, leisure activities, 
food products, and livestock transport (Köck et al., 2010). The prevalence of LA-MRSA in chicken and pork 
meat in Germany was reported to be 42% and 16% respectively, revealing the potential for human disease, 
and the need for surveillance programmes (Köck et al., 2013). In Canada, health authorities consider that 
additional surveillance efforts are required to monitor the emergence and clinical relevance of LA-MRSA 
due to recently identification of LA-MRSA infections (Golding et al., 2010). Collaboration between medical 
and veterinary practitioners is important for developing strategies to protect against LA-MRSA (EFSA, 
2009a). 

Surveillance along the food chain, from primary production until the final consumer, is necessary for 
traceability purposes, favoring detection and control of new types of MRSA. EFSA’s Panel on Biological 
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Hazards (BIOHAZ) stated that both patients admitted to hospitals and people exposed to livestock should 
be systematically monitored for MRSA (EFSA, 2009b). Although the prevalence of CC398 is low in some 
countries, surveillance programmes are required to reveal the real prevalence and properties of LA-MRSA 
in livestock and foodstuffs (EFSA, 2009a). CC398 is the most prevalent lineage in Dutch pig farms, and 
consequently proactive screening, control and prevention have been implemented to hinder its 
dissemination: the incidence of LA-MRSA has subsequently been low (van Cleef et al., 2013). The 
Norwegian Veterinary Institute (NVI) started the surveillance of pigs in 2014, following an increase in the 
prevalence of, and two outbreaks of, LA-MRSA in Norwegian pig herds (Urdahl et al. 2014). However, a 
low prevalence of MRSA due to consumption of foodstuff has been noted in the UK, compared with other 
routes of transmission (Stone, 2017). 

Romania is a particular case since its MRSA rate is one of the highest worldwide; ranging from 30% to 70% 
(Nica et al., 2010; Vremeră et al., 2012). The most frequently isolated MRSA (41.2%) belonged to CC1, with 
only one LA-MRSA strain found in a blood culture from a chronic obstructive lung disease patient living 
in an urban area (Monecke et al., 2014). However, there are no surveillance data available for CC398 in 
Romania, either for humans or livestock (Monecke et al., 2014), although a spa type (t034) associated with 
this lineage has been found (Székely et al., 2012). Romania is ranked fourth and ninth in the EU for sheep 
and swine densities, respectively, and MRSA colonization of farm animals and workers can be expected. 

Indeed, LA-ST398 has been found both among swine workers and in food products illegally imported to 
Romania (Huang et al., 2014; Oniciuc et al., 2015). Surveillance programmes for the food chain in Romania 
would be valuable for early outbreak detection and assessing whether this clone is a major zoonotic 
foodborne pathogen. While in many developing countries surveillance systems have been implemented and 
developed with international support, this is not the case in Romania (Monecke et al., 2014). 
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Procedures Used for Detection and Identification of Staphylococcus aureus 

 
2.1. Conventional Detection and Identification Methods  
 
Over the years, several culture media have been used for detection and enumeration of coagulase-positive 
staphylococci. Of them, Baird Parker Agar media remains the commonly used culture media in Europe and 
USA for differentiation of staphylococci, especially S. aureus (Baird and Lee 1995; Hudson, 2010). However, 
this media is partially selective and it is primarily used in processing foods or environmental samples rather 
than clinical ones. Principle of action is based on the ability of staphylococci to reduce tellurite to tellurium 
and to put into evidence lecitinase from egg lecithin while other components such as pancreatic digest of 
casein, beef and yeast extracts provides sources of nitrogen, carbon, sulphur and vitamins (Hudson, 2010).  

ISO 6888 describes two horizontal methods (part 1 
and part 2) (Figure 9) for the enumeration of 
coagulase-positive staphylococci. In the general case, 
part 1 of ISO 6888 can be used but it is preferable to 
use the procedure described in part 2 (using rabbit 
plasma fibrinogen) in case of foodstuffs (such as 
cheeses made from raw milk and certain raw meat 
products) likely to be contaminated by staphylococci 
forming atypical colonies on a Baird-Parker agar 
medium or having a background flora which can 
obscure the colonies (ISO 6888). 
Nowadays, rapid laboratory diagnosis is critical for 
treating, managing and preventing MRSA (Kumar et 
al., 2013; Malhotra-Kumar et al., 2010). Therefore, 
different chromogenic media for MRSA detection 
such as Brilliance MRSA agar (Oxoid), ChromID 
(bioMérieux), HardyCHROM™ MRSA (Hardy 
Diagnostics), MRSASelect (BioRad) or BBL-
CHROMagar (BD Diagnostics) have appeared. 
However, even though it could provide good 
diagnostic performance for MRSA confirmation 
from clinical samples, in case of food samples have 
shown lower performance (Ariza et al., 2015). 
 

2.2. Molecular Amplification-Based Methods 
Useful molecular methods to categorize isolates and compare the relevant genetic features of each clone are 
now available, such as pulsed-field gel electrophoresis (PFGE), multi-locus sequence typing (MLST), spa 
typing or SCCmec typing. 

Figure 9. Horizontal method for the 
enumeration of coagulase-positive 

staphylococci (S. aureus and other species) 
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Polymerase Chain Reaction- Based Methods 

Polymerase chain reaction (PCR)-based molecular methods have been developed and applied to study the 
population genetics and molecular epidemiology of foodborne pathogens for more than two decades 
(Oyarzabal and Kathariou, 2014). From chemical point of view, is based on successive cycles of in vitro 
DNA replication form the PCR reaction, in which two primers hybridize with the two strands of the original 
sequence. However, this reaction takes place by temperature steps and the only enzyme used in the reaction 
is a DNA-dependent DNA polymerase (replicase function).  

Components: DNA sample, DNA polymerase, primers, deoxynucleotide triphosphates (dNTPs), PCR 
buffer, magnesium chloride.  

PCR steps: initial denaturation denaturation primers annealing extensionfinal extension. 
Subsequently, analysis of the banding pattern in electrophoretic gel is required. DNA molecules are 
separated according to size when are subjected to an electric field. Since DNA is negatively charged when 
subjected to an electric current, they migrate through the gel to the positive pole. However, Real-Time PCR 
reactions eliminates the need for handling the product after amplification, reducing the risk of false positive 
results and cross-contamination.  

 

Pulsed-Field Gel Electrophoresis  
The most widely used molecular typing method of MRSA strains is PFGE, a technique based on the 
digestion of bacterial DNA by SmaI restriction enzyme, subsequently being separated into large fragments 
according with their size when are subjected to migration in an agarose gel. The orientation of electric field 
is changed periodically (“pulsed”) (Szabo, 2014). A PFGE protocol for S. aureus was developed in 2003 to 
allow inter-laboratory comparisons. However, a new clonal lineage belonging to CC398 shows resistance 
to the SmaI digestion, in which methylation of adenine and cytosine residues prevents the SmaI cleavage. 
However, such isolates can be typed by PFGE using the SmaI isoschizomer, Cfr91 (Molla et al., 2012). 

This method is often used for investigation of nosocomial outbreaks, to identify MRSA clones that have a 
particular ability to cause major outbreaks and to spread nationally and internationally (epidemic MRSA 
clones; EMRSA) (Szabo, 2014), for clustering and differentiation of pathogenic bacteria, being the reference 
method in epidemiological studies (Enright et al., 2000). Proved to be successfully used for comparing 
isolates coming from a known area, location, raw food, or surface from a food processing environment. 

However, a national PFGE-based typing system for S. aureus would have to be validated with MLST and 
spa typing data to maintain continuity with the nomenclature already established in the literature 
(McDougal et al., 2003). 

 

Multilocus sequence typing 

 MLST is a DNA sequence-based subtyping method developed in 2000 (Enright et al., 2000) for the 
unambiguous comparison of internal sequences (450-500 bp internal fragments) of seven housekeeping 
genes distributed in different loci around the S. aureus chromosome (www.mlst.net/). For each 
housekeeping gene, the different sequences present within a bacterial species are assigned as distinct alleles 
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and, for each isolate, the alleles at each of the seven loci define the allelic profile or sequence type (ST) 
(pubmlst.org/). As there are many alleles at each of seven loci, isolates are highly unlikely to have identical 
allelic profiles by chance, and isolates with the same allelic profile can be assigned as members of the same 
clone (Enright et al., 2000; Szabo, 2014). In the case of S. aureus, the following seven housekeeping genes 
are targeted: carbamate kinase (arcC), shikimate dehydrogenase (aroE), glycerol kinase (glp), guanylate 
kinase (gmk), phosphate acetyltransferase (pta), triosephosphate isomerase (tpi), and acetyl coenzyme A 
acetyltransferase (yqiL) (Enright et al., 2000). The sequences of these genes are compared with already 
known allele via mlst.net platform. 

 

spa Typing 

The method developed in 1996 for S. aureus is based on the detection of polymorphic X region of the gene 
encoding the surface protein A (spa) (Oyarzabal and Kathariou, 2014). Repeats are assigned a numerical 
code and the spa-type is deduced from the order of specific repeats (spaserver.ridom.de/). Analyzing the 
number of repetitions and their combination can be done by using Ridom Staphy-Type software. Grouping 
of related spa-types can be performed using Based Upon Repeat Pattern (BURP) algorithm implemented 
by the software, spa types with more than five repeats are clustered into different groups, with the calculated 
cost between members of a group being less than or equal to 6 (Strommenger et al., 2008). This method 
provides reliable, accurate and discriminatory power of MRSA typing in which a variety of spa types 
correspond to a single MLST. However, many of these genes reside on mobile genetic elements in which 
frequent exchange between different lineages might occur. Another disadvantage is that spa typing is less 
discriminatory than PFGE (Wiśniewska et al., 2012). 

 

SCCmec Typing 

MRSA strains are characterized by the presence of a large heterologous mobile genetic element called the 
SCCmec, carrying mecA or mecC genes, the central element of methicillin resistance (Milheiriço et al., 2007; 
Paterson et al., 2014a; Petinaki and Spiliopoulou, 2012). Besides the mec gene complex, SCCmec contains 
the ccr gene complex which encodes recombinases responsible for the mobility of SCCmec (Figure 3). The 
remaining parts of the gene complex are called J regions (regions J1, J2, and J3), which constitute 
nonessential components of the cassette (Oyarzabal and Kathariou, 2014; Szabo, 2014). Although, in some 
cases these regions harbor additional antibiotic resistance determinants.  

To date, eleven SCCmec types have been identified so far based on the allotype of ccr gene and the class of 
mec gene complex, plus a variety of subtypes depending on variations in the joining regions (Table 5-7). 
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Table 5. Currently identified SCCmec types in S. aureus strains (www.sccmec.org) 

SCCmec types 
ccr gene 
complexes 

mec gene 
complexes 

Strains 

I 1 (A1B1)* B NCTC10442, COL

II 2 (A2B2) A 
N315, Mu50, Mu3, MRSA252, JH1, 
JH9 

III 3 (A3B3) A 85/2082 

IV 2 (A2B2) B 
CA05, MW2, 8/6-3P, 81/108, 2314, 
cm11, JCSC4469, M03-68, E-MRSA-
15, JCSC6668, JCSC6670 

V 5 (C1) C2 WIS(WBG8318), TSGH17, PM1, 
VI 4 (A4B4) B HDE288 
VII 5 (C1) C1 JCSC6082 
VIII 4 (A4B4) A C10682, BK20781 
IX 1(A1B1) C2 JCSC6943 
X 7(A1B6) C1 JCSC6945
XI 8(A1B3) E LGA251 

Note: * A ccr gene or ccr genes in the gene complex are indicated in parenthesis. 

Table 6. Currently identified ccr gene complexes in staphylococci (www.sccmec.org) 

ccr gene complexes ccr genes 
SCCmec types carrying 
the ccr gene complexes 

Type 1 A1B1 I, IX 
Type 2 A2B2 II, IV 
Type 3 A3B3 III 
Type 4 A4B4** VI, VIII 
Type 5 C1 V, VII
Type 6 A5B3   
Type 7 A1B6 X 
Type 8 A1B3 XI 

Note: **ccrA4B4 genes found in type VIII SCCmec were nearly identical to that in the S. epidermidis SCC-CI element 
and showed nucleotide identities to those found in type VI SCCmec of 89.6% and 94.5%, respectively. 

Table 7. Currently identified mec gene complexes in staphylococci (www.sccmec.org) 

mec gene 
complexes 

  
SCCmec types carrying 
the mec gene complexes 

class A IS431-mecA-mecR1-mecI II, III, VIII 
class B IS431-mecA-ΔmecR1-IS1272 I, IV, VI

class C1 IS431-mecA-ΔmecR1-IS431(two IS431s were 
arranged in the same direction) VII,X 

class C2 IS431-mecA-ΔmecR1-IS431 ( two IS431s 
were arranged in the opposite direction) V, IX 

class D IS431-mecA-ΔmecR1   

class E blaZ-mecALGA251-mecR1LGA251-
mecILGA251 XI 
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Whole Genome Sequencing 

MRSA is of major concern worldwide and a serious threat for human and animal health. What in principle 
started to be a serious issue for healthcare settings, further studies elicited as well its presence in livestock. 
Comparative genomic analysis began in 2000 with the description of the complete genome of N315- MRSA 
strain isolated in 1982, and Mu50- a vancomycin-intermediate S. aureus (VISA) isolated in 1997, in which 
has been discovered a close relationship between strains (Kuroda et al., 2001). Genome analysis led to 
identify mobile elements, of which some of them were carrying antibiotic resistance and virulence genes 
(Kuroda et al., 2001). Nowadays, this tool proves to be invaluable not only for identifying horizontal gene 
transfer elements or other gene sequences regulating the expression of virulence factors (Alföldi et al., 
2013), but also helps to understand structural features which may contribute to the variations in the 
genomic rearrangement or changes in the gene repertory (Castillo et al., 2016). Moreover, mechanisms 
leading to mutations that undergo to non-functional proteins (Chua et al., 2013) are of great importance as 
can expose particularities on the evolution of such strains. 

By WGS, genome comparison with other S. aureus strains already published in the literature can be done, 
that some are having distinct epidemiological and virulence properties that could lead to identification of 
virulence factors and genes associated with antimicrobial resistance. Moreover, by WGS, decoding the 
mechanisms involved in phenotypic expression of methicillin resistance can be performed. 
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Materials and Equipments  

The materials used for the present thesis were provided by “Dunărea de Jos” University of Galați ̶ 
(Romania), University of Burgos and Instituto Tecnológico Agrario de Castilla y León  ̶ (Spain), Institute 
of Milk Hygiene  ̶ (Austria) and Centro de Engenharia Biologica  ̶ (Braga, Portugal). 

3.1. Bacterial Strains 
Table 8. Staphylococcus aureus strains used in the present thesis 

Isolate 
number 

Isolation 
date 

Origin (food item) Control point Country of origin 

American Type Culture Collection (ATCC)
ATCC®25923  Clinical isolate - - 
Collection of Food Microbiology Department of the "Dunărea de Jos" University of Galați (Romania) 
E1 04/02/2013 Whey cheese Galati market Republic of Moldavia 
E26 04/02/2013 Whey cheese ~ ~
E1NC 04/02/2013 Whey cheese ~ ~
E26NC 04/02/2013 Whey cheese ~ ~
E5 07/02/2013 Poultry ~ ~
E18 14/09/2012 Artificial black caviar ~ ~
E10 14/09/2012 Artificial red caviar ~ ~
E23 14/09/2012 Raw milk ~ ~
E25 14/09/2012 Raw milk ~ ~
E16 14/09/2012 Fresh cow cheese ~ ~
E21 14/09/2012 Fresh cow cheese ~ ~
E6 14/09/2012 Sheep cheese salted in brine ~ ~
E4 14/09/2012 Unfermented goat cheese ~ ~
E9 14/09/2012 Unfermented goat cheese ~ ~
E12 14/09/2012 Unfermented goat cheese ~ ~
E15 14/09/2012 Unfermented goat cheese ~ ~
E20 14/09/2012 Unfermented goat cheese ~ ~
E30 14/09/2012 Unfermented goat cheese ~ ~
E2 14/09/2012 Smoked salmon ~ ~
E22 06/11/2012 Pork lard ~ ~
E19 06/11/2012 Raw milk ~ ~
E8 06/11/2012 Poultry ~ ~
E24 06/11/2012 Poultry ~ ~

E13 06/11/2012 Non-fermented unsalted
sheep cheese ~ ~

E14 06/11/2012 Non-fermented unsalted
sheep cheese ~ ~

E29 06/11/2012 
Non-fermented unsalted 
sheep cheese ~ ~

E29NC 06/11/2012 Non-fermented unsalted
sheep cheese ~ ~

E7 06/11/2012 Smoked fish ~ ~
E7NC 06/11/2012 Smoked fish ~ ~
E3 06/11/2012 Fish canned in oil with herbs ~ ~
E11 29/01/2013 Goat cheese ~ ~
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E17 
 29/01/2013 Goat cheese ~ ~ 

01-02 a 13/07/2015 soft goat cheese  ~ ~ 
01-05 a 13/07/2015 ripened sheep cheese  ~ ~ 
01-05 b 13/07/2015 ripened sheep cheese  ~ ~ 
Collection of Food Microbiology Department of the University of Burgos and Instituto Tecnológico Agrario de 
Castilla y León (Spain) 
LBMM 820 19/05/2012 Cheese Bilbao airport Ecuador 
LBMM 821 19/05/2012  Pork meat  ~ Ecuador 
LBMM 822  19/06/2012 Antelope ~ Unknown  
LBMM 823 11/06/2012 Unknown meat ~ Ecuador 
LBMM 824 11/06/2012 Unknown meat ~ Ecuador 
LBMM 825 18/06/2012 Cheese ~ Ecuador 
LBMM 826 18/06/2012 Cheese ~ Ecuador 
LBMM 827 09/06/2012 Eggs ~ Ecuador 
LBMM 828 09/06/2012 Guinea pig  ~ Ecuador 
LBMM 829 14/05/2012 Cheese ~ Perú 
LBMM 830 12/07/2012 Pork meat ~ Argentina 
LBMM 831 27/05/2012 Unknown meat ~ China 
LBMM 832 27/05/2012 Duck meat ~ China 
LBMM 833 03/08/2012 Cheese ~ Bolivia 
LBMM 834 03/08/2012 Cheese ~ Bolivia 
LBMM 835 03/08/2012 Cheese ~ Bolivia 
LBMM 836 03/08/2012 Cheese ~ Bolivia 
LBMM 837 15/05/2012 Cheese ~ Ecuador 
LBMM 838 04/07/1905 Rodents ~ Guinea Equatorial 
LBMM 839 30/08/2012 Cheese ~ Romania 
LBMM 840 30/08/2012 Cheese ~ Romania 
LBMM 841 30/08/2012 Unknown meat  ~ Romania 
LBMM 842 30/08/2012 Unknown meat ~ Romania 
LBMM 843 11/09/2012 Duck meat  ~ China 
LBMM 844 13/08/2012 Pork meat ~ Bolivia 
LBMM 845 30/05/2012 Unknown meat  ~ Perú 
LBMM 846 30/05/2012 Cheese ~ Perú 
LBMM 847 30/05/2012 Cheese ~ Perú 
LBMM 848  30/05/2012 Cheese ~ Perú 
LBMM 849 30/05/2012 Cheese ~ Perú 
LBMM 850  11/09/2012 Unknown meat  ~ China 
LBMM 851 09/02/2013 Beef meat ~ Bolivia 
LBMM 852 09/02/2013 Beef meat ~ Bolivia 
LBMM 853 09/02/2013 Cheese ~ Bolivia 
LBMM 854 09/02/2013 Cheese ~ Bolivia 
LBMM 855 24/01/2013 Unknown meat ~ Serbia 
LBMM 856 04/01/2013 Cheese ~ Perú 
LBMM 857 20/02/2013 Duck meat ~ China 
LBMM 858  04/01/2013 Cheese ~ Perú 
LBMM 859  04/01/2013 Cheese ~ Perú 
LBMM 860  27/01/2013 Cheese ~ Perú 
LBMM 861 17/02/2013 Cheese ~ Paraguay 
LBMM 862 16/02/2013 Unknown meat  ~ Bolivia 



 

34 
 

LBMM 863 16/02/2013 Unknown meat ~ Bolivia 
LBMM 864  16/02/2013 Unknown meat ~ Bolivia 
LBMM 865 16/02/2013 Unknown meat ~ Bolivia 
LBMM 866 16/02/2013 Cheese ~ Bolivia 
LBMM 867 16/02/2013 Cheese ~ Bolivia 
LBMM 868 16/02/2013 Unknown meat ~ Bolivia 
LBMM 869 18/04/2013 Cheese ~ Bolivia 
LBMM 870 18/04/2013 Cheese ~ Bolivia 
LBMM 871  28/03/2013 Cheese ~ Bolivia 
LBMM 872 07/04/2013 Beef meat ~ Columbia 
LBMM 873 11/04/2013 Cheese ~ Bolivia 
LBMM 874 28/04/2013 Cheese ~ Perú 
LBMM 875  27/04/2013 Cheese ~ Bolivia 
LBMM 876 21/02/2013 Meat ~ Brazil 
LBMM 877 16/05/2013 Cheese ~ Brazil 
LBMM 878 27/05/2013 Cheese ~ Paraguay 
LBMM 879 01/06/2013 Cheese ~ Bolivia 
LBMM 880 01/06/2013 Cheese ~ Bolivia 
LBMM 881 09/05/2013 Cheese ~ Columbia 
LBMM 882  03/05/2013 Cheese ~ Brazil 
LBMM 883 18/12/2012 Cheese ~ Bolivia 
LBMM 884  11/03/2013 Cheese ~ Perú 
LBMM 885 27/01/2013 Cheese ~ Perú 

SA11 23/09/2012 Cheese 
Land border 
Obrežje Turkey 

SA17 03/10/2012 Meat-salami (dry) Brnik airport Republic of Kosovo 

SA21 08/11/2012 Cheese (green mold) Land border 
Obrežje 

Turkey 

SA43 06/02/2013 Meat Brnik airport Republic of Kosovo 
21a 13/08/2008 Sheep Castile and Leon Spain 
125a 01/09/2008 Sheep ~ ~ 
282b 28/10/2008 Sheep ~ ~ 
355b 18/11/2008 Sheep ~ ~ 
358c 18/11/2008 Sheep ~ ~ 
620a 24/02/2009 Sheep ~ ~ 
621a  24/02/2009 Sheep ~ ~ 
622a 24/02/2009 Sheep ~ ~ 
623a  24/02/2009 Sheep ~ ~ 
625a 24/02/2009 Sheep ~ ~ 
626a 24/02/2009 Sheep ~ ~ 
627a  24/02/2009 Sheep ~ ~ 
628a 24/02/2009 Sheep ~ ~ 
629a 24/02/2009 Sheep ~ ~ 
630a 24/02/2009 Sheep ~ ~ 
631a  24/02/2009 Sheep ~ ~ 
633a 24/02/2009 Sheep ~ ~ 
681a 17/03/2009 Sheep ~ ~ 
684a 17/03/2009 Sheep ~ ~ 
686a 17/03/2009 Sheep ~ ~ 
689a 17/03/2009 Sheep ~ ~ 
690a 17/03/2009 Sheep ~ ~ 
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691a 17/03/2009 Sheep ~ ~ 
694a 17/03/2009 Sheep ~ ~ 
696a 17/03/2009 Sheep ~ ~ 
 697a 17/03/2009 Sheep ~ ~ 
764a 14/04/2009 Sheep ~ ~ 
769a 14/04/2009 Sheep ~ ~ 
770a 14/04/2009 Sheep ~ ~ 
771a 14/04/2009 Sheep ~ ~ 
772a 14/04/2009 Sheep ~ ~ 
773a 14/04/2009 Sheep ~ ~ 
775a 14/04/2009 Sheep ~ ~ 
776a 14/04/2009 Sheep ~ ~ 
777b 14/04/2009 Sheep ~ ~ 
778a 14/04/2009 Sheep ~ ~ 
779a 14/04/2009 Sheep ~ ~ 
924a 09/06/2009 Sheep ~ ~ 
929a 09/06/2009 Sheep ~ ~ 
943a 16/06/2009 Sheep ~ ~ 
945a 16/06/2009 Sheep ~ ~ 
947a 16/06/2009 Sheep ~ ~ 
949a 16/06/2009 Sheep ~ ~ 
1008a  14/07/2009  Sheep ~ ~ 
648c   03/03/2009 Sheep ~ ~ 
741a  07/04/2009 Sheep ~ ~ 
1040a  28/07/2009 Sheep ~ ~ 
1043a 28/07/2009 Sheep ~ ~ 
SA 1 16/01/2008 Blood culture Hospital of León ~ 
SA 2 28/01/2008 Blood culture ~ ~ 
SA 3 31/01/2008 Blood culture ~ ~ 
SA 4 06/02/2008 Central vascular catheter ~ ~ 
SA 5 11/02/2008 Blood culture ~ ~ 
SA 6 18/02/2008 Blood culture ~ ~ 
SA 7 28/03/2008 Central vascular catheter ~ ~ 
SA 8  05/05/2008 Blood culture ~ ~ 
SA 9 05/05/2008 Central vascular catheter ~ ~ 
SA 10 19/05/2008 Blood culture  ~ ~ 
SA 11 26/05/2008 Blood culture  ~ ~ 
SA 12 02/06/2008 Blood culture  ~ ~ 
SA 13 30/06/2008 Blood culture  ~ ~ 
SA 14 01/07/2008 Blood culture  ~ ~ 
SA 15 04/07/2008 Central vascular catheter ~ ~ 
SA 16  04/07/2008 Central vascular catheter ~ ~ 
SA 17  18/07/2008 Blood culture  ~ ~ 
SA 18 21/07/2008 Blood culture  ~ ~ 
SA 19 28/07/2008 Blood culture  ~ ~ 
SA 20 09/08/2008 Blood culture  ~ ~ 
SA 21 11/08/2008 Blood culture  ~ ~ 
SA 22 25/08/2008 Drainage ~ ~ 
SA 23 26/08/2008 Central vascular catheter ~ ~ 
SA 24 06/10/2008 Blood culture ~ ~ 
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SA 25 16/10/2008 Blood culture ~ ~ 
SA 26 18/10/2008 Peripheral vascular catheter ~ ~ 
SA 27 27/10/2008 Packed red blood cells ~ ~ 
SA 28 28/10/2008 Ascitic fluid ~ ~ 
SA 29 04/11/2008 Peripheral vascular catheter ~ ~ 
SA 30 15/11/2008 Blood culture ~ ~ 
SA 31 23/12/2008 Blood culture ~ ~ 
SA 32 26/12/2008 Blood culture ~ ~ 
SA 33 29/12/2008 Blood culture ~ ~ 
SA 34 01/01/2007 Blood culture ~ ~ 
SA 35 17/01/2007 Central vascular catheter  ~ ~ 
SA 36 22/01/2007 Peripheral vascular catheter ~ ~ 
SA 37 22/01/2007 Central vascular catheter ~ ~ 
SA 38 01/02/2007 Blood culture ~ ~ 
SA 39 01/02/2007 Central vascular catheter ~ ~ 
SA 40 06/02/2007 Blood culture ~ ~ 
SA 41 27/02/2007 Blood culture ~ ~ 
SA 42 05/03/2007 Blood culture ~ ~ 
SA 44 12/03/2007 Blood culture ~ ~ 
SA 45 26/03/2007 Blood culture ~ ~ 
SA 46 26/03/2007 Blood culture ~ ~ 
SA 47 07/04/2007 Blood culture ~ ~ 
SA 48 07/04/2007 Blood culture ~ ~ 
SA 49 12/04/2007 Blood culture ~ ~ 
SA 50 24/04/2007 Blood culture ~ ~ 
SA 51 30/04/2007 Blood culture ~ ~ 
SA 52 02/05/2007 Blood culture ~ ~ 
SA 53 16/05/2007 Blood culture ~ ~ 
SA 54 17/05/2007 Blood culture ~ ~ 
SA 55 28/05/2007 Central vascular catheter ~ ~ 
SA 56 07/06/2007 Blood culture ~ ~ 
SA 57 02/07/2007 Blood culture ~ ~ 
SA 58  30/07/2007 Blood culture ~ ~ 
SA 59 07/08/2007 Central vascular catheter ~ ~ 
SA 60 24/08/2007 Blood culture ~ ~ 
SA 61 18/09/2007 Blood culture ~ ~ 
SA 62 21/09/2007 Central vascular catheter ~ ~ 
SA 63 04/10/2007 Blood culture ~ ~ 
SA 64 15/10/2007 Central vascular catheter ~ ~ 
SA 65 18/10/2007 Central vascular catheter ~ ~ 
SA 66 05/11/2007 Blood culture ~ ~ 
SA 67 07/11/2007 Blood culture ~ ~ 
SA 68 19/11/2007 Blood culture ~ ~ 
SA 69 27/11/2007 Blood culture ~ ~ 
SA 70 27/11/2007 Synovial joint fluid ~ ~ 
SA 71 19/12/2007 Blood culture ~ ~ 
LGA251 /05/2007 Bulk milk Cattle farm Southwest England 
24.1 29/12/2014 sheep meat Bilbao airport Nigeria 
24.2 29/12/2014 sheep meat ~ Nigeria 
45-1.1 21/02/2015 cheese ~ Egypt 
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45-3.1 21/02/2015 fresh beef meat ~ Egypt 

46-2.3 20/02/2015 cheese ~ Republic of 
Honduras 

50-2.1 10/02/2015 dried meat ~ China 
68.1 26/02/2015 cheese ~ Nicaragua 
68.2 26/02/2015 cheese ~ Nicaragua 
68.3 26/02/2015 cheese ~ Nicaragua 
74.1 28/02/2015 cheese ~ Bolivia 
74.2 28/02/2015 cheese ~ Bolivia 
74.3 28/02/2015 cheese ~ Bolivia 
80-2.1 26/02/2015 cheese ~ Nicaragua 
80-2.2 26/02/2015 cheese ~ Nicaragua 
80-2.3 26/02/2015 cheese ~ Nicaragua 
115-1.1 09/06/2015 cheese ~ Bolivia 
115-1.2 09/06/2015 cheese ~ Bolivia 
115-1.3 09/06/2015 cheese ~ Bolivia 
117.1 08/06/2015 cheese ~ Ecuador 
117.2 08/06/2015 cheese ~ Ecuador 
117.3 08/06/2015 cheese ~ Ecuador 
122-2.1 13/05/2015 cheese ~ Perú 
124.1 06/05/2015 cheese ~ Nicaragua 
132.2 17/06/2015 cheese ~ Columbia 
132.3 17/06/2015 cheese ~ Columbia 
133-1.1 22/06/2015 cheese ~ Nicaragua 
133-1.2 22/06/2015 cheese ~ Nicaragua 
133-1.3 22/06/2015 cheese ~ Nicaragua 
135.1 30/06/2015 cheese ~ Perú 
135.2 30/06/2015 cheese ~ Perú 
135.3 30/06/2015 cheese ~ Perú 
137-2.1 17/02/2015 fresh meat ~ Republic of Serbia 
137-2.2 17/02/2015 fresh meat ~ Republic of Serbia 
138.1 23/06/2015 cheese ~ Nicaragua 
138.2 23/06/2015 cheese ~ Nicaragua 
151-1.1 08/06/2015 curd ~ Bolivia 
151-1.2 08/06/2015 curd ~ Bolivia 
151-1.3 08/06/2015 curd ~ Bolivia 
153-1.1 22/06/2015 cheese ~ Bolivia 
153-1.2 22/06/2015 cheese ~ Bolivia 
153-1.3 22/06/2015 cheese ~ Bolivia 
Collection of the Institute of Milk Hygiene (Austria)
41 10/08/2012 Cheese Vienna airport Egypt 
47 11/08/2012 Raw breaded meat ~ Egypt 
50 11/08/2012 Meat ~ Egypt 
140 19/09/2012 Cheese in brine  ~ Turkey 
153 19/09/2012 Pastrami, sliced ~ Turkey 
165 25/09/2012 Lor, whey cheese ~ Turkey 
176 28/09/2012 Cheese, ripened  ~ Armenia 
226 30/09/2012 Sausage ~ North Korea 
247 25/10/2012 Raw muscle meat  ~ Albania 
249 25/10/2012 Head meat, cooked ~ Albania 
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294 08/11/2012 Cheese in brine with herbs ~ Republic of Kosovo 
298 08/11/2012 Cheese ~ Turkey 
364 29/11/2012 Sausage ~ Tunisia 
476 26/01/2013 White cheese with spice sauce  ~ Egypt 
498 31/01/2013 Cheese, ripened  ~ Egypt 
519 09/02/2013 White cheese ~ Turkey 
550 17/02/2013 White cheese ~ Tunisia 
576 03/03/2013 Cheese, ripened  ~ Egypt 

 
 
3.2. Bacterial Culture Media 
Baird Parker Agar (BP- Biolife Italiana srl., Milano, Italy) 

 
 
 
 
 
 
 
 

Final pH 7.2 ± 0.2, at temperature of 25°C after autoclaving (www. masciabrunelli.it) 
 

Brain Heart Infusion Broth (BHIB- Biolife Italiana srl., Milano, Italy) 

  
 
 
 
 
 
 
 
 
 

Final pH 7.4 ± 0.2, at temperature of 25°C after autoclaving (www. masciabrunelli.it) 
 

Brain Heart Infusion Agar (BHIA- Biolife Italiana srl., Milano, Italy) 

 

Brilliance MRSA 2 Agar (ThermoFisher Scientific, UK) 

Component Quantity (g/L) 

Pancreatic digest of casein 10 
Beef extract 5 
Yeast extract 1 
Sodium pyruvate 10 
Glycine 12 
Lithium chloride 5 
Agar 15 

Component Quantity (g/L) 

Brain infusion solids 12.5 
Beef heart infusion solids 5 
Peptocomplex 10 
Glucose 2 
Sodium chloride 5 
Disodium hydrogen 
phosphate 2.5 

Component Quantity (mg/L) 

Peptone mix 20 
Carbohydrates 4 
Kaolin 15 

Basic medium recommended by ISO 6888 for the detection and 
enumeration of coagulase-positive staphylococci. ISO 6888-1 
recommends the use of culture media in combination with egg 
yolk and potassium tellurite. 
 
Directions: Suspend 58 g in 1 L of cold distilled water; heat to 
boiling and autoclave at 121°C for 15 min. Cool to about 50°C 
and, using aseptic conditions, add 50 ml of Egg Yolk Tellurite 
Emulsion 20%. 

Nutrient medium for cultivation and isolation of a large range 
of microorganisms, including fastidious, yeasts and molds. It is 
used in order to prepare cultures of S. aureus for use in the 
coagulase test. 

Directions: Suspend 37 g of BHIB in 1 L of cold distilled water. 
Heat to boiling, distribute and sterilise by autoclaving at 121°C 
for 15 min. 

BHI supplemented with 15.0 g/L agar-agar (Biolife, Italy) 
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Final pH 7.3 ± 0.2, at temperature of 25°C after autoclaving (www.oxoid.com/) 

 

ChromID MRSA Agar (BioMérieux, France) 

 

 

 

 
 
Tryptic Soy Broth (TSB- Liofilchem, Italy) 

 

Final pH 7.3 ± 0.2, at temperature of 25°C after autoclaving (www.liofilchem.net) 
 

3.3. Enzymes, Reagents and Materials 
 
Enzymes 
 

DNA Polymerase FastStart Taq, 500 U (Roche Molecular Systems Inc., Switzerland) 
It is accompanied by reaction buffer (Roche, Switzerland) and MgCl2 (Roche, Switzerland) which will 
form complexes with dNTPs for the polymerase to recognize them and to be added to the elongated 
strand (Barbu, 2008) 
Lysostaphin from S. simulans, 5 mg (Sigma-Aldrich co., Saint Louis, USA) 
Lysozyme (Sigma-Aldrich co., Saint Louis, USA) 
Proteinase K, 0.1 mg/mL (Sigma-Aldrich co., Saint Louis, USA) in 20 mM Tris-HCl (pH 7.5): 1 mM CaCl2 
Proteinase K is an endopeptidase which hydrolyze the peptide bonds of the carboxylic groups of the 
aliphatic amino acids and aromatic, with the α-amino group blocking. 
Restriction Enzyme SmaI, 2000 U (Biolabs, UK) 
Restriction enzymes are molecular scissors capable to cut the bacterial DNA in specific areas, called 
restriction sites. They are used to generate small number of DNA fragments that can be separated based 
on the size. In general, these fragments are large and must be specially treated and separated in order to 
be able to generate a DNA fingerprint. Therefore, in a first phase, the bacteria is mixed with agarose gel 
and the cells are lysed to release DNA. Mixture of released DNA and the agarose forms a plug which is 
subsequently treated with the restriction enzymes (www.cdc.gov) 

Salts 5 
Agar 13 
Chromogen mix 0.2 
Antibiotics mix 20 mL 

Component Quantity (g/L) 

Triptone 17.0 
Soy peptone 3.0 
Sodium chloride 5.0 
Glucose 2.5 
Dipotassium phosphate 2.5 

Selective chromogenic medium for detection of MRSA, 
providing rapid results with high specificity and sensitivity. 

 

Selective chromogenic medium dedicated to the surveillance culture or screening 
of MRSA to identify hospitalized patients requiring isolation. The screening of 
MRSA carriers with surveillance cultures is a key step in the fight against 
nosocomial infections. ChromID MRSA has been developed to answer this major 
health concern. Identification of MRSA strains is based on the spontaneous green 
coloration of α- glycosidase- producing colonies and the presence of a mixture of 
antibiotic (www.biomerieux.com).

Basic broth medium supporting the fastidious bacteria 
growth. 

Directions: Suspend 30 g to 1 L of water, mix well and 
distribute and sterilise by autoclaving at 121°C for 15 min. 
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Restriction site used: 
5'...CCC↓GGG...3' 
3'...GGG↑CCC...5' (https://www.neb.com/products/r0141-smai) 

 

Reagents 
 

Agar-Agar (Biolife Italiana srl., Milano, Italy); 
Agarose D1 Low EEO Molecular Biology Grade (Laboratorios Conda S.A., Madrid, Spain); 
Calcium chloride anhydrous, 99.99% trace metals basis (Sigma-Aldrich co., Saint Louis, USA); 
Certified Low Melt Agarose (BioRad, Munich, Germany); 
Chelex® 100 (BioRad, Munich, Germany); 
Crystal Violet (CV- Merck KGaA, Darmstadt, Germany); 
Diethylpyrocarbonate (DEPC- ThermoFisher Scientific, Austria); 
DNA Gel Loading Dye, 6× (ThermoFisher Scientific, Austria); 
DNA Molecular Weight Marker 100 bp, 50-2000 bp (BioRad, Munich, Germany); 
dATP, dCTP, dGTP, and dTTP, 10 mM/each (Roche Molecular Systems Inc., Switzerland); 
EDTA Disodium Salt Dihydrate, 99+% (Sigma-Aldrich co., Saint Louis, USA); 
EDTA for Molecular Biology, 0.5M (Sigma-Aldrich co., Saint Louis, USA); 
Egg Yolk Tellurite Emulsion, 50% (EY- Biolife Italiana srl., Milano, Italy); 
Ethanol (Sigma-Aldrich co., Saint Louis, USA); 
Ethidium Bromide (Sigma-Aldrich co., Saint Louis, USA); 
Film Tracer SYPRO Ruby Biofilm (Invitrogen, Paisley, UK); (ThermoFisher Scientific, Austria); 
Formamide Hi-Di (Sigma-Aldrich co., Saint Louis, USA); 
Glacial Acetic Acid, ≥99% (Sigma-Aldrich co., Saint Louis, USA); 
Glucose (Sigma-Aldrich co., Saint Louis, USA); (B. Braun Melsungen AG, Melsungen, Germany); 
Glycerol (Merck KGaA, Darmstadt, Germany); 
Ladder DNA, 100 bp, 1 kbp (Biolabs, UK); 
Lambda Ladder PFG, 48.5–1018 kb (Biolabs, UK); 
Magnesium Chloride Hexahydrate, ≥ 99% (Sigma-Aldrich co., Saint Louis, USA); 
Magnesium Chloride, 25 mM (Applied Biosystems, Warrington, UK); 
McFarland 0.5 Equivalence Turbidity Standard (Remel, Lenexa, Kansas); 
Methanol Anhydrous, 99.8% (Sigma-Aldrich co., Saint Louis, USA); Avantor Performance Materials, 
Norway); 
N-lauroylsarcosine Sodium Salt, ≥ 97% (Sigma-Aldrich co., Saint Louis, USA); 
Nucleic Acid Gel stain GelRedTM, 10,000× in water (Biotium, ChemoMetec, Denmark); 
Phosphate Buffer Saline Solution (PBS- Sigma-Aldrich co., Saint Louis, USA); 
Pulsed Field Certified Agarose (UltraPure DNA grade agarose) (BioRad, Munich, Germany); 
Rabbit Plasma Fibrinogen (RPF- Biolife Italiana srl., Milano, Italy); 
Ringer Solution, sterile (Scharlau, Scharlab, Barcelona, Spain); 
RNase, DNase-Free Water (Sigma-Aldrich co., Saint Louis, USA); 
Sodium Acetate Anhydrous (Sigma-Aldrich co., Saint Louis, USA); 
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Sodium Chloride (Sigma-Aldrich co., Saint Louis, USA); (Liofilchem, Italy); 
Sodium Periodate NaIO4, 40 mM (Sigma-Aldrich co., Saint Louis, USA); 

SYTO® 9 Green Fluorescent Nucleic Acid Stain (Invitrogen, Paisley, UK); (Molecular Probes, Inc., 
Eugene, USA); 
TAE, 50× (Sigma-Aldrich co., Saint Louis, USA); 
TBE (Tris/Borat acid/EDTA buffer) extended range, 10× (BioRad, Munich, Germany); 
Tris-EDTA, 100× (Sigma-Aldrich co., Saint Louis, USA); 
Trizma Base (Sigma-Aldrich co., Saint Louis, USA); 
Wheat Germ Agglutinin, Oregon Green® 488 Conjugate (Invitrogen, Paisley, UK); (Molecular Probes, 
Inc., Eugene, USA); 

 
Materials 

96-well PCR Plates (Applied Biosystems); 
96-well Plates Tissue Cultured (Orange Scientific, Braine-l’Alleud, Belgium); 
96-well Plates Tissue Cultured (Nunc® MicroWellTM, USA); 
96-well Real Time PCR Plates (Applied Biosystems); 
96-well Sensititre Plates (TREK Diagnostic Systems Inc., Cleveland); 
Cryovials, 2 mL (CryoKING, Biologix Plastic Co., Ltd, China); 
Cuvettes for Spectrophotometer 1.2 mL (AHN Biotechnology GmbH, Germany); 
Erlenmeyer Flasks 150 mL, 500 mL, 1 L, 2 L; 
Filters 0.22 μm (Minisart®, Sartorius Stedim Biotech, Germany); 0.45 μm (Teknokroma, Professionally 
Friendly, Spain); 
Flasks of 100 mL, 250 mL, 500 mL, or 1 L; 
Gloves, Nitril Material (AQL 1.5 EPI); 
Micropipettes with Adjustable Volume: 1-10 μL, 0,5-20 μL, 20-200 μL, 100-1000 μL (AHN Biotechnology 
Gmbh, Germany); (Eppendorf Austria GmbH, Austria); 
Parafilm M (Pechiney Plastic Packaging, Chicago); 
Racks; 
Reaction Plate, 0.1 mL (Applied Biosystems); 
Petri Dishes, one use, d= 90 mm (ThermoFisher Scientific, Austria); 
Spatulas Drigalsky, Metal or Glass (Ingenlaboratory, Romania); 
Sterile Filter Bags (Stomacher Bags; Seward Ltd., Worthing West Sussex, UK) 
Sterile Tips with Filter, RNase and DNase free (AHN Biotechnology GmbH, Germany); 
Tubes of 1.5 mL, 2 mL, sterile (Eppendorf); 
Tubes of 15 mL, 50 mL, sterile (Falcon); 
Tubes PCR of 0.2 mL and strips (Applied Biosystems); 
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3.4. Oligonucleotides  
The oligonucleotides used in the present thesis are shown in Table 9. 
 

Table 9. Oligonucleotides for performing conventional and Real Time PCRs 

Target Gene Primer name Type Primer sequence (5'→ 3') 
Amplicon 
size (bp) 

Reference 

S. aureus nuc * 

fmhb4416F F 5’-CTA GCT TTA TTT CAGCAG GTG ACG AT-3’ 

103 (Trnčíková et al., 2008) 
aurR R 5’-TCA ACA TCT TTC GCA TGA TTC AAC AC-3’ 

aurP 
TaqMan® 
probe 

5’-FAM-CTT GCT CCG TTT CAC CAG GCT TCG GTG-
TAMRA -3’ 

MRSA 
mecA * 

SAmecA P4 F 5’-TCC AGA TTA CAA CTT CAC CAG G-3’ 
162 

(Stegger et al., 2012) 
SAmecA P7 R 5’-CCA CTT CAT ATC TTG TAA CG-3’ 

mecC * 
SAmecAlga251 F F 5’-GAA AAA AAG GCT TAG AAC GCC TC-3’ 

138 
SAmecAlga251 R R 5’-GAA GAT CTT TTC CGT TTT CAG C-3’ 

SCCmec           
ccr gene complex 

type 

mecA * 
mA1 F 5’-TGC TAT CCA CCC TCA AAC AGG-3’ 

286 

(Kondo et al., 2007) 

mA2 R 5’-AAC GTT GTA ACC ACC CCA AGA-3’ 

type 1 (A1B1) * 
α1 F 5’-AAC CTA TAT CAT CAA TCA GTA CGT-3’ 

695 
βc R 5’-ATT GCC TTG ATA ATA GCC ITC T-3’ 

type 2 (A2B2) * 
α2 F 5’-TAA AGG CAT CAA TGC ACA AAC ACT-3’ 

937 
βc R 5’-ATT GCC TTG ATA ATA GCC ITC T-3’ 

type 3 (A3B3) * 
α3 F 5’-AGC TCA AAA GCA AGC AAT AGA AT-3’ 

1791 
βc R 5’-ATT GCC TTG ATA ATA GCC ITC T-3’ 

type 4 (A4B4) * 
α4.2 F 5’-GTA TCA ATG CAC CAG AAC TT-3’ 

1287 
β4.2 R 5’-TTG CGA CTC TCT TGG CGT TT-3’ 

type 5 (C1) * 
γR F 5’-CCT TTA TAG ACT GGA TTA TTC AAA ATA T-3’ 

518 
γF R 5’-CGT CTA TTA CAA GAT GTT AAG GAT AAT-3’ 

A * 
mA7 F 5’-ATA TAC CAA ACC CGA CAA CTA CA-3’ 

1963 
(Kondo et al., 2007) mI6 R 5’-CAT AAC TTC CCA TTC TGC AGA TG-3’ 

B * mA7 F 5’-ATA TAC CAA ACC CGA CAA CTA CA-3’ 2827 



 

43 
 

SCCmec           
mec gene 

complex class 

IS7 R 5’-ATG CTT AAT GAT AGC ATC CGA ATG-3’ 

C * 
mA7 F 5’-ATA TAC CAA ACC CGA CAA CTA CA-3’ 

804 
IS2(iS-2) R 5’-TGA GGT TAT TCA GAT ATT TCG ATG T-3’ 

Subtyping 
SCCmec IV 

ccrB2 * 
ccrB2 F F 5’-CGA ACG TAA TAA CAT TGT CG-3’ 

203 

(Milheiriço et al., 2007) 

ccrB2 R R 5’-TTG GCW ATT TTA CGA TAG CC-3’ 

Type IVa * 
J IVa F F 5’-ATA AGA GAT CGA ACA GAA GC-3’ 

278 
J IVa R R 5’-TGA AGA AAT CAT GCC TAT CG-3’ 

Types IVb and 
IVF * 

J IVb F F 5’-TTG CTC ATT TCA GTC TTA CC-3’ 
336 

J IVb R R 5’-TTA CTT CAG CTG CAT TAA GC-3’ 
Types IVc and 

IVE * 
J IVc F F 5’-CCA TTG CAA ATT TCT CTT CC-3’ 

483 
J IVc R R 5’-ATA GAT TCT ACT GCA AGT CC-3’ 

Type IVd * 
J IVd F F 5’-TCT CGA CTG TTT GCA ATA GG-3’ 

575 
J IVd R R 5’-CAA TCA TCT AGT TGG ATA CG-3’ 

Type IVg * 
J IVg F F 5’-TGA TAG TCA AAG TAT GGT GG-3’ 

792 
J IVg R R 5’-GAA TAA TGC AAA GTG GAA CG-3’ 

Type IVh * 
J IVh F F 5’-TTC CTC GTT TTT TCT GAA CG-3’ 

663 
J IVh R R 5’-CAA ACA CTG ATA TTG TGT CG-3’ 

Panton-Valentine 
leukocidin 

luk-PV * 
luk-PV Up F 5’-ATC ATT AGG TAA AAT GTC TGG ACA TGA TCC A-3’ 

433 (Lina et al., 1999) 
luk-PV Dn R 5’-GCA TCA AST GTA TTG GAT AGC AAA AGC-3’ 

S. aureus specific
staphylococcal 

protein A 
spa # 

1095F F 5’-AGA CGA TCC TTC GGT GAG C-3’ 
422 (Harmsen et al., 2003) 

1517R R 5’-GCT TTT GCA ATG TCA TTT ACT G-3’ 

Staphylococcal 
enterotoxins 

sea # 
GSEAR1 F 5’-GGT TAT CAA TGT GCG GGT GG-3’ 

102 

(Gonano et al., 2009) 

GSEAR2 R 5’-CGG CAC TTT TTT CTC TTC GG-3’ 

seb # 
GSEBR1 F 5’-GTA TGG TGG TGT AAC TGA GC-3’ 

164 
GSEBR2 R 5’-CCA AAT AGT GAC GAG TTA GG-3’ 

sec # 
GSECR1 F 5’-AGA TGA AGT AGT TGA TGT GTA TGG-3’ 

451 
GSECR2 R 5’-CAC ACT TTT AGA ATC AAC CG-3’ 

sed # 
GSEDR1 F 5’-CCA ATA ATA GGA GAA AAT AAA AG-3’ 

278 
GSEDR2 R 5’-ATT GGT ATT TTT TTT CGT TC-3’ 



 

44 
 

see # 
GSEER1 F 5’-AGG TTT TTT CAC AGG TCA TCC-3’ 

209 
GSEER2 R 5’-CTT TTT TTT CTT CGG TCA ATC-3’ 

seg # 
SEG1 F 5’-TGC TAT CGA CAC ACT ACA ACC-3’ 

704 
SEG2 R 5’-CCA GAT TCA AAT GCA GAA CC-3’ 

seh # 
SEH1 F 5’-CGA AAG CAG AAG ATT TAC ACG-3’ 

495 
SEH2 R 5’-GAC CTT TAC TTA TTT CGC TGT C-3’ 

sei # 
SEI1 F 5’-GAC AAC AAA ACT GTC GAA ACT G-3’ 

630 
SEI2 R 5’-CCA TAT TCT TTG CCT TTA CCA G-3’ 

sej 
SEJF F 5’-CAT CAG AAC TGT TGT TCC GCT AG-3’ 

142 SEJR R 5’-CTG AAT TTT ACC ATC AAA GGT AC-3’ 

GTSSTR2 R 5’-TTT TCA GTA TTT GTA ACG CC-3’ 

Multilocus 
Sequence Typing 

arcC ^ 
arcCUp F 5’-TTG ATT CAC CAG CGC GTA TTG TC-3’ 

456 

(Enright et al., 2000) 

arcCDn R 5’-AGG TAT CTG CTT CAA TCA GCG-3’ 

aroE ^ 
aroEUp F 5’-ATC GGA AAT CCT ATT TCA CAT TC-3’ 

456 
aroEDn R 5’-GGT GTT GTA TTA ATA ACG ATA TC-3’ 

glp ^ 
glpUp F 5’-CTA GGA ACT GCA ATC TTA ATC C-3’ 

465 
glpDn R 5’-TGG TAA AAT CGC ATG TCC AAT TC-3’ 

gmk ^ 
gmkUp F 5’-ATC GTT TTA TCG GGA CCA TC-3’ 

417 
gmkDn R 5’-TCA TTA ACT ACA ACG TAA TCG TA-3’ 

pta ^ 
ptaUp F 5’-GTT AAA ATC GTA TTA CCT GAA GG-3’ 

474 
ptaDn R 5’-GAC CCT TTT GTT GAA AAG CTT AA-3’ 

tpi ^ 
tpiUp F 5’-TCG TTC ATT CTG AAC GTC GTG AA-3’ 

402 
tpiDn R 5’-TTT GCA CCT TCT AAC AAT TGT AC-3’ 

yqiL ^ 
yqiLUp F 5’-CAG CAT ACA GGA CAC CTA TTG GC-3’ 

516 
yqiLDn R 5’-CGT TGA GGA ATC GAT ACT GGA AC-3’ 

Note:      *- Primers provided by MWG;                         F- forward primer;                                              R- reverse primer. 
# - Primers provided by Eurofins;   ^ - Primers provided by Metabion; 
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3.5. Commercial Kits 
 

Big Dye Terminator Sequencing Kit (Applied Biosystems, Warrington, UK); 
DNeasy Blood and Tissue Kit (Qiagen, Hilden, Germany); 
QIAamp DNA Mini extraction kit (Qiagen, Hilden, Germany); 
Master Mix PCR (Qiagen, Hilden, Germany); 
NucleoSpin® Tissue kit for genomic DNA extraction (Macherey-Nagel, Germany); 
QIAquick PCR Purification Kit (Qiagen, Hilden, Germany); 
Rapid Latex Test Kit for S. aureus (Biolife Italiana srl., Milano, Italy); 
TaqManTM Universal PCR Master Mix (Applied Biosystems, Warrington, UK); 

 
3.6. Equipments and Apparatus 
 

Centrifuge with refrigeration 5424R (Eppendorf); 
Centrifuge 5415D (Eppendorf); 
Centrifuge 5804, for 96-well plates (Eppendorf); 
Centrifuge rotors (Eppendorf); 
Colony Counter 50971 (Bioblock Scientific); 
Confocal laser scanning microscope FluoView FV1000 (Olympus); 
Confocal laser scanning microscope LSM710 T-PMT (Zeiss); 
Dry oven (Stericell); 
Electrophoresis system Power PAC HC 250V/3.0A/300W (BioRad); 
Equipment for ultrapure water MilliQ® MilliPore Synthesis (EMD Millipore); 
Flow chamber BioUltra Class II Certified Cabinet (Telstar); 
Flow chamber ABS 1000CLS Advanced Bio Safety Cabinet- Class II (Bioquell Bio); 
Fluorometer Qubit 2.0 (Life Technologies); 
Freezer -20°C (Liebherr); Freezer Hera -80°C (ThermoScientific); 
Fridge (Liebherr); 
Genetic analyzer Hitachi 3130 (Applied Biosystems); 
Ice machine (ITV Gomar); 
Image analyzer for agarose gel– Gel Doc 2000 (BioRad); 
Incubator (Stericell); 
Incubator Heraeus (ThermoScientific); 
Magnetic stirrer with hot plate IKA® RCT Classic (IKA); 
Magnetic stirrer 710/R (ASAL s.r.l, Cernusuco Sul Naviglio, Italy); 
Microscan automated system (Beckman Coulter S.L.U, USA); 
Microwave (Samsung) (SANYO); 
MiniSpin Plus (Eppendorf); 
Nanodrop Spectrophotometer ND 1000 (ThermoScientific); 
Next generation sequencing MiSeq (Illumina); 
Orbital shaker (Innova 42, New Brunswick Scientific); 
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Orbital shaker (ES-20/60 Environmental Shaker BIOSAN); 
Pulsed Field Electrophoresis System CHEF-DR III (BioRad); 
pH-meter GLP 21+ (Crison); 
Scale, precision of 2 decimals (Kern, Germany) (TE612, Sartorius); 
Scale, precision of 4 decimals XS205 Dual Range (Mettler Toledo); 
Sonicator; 
Spectrophotometer ELISA (Tecan 900 Pro); 
Spectrophotometer UV 1800 (Shimadzu); 
Stomacher (MiniMix® Interscience); 
Steam sterilizer AE 75 DRY (Raypa Trade®, Espinar S.L); 
Thermobloc for Eppendorf tubes, 1.5 mL, 2 mL (Eppendorf, Germany); 
Thermocycler Eppendorf Master Cycler Gradient (Eppendorf, Germany); 
Thermocycler 96-well GenAmp PCR System 9700 (Applied Biosystems); 
Thermocycler 96-well VERITI PCR System (Applied Biosystems); 
Themocycler ABI® 7500 96-well Real-Time PCR System (Applied Biosystems); 
Thermomixer COMFORT (Eppendorf); 
Tube-strip Picofuge (Stratagene®); 
Ultraviolet (UV) lamp BIOCOMP J22; 
Vitek II automated system (BioMérieux, France); 
Vortex Eurolab (Merck); 
Water bath (Precision™ Reciprocating Shaker Baths, ThermoScientific); 

 
3.7. Sequencing, Bioinformatic Tools and Database Used 
 

Sequencing tools 
 
Basic Local Alignment Search Tool (BLAST)- Program dedicated for comparison of nucleotide/ protein 
sequences to sequence databases (https://blast.ncbi.nlm.nih.gov/Blast.cgi); 
 
Chromas software- free trace viewer for simple DNA sequencing projects which do not require assembly 
of multiple sequences (http://technelysium.com.au/wp/chromas/); 
 
Molecular Evolutionary Genetics Analysis (MEGA)- user-friendly software for analyzing DNA and 
protein sequence data from species and populations (http://www.megasoftware.net/); 
 
Bioinformatic tools 
 
Bionumerics platform- analysis of various genomic and phenotypic sources grouped into one global 
database (http://www.applied-maths.com/). Fingerprint data module (for electrophoresis gels) and Tree 
and Network Inference module (for constructing dendrograms, phylogenetic trees) respectively, have 
been used in the present thesis; 
 
Bowtie 2 aligner; SAMtools- aligning sequencing reads to long reference sequences (http://bowtie-
bio.sourceforge.net/bowtie2/index.shtml; http://samtools.sourceforge.net/); 
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FastQC- for quality control checks on raw sequence data coming from high throughput sequencing 
pipelines (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/); 
 
Mauve Contig Mover (MCM)- ordering a draft genome against a reference one 
(http://darlinglab.org/mauve/user-guide/reordering.html); 
 
Mass screening of contigs for antimicrobial and virulence genes (https://github.com/tseemann/abricate); 
 
Prinseq- rapid quality control by filtering, reformatting or trimming genomic and metagenomic sequence 
data (http://prinseq.sourceforge.net/); 
 
Rapid Annotations using Subsystems Technology (RAST)- annotating complete or nearly complete 
bacterial and archaeal genomes (http://rast.nmpdr.org/); 
 
Scan contig files against PubMLST typing schemes (https://github.com/tseemann/mlst); 
 
SPAdes- assembly toolkit containing various assembly pipelines 
(http://spades.bioinf.spbau.ru/release3.10.0/manual.html); 
 
VarScan tool- variant detection in next-generation sequencing data 
(https://sourceforge.net/projects/varscan/files/); 
 
Databases 
 
CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) Finder (http://crispr.i2bc.paris-
saclay.fr/); 
European Bioinformatics Institute (EBI) (http://www.ebi.ac.uk/); 
Insertion Sequences (IS) Finder (https://www-is.biotoul.fr/about.php); 
Multilocus Sequence Typing Database (http://saureus.mlst.net/); 
National Center for Biotechnology Information (NCBI) (https://www.ncbi.nlm.nih.gov/); 
Uniprot knowledgebase (www.uniprot.org); 
spaTyper (Bartels et al., 2014). 
 
Others 
 
COMSTAT 2- analysis of image stacks of biofilms recorded by CLSM (http://www.comstat.dk/) 

 



 

 

 

 

 

CHAPTER 4 

 
Methods 
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Methods 

 

4.1. Food Sampling Strategy 

A total of 1079 food products collected from August 2012 to July 2015 were tested for the presence of S. 
aureus, particularly MRSA. The food products were either confiscated by the Border Authorities at the 
Border Inspection Post at the International Bilbao Airport (Spain) (269 food products) and, Vienna 
International Airport (Austria) (600 food products) from luggage of passengers on flights from non-EU 
countries, or collected from a market in Galati, Romania, where goods from the EU border traffic between 
Republic of Moldavia and Romania (Giurgiulești-Galați) (210 food products) are sold.  

Food samples included 519 (48.1%) milk and dairy products of diverse animal origin (cow, sheep or goat 
milk and cheese- either fresh, brined or with spices), 448 (41.52%) meat samples of diverse animal origin 
(including antelope, beef, chicken, duck, guinea pig, pork, rodents and turkey), fish and fish products (68, 
6.3%), 9 eggs (0.83%), and other products such as pastry, alga, biscuits or dried fruits (35, 3.24%). 

Both in international airports and EU border traffic between Republic of Moldavia and Romania 
randomized food sampling has been conducted. Immediately, food samples were transported in 
refrigeration conditions in suitable containers able to maintain the food samples at 0-4°C until arrival at 
the laboratory. Food samples were analyzed in the next 36 hours as recommended by FAO (1997). 

 

4.2. Detection and Isolation Procedures for S. aureus 

The detection of coagulase-positive staphylococci (CPS) was performed following ISO 6888-2 (ISO, 1999). 
Solid food samples (approx. 150-200 g) were aseptically cut in pieces and transfer in sterile filter bags. 
Subsamples, each of 10 g (tests for S. aureus) were transferred to sterile filter bags (Stomacher® Bags, UK), 
diluted 1:10 in sterile Ringer´s solution (Scharlau, Spain) and homogenized in a Stomacher lab blender for 
180 sec to obtain the initial suspension. Further decimal dilutions (1:10) were prepared in sterile Ringer´s 
solution to achieve 10-300 colony forming units (CFU) when plated on each agar medium.  

Up to five colonies from each BP+RPF agar plate were analyzed by qPCR targeting the nuc gene (Trnčíková 
et al., 2008) in order to confirm S. aureus isolates. Positive colonies with correct morphology in BP+RPF 
plates and by qPCR confirmation were taken for further typing tests (MRSA biotype, antibiotic resistance, 
and genetic characterization). 

 

Storage of Bacterial Strains 

Confirmed S. aureus isolates have been preserved in 25% glycerol, at -80°C.  

- Prepare 50% glycerol (Merck, Germany). Sterilize by autoclaving at 121°C for 15 min; 
- Add 0.6 mL of sterile glycerol and 0.6 mL of bacterial culture into a labeled cryovial with a screw 

cap and air tight gasket; 
- Mix by vortexing to ensure that the glycerol is evenly dispersed; 
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- Freeze at -80°C for long term storage. 

 

Revival of Bacterial Strains 

To revive the bacterial strains which have been subjected to long term storage at -80°C: 

- Transfer the labeled cryovial onto special racks in order to facilitate opening the tubes and avoid 
any contamination; 

- Scrape the frozen surface with a sterile inoculating loop and then immediately streak the bacteria 
onto the surface of BP agar plate, place the plate overnight at 37°C; 

- Return the labeled cryovial at -80°C. 

 

4.3. Isolation of MRSA Strains  

Chromogenic culture media are commercially available in order to facilitate MRSA screening and already 
several researchers have implemented this (McElhinney et al., 2013; Verkade et al., 2011; Veenemans et al., 
2013). Chromogenic culture media such as Brilliance MRSA 2 Agar (ThermoFisher Scientific, USA) and 
ChromID MRSA Agar (BioMérieux, France) have been used in the present thesis for confirmation of 
staphylococcal isolates from different sources: clinical samples, food or animal derived. 

Apart from this, confirmation by multiplex PCR targeting the mecA and mecC genes (Stegger et al., 2012) 
has been performed as well. 

 

4.4. Genomic DNA Extraction  

a) Tris-HCl -based Method for DNA Extraction 

Lysis by boiling is a conventional method used for DNA extraction. 

Protocol: 

- Transfer 1 mL of PBS 1× to a clean 1.5 mL micro-centrifuge tube; 
- Carefully scrape one isolated colony from a BP+RPF agar plate and resuspend it in PBS 1×; 
- Spin in a centrifuge at 12,400 rpm for 10 min at 4°C; 
- Carefully discard the supernatant using a pipette; 
- Resuspend the pellet in 100 μL of 10 mM Tris-HCl by vigorous vortexing for 10 sec and incubate 

at 95°C for 20 min; 
- Spin in a centrifuge at 12,400 rpm for 5 min at 4°C; 
- Transfer 70 μL of the supernatant into a clean 1.5 mL micro-centrifuge tube; 
- Store the supernatant at 4°C up to one week or at -20°C for longer preservation. 

 

b) Chelex® 100 resin -based DNA Extraction (BioRad, Germany) 
The bottle contains 20 mL of 6% Chelex® 100 and a magnetic stirrer, the amount being sufficient for 100 
DNA preparations. Prior to use, the Chelex® 100 suspension must be kept on a magnetic stirrer at moderate 
speed to maintain the matrix in suspension. 
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Protocol: 

- Transfer 1 mL of autoclaved water to a clean 1.5 mL micro-centrifuge tube; 
- Carefully pick one isolated colony from a BP+RPF agar plate and resuspend it in autoclaved water; 
- Centrifuge at 10,000 x g for 5 min at 4°C; 
- Carefully discard the supernatant using a pipette; 
- Resuspend the pellet in 100 μL of Chelex® 100 suspension by vigorous vortexing for 10 sec and 

incubate at 56°C for 20 min (Note: Pipet Chelex® 100 suspension using a pipette tip with a large 
bore, such as 1 mL pipette tip); 

- Incubate at 100°C for 8 min; 
- Vortex at high speed for 10 sec and immediately chill the tubes on ice; 
- Transfer 70 μL of the supernatant into a clean 1.5 mL micro-centrifuge tube; 
- Store the DNA samples at -20°C. 

 

c) DNA Extraction Using QIAamp DNA Mini Extraction Kit (Qiagen, Germany) 

The following protocol describes the isolation of genomic DNA using a commercial kit from bacterial plate 
cultures. 

Protocol: 

- Carefully pick one isolated colony from culture plate with an inoculation loop and suspend in 180 
μL of buffer ATL by vigorous stirring;  

-  Add 20 μL of proteinase K (Note: Qiagen protease has reduced activity in the presence of buffer 
ATL), mix by vortexing, and incubate at 56°C, 150 rpm, for 1 h 30 min in order to ensure that the 
lysis will be complete; 

- Short spin the 1.5 mL micro-centrifuge tubes to remove drops from the inside of the lid; 
- Add 4 μL of RNase A (100 mg/mL) (Note: RNA may inhibit some downstream enzymatic reactions 

so RNA-free genomic DNA is required), mix by pulse-vortexing for 15 sec, and incubate for 2 min 
at room temperature; 

- Short spin the 1.5 mL micro-centrifuge tubes to remove drops from the inside of the lid; 
- Add 200 μL of buffer AL to the sample, mix again and incubate at 70°C for 10 min (Note: a white 

precipitate may form on addition of buffer AL which it will dissolve during incubation at 70°C); 
- Short spin the 1.5 mL micro-centrifuge tubes to remove drops from the inside of the lid; 
- Add 200 μL of ethanol (96-100%) to the sample and mix by pulse vortexing for 15 sec (Note: a white 

precipitate may form on addition of ethanol); 
- Short spin the 1.5 mL micro-centrifuge tubes to remove drops from the inside of the lid; 
- Carefully apply the mixture (including the precipitate from the previous step) to the QIAamp Mini 

spin column (in a 2 mL collection tube) without wetting the rim; 
- Close the cap and centrifuge at 6000 x g for 1 min; 
- Place the QIAamp Mini spin column in a clean 2 mL collection tube and discard the tube containing 

the filtrate (Note: close each spin column to avoid aerosol formation during centrifugation); 
- Carefully open the QIAamp Mini spin column and add 500 μL buffer AW1 without wetting the 

rim; 
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- Close the cap and centrifuge at 6000 x g for 1 min; 
- Place the QIAamp Mini spin column in a clean 2 mL collection tube and discard the tube containing 

the filtrate (Note: close each spin column to avoid aerosol formation during centrifugation); 
- Carefully open the QIAamp Mini spin column and add 500 μL buffer AW2 without wetting the 

rim; 
- Close the cap and centrifuge at full speed 20,000 x g for 3 min; 
- Place the QIAamp Mini spin column in a clean 1.5 mL micro-centrifuge tube and discard the 

collection tube containing the filtrate; 
- Carefully open the QIAamp Mini spin column and add 200 μL of buffer AE; 
- Incubate at room temperature for 5 min and then centrifuge twice at 6000 x g for 1 min (Note: a 5 

min incubation of the QIAamp Mini spin column loaded with buffer AE, before centrifugation, 
increase DNA yield); 

- Store the DNA samples at -20°C. 
 

4.5. Quantification of Nucleic Acids in Terms of Concentration, Yield and Purity 

DNA quantification has been performed by measuring the absorbance at 260 and 280 nm using a nanodrop 
spectrophotometer. The reading at 260 nm gives the DNA yield which is determined from the DNA 
concentration in the eluate. The ratio of absorbance between readings at 260 nm and 280 nm gives the 
estimated purity of DNA. Pure DNA has an A260/A280 ratio of 1.7-1.9. For example, in the table below, is the 
DNA yield purified from bacterial culture using QIAamp kit. 

 Yield of nucleic acid with QIAamp kit
 Nucleic acid yield (μg) DNA yield (μg) with RNase 
Cultured cells (5 x 106) 20-30 15-20
  
 Effect of elution volume on yield and concentration 

Elution volume Yield (μg) Yield (%) DNA concentration (ng/ μL) 
200 6.8 100 34
150 6.51 95 43.4 
100 6.25 92 62.5 

50 5.84 86 116.8 
 

In most of the cases, sample dilution is required. For this, elution buffer or water free of DNase or RNase 
has been used to dilute DNA samples and to calibrate the spectrophotometer. 

 

4.6. DNA Fragments Separation by Electrophoresis 

a)  Separation of Small DNA Fragments by Conventional Gel Electrophoresis 

DNA fragments has been separated using horizontal agarose gels. Agarose gels were prepared in different 
concentrations depending on the DNA fragments needed to be separated. In most of the cases, a 
concentration of 1.5% agarose was used for DNA fragments separation higher than 1200 bp, and 2% for 
fragments for 500-1200 bp and 3% for fragments lower than 500 bp, respectively. 
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Before electrophoresis started (120 V; 1×TAE buffer), DNA samples were mixed 4:1 with 6× DNA gel 
loading dye (ThermoFisher Scientific). DNA molecular weight marker 100 bp, 50-2000 bp (BioRad) 
respectively were added in each run. After electrophoresis, the agarose gels were stained with GelRedTM 

(Biotium, ChemoMetec, Denmark) for 30 min and photographed under UV light (254 nm). 

 

b)  Separation of Genomic DNA by Pulsed Field Gel Electrophoresis 

Genetic characterization of S. aureus isolates was carried out by PFGE as described by (McDougal et al., 
2003) (See Appendix 11). Before starting, reagents preparation is necessary. This technique helps to analyze 
large DNA fragments generated by the SmaI restriction enzyme digestion, subsequently being subjected to 
an electric field with periodic changes of its orientation across the gel. 

Reagents Protocol
TE buffer (10 mM Tris : 1 mM EDTA, pH 8) 
 

10 mL 1 M Tris, pH 8; 
2 mL 0.5 M EDTA, pH 8; 
Up to 1000 mL with DEPC water*. 

PIV saline solution (10 mM Tris-HCl (pH 8), 
1 M NaCl) 

1 mL 1M Tris-HCl; 
20 mL 5 M NaCl; 
Up to 100 mL with DEPC water*. 

Buffer EC (6 mM Tris-HCl pH 8, 1 M NaCl, 
100 mM EDTA pH 8, 0.2% deoxycholate-Na, 
0.5% sarkosyl, 100 mg/L lysozyme, 50 μg 
lysostaphin) 
 

0.15 mL 1 M Tris- HCl; 
5 mL 5 M NaCl; 
5 mL 0.5 M EDTA; 
0.5 mL 10% deoxycholate- Na; 
1.25 mL 10% sarkosyl; 
Up to 25 mL with DEPC water*. 

ESP solution (1% sarkosyl, 0.5 M EDTA pH 9) 
 

2.5 mL 10% sarkosyl; 
12.5 mL 1 M EDTA; 
Up to 25 mL with DEPC water*. 

TBE buffer (0.5×) 0.5 L 1× TBE; 
Up to 1 L with MilliQ water. 

SmaI restriction enzyme (30 U) 
 

One unit is required to digest 1 μg of λ DNA in 
1 hour at 25°C in a total reaction volume of 50 μl. 

Ethidium bromide 40 μL of 10 mg/mL stock solution; 
Up to 400 mL of MilliQ water. 

 

*Protocol for DEPC water preparation: 

Total (mL) 1000 500 200 100
DEPC 1 0.5 0.2 0.1
Ethanol absolute 10 5 2 1 
MilliQ water 989 494.5 197.8 98.9 

 

First, mix DEPC with ethanol for better dissolving, then add the MilliQ water. Leave the bottle closed on a 
stirrer overnight, at RT. Autoclave twice at 121°C for 20 min (for ethanol evaporation). 
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Protocol for PFGE  

Preparation of S. aureus cultures and agarose plugs 

- Carefully pick one isolated colony from culture plate with an inoculation loop and put it into a tube 
containing 5 mL of BHIB (Biolife Italiana, Milano, Italy), after this incubate at 37°C, 200 rpm for 
15-20 h; 

- Switch on the spectrophotometer at least 30 min before starting to work. Put the 2% low melt 
certified agarose (BioRad, Munich, Germany) to melt using a thermomixer set at 95°C, 900 rpm. 
Once the temperature is right, low the temperature at 42°C, without any more agitation; 

- Put 1 mL of culture in a cuvette and measure the absorbance at the spectrophotometer at 600 nm; 
- Adjust the absorbance of the culture at OD=1, by using buffer PIV; 
- Once this is settle, put 200 μL of culture in a centrifuge set it at 12,000 rpm, 2 min; 
- Remove the supernatant, wash the pellet with 500 μL of buffer PIV and centrifuge again at 12,000 

rpm for 4 min; 
- Resuspend the pellet with 300 μL of buffer PIV and incubate for 10 min at 42°C, in order to equalize 

with the temperature of the agarose; 
- Mix 100 μL of culture with 100 μL of 2% agarose and put them in molds; 
- Leave it at RT for 10 min, and other 15 min at 4°C. 

Cell lysis 

- Put 1 mL of lysis buffer EC in 2 mL tubes; 
- Unmold the agarose plugs and transfer in tubes containing the lysis buffer EC; 
- Incubate at 37°C, 600 rpm for 5-6 h.; 
- Put 1 mL of ESP solution in 2 mL tubes; 
- Incubate at 56°C for 16-20 h. 

Washing the agarose plugs 

- Heat the TE buffer at 50°C in order to start the washing procedure; 
- Put 1 mL of TE buffer in 2 mL tubes; 
- Transfer the agarose plugs in tubes containing TE buffer, incubate at 50°C, 500 rpm for 30 min; 
- Remove the supernatant and add another 1 mL of TE buffer; 
- Repeat this procedure at least 5 times (Note: You may keep the agarose block at 4°C for maximum 

6 months). 

DNA digestion using SmaI restriction enzyme 

- Carefully remove the plugs from TE buffer and put them in a Petri plate; 
- Cut 1/3 of the agarose plug and incubate with 100 μL of restriction buffer using 1.5 mL tubes; 
- Incubate at RT for 30 min; 
- Prepare the restriction solution with SmaI enzyme (final concentration 1%, 30 U of enzyme, 

Biolabs, UK); 
- Remove the restriction buffer from tubes; 
- Put 100 μL of restriction solution and incubate at 25°C, overnight. 

Electrophoresis 
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- Prepare 3 L of TBE extended range at 0.5× and add it in the electrophoresis cuvette (Note: Before 
this, check to see if the system is clean); 

- Remove the restriction solution from tubes containing the plugs and add 100 μL of 0.5× TBE; 
- Stabilize at 4°C for 30 min; 
- Dissolve 1% low melt certified agarose (BioRad, Munich, Germany) and stabilize at 42°C; 
- Prepare 1% pulsed field certified agarose (BioRad, Munich, Germany) gel in a final volume of 100 

mL. Heat it for 3 min using the microwave, agitate and warm other 15’’ (Note: After the gel 
temperature stabilization is reached (54°C) you may poor it in the tray); 

- Insert the plugs in the agarose gel (Note: Be careful not to form air bubbles); 
- At both ends of the gel and in the center, include the molecular marker Lambda Ladder PFG, 48.5–

1018 kb (Biolabs, UK); 
- Seal the plugs using 1% agarose gel and leave to solidify it; 
- Put the gel in the electrophoresis cuvette and set the conditions. 

              Pulse range: 5-15 sec x 10 h 

                                   15-60 sec x13 h; 

            Run time: 23 h; 

            Voltage: 6V/cm; 

            Angle: 120°; 

            Temperature: 14°C. 

Image capture 

- Submerge the agarose gel, containing the DNA fragments, into a cuvette with ethidium bromide 
(Sigma-Aldrich) for 15 min; 

- Remove the ethidium bromide excess by putting the agarose gel in a cuvette with distilled water 
and leave it for 2 hours. 

The image capture and gel analysis was done by using the fotodocumentation system Gel Doc 2000. The 
results interpretation was performed by drawing the dendrogram using Bionumerics programme v6.6. 
(www.appliedmaths.com).  

 

4.7. DNA Genotyping by PCR Amplification 

Alternative methods such as PCR -based methods are more sensitive than traditional methods for 
identification of S. aureus, made up of successive cycles of DNA replication in vitro, using two 
oligonucleotide primers that hybridize to the two strands of the original sequence (used as a template in the 
replication). The major difference between a reaction for replication and a process for DNA replication in 
vivo, is the fact that in the PCR reaction step, the attachment of the primers is not carried out enzymatically, 
but by temperature steps, and the only enzyme used in the reaction is a DNA polymerase (replicase 
function). 
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a)  Conventional PCR 

In the present thesis, DNA amplification took place by performing single plex and multiplex PCRs. In 
conventional single plex PCR a single target is amplified in a single reaction tube. In contrast, multiplex 
PCR uses specific primer sets for the simultaneous amplification of multiple target sequences in only one 
single tube (www.roche.com). 

Reagents Thermocycler conditions

1× Buffer Buffer (Roche) or 1× Multiplex PCR 
Master Mix (Qiagen) 

95°C for 5 min (initial denaturation step allowing the 
activation of FastStart Taq DNA Polymerase) 

2 mM MgCl2 solution (Applied Biosystems) 30-35 cycles 
95°C for 1 min (denaturation) 
48-60°C for 30 sec–1 min 30 sec (primer annealing) 
72°C for 1–2 min (extension) 

0.2 mM dNTPs (Roche) 

1-2 U FastStart Taq DNA Polymerase (Roche) 

0.2-1.8 μM each primer 72°C for 7–10 min (final extension) 
2-10 ng DNA sample 
Final volume of 20-50 μL  

The thermocycler conditions and concentration of reagents has been adapted for each PCR analysis (See Appendix 1-9). 

 

All the PCR reactions were run on a thermocycler 96-well VERITI PCR system (Applied Biosystems). 
Afterwards, PCR products were visualized by nucleic acid GelRedTM (Biotium, ChemoMetec, Denmark) 
staining after electrophoresis of agarose gels. 

 

PCR Products Purification 

For purifying DNA fragments from PCR products, several commercial kits are available. In the present 
thesis, we used the QIAquick PCR purification kit (Qiagen, Hilden, Germany) for purifying the PCR 
products obtained for MLST. 

Protocol: 

- Add 5 volumes of buffer PB to 1 volume of the PCR sample and mix (Note: for example, add 500 
μL of buffer PB to 100 μL PCR sample); 

- Note: if pH indicator I has been added to the buffer PB, check that the color of the mixture is yellow. 
If the color of the mixture is orange/ violet, add 10 μL of 3M sodium acetate, pH 5.0 and mix; 

- Place a QIAquick spin column in a 2 mL collection tube; 
- To bind DNA, apply the sample to the QIAquick column and centrifuge for 30-60 sec; 
- Discard the supernatant and place the QIAquick column back into the same tube; 
- To wash, add 0.75 mL buffer PE to the QIAquick column and centrifuge for 30-60 sec; 
- Discard the supernatant and place the QIAquick column back into the same tube; 
- Centrifuge the column for an additional 1 min (Note: residual ethanol from buffer PE will not be 

completely removed if the supernatant is not completely discarded before this additional 
centrifugation); 

- Place the QIAquick column in a clean 1.5 mL micro-centrifuge tube; 
- To elute DNA, add 50 μL buffer EB (10 mM Tri-Cl, pH 8.5) to the center of the QIAquick 

membrane and centrifuge the column for 1 min; 
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- Note: If the purified DNA is to be analyzed on a gel, add 1 volume of loading dye* to 5 volumes of 
purified DNA; mix the solution by pipetting up and down before loading the gel; 
*Loading dye contains three different markers (bromophenol blue, xylene cyanol, and orange G) 
that facilitate estimation of DNA migration distance and optimization of agarose gel run time. 

 

b)  Real Time PCR 

The amplified DNA is measured based on the two primers, allowing amplification of the product in which 
a third dual-labelled fluorescent probe (TaqMan®, ThermoFisher Scientific, UK) will anneal. During 
amplification, the TaqMan probe relies on the 5’→3’ exonuclease activity of Taq polymerase to release a 5’ 
fluorescent (FAM) tag from the annealed TaqMan® probe, giving a real time measurable fluorescence 
emission. The increase in fluorescence is proportional to the concentration of DNA used as a target 
sequence. 

Reagents Thermocycler conditions

1× TaqMan® PCR Master Mix (ThermoFisher) 50°C for 2 min (activate the uracil N-glycosylase) 

200 nM Taqman® probe aurP (FAM/BHQ) 
(ThermoFisher) 

95°C for 10 min (initial denaturation step allowing 
the activation of Taq DNA Polymerase) 

300 nM each primer 50 cycles 
95°C for 15 sec (denaturation) 
60°C for 1 min (primer annealing and extension) 

5 ng DNA sample 
Final volume of 25 μL 

The thermocycler conditions and concentration of reagents has been adapted for qPCR analysis (See Appendix 10). 

PCR reactions were run on a thermocycler ABI® 7500 96-well real time PCR system (Applied Biosystems). 
Negative values or lack of amplification has been established for CT threshold values higher than 45. 

 

4.8. DNA Sequencing  

For DNA sequencing, three steps are required: DNA sequencing reaction by PCR, ethanol/EDTA 
precipitation and cycle sequencing of PCR products obtained. 

a)  PCR for sequencing 

Reagents Thermocycler conditions 

2.5× Big Dye Ready Reaction Premix 96°C for 1 min (initial denaturation step) 

5× Big Dye sequencing buffer 30 cycles 
96°C for 30 sec (denaturation) 
55°C for 15 sec (hybridization) 
60°C for 4 min (elongation) 

10 μM primer 

10 ng/ μL DNA sample 

Final volume of 10 μL  
 

Before any PCR amplification took place, quantitating the amount of purified DNA has been measured 
using a nanodrop spectrophotometer set it at 260 nm. The necessary amount of DNA has been correlated 
with the amplicon size of each primer taken into analysis. All PCR reactions were run on a thermocycler 
96-well GenAmp PCR System 9700 (Applied Biosystems). 
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PCR product  Quantity of DNA (ng) 

100-200 bp 1-3 
200-500 bp 3-10 
500-1000 bp 5-20 
1000-2000 bp 10-40 
>2000 bp 20-50 

Note: Higher DNA quantities gives higher signal intensities, however may also give shorter read lengths 
and top-heavy data. Also, the amount of PCR product to be used in sequencing may also depends on the 
length and purity of the PCR product. 

 

b)  Ethanol/EDTA Precipitation 

To precipitate 10 μL sequencing reaction in 96-well reaction plate: 

- Remove the 96-well reaction plate from the thermal cycler and briefly spin; 
- Transfer the sequencing reaction product into a clean 1.5 mL micro-centrifuge tube; 
- Add 5 μL of 125 mM EDTA to each well (Note: make sure that the EDTA reaches the bottom of the 

wells); 
- Add 60 μL of 100% ethanol to each well and mix by inverting tubes four times; 
- Incubate at room temperature for 15 min; 
- Centrifuge at 13,000 rpm for 20 min, 4°C; afterwards remove the supernatant; 
- Add 60 μL of 70% ethanol to each well; 
-  Centrifugate at 13,000 rpm for 15 min, 4°C; afterwards remove the supernatant (Note: make sure 

that the wells are dry and protected by light); 
- Resuspend the samples in 20 μL of Hi-Di formamide and cover them with an aluminum foil in 

order to be protected by light; 
- Store at -20°C. 

 
c)  Cycle Sequencing 

- Incubate the samples at room temperature for 20 min; 
- Vortex gently and centrifugate briefly; 
- Denaturize the samples at 95°C for 5 min; 
- Cool on ice for another 3 min; 
- Vortex gently and centrifugate briefly in order to remove drops from the inside of the lid; 
- Place the 96-well reaction plate into a Genetic analyzer Hitachi 3130 (Applied Biosystems); 
- Set the parameters: 

Fragment analysis 
run module 

Array 
length 

Polymer 
Run 
time 

24 h
throughput† 

Resolution 
Performance 
SD‡ 

Fragment analysis 
50_POP7 

50 cm POP-7TM 50 min 2240 500 bp 0.15 

† 20 genotypes/injection; 
‡ Standard deviation: 1 bp resolution at 99.99% accuracy. 
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Whole Genome Sequencing 

Genomic DNA of MRSA strains has been extracted using the DNeasy Blood and Tissue Kit (Qiagen) and 
purified DNA has been quantified with a Qubit 2.0 Fluorometer (Life Technologies). Whole genome 
sequencing (WGS) has been done by preparing libraries from the genomic DNA using tagmentation 
procedure and 300 bp-paired-end sequencing. A next-generation sequencing approach has been 
undertaken in a MiSeq device (Illumina). 

 

4.9. Biofilm Formation Capacity 

Culture Media screening 

Media screening consisting in TSB with/ without addition of 0.4% glucose (TSBG) or 4% NaCl (TSBN) for 
supporting 24 h S. aureus biofilm formation was performed. Glucose sterilized by filtration (0.22 μm) 
(Minisart®, Sartorius) was added after autoclaving.  

Biofilms were grown in 96-well plates tissue cultured (Nunc® MicroWellTM, USA) with a total volume of 
200 μL of TSB, TSBG and TSBN per well and a starting inoculum approximately equal to 106 CFU/mL. 
Only broth media were introduced in the assay as negative controls, and S. aureus ATCC® 25923 as positive 
control.  

Protocol for biofilm quantification (See Appendix 12): 

- Inoculate one isolated colony into 5 mL TSB media and incubate at 37°C, 120 rpm for 18-24 h; 
-  Adjust the bacterial cultures to the same OD600 (Note: concentration 1x108 CFU/mL); 
- Add 2 μL of adjusted bacteria to a 96-well plate (Note: equivalent to 2x106 CFU/mL); 
- Incubate the plate aerobically on a horizontal shaker at 37°C, 120 rpm for 24 h; 
- Wash the wells, containing the biofilm, to remove weakly adherent bacteria (once with 0.9% NaCl); 
- Add 200 μL per well of pure methanol (Sigma-Aldrich, USA) for 15 min (fixation of biofilm); 
- Withdraw the methanol and allow the wells to dry at room temperature (20 min); 
- Add 200 μL of 1% CV (Merck, Germany) to each well and incubate for 5 min; 
- Remove the CV solution; 
- Wash three times with water and then allow the wells to dry at room temperature; 
- Add 200 μL of 33% acetic acid (Sigma-Aldrich, USA) to each well to solubilize the stain; 
- Read the absorbance at 570 nm. 

Biofilm quantification was performed according to the procedure developed by Stepanović et al. (2000) 
with some modifications. As TSBG media gave the best results in terms of biofilm formation (Chapter 8), 
this culture media was used to test the MRSA biofilm ability, static conditions. 

 

Biofilm Formation Overtime 

This task referred to the formation of 48 h and 72 h S. aureus biofilms on 96-well microtiter plates. All the 
strains were included in biofilm formation overtime (Peeters et al., 2008). 
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4.10. Biofilm Matrix Characterization by Chemical and Enzymatic Treatments 

Sodium meta-periodate (NaIO4) and proteinase K which targets biofilm matrix components as glucose-
containing polysaccharides and proteins, respectively were tested for their ability to disrupt preformed S. 
aureus biofilms from polystyrene 96-plate wells. For this assay, were included only the strains capable to 
form stronger biofilms, after 48 h of growth. Biofilm detachment assays were carried out as described by 
(Kogan et al., 2006) and (Fredheim et al., 2009) with modifications. 

Protocol: 

- Biofilms were grown in the 96-well plates for 48 h following the conditions described above; 
- After each biofilm formation period, the media and non-adherent cells were removed and adherent 

biofilm was washed once gently with 200 μL 0.9% NaCl; 
- A volume of 200 μL of 40 mM NaIO4 (Sigma-Aldrich co., Saint Louis, USA) or 0.1 mg/mL 

proteinase K (Sigma-Aldrich co., Saint Louis, USA) in 20 mM Tris-HCl (pH 7.5) : 1 mM CaCl2 
were carefully added to minimize mechanical detachment of biofilms (Note: Control wells received 
an equal volume of buffer without reagents); 

- Plates were incubated for an extra 2 h at 37°C; 
- The content of each well was discarded and washed once with 200 μL 0.9% NaCl and then 

resuspended into 200 μL of 0.9% NaCl; 
- Biofilms were dislodged by scraping followed by sonication using a cycle of 1 s and an amplitude 

of 22%; 
- Read the absorbance at 600 nm. 

 

4.11. Biofilm Matrix Composition and Structural View by Confocal Laser Scanning 
Microscopy 

CLSM was used to observe S. aureus biofilms with the selected fluorochromes accordingly to the laser lines 
for total biofilm cell analysis (laser lines accordingly to the excitation properties of the dye). 

Protocol: 

‐ Biofilms were grown for 48 h as described above using 24-well plates; 
‐ Media was carefully removed from the wells and biofilms were rinsed with 300 μL of sterile water 

to remove loosely attached cells; 
‐ The plate surface was cut with a heated metal cylinder; 
‐ To visualize PNAG, biofilms were incubated in the dark for 15 min with 100 μL containing 0.01 

mg/mL wheat germ agglutinin (WGA)-TRITC conjugated with Oregon Green488 (Molecular 
Probes, USA); 

‐ Cells were stained with 100 μL of 5 μM of SYTO BC nucleic acid stain (Invitrogen, Paisley, UK)/ 
(Molecular Probes, Inc., Eugene, USA); 

‐ Proteins were visualized with 100 μL undiluted of SYPRO Ruby biofilm matrix (Invitrogen, Paisley, 
UK)/ (ThermoFisher Scientific, Austria) by 30 min incubation; 

‐ Stains were removed and wells were rinsed with sterile water between each stain and before 
imaging; 
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‐ Sample observation by CLSM (Note: particular care must be taken into consideration to properly 
fix the sample during manipulation and inspection of the samples; moreover, is important to avoid 
exposure to light, preventing the blanking of the samples) 

 

The biofilm images were acquired in inverted FluoView FV 1000 (OlympusTM) or LSM710 T-PMT (Zeiss) 
confocal laser microscopes and biofilms were observed using 40x fluar/ water-immersion objectives. The 
images were analyzed sequentially using two virtual channels. Up to three stacks of horizontal images were 
acquired for each biofilm at different areas in the well. Two surfaces of two independent replicates were 
observed in each CLSM experiment. 

Labelled cells were detected using the following combination of laser excitation and emission band-pass 
wavelengths: (510-582 nm) for SYTO, (584-755 nm) for SYPRO and (406-540 nm) for WGA. The CLSMs 
were configured with two lasers (argon 458/488/514 nm and HeNe 613 nm). 

Quantitative structural parameters of each MRSA-producing biofilm such as biovolume, area occupied, 
average diffusion distance, surface area and surface to biovolume ratio were calculated using the freely 
available COMSTAT v2.1 software. 
 

4.12. Antimicrobial Resistance Profile 

After the confirmatory identification by phenotypic and genotypic tests, S. aureus isolates were investigated 
for antimicrobial susceptibility patterns. Susceptibility to twenty antimicrobial agents was performed by the 
Microscan automated system (Beckman Coulter S.L.U, USA) for microdilution method for MICs 
interpretation and disk diffusion method for zone diameter measurements, following the recommendations 
of the European Committee on Antimicrobial Susceptibility Testing (EUCAST) guidelines 2015 
(www.eucast.org). 

Antimicrobial agents tested were: penicillin (PEN), oxacillin (OXA), amoxicillin/clavulanate (AMC), 
daptomycin (DAP), erythromycin (ERY), clindamycin (CLI), teicoplanin (TEC), vancomycin (VAN), 
ciprofloxacin (CIP), levofloxacin (LVX), amikacin (AMK), gentamicin (GEN), tobramycin (TOB), 
mupirocin (MUP), rifampin (RIF), tetracycline (TET), fusidic acid (FUS), fosfomycin (FOF), linezolid 
(LZD) and trimethoprim sulfamethoxazole (SXT). 

S. aureus isolates exhibiting resistance to at least two classes of antibiotics were considered multidrug-
resistant. 

 

4.13. Statistical Analysis 
 Comparisons between both chromogenic media and mecA/mecC detection, which was considered 

the reference method, were performed in terms of sensitivity, specificity, Positive Predictive Value 
(PPV) and Negative Predictive Value (NPV). Differences of analytical performance between 
chromogenic media, and mecA/mecC detection, were analyzed using McNemar paired samples 
non-parametric test with an α= 0.01. 

Sensitivity measures the proportion of positives that are correctly identified as such. 

ܡܜܑܞܑܜܑܛܖ܍܁ ൌ
ۯ

ା۱ۯ
ൈ,%	    (1) 
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Specificity measures the proportion of negatives that are correctly identified as such. 

ܡܜܑ܋ܑܑ܋܍ܘ܁ ൌ
۲

۲ା۰
ൈ,%	     (2)	

Positive Predictive Value (PPV) 

܄۾۾ ൌ
ۯ

ା۰ۯ
ൈ,%	     (3) 

Negative Predictive Value (NPV) 

܄۾ۼ ൌ
۲

۲ା۱
ൈ,%	     (4) 

 

McNemar test is used to compare paired proportions. It can be used to analyze retrospective case-control 
studies, where each case is matched to a control (http://www.graphpad.com/quickcalcs/McNemar1.cfm) 

    ൌ ሺ܋ି܊ሻ

ሺ܊ା܋ሻ
	       (5) 

b, c-  discordant cells because they represent pairs with a difference. 
 

For a test with α= 0.05, the critical value for the McNemar statistic = 3.84. If the test statistic is >3.84, the p-
value will be < 0.05 and the null hypothesis of equal proportions between pairs or over time will be rejected 
(http://www.biostat.umn.edu/~susant/Fall11ph6414/Section12_Part2.pdf). 
 

 Statistical analysis of 24 h and 48 h MRSA biofilms have been performed using typical statistical 
parameters. Coefficient of variations (e%) was calculated in order to estimate the experimental 
errors. 
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Detection and Identification of Staphylococcus aureus in Food Isolated from  
Markets 

It is estimated that Staphylococcus aureus produced an average of 241,148 episodes of domestically acquired 
foodborne illnesses caused in United States (Scallan et al., 2011), representing an important cause of food 
poisoning. However, in Europe, only 21 domestic outbreaks have been reported in 2013 (EFSA and ECDC, 
2015). In addition, this foodborne pathogen cause nosocomial invasive infections ranging from mild skin 
and soft tissue infections to life-threatening diseases such as septicemia, endocarditis and necrotizing 
pneumonia (Lowy, 1998). It has been estimated that around 30% of healthy human individuals are 
colonized by this opportunistic pathogen (Graveland et al., 2011). S. aureus frequently harbor antibiotic 
resistance determinants which complicate treatment and significantly increase the associated costs. 

Currently, MRSA is distributed worldwide and constitutes a major concern in human health because of its 
complex epidemiology and its ability to acquire novel antibiotic resistance mechanisms. MRSA was first 
described in 1960, within a year after the inclusion of methicillin in the clinical practice to treat infections 
caused by the emergence of penicillin-resistant S. aureus (Jevons, 1961). Its presence was restricted to the 
clinical environment initially, but at the end of the past decade first cases of MRSA infections in the 
community were reported affecting people who exhibited no typical risk factors of hospital acquisition 
(Otter and French, 2010). Until the beginning of this century, MRSA had been rarely reported in livestock. 
It was first described in 1975, and after that, only sporadic cases were reported in the following 25 years. 
From 2005 onwards, MRSA belonging to ST398 was observed to colonize pigs and people professionally 
exposed to pig farming in several European countries (Voss et al., 2005; Witte et al., 2007). Later studies 
revealed the presence of that lineage in other food producing animals, and therefore was designated LA-
MRSA. 

Emergence of MRSA in food-producing animals has provoked a great concern in the presence of MRSA in 
associated foodstuff due to the potential for dissemination in the population. EFSA considers that the role 
of food as vehicle of human MRSA dissemination is deemed to be low. However, foodborne MRSA 
infections have been formally demonstrated in several occasions (Kluytmans et al., 1995; Jones et al., 2002), 
so, food can be a successful route for transmission of MRSA lineages. In this study, we have evaluated the 
presence of MRSA in food (homemade and/or processed) illegally sold in a black market in Galati, 
Romania, a town situated in the South-East part of Romania, on the border with Republic of Moldavia. This 
information provides an overview on the potential risk introduced to European Union (EU) from non-EU 
countries via foods (foods introduced as personal goods, which are then illegally sold to EU consumers), 
consequently defining a neglected route of transmission, as well as to reveal the role that it could play in the 
prevalence and dissemination of MRSA. 

Sampling and bacterial isolates 

A total of 200 samples were taken from July 2012 to February 2013 in a black market in Galati, Romania, a 
place close to the border with Republic of Moldavia. The food samples were transported under refrigeration 
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to the laboratory and their microbiological analysis started in the same day they were collected. The food 
samples were classified into four categories: milk and dairy products (36%; n= 73; raw milk; cheeses made 
of cow, sheep, or goat raw or pasteurized milk, cream, and butter), fish and fish products (31%; n= 61; 
smoked or canned fish), meat and meat products (20%; n= 41, chicken carcasses, sausages, pork rind, and 
lard), and other food products (13%; spices, dried fruits, jellies, gingerbread, and candies). Sampling was 
done randomly and the solid food samples were aseptically cut into pieces, if necessary, and ground in a 
laboratory mill. Subsamples, 10 g each, were transferred to sterile filter bags (Stomacher Bags; Seward Ltd., 
Worthing West Sussex, UK), diluted 1:10 in sterile Ringer’s solution (Scharlau; Scharlab, Barcelona, Spain) 
and homogenized in a Stomacher lab blender for 180 s. 

The total number of coagulase-positive staphylococci (CPS) was enumerated on Baird Parker Agar with 
Rabbit Plasma Fibrinogen (Biolife Italiana srl.) following ISO 6888:2 (ISO, 1999). After 24–48 h of 
incubation at 37°C, agar plates yielding 10–300 colonies were included in the calculation of CPS (mean 
CFU/mL or g). Then, up to five colonies from each plate were analyzed by PCR targeting the nuc gene 
(Trnčíková et al., 2008) to confirm S. aureus isolates. 

Screening for the presence of MRSA 

We assessed the presence of mecA and mecC in all S. aureus isolates by multiplex PCR as previously 
described (Stegger et al., 2012). Genes mecC and mecA were used as positive controls, non-template controls 
were included in each run as well as. 

Antimicrobial susceptibility testing 

Antimicrobial susceptibility testing was performed by the microdilution method following the 
recommendations and MIC breakpoints of the CLSI guidelines (2012). Susceptibility to the following 21 
antimicrobial agents was tested: penicillin (PEN), oxacillin (OXA), amoxicillin/clavulanate (AMC), 
daptomycin (DAP), cefazolin (CFZ), erythromycin (ERY), clindamycin (CLI), teicoplanin (TEC), 
vancomycin (VAN), ciprofloxacin (CIP), levofloxacin (LVX), amikacin (AMK), gentamicin (GEN), 
tobramycin (TOB), mupirocin (MUP), rifampin (RIF), tetracycline (TET), fusidic acid (FUS), fosfomycin 
(FOF), linezolid (LZD) and cotrimoxazole (CTX). 

Genetic fingerprinting 

Genetic characterization of all isolated S. aureus was carried out by PFGE as previously described 
(McDougal et al., 2003). PFGE patterns were analyzed with Bionumerics v.6.6 (Applied-Maths NV, Sint-
Martens-Latem, Belgium) to describe genetic relationships among isolates. Dendograms were constructed 
using the Dice similarity coefficient and the unweighted pair group mathematical average (UPGMA) 
clustering algorithm with 1% in the tolerance and optimization values. The Simpson's index of diversity 
was calculated to assess the discriminative power of PFGE by using the Comparing Partitions website 
hosted at http://darwin.phyloviz.net/ComparingPartitions/index.php?link=Home. Multilocus sequence 
typing of MRSA was performed as described elsewhere (Enright et al., 2000). Allelic profiles were assigned 
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in the S. aureus MLST database hosted at http://saureus.mlst.net/. Information of the MRSA was submitted 
to that database. 

The S. aureus spa typing using the sequence of a polymorphic VNTR in the 3’ coding region of the S. 
aureus–specific staphylococcal protein A (spa) was determined as described by (Harmsen et al., 2003; 
www.spaserver.ridom.de). Spa types were assigned according to the repeat succession in Bionumerics 6.6 
software (Applied Math NV, Sint-Martens-Latem, Belgium). 

Typing and subtyping of the SCCmec element 

We determined the genetic structure of the SCCmec element by multiplex-PCR as previously described 
(Kondo et al., 2007). This molecular method allows the discrimination of the SCCmec types I, II, III, IV, V 
and VI, as well as the variants IA & IIIA. 

Detection of Panton–Valentine leukocidin (PVL) virulence factors 

We investigated the presence of the PVL genes (lukS-PV & lukF-PV) by conventional PCR as described by 
(Lina et al., 1999). Reference strain ATCC 49775 was used as positive control. 

Detection of enterotoxin genes 

S. aureus strains were tested for the presence of sea, seb, sec, sed, see, seg, seh, sei, sej by PCR as published 
previously by Gonano et al. (2009), with modifications. Primers were combined in order to obtain two 
different sets of multiplex PCRs, in which one set for detection of sea, seb, sec, sed, and see genes (PCR 1) 
and the other one for seg, seh, sei, sej genes (PCR 2). 

Results and discussion 

The emergence of MRSA in food-producing animals has elicited a great concern in the last decade on the 
potential role of foods in the dissemination of MRSA lineages. Consequently, many studies have assessed 
the presence of this pathogen in food facilities and samples from different countries and animal origins. 
Prevalence of MRSA in foodstuff greatly varies depending on the animal and the country of origin. Thus, 
while pork showed the highest contamination rate in the USA and Canada, poultry did in the Netherlands 
and Denmark (Kluytmans, 2010; Bhargava et al., 2011). 

The 200 food samples, either homemade or processed ones, taken for the present study were assessed for 
the presence of S. aureus, MRSA respectively. Overall, 73% of the samples were homemade and sold in 
plastic bags or cartoon boxes, while 27% were produced at industrial level in which they were packed and 
labeled. In total, 80% of the foods originated from the Republic of Moldova, 17% from Ukraine, and 3% 
from Bulgaria. 

Crossing the Romanian border with food is allowed just for low amounts as personal goods on distances 
that do not overpass 50 km, but very often these foods are illegally sold in black markets. There are 9 border 
crossings between Romania and Republic of Moldova and 5 Romanian cities situated at distances that are 
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in accordance with the Romanian law 10/2010 (Monitorul Oficial). In each of those cities, there are one or 
two markets where Moldavians are coming daily to sell foods. Those markets are organized to sell fresh 
fruits and vegetables and do not have facilities for refrigeration. Since refrigeration is not performed and 
hygiene standards are not met at the selling point, multiplication of pathogens to levels sufficient to cause 
illnesses in vulnerable populations can occur and isolates with increased virulence potential and antibiotic 
resistance can be transmitted. For example, Gwida et al. (2012) correlated the re-emergence of brucellosis 
in nonendemic regions of the EU with Turkish migrants, while Costard et al. (2013) estimated the risk of 
African swine fever introduced to the EU by illegally imported pork products respectively, in poultry 
carcasses from Romania in 2012–2013. 

Even though local authorities installed adverts saying that food of animal origin is forbidden to be sold and 
make periodical controls of the activity taking place in these markets, eggs, fish and fish products, milk and 
dairy products, meat and meat products are sold daily. It is difficult to estimate the amounts of food from 
non-EU countries entering in that way, but the frequency of this phenomenon is constant and high. The 
type of food and the sampling period, which included the winter season with low temperatures, could affect 
the viability of pathogens. However, EFSA reports showed low occurrence of these pathogens in Romania 
(EFSA, 2013), and other studies reported low prevalence or absence of the mentioned pathogens in illegally 
imported foods into other European countries (Rodríguez-Lázaro et al., 2015; Schoder et al., 2015) 
Furthermore, Reg. (CE) 206/2009 regarding the introduction in the EC of personal foodstuff of animal 
origin bans the introduction of meat, milk and derived foodstuff if they are not from EU-countries or 
Croatia, Faeroe Islands, Greenland or Iceland. 

Overall, thirty-two S. aureus isolates were recovered from sixteen confiscated food samples (8%): eight milk 
and dairy products, five fish products and three meat samples. Among them, one isolate (0.5%) recovered 
from pork lard sample was MRSA as harbored the mecA resistance determinant. None isolate harbored the 
mecC homologue. These results are consistent with other studies where isolation rates of S. aureus from 
food samples ranged from 10% to 40% (Normanno et al., 2007; Pu et al., 2009; Crago et al., 2012). Storage 
time/ temperature abuses, and inadequate chilling or heat treatment of foodstuffs at restaurants, canteens, 
or private households were responsible for S. aureus outbreaks (EFSA and ECDC 2014; Hennekinne et al.,  
2012). A recent study reported a 27% S. aureus prevalence at a RTE food-processing facility, where S. aureus 
has been isolated from pre- and post-cooked foods, surfaces, gloves of workers, and air (Syne et al., 2013). 

S. aureus could also be shed by ruminants affected by subclinical mastitis as an undetected stock problem 
(Voelk et al., 2014; Walcher et al., 2014). Especially homemade raw milk cheeses produced in small batches 
as investigated in this study are often affected (Rosengren et al., 2010). Studies on the prevalence of S. aureus 
in fish products are rare, although 7% of all staphylococcal foodborne diseases are due to contaminated fish 
and fish products. Two recent studies reported an occurrence of S. aureus in 5–43% of fish and fish samples 
(Vázquez-Sánchez et al., 2012; Zarei et al., 2012). 

S. aureus contamination levels from 104 to 105 CFU/g are sufficient to produce enterotoxin at a level that 
poses a risk to consumers’ health (EC 2073/2005). In our study, only thirteen % of the S. aureus–positive 
samples harbored >105 CFU/g, while the majority was yielding between 102 and 104 CFU/g (Table 10). Eight 
S. aureus isolates harbored sea gene, while other five were tested positive for seg and sei genes. The rest of 
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the S. aureus isolates were tested negative for the presence of enterotoxins. However, the MRSA isolate 
recovered from pork lard was not enterotoxigenic. Occurrence of staphylococcal enterotoxins constitute a 
concern especially for milk and dairy products since they can be found in higher proportion than the rest 
of other animal origin food products (Carfora et al., 2015). Interestingly, SE were predominant present in 
the analyzed milk and dairy samples, harboring one or two toxin genes. 

A further particular livestock-associated problem is the increasing number of MRSA (Haran et al., 2012). 
Apart from dairy herds as a reservoir for MRSA, raw meat could also harbor higher loads of S. aureus (15–
65%), among them 1–11% MRSA (Bhargava et al., 2011; Jackson et al., 2013).  

Table 10. Staphylococcus aureus–positive ready-to-eat food illegally sold in a Romanian market 

Source Isolation date Amount (g) ISO 6888-2 
Artificial black caviar 14.09.2012 150 1.1 · 103 
Artificial red caviar 14.09.2012 150 2.0 · 102 
Fresh cow cheese 14.09.2012 1000 1.5 · 104 
Sheep cheese salted in brine 14.09.2012 1000 1.4 · 103 
Unfermented goat cheese 14.09.2012 500 3.5 · 103 
Raw milk 14.09.2012 2000 1.1 · 104 
Smoked salmon 14.09.2012 500 1.0 · 105 
Fish canned in oil with herbs 06.11.2012 1000 1.0 · 103 
Pork lard 06.11.2012 400 2.3 · 10 
Raw milk 06.11.2012 2000 1.5 · 102 
Non-fermented unsalted 
sheep cheese 

06.11.2012 600 1.6 · 104 

Smoked fish 06.11.2012 500 1.1 · 10 
Poultry 06.11.2012 2400 3.1 · 103 
Goat cheese 29.01.2013 500 2.6 · 103 
Whey cheese 04.02.2013 250 1.7 · 105 
Poultry 07.02.2013 1100 6.6 · 103 

Genetic characterization of all 32 S. aureus isolates by SmaI-PFGE provided a fingerprint pattern consisting 
on 13–17 DNA fragments of 20–670 kbp, approximately. Twelve genotypes were observed resulting in a 
Simpson's Index of Diversity of 0.909 (CI 95% 0.854–0.963), but no relationship among the pulsotype and 
the sample type or the date of confiscation was observed. 

Note that in some cases isolates obtained from the same sample showed different pulsotypes, though most 
of them were closely related (Figure 10). Five isolates, including the MRSA isolate, were not typeable by 
SmaI PFGE suggesting that they belonged to ST 398, since it has been previously demonstrated that this 
lineage shows an unusual resistance to digestion by SmaI (Chung et al., 2000). Indeed, further 
characterization of MRSA isolate confirmed that it belonged to ST398, harbored SCCmec type V and tested 
negative for the presence of the PVL genes.  
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Figure 10. Genetic relationships among 27 S. aureus isolates based upon comparison of PFGE profiles 
obtained with the restriction enzyme SmaI. Isolates were observed among a total of 200 food samples 

confiscated in a black market in Romania, from July 2012 to March 2013. The dendrogram was produced 
by using a Dice similarity coefficient matrix with unweighted pair group method with arithmetic mean 

(UPGMA). The scale bar indicates similarity values 

Spa typing of 16 S. aureus strains resulted in the following profiles presented in decreasing order according 
to the isolation frequency in this study: t449, t304, t1606, t524, t011, t91, t3625, and t803 (Table 11). Of 
these, t449, t304, and t524 were most often isolated from cow, sheep, and goat-milk cheeses contaminated 
with 103–105 CFU/g, indicating a contamination at herd level or unhygienic conditions during food 
processing and handling.  

A strong indication of improper food handling at the market could be linked to the coincided isolation of 
S. aureus t449 at the same date of sampling from red caviar and different kinds of cheeses. The 
same observation could be made for S. aureus t1606 isolated from fish samples on the same day. S. aureus 
t011 and t3625, both related to the livestock-associated CC398, were isolated from pork lard and poultry 
meat. Another very frequently isolated spa type, t011, is often found to be methicillin resistant 
(www.spaserver.ridom.de). S. aureus t011, t304, t524, and t091 are all strongly related to human 
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colonization and infections. These data indicate the risk of selling food without hygiene precautions and 
unknown pathogen status and handling of unpackaged foodstuffs on an open market. 

Table 11. Spa typing of 16 Staphylococcus aureus isolated from ready-to-eat food illegally sold in a Romanian market 

Strain 
Isolation
code 

spa type 
Repeat 
succession 

Source Frequency a Association 

E10 14/09/2012 

t449 
26-23-13-23-31-
05-05-17-25-17-
25-16-28 

Artificial red caviar 

0.03% MSSA/MRSA 
(colonization) 

E16 14/09/2012 Fresh cow cheese 

E6 14/09/2012 Sheep cheese salted 
in brine 

E2 14/09/2012 Smoked salmon 

E4 14/09/2012 
t304  
(ST6, ST8) 

11-10-21-17-34-
24-34-22-25 

Unfermented goat 
cheese 

0.33% 
MSSA/MRSA 
(colonization, 
infection) 

E19 06/11/2012 Raw milk 
E1 04/02/2013 Whey cheese 

E3 06/11/2012 
t1606 

08-16-34-34-24-
25 

Fish canned in oil 
with herbs 0.01% 

MRSA 
(colonization) 

E7 06/11/2012 Smoked fish 

E13 06/11/2012 
t524 04-17 

Non-fermented 
unsalted sheep 
cheese 0.03% MRSA 

(infection) 
E11 29/01/2013 Goat cheese 

E22 06/11/2012 t011 
08-16-02-25-34-
24-25 Pork lard 3.28% 

MRSA
(colonization, 
infection), 
CC398 

E18 14/09/2012 t091 (ST7) 07-23-21-17-34-
12-23-02-12-23 

Artificial black 
caviar 0.90% 

MSSA/MRSA 
(colonization, 
infection) 

E5 07/02/2013 t3625 08-16-34-25 Poultry 0.01% MSSA, CC398 

E8 06/11/2012 
t803 
(ST15) 07-23-02-12-23 Poultry 0.06% 

MSSA/MRSA 
(colonization) 

E23 14/09/2012 unknown 
08-21-17-36-34-
34-34-33-34 Raw milk - - 

Note: a This information is based on the Ridom Spa Database (www.spaserver.ridom.de) 

Further, antibiotic susceptibility testing revealed five resistance profiles (Table 12). Overall, 19 strains 
(59.4%) were fully susceptible to all antibiotics tested. However, the MRSA isolate was not only resistant to 
all β-lactams but also to ciprofloxacin, tetracycline and cefazolin. Among the methicillin-sensitive S. aureus 
(MSSA), 9 strains (28.1%) were resistant to penicillin, 3 strains (9.7%) to tetracycline and 1 strain (3.2%) to 
ciprofloxacin (Table 12). 
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Table 12. Resistance profiles of 32 Staphylococcus aureus isolates recovered in food samples sold at a black market in 
the southeast border of Romania, 2012-2013 

Resistance profile Antimicrobial agent a Isolates % 

RP0 None 19 59.4 
RP1 PEN 9 28.1 
RP2 TET 2 6.3 
RP3 TET, CIP 1 3.1 
RP4 All β-lactams, TET, (CIP) 1b 3.1 

             Note: PEN, penicillin; TET, tetracycline; CIP, ciprofloxacin;  

                            a parentheses indicate intermediate resistance; 
  b methicillin-resistant S. aureus isolate. 

We found a relative low percentage of foods contaminated with S. aureus (8%), and only one isolate was 
MRSA (0.5%); ST398-MRSA-V. However, this isolate was multidrug resistant not only to β-lactams but 
also to other three antibiotics widely used in chemotherapy (Table 12). The MRSA recovered from food are 
not necessarily related to that present in the animal of origin, and two types of genetic backgrounds can be 
found in foods: community-associated MRSA (CA-MRSA) present in food due to a human source of 
contamination by inappropriate handling, or LA-MRSA via contamination of carcasses during slaughtering 
of MRSA-positive animals. Interestingly, while most European studies have reported the presence of LA-
MRSA clone ST398 in food of various animal origins (de Boer et al., 2009; Lozano et al., 2009) as in the case 
of our study, it seems that the presence of this clone in the USA and Canada is still scarce, and successful 
CA-MRSA clones are frequently reported instead (Bhargava et al., 2011). The results of a recent study 
monitoring the presence of MRSA in illegally imported food confiscated to passengers of non-EU flights in 
a Spanish Airport, which also represents a neglected route of transmission of MRSA to EU, corroborated 
that scenario; the MRSA obtained were from the American continent (Bolivia) and belonged to two 
successful clones of CA-MRSA (ST8 and ST1649) (Rodríguez-Lázaro et al., 2015). In both cases, it seems 
clear that food can play a role in the dissemination of successful CA- or LA-MRSA into general population. 
Indeed, foodborne outbreaks of MRSA infection have been reported (Kluytmans et al., 1995; Jones et al., 
2002), and the role of food in the prevalence of MRSA has been recently demonstrated (Ogata et al., 2012). 
In this sense, there is a growing general consensus that the transmission route from environment to hospital 
involves not only humans and environmental bacteria, but also animals and food products (González-Zorn 
and Escudero, 2012; Spanu et al., 2012).  

In conclusion, this study investigated for the first time the pathogens’ presence in food legally brought by 
Moldavian citizens into the European Union as personal goods, but illegally sold in Romania, and revealed 
that contamination occurs at levels like those usually reported by (EFSA, 2013) for foods 
produced and sold under official control. Moreover, the results obtained in our study confirm the potential 
role of food in the dissemination of successful MRSA lineages and define illegally introduced and sold food 
as a neglected route of MRSA dissemination, which can play a role in the prevalence and evolution of MRSA 
clones in the community. More than that, some S. aureus isolates were harboring one or more than one 
toxin gene, underlying the need of standardized diagnostic methods to be considered for possible food 
poisoning episodes. Moreover, food distribution to a certain limited number of consumers can most likely 
lead to sporadic or family-associated cases of diseases.  
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Compositional Analysis of Biofilms Formed by Staphylococcus aureus Isolated 
from Food Sources 

 
Few studies have been reported so far regarding the biofilm formation by S. aureus isolated from foods (Di 
Ciccio et al., 2015) and the impact of the environmental factors encountered in food processing plants on 
the adherence and biofilm formation (Vázquez-Sánchez et al., 2013; Santos et al., 2014). In food industry it 
is important to know the conditions under which S. aureus is able to survive, adhere to surfaces and form 
biofilms (Futagawa-Saito et al., 2006), leading to contamination of food products. In planktonic form, S. 
aureus does not appear resistant to disinfectants, compared to other bacteria, but it may be among the most 
resistant ones when is attached to a surface (Fratamico et al., 2009). 

S. aureus can produce a multilayered biofilm embedded within a glycocalix with heterogeneous protein 
expression throughout, forming at least two types of biofilms: ica-dependent, mediated by polysaccharide 
intercellular adhesin (PIA)/poly-N-acetyl-1,6-β-glucosamine (PNAG), and ica-independent, mediated by 
proteins (Beloin and Ghigo, 2005). Biofilm-associated protein (Bap), which shows global organizational 
similarities to surface proteins of Gram-negative (Pseudomonas aeruginosa and Salmonella enterica serovar 
Typhi) and Gram-positive (Enteroccocus faecalis) bacteria (Cucarella et al., 2001), was the first protein that 
has been found to be involved in biofilm formation by staphylococcal strains isolated from mammary 
glands in ruminants suffering from mastitis (Speziale et al., 2014). Meanwhile, Foulston et al. (2014) 
discovered that the extracellular matrix of clinical S. aureus biofilms comprises cytoplasmic proteins that 
associate with the cell surface in response to decreasing pH. Regarding the capacity to form biofilms, Bridier 
et al. (2010) demonstrated that S. aureus strains from different sources (five clinical, two originating from 
water, two unknown, and one milk isolate from ewes with mastitis) produce biofilms with high bio volumes 
and high substratum coverage. 

Having in view the significant damages caused by biofilms in food industry in general, more studies should 
be conducted to elucidate formation of such biofilms and to develop countermeasures for their removal 
from food contact surfaces (Marques et al., 2007). This study was carried out to evaluate the ability of S. 
aureus strains isolated from food products to form biofilms on hydrophobic surfaces at 37°C, followed by 
biofilm matrix characterization. The composition of the biofilms formed by S. aureus strains on polystyrene 
surfaces was first inferred using enzymatic and chemical treatments and later confirmed by confocal laser 
scanning microscopy (CLSM). 

 

Bacterial strains 

Sixteen S. aureus strains isolated from food products of animal origin (8 from dairy products, 5 from fish 
and fish products and 3 from meat and meat products) (Oniciuc et al., 2015) were tested to show their 
ability to form biofilms. Prior to inoculation, all strains were transferred from the stock cultures (preserved 
in 25% glycerol at −80°C) to Baird Parker (BP) (Biolife Italiana srl., Milano, Italy) and incubated aerobically 
at 37°C for 24 h. For biofilm assays we used overnight precultures in Tryptic Soy Broth (TSB) (Liofilchem 
srl., Roseto degli Abruzzi, Italy) incubated aerobically at 37°C, with shaking. 
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Media screening and biofilm formation overtime 

Media screening consisting in TSB with/ without addition of 0.4% glucose (TSBG) or 4% NaCl (TSBN) 
(Liofilchem srl.) for supporting 24 h biofilm formation was performed (See Appendix 12). Glucose (B. Braun 
Melsungen AG, Melsungen, Germany) sterilized by filtration (0.22 μm) was added after autoclaving. 
Prolonged incubation time (48, 72 h) was also performed (Peeters et al., 2008). Biofilms were grown in 96-
well plates tissue cultured (Orange Scientific, Braine-l’Alleud, Belgium) with a total volume of 200 μL of 
TSB, TSBG and TSBN per well and a starting inoculum approximately equal to 106 CFU/mL. Only broth 
media were introduced in the assay as negative controls, and S. aureus ATCC 25923® as positive control 
(clinical isolate). The plates were incubated aerobically at 37°C, on an orbital shaker (ES-20/60 
Environmental Shaker BIOSAN) set at 120 rpm. 

Biofilm quantification was performed according to the procedure developed by Stepanović et al. (2000), by 
using 1% crystal violet (CV) (Merck KGaA, Darmstadt, Germany). Biofilm formation in the microplates 
was measured in an ELISA reader set at 570 nm, and values were expressed in optical density (OD) values. 

 

Matrix characterization 

Biofilm detachment assays were carried out as described by Kogan et al. (2006) and Fredheim et al. (2009) 
with slight modifications, for six strains capable to form strong biofilms with an OD> 4 × ODNC. Biofilms 
were washed twice with 200 μL of 0.9% NaCl and then treated for 2 h at 37°C without shaking, with 200 μL 
of 40 mM of sodium periodate (NaIO4), or 200 μL proteinase K (0.1 mg/mL in 20 mM Tris-HCl:1 mM 
CaCl2). Control wells were filled with 0.9% NaCl. After treatment, the biofilms were washed once with 200 
μL of 0.9% NaCl, and then resuspended into 200 μL of 0.9% NaCl and dislodged by scraping followed by 
sonication using a cycle of 5 s and an amplitude of 22%. Biomass quantification was performed by 
measuring the OD at 600 nm of each sonicated cell suspension. Measuring the OD of sonicated cell 
suspensions was preferred for this assay as we observed that NaIO4 used to assess polysaccharides reacts 
unspecific with CV therefore yielding false positive results. 

 

Biofilm composition by CLSM 

The composition of 48 h biofilms was observed by CLSM, exposed to three types of dyes: (i) SYTO dye that 
stains nucleic acids; (ii) FilmTracer SYPRO Ruby Biofilm Matrix stain (Invitrogen, Paisley, UK), which 
labels most classes of proteins (Berggren et al., 2000); (iii) wheat germ agglutinin (WGA) conjugated with 
Oregon Green (Invitrogen), which stains N-acetyl-D-glucosamine residues (Wright, 1984). The 
fluorescence of dyes was detected using the following combination of laser excitation and emission band-
pass wavelengths: 476 nm/500–520 nm for SYTO, 405 nm/655–755 nm for SYPRO and 459 nm/505–540 
for WGA. 

After each staining step, the biofilms were gently rinsed with sterile water. The biofilm images were acquired 
in an OlympusTM FluoView FV1000 confocal laser microscope and biofilms were observed using 40x water-
immersion objective. The images were analyzed sequentially using two virtual channels. Three stacks of 
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horizontal images (640 × 640 pixels) were acquired for each biofilm at different areas in the well. Two 
surfaces of two independent replicates were observed in each CLSM experiment. 

 

Results and discussions 

Glucose and NaCl have been previously shown to induce biofilm formation in clinical strains of S. aureus 
(Fratamico et al., 2009). Measuring the effect of 0.4% glucose and 4% NaCl on biofilm formation enabled 
us to determine the conditions necessary for S. aureus strains isolated from food to form biofilms. For most 
strains, there was not a significant difference within the media used showing a small degree of variability 
regarding the amount of biomass produced, but overall, six strains (E2, E6, E8, E10, E16, E23; 37.5%) with 
OD > 0.4 were distinguished for higher biofilm formation with TSBG (Figure 11, left graphic). As the 
determination of the total biomass over a specific period of time is a common practice for the 
characterization of biofilms and S. aureus biofilms are growing slowly, prolonged incubation times were 
used in our experiment too. Not surprisingly, quantification of biofilm proved a progressive accumulation 
of biomass during the analyzed time course (Figure 11, right graphic). Based on these findings we further 
characterized S. aureus biofilms after 48 h of incubation. 

In order to reveal the molecules behind biofilm accumulation, the biofilm chemical compositions were 
assessed by measuring the ability of NaIO4 or proteinase K to disperse S. aureus biofilms. 

Although both ATCC and food isolates have PNAG and proteins in the matrix, proteins prevail on PNAG, 
thus having a relevant role in maintaining biofilm structure. In this sense, biomass formed by S. aureus 
strains isolated from foods was reduced by 60–70% when anti-protein agents were used, while a reduction 
of 20–49% was obtained in the presence of the anti-polysaccharide agent (Table 13). Proteinase K treatment 
enhanced dispersion of Bap-positive S. aureus biofilms as demonstrated by Shukla and Rao (2013). The 
disruption effects observed on 48 h biofilms were similar for all isolates originating from food sources. 

Table 13. Biomass reduction of S. aureus biofilms when using metaperiodate or proteinase K 

S. aureus 
strains 

Biomass reduction, % 
with NaIO4 with proteinase K

E2 23 ± 10.34 71 ± 4.1
E6 34 ± 2.74 71 ± 0.74 
E8 46 ± 11.07 69 ± 0.63 
E10 20 ± 6.51 66 ± 3.5 
E16 25 ± 0.71 64 ± 1.75 
E23 49 ± 3.71 67 ± 6.05 
ATCC 25923 28 ± 5.25 9 ± 1.9

Note: Preformed biofilms were treated with NaIO4 or proteinase K for 2 h at 37°C. Control wells were filled with 0.9% 
NaCl. Average results ± SD of eight wells for each strain are shown. The experiments were performed in triplicate. Values 
of negative controls have been subtracted from the shown values. 

 

Differences were observed in the biofilm disruption pattern when comparing results obtained for biofilms 
formed by S. aureus isolated from food sources with those developed by the clinical isolate S. aureus ATCC® 
25923, presenting a high density of cell clusters embedded in polysaccharides. At present, there are no 
references to composition of biofilms formed by S. aureus isolated from food sources. Literature mentions 
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only biofilms produced by strains of Staphylococcus spp. Isolated from a poultry processing plant, which 
have been described by (Ferreira et al., 2014), as containing a significant amount of exopolysaccharides 
(EPS). 

CLSM in conjugation with three different fluorescent dyes was used to differentiate bacterial cells from 
PNAG and proteins within the biofilm matrix (Figures 12-13). Qualitative approach was preferred as 
biofilms obtained were heterogeneous and more than three sections per each biofilm were needed for a 
meaningful quantification. Biofilm matrices of E8 and E10 formed by S. aureus strains isolated from food 
are represented in Figure 12 in comparison with those formed by the reference strain. These experiments 
confirmed that proteins are of prime importance for the structure of biofilms formed by S. aureus strains 
isolated from food sources as revealed by the quantitative approach from biofilm disruption assays. 

 

Conclusions and perspectives 

Phenotypic production of EPS by S. aureus strains used in the present study suggests that staphylococcal 
biofilm development may have occurred via an ica-independent pathway. Clearly, in our population of 
bacteria, PIA independent biofilm formation was more prevalent. Nevertheless, to determine if this 
characteristic is in fact a key difference between foodborne S. aureus and clinical isolates or food processing 
environment isolates, future research is needed to include a broader range of foodborne isolates. Presence 
of biofilm forming strains of S. aureus in food and food processing environments is equally important as 
for the medical sector. Besides causing serious engineering problems as described by Garrett et al. (2008), 
biofilms are involved in cross contamination events. The proteic extracellular matrix developed by S. aureus 
isolates of food origin can behave in a similar way that the one developed by clinical isolates of S. aureus 
allowing enhanced flexibility and adaptability for this bacterium in forming biofilms and supporting the 
formation of mixed species biofilms either with spoilage or pathogenic bacteria as demonstrated by 
(Foulston et al., 2014). Composition of biofilms must be known to provide a basis for the development of 
better strategies for cleaning surfaces and cross contamination avoidance. 
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Figure 12. Biofilm matrix structure obtained from confocal microscopy observations of S. aureus ATCC® 
25923, E8 isolated from poultry, and E10 isolated from artificial red caviar. One z-stack is represented for 

each biofilm 

 

Figure 13. Biofilm structure obtained from confocal microscopy observation of S. aureus ATCC® 25923, 
exposed to three types of dyes: SYTO dye for cells, (WGA)-TRITC conjugate for polysaccharides 

visualization, and SYPRO Ruby for extracellular proteins. One z-stack is represented  
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Figure 11. Staphylococcus aureus biofilm development. Biomass accumulation when using 0.4% glucose and 4% NaCl to the standard TSB (left). Biofilm formation 

overtime using TSBG (right). Bars represent the means of the OD value ± standard deviation (SD) evaluated in three independent measures obtained upon different 
treatments tested, as indicated. Values of negative controls have been subtracted from the shown values 
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Tracking MRSA in food entering to the European Union via cross border traffic 
and international flights  

Staphylococcus aureus, a well-known opportunistic foodborne pathogen, is involved in numerous outbreaks 
worldwide, both nosocomial and community associated infections or common foodborne cases (Paterson 
et al., 2014). The widespread use of antibiotics, and particularly their incorrect or overuse, has facilitated 
the emergence of new pathogens, including those resistant to antibiotics, such as MRSA. In addition to its 
use for human therapy, antibiotics are also used in veterinary medicine or animal feeding, contributing to 
the vast appearance of antibiotic resistant strains (Valsangiacomo et al., 2000; Grema et al., 2015). After the 
first nosocomial episode in 1960, MRSA became an emergent pathogen (Bonten and Weinstein, 2016), 
affecting not only patients in hospitals but people in community settings such as nursing homes, nurseries, 
etc. (Lo et al., 2007; Murphy et al., 2012; Blumental et al., 2013). More recently, MRSA was found in 
livestocks, being clearly linked to a jump from humans to the animal host (Voss et al., 2005; Price et al., 
2012). However, the prevalence of LA-MRSA is increasing in farm animals as it could represent important 
ecological niches, affecting the associated foodstuff and stimulating the evolution of this lineage (Yan et al., 
2014; Verhegghe et al., 2016), and producing human outbreaks probably as a consequence of that increasing 
prevalence (Grøntvedt et al., 2016). 

Besides LA-MRSA, other lineages can occur in food intended for human consumption. Food of animal 
origin could gain a relevant role in the prevalence of CA-MRSA (Ogata et al., 2012; Rodríguez-Lázaro et al., 
2015) or HA-MRSA (Pu et al., 2009; Weese et al., 2010). Recently, we have demonstrated the presence of 
CA-MRSA in processed foods confiscated from passengers from international flights originated mostly 
from Central and South America (Rodríguez-Lázaro et al., 2015). This is extremely relevant from a food 
safety perspective as these lineages may occur because of the incorrect food handling, and not being 
associated to a zoonotic transmission. 

The presence of staphylococcal enterotoxins (SEs, se genes) have been reported in numerous studies causing 
staphylococcal food poisoning, toxic shock and other allergic and autoimmune reactions (Gonano et al., 
2009). Staphylococcal enterotoxins are divided into five “classical types” (SEA, SEB, SEC, SED, and SEE) 
(Carfora et al., 2015; Hennekinne et al., 2012). However, little is known on the prevalence of MRSA in foods 
(homemade or processed) associated to international trade combined with their ability to produce 
enterotoxins, and the role that confiscated food transported in luggage of passengers flying from different 
parts of the globe could play. Due to the MRSA complex epidemiology, we have conducted a study to 
evaluate if the illegal entrance of foods to Europe through international airports or open markets close to 
EU borders can constitute a neglected pathway of transmission of enterotoxigenic antibiotic-resistant 
strains, particularly MRSA. Information gathered from this study will reveal lineages involved in MRSA 
contaminated food correlated with their enterotoxigenicity, which represents a major concern for human 
health. 
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Food sample collection 

A total of 868 animal derived foods collected from August 2012 to July 2015 were tested for the presence of 
S. aureus and MRSA: foods confiscated from luggage of passengers on flights from non-EU countries by 
the Border Authorities at the International Bilbao Airport (Spain) (263 food products) and Vienna 
International Airport (Austria) (595 food products), and foods collected from EU border traffic between 
Republic of Moldova and Romania (Giurgiulești- Galați) (10 food products). Food samples included 408 
(47%) meat samples of diverse animal origin (including antelope, beef, chicken, duck, guinea pig, pork, 
rodents and turkey), 447 (51.5%) milk and dairy products and 7 eggs (0.8%), and fish and fish products (6, 
0.7%).  

Geographical origin of the food samples collected at airports was wide: Albania, Argentina, Armenia, 
Azerbaijan, Republic of Serbia, Bolivia, Bosnia and Herzegovina, Brazil, China, Columbia, Côte d'Ivoire, 
Cuba, Ecuador, Egypt, Ethiopia, Former Republic of Macedonia, Honduras, India, Iran, Israel, Jordan, 
Kazakhstan, North Korea, Republic of Kosovo, Latvia, Mexico, Nicaragua, Moldova, Mongolia, 
Montenegro, Russia, Niger, Panama, Paraguay, Peru, Philippines, Qatar, Dominican Republic, Romania, 
South Africa, South Korea, Thailand, Tunisia, Turkey, Ukraine, United Arab Emirates, and Vietnam.   

 

Detection and isolation of S. aureus 

The detection of S. aureus was performed following ISO 6888-2 (ISO, 1999). Real-time PCR further 
confirmed S. aureus isolates as previously described (Trnčíková et al., 2008). Positive colonies with correct 
morphology in BP agar plates were taken for further typing tests (MRSA biotype, antibiotic resistance, and 
genetic characterization). 

 

Screening for the presence of MRSA 

The presence of mecA and mecC in S. aureus isolates was tested by multiplex PCR as previously described 
(Stegger et al., 2012).  

 

Antibiotic susceptibility testing 

Susceptibility to antimicrobials was performed by the microdilution method following the 
recommendations and MIC breakpoints of the European Committee on Antimicrobial Susceptibility 
Testing (EUCAST) guidelines 2015 (www.eucast.org). Susceptibility to twenty antimicrobial agents was 
tested: penicillin (PEN), oxacillin (OXA), amoxicillin/clavulanate (AMC), daptomycin (DAP), 
erythromycin (ERY), clindamycin (CLI), teicoplanin (TEC), vancomycin (VAN), ciprofloxacin (CIP), 
levofloxacin (LVX), amikacin (AMK), gentamicin (GEN), tobramycin (TOB), mupirocin (MUP), rifampin 
(RIF), tetracycline (TET), fusidic acid (FUS), fosfomycin (FOF), linezolid (LZD) and trimethoprim 
sulfamethoxazole (SXT). 
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Characterization of the genetic background  

Pulsed Field Gel Electrophoresis (PFGE) (McDougal et al., 2003), Multi Locus Sequence Typing (MLST) 
(Enright et al., 2000) and typing and subtyping of the SCCmec element (Kondo et al., 2007; Milheiriço et 
al., 2007) of all MRSA isolates were performed. PFGE patterns were analyzed with Bionumerics software 
v6.6 (Applied-Maths NV, Sint-Martens-Latern, Belgium), and dendrograms were constructed using the 
Dice similarity coefficient and the unweighted pair group mathematical average (UPGMA) clustering 
algorithm with 1% in the tolerance and optimization values. The allelic profiles obtained by MLST were 
assigned by comparing the results obtained with data available (See Appendix 13) in the S. aureus MLST 
database hosted at saureus.mlst.net. Information of MRSA strains was submitted to that database.  

To define the relationships among MRSA strains at the micro evolutionary level, an allelic profile-based 
comparison applying a minimum spanning tree (MST) was performed applying the Bionumerics software 
v6.6. A distinct sequence type (ST) number was attributed to each distinct combination of alleles at the 
seven genes (Ragon et al., 2008). 

 

Detection of Panton-Valentine leukocidin virulence factors 

The presence of the PVL genes (lukS-PV & lukF-PV) was tested by conventional PCR in all MRSA strains 
as described by (Lina et al., 1999). Reference strain ATCC 49775 was used as positive control. 

 

Enterotoxin profiling  

MRSA isolates were tested by a multiplex PCR targeting sea, seb, sec, sed, see, seg, seh, sei, sej genes as 
previously described by Gonano et al. (2009). 
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Results 
 
Tracking MRSA in food samples confiscated by 
the border authorities 
Microbiological tests revealed that 15.7% of foods 
were positive for S. aureus (Figures 14-15), from 
which 3% (26/868) were MRSA-positive (49 isolates) 
harboring the mecA gene. The mecC homologue has 
not been identified. However, the mean count for S. 
aureus was established to 2.9 x 106 CFU/g, with a 
minimum value of 1.00 x 101 CFU/g in a raw pork 
meat confiscated by the border control in Bilbao 
airport from a passenger flying from Moscow, 
whereas the S. aureus maximum value count was 2.45 
x 108 CFU/g in an unknown cheese type confiscated 
by authorities in Vienna airport from a passenger 
flying from Turkey (Figure 16).  

All MRSA isolates were represented by 21 milk and 
dairy products (cow, sheep or goat milk and cheese- 
either fresh, brined or with spices), and 5 meat and 
meat products (raw and cooked meat). The MRSA 
strains recovered from positive S. aureus samples 
confiscated at the International Bilbao Airport 
originated from flights from Nigeria (1), Egypt (2), 
Republic of Honduras (1), China (1), Nicaragua (5), 
Bolivia (4), Ecuador (1), Peru (2), Columbia (1), and 
Republic of Serbia (1). At the Vienna International 
Airport, MRSA contaminated food originated from 
flights from Egypt (3) and Turkey (2). Two food 
samples were coming from Republic of Moldova and 
were the object of border traffic to Romania.  

 

Antibiotic profile of the MRSA isolates 

Antibiotic susceptibility testing reported 14 resistance 
profiles (Table 14). From all the MRSA strains 
studied, 16 of them were multiresistant. Moreover, 
MRSA isolates were sensitive to all non β-lactam 
antibiotics tested. 

 

Figure 14. Heat map regarding the origin and 
distribution of S. aureus-positive food samples 
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Figure 15. Prevalence (%) of S. aureus in food samples analyzed. The solid columns represent the number 

of MRSA positive samples, while the columns with stripes represent the number of S. aureus positive 
isolates 

 
Figure 16. Staphylococcus aureus counts (log10CFU/g) per food category, type and origin. The number of 

food samples analyzed per food type are displayed above each column. Lines passing through the columns 
(- -) and (  ̶  ) represent the maximum (M) value in the microbiological criteria for raw milk intended for 
processing and in powdered milk, and M value for cheeses made from raw milk respectively, according to 

EC 2073/2005. International Commission on Microbiological Specifications for Foods (ICMSF) 
recommends 103 CFU/g for meat and poultry cooked products as M value (ICMSF, 2011) 

 

Genetic characterization of MRSA isolates 

All MRSA isolates harbored mecA gene by Multiplex PCR and none isolate harbored the mecC homologue. 
Further characterization of MRSA isolates regarding the SCCmec revealed that 37 isolates (75.5%) belong 
to SCCmec type IV, whereas the last 12 isolates (24.5%) belong to SCCmec type V. Furthermore, for 
subtyping the SCCmec IV, 48.9% were represented by IVc and IVe, 22.4% to IVa, and 4.1% to IVh. 
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Interestingly, SCCmec typing of three isolates was not possible: the multiplex PCR-2, which types the mecA 
complex class, amplified the 804 bp DNA fragment, consistent with type C, but the multiplex PCR-1 
providing the ccr gene complex did not amplify. The same situation happened for another isolate whereas 
the multiplex PCR-1 amplified a 937 bp DNA fragment consistent with ccr type 2 (A2B2), the multiplex 
PCR-2 did not amplify. Moreover, seven isolates were tested positive for luk-PVL genes (SCCmec IV- 
subtypes IVc and IVe). 

Table 14. Antibiotic resistance profiles of MRSA strains from confiscated foods from passengers of non-EU-flights or 
ground borders, 2012-2015 

Resistance 
profile 

Antibiotics a 
Number of 
strains 

Percentage 
(%) 

RP0 β-lactams 6 22.2 
RP1 PEN, TET, ERY 5 18.5 
RP2 PEN, ERY 3 11.1
RP3 PEN, FUS, TET, TOB, GEN 2 7.4 
RP4 PEN, TET, TOB 2 7.4 
RP5 PEN, TET, SXT 1 3.7 
RP6 PEN, TET, FUS 1 3.7 
RP7 PEN, FOF 1 3.7 
RP8 PEN, LVX 1 3.7
RP9 PEN, LVX, SXT 1 3.7 
RP10 PEN, LVX, FOF, RIF 1 3.7 
RP11 PEN, TET, ERY, CLI 1 3.7 
RP12 PEN, TET, ERY, [OXA]b 1 3.7 
RP13 PEN, TET, CIP, LVX, ERY, CLI 1 3.7 

   Note: PEN, penicillin; FOF, fosfomycin; TET, tetracycline; SXT, trimethoprim sulfamethoxazole;                  
          FUS, fusidic acid; ERY, erythromycin; LVX, levofloxacin; TOB, tobramycin; RIF, rifampin;  
          GEN, gentamicin; CLI, clindamycin; CIP, ciprofloxacin; MUP, mupirocin. 
                  aThe MIC breaking points used were those indicated in the EUCAST guidelines (2015); 
                  b Parentheses indicates susceptibility. 

 
Enterotoxin profiles of MRSA isolates were determined. The majority of isolates were positive for the tested 
enterotoxin genes A, B, C, D, G, H, I, J. None isolate tested positive for enterotoxin E. Overall, 73% (19 out 
of 26 MRSA strains) tested positive for one or more se genes (Table 15). Four (15.4%) strains harbored only 
one kind of se gene, the remaining 15 (57.6%) of them harbored more than one type of se gene. Most of 
them synthetized seg/sei genes accounting 6 strains from the total of se positive genes. Interestingly, MRSA 
isolates tested positive for luk-PVL genes were not enterotoxigenic. 

Table 15. Enterotoxin profiles of MRSA strains 

 Number (%) of MRSA strains 

Type of se gene 
Milk and dairy 
products 

Meat and 
meat products 

se- negative 5 (19.2) 2 (7.7) 
se- positive 16 (61.6) 3 (11.5) 
sea 1 (3.85) - 
seg 1 (3.85) - 
seh 2 (7.7) - 
sea/seb 3 (11.5) 1 (3.8) 
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sea/seh 1 (3.85) - 
seg/sei 4 (15.4) 2 (7.7) 
sec/seg/sei 1 (3.85) - 
sed/seg/sej 1 (3.85) - 
sed/seg/sei/sej 2 (7.7) - 

 

To achieve further insights into the molecular characterization of the MRSA isolates recovered in this study, 
PFGE patterns and ST types of the selected strains were determined. Genetic characterization of MRSA 
isolates by SmaI-PFGE provided a fingerprint pattern consisting on 13-17 DNA fragments of 20-670 kbp, 
approximately (Figure 17). Two isolates were not typeable by SmaI-PFGE suggesting it might belong to 
ST398 since this lineage manifests an unusual resistance to digestion by SmaI (Chung et al., 2000). 

 
Figure 17. Genetic relationship among 26 methicillin-resistant Staphylococcus aureus (MRSA) isolates 
obtained by comparison of pulsed-field gel electrophoresis profiles, using the restriction enzyme SmaI. 
MRSA isolates were observed among a total of 136 food samples positive to S. aureus, confiscated from 

passengers on flights or ground border close to EU countries, from August 2012 to July 2015. 
Dendrogram was done by using the Dice similarity coefficient with the unweighted pair group 

mathematical average (UPGMA) clustering algorithm with 1% in the tolerance and optimization values. 
The scale indicates similarity values 
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Further characterization of MRSA strains by MLST revealed nine ST. The most common allelic profile was 
represented by ST5 (30.8%). These strains were recovered from seven cheese products coming from 
passengers from Nicaragua, Columbia, Egypt, and Turkey and one fresh beef product from a passenger 
flying from Egypt. Moreover, all strains showed related genotypes: three strains showed the same 
fingerprint pattern, harboring SCCmec type V, whereas the last five strains were harboring SCCmec type 
IV. Interestingly, all eight food samples were not confiscated on the same date of sampling, neither from 
the same airport so the fact that a possible cross-contamination occurred during handling the original 
package is not realistic. Another important fact is the cheese sample recovered from a passenger flying from 
Turkey, from which has been isolated an oxacillin-susceptible mecA-positive S. aureus (OS-MRSA) strain. 
To our knowledge, this is the first presence of OS-MRSA on foods from illegal routes of entrance to Europe.  

This fact draws attention on the potential circulation of OS-MRSA in Europe as consequence of illegal 
entrance of food via international flights. All other MRSA strains were overspread among other lineages 
ST1649 (15.4%) and ST8 (15.4%), the last lineage revealing 3 out of 4 strains harboring PVL genes as well. 
Furthermore ST1, ST22, ST72 and ST97 displayed in the MST (Figure 18) were prevalent as well in different 
hard and semi-hard cheese products. A further particular livestock clone ST398 have been found in a fresh 
meat sample confiscated from a passenger travelling from Republic of Serbia towards Bilbao.
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Figure 18. Multi-Locus Sequence Typing of 26 MRSA strains isolated from illegally introduced food into the EU. The STs were clustered 
according to the seven housekeeping genes using a minimum spanning tree (MST). A different randomized color was attributed to each ST. MRSA 
strains belonging to the same ST are displayed surrounded by dotted boxes. Information referring to sample type/ country of origin/ confiscation 
point/ date of confiscation: DD.MM.YYYY/ resistance profile is given in brackets for each MRSA strain, following the strain code. Abbreviations 

used:  AT (Austria); ES (Spain); RO (Romania) 
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Discussions 

This study highlights a major issue due to the MRSA spread via illegal entrance of foods to Europe through 
international flights and open markets close to EU ground borders. Approximately 1/6 of the total sample 
collection (136 out of 868 food samples confiscated; 15.7%) were confirmed as being positive for the 
presence of S. aureus from which 3% were represented by MRSA-positive strains exhibiting mecA resistance 
mechanism. From all isolates, a high number of them showed to be multiresistant to three or more 
antimicrobial agents (Table 14). Both facts outline the important role of illegally trespassing animal origin 
food in passengers’ luggage since multiresistant strains could freely be distributed worldwide either by 
flights, ground borders or other ways of transmission. For example, USA custom officers ask all passengers 
from outside the USA to fill a form regarding if they have been in direct contact with animals (Category A 
referring to zoonotic disease transmissible through animal contact) or if they carry any animal food 
originated product which can potentially harm/ contaminate or animals infected with zoonotic agents 
(Category B) (Noordhuizen et al., 2013). 

Another issue highlighted in our study is the great amount of food samples contaminated with S. aureus 
(Figure 15), in which S. aureus exceeded the EU microbiological criteria (Figure 16) (EC 2073/2005) posing 
a serious concern for public health as elevated amount of it is sufficient to produce preformed enterotoxins 
in food products. These results are consistent with other studies in which prevalence of S. aureus 
contamination ranked from 13% to 60% (Crago et al., 2012; Rodríguez-Lázaro et al., 2015; Sun et al., 2015; 
Ciolacu et al., 2016) in processed food products of animal origin. We reported a prevalence of 64.6% in S. 
aureus-positive milk and dairy food samples confiscated in International airport of Bilbao, and the highest 
value (11.8%) registered for MRSA-positive samples (Figure 16). Interestingly, more than 3.17 log10 over the 
established limit according to EC 2073/2005 has been found in our study for different types of cheeses such 
as soft, semi hard, or hard cheeses. The elevated amount of food contaminated with S. aureus may be linked 
with improper storage and poorly hygienic conditions in which bacterial transfer could range from 0.0005 
to 100% according to Chen et al. (2001) depending on the nature of surfaces and number of people handling 
the food. As a dynamic process, bidirectional bacterial transfer between clothes and food preparation 
surface may occur further (Bloomfield et al., 2011). Moreover, 26 strains were MRSA (3%) of which 19 of 
them were enterotoxigenic. The people’s disregard on the risk associated with the illegally animal food 
origin transportation combined with failing border controls could lead to emergence of foodborne 
outbreaks (Noordhuizen et al., 2013). Under improper food transportation conditions, heat-stable 
enterotoxins could emerge leading to appearance of gastroenteritis outbreaks. Many of the MRSA strains 
yielded one or more se genes, this being in accordance with another study published by Carfora et al. (2015) 
in which presence of “classical enterotoxin types” in milk and dairy products is confirmed. Moreover, 
presence of S. aureus in different food origins showed that 19% of them were both enterotoxigenic and 
oxacillin positives (Pereira et al., 2009). It seems that contaminated milk and dairy products are of prime 
importance for acquiring enterotoxins but, however, the link between source of food contamination and 
transfer of antibiotic resistance determinants remains unclear since only several reports describe the 
presence and possible origin of MRSA in foods (Ortega et al., 2010). 

More recently, EU has issued several regulations regarding animals and food products of animal origin 
imports. However, these regulations often refer to commercial trade and big amounts of food products (EC 
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275/2007; EC 206/2009), leaving small volumes of food products superficially trespassing during the border 
control if are intended for personal consumption. 

The confiscated foods were coming from passengers with a very diverse geographical origin: South and 
Central America, Europe, Africa, or Asia (Figure 14), becoming a serious concern for public health due to 
the appearance of food poisoning episodes since raw food products have been found in passenger’s luggage, 
products which have not suffered a thermal treatment previously conducting to the spread of multidrug 
resistant and enterotoxigenic strains such as MRSA. On top of that, EC forbids the introduction of personal 
foodstuff of animal origin such as e.g. meat, milk and derived foodstuff, if people are not from EU-countries 
or Croatia (joined EU on the 1st of July 2013), Faeroe Islands, Greenland or Iceland (EC 206/2009). Road 
entry station represents another important route for enterotoxigenic MRSA transmission as people can 
come to a neighbor country and illegally sell foods intended for personal consumption. The prevalence of 
MRSA in food depends on animal’s origin and country of provenience, therefore occurrence of MRSA in 
associated foodstuff have been already addressed in several reports (Rodríguez-Lázaro et al., 2015; Oniciuc 
et al., 2015). Moreover, foodborne outbreaks of MRSA infection have already been reported (Jones et al., 
2002). This proved that the emergence of this resistant pathogen in associated food products has raised the 
query about hidden role of food as a pathway for MRSA transmission (Oniciuc et al., 2017).  

Remarkably, 26 MRSA-positive food samples have been identified in this study, isolated from foods coming 
from travelers distributed worldwide. The predominant lineages found in our study are represented by ST5, 
ST8, ST1649, ST1 and other lineages locally distributed such as ST7, ST22, ST72, ST97 and ST398 (Figure 
18). The most widely genetic sequence spread was represented by ST5 (30.8%), considered as a host jump 
followed by adaption of strain to the new host (Lowder et al., 2009). Despite the fact that ST5 has been 
predominant found among poultry isolates (Lowder et al., 2009), in our study was mostly implicated in 
successful isolation from dairy products. Moreover, ST5 lineage has been considered a major component 
of MRSA and MSSA hospital and community associated worldwide (Miko et al., 2013). Other MRSA strains 
identified in our study have been associated with ST8-MRSA-IV/V and ST1649-MRSA-IV, which belong 
to successful clones of CA-MRSA. One case of community-acquired foodborne illness caused by SEC-
producing MRSA (Jones et al., 2002) have already occurred in USA, and production of staphylococcal 
enterotoxin types SEB, SEC, SED, and SEE in two MRSA strains of milk origin from Minnesota farms 
(Haran et al., 2012). 

The presence of PVL genes and different antimicrobial susceptibility patterns linked to ST8-MRSA may 
cause concern as it is not clear whether human handlers played any role in the preliminary post slaughter 
process. Surprisingly, although many European studies have reported the presence of ST398 lineage in food 
with a slightly high prevalence accounting, in our study the isolation of this clone was currently limited only 
to one dairy product found in a passenger luggage coming from Egypt. Of note is that in The Netherlands 
this clone emerged rapidly and now accounts for 20% of human MRSA cases and for 42% of newly detected 
MRSA, indicating that animals are important reservoirs for human MRSA infection (Kadariya et al., 2014). 
Moreover, outbreaks due to LA-MRSA ST398 have already occurred (Wulf et al., 2008b; Verkade et al., 
2012). However, in our study strains harboring the luk-PVL genes and the ones associated with LA-MRSA, 
respectively were not enterotoxigenic. It seems that low levels of ST398 isolates carrying SE have been found 
(Argudín et al., 2011), despite the fact that this lineage is widely spread in European countries (Oniciuc et 
al., 2017). 
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Uncommonly and yet problematic is the successful isolation of an OS-MRSA-positive strain recovered from 
a cheese product illegally transported by a passenger from Turkey towards Vienna. Such phenotype is 
considered of prime importance since may misidentify the presence of OS-MRSA (Ariza-Miguel et al., 
2015) resulting in the development of highly resistant MRSA under treatment with β-lactam antibiotics. 

Besides, this strain could synthetize three types of SE such as D, G, J. It could be considered of major concern 
as a prove for demonstrating a potential route of illegal entrance of food to Europe.  

In conclusion, this study shows presence of enterotoxigenic HA-, CA-, and LA- MRSA identified in food 
confiscated from passengers from non-EU flights, for which its potentially pathogenic role as a foodborne 
pathogen should not be neglected. This study stresses the illegally introduced processed food in luggage as 
an important and alarming pathway of enterotoxigenic MRSA transmission and spread. Efficient control 
measurements must be taken for avoiding antibiotic resistant strains transmission to humans by the 
consumption of such foods. In the same time, travelers must understand and learn to accept the prohibition 
regarding food traffic, consequently the risk of foodborne pathogens spreading. Unfortunately, the 
increased number of people travelling and the increased global trade will contribute to future outbreaks 
regardless the measures which are to be taken. 
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Biofilm Formation by MRSA Isolates Recovered from Passenger’s Luggage 
from Non-EU Flights 

 

Methicillin-resistant Staphylococcus aureus (MRSA) has begun to emerge ever since antimicrobial therapy 
was introduced in hospitals, showing the ability to gain resistance to almost all classes of antibiotics (Lowy, 
2003). As its epidemiology is so diverse and its ability to acquire novel antibiotic resistance mechanisms is 
high, MRSA started to appear in communities and more recently in food and associated foodstuff 
(Rodríguez-Lázaro et al., 2015), whereas, from a food perspective, great significance for the public health 
has been conferred as MRSA presence might be disseminated throughout the food chain (Doulgeraki et al., 
2016). 

Likewise, MRSA strains have shown ability to form biofilms serving as a virulence factor allowing them to 
adhere to abiotic and biotic surfaces (Sadekuzzaman et al., 2015) (e.g. indwelling medical devices). Recent 
studies indicate that MRSA biofilm formation may represent a hidden pathway for food contamination in 
food processing plants and human handlers, by colonizing equipments and other materials and posing 
serious safety concern (Rode et al., 2007; Gutiérrez et al., 2012). 

Gaining resistance to antimicrobial agents is similar as adopting survival strategies (Uršič et al., 2008) of 
which MRSA biofilms can benefit of. Gene expression is altered when MRSA adopts the biofilm mode of 
growth (Archer et al., 2011; Foulston et al. 2014) as in response to different environmental changes such as 
temperature, osmolarity, pH, oxygen supply, source of nutrients and other factors that might appear (Costa 
et al., 2013; Srey et al., 2013). The metabolic rates may explain the capability of biofilms to act as a diffusion 
barrier to slow down the infiltration of some antimicrobial agents (Archer et al., 2011).  

S. aureus can evolve as a multi-layered biofilm embedded within a glycocalyx with heterogenous protein 
expression throughout (Campoccia et al., 2013; Drago et al., 2016; Oniciuc et al., 2016), arbitrating biofilm 
formation proteins such as SpA, FnBPs and Bap (Merino et al., 2009; Cucarella et al., 2001; Houston et al., 
2011). Singh and coworkers (2010) showed diminished penetration of antibiotics such as oxacillin, 
cefotaxime or vancomycin against biofilms formed by S. aureus and S. epidermidis. However, S. aureus and 
S. epidermidis biofilms remained unaffected when amikacin and ciprofloxacin were introduced in the assay. 
Due to this reason, the potential of S. aureus, especially MRSA, to cause infections in people with indwelling 
medical devices is increasingly high and for this reason many studies have been addressed to this topic; yet, 
the literature in the food industry sector is still scarce and remains an important niche that must be 
investigated. Biofilm formed by S. aureus isolated from foods (Di Ciccio et al., 2015) and the impact of the 
environmental factors encountered in food processing plants on the adherence and biofilm formation 
(Vázquez-Sánchez et al., 2013; Santos et al., 2014) have been addressed so far. 

From a food safety perspective, different MRSA lineages can be acquired with different responses in 
attachment and MRSA biofilm formation via food manipulation and/or consumption. This study aim to 
evaluate the biofilm forming ability of MRSA isolated from food products. A proper in vitro approach has 
been adopted. A correlation between biofilm formation and composition and molecular aspects of MRSA 
isolates has been put into evidence.  
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MRSA collection and their characteristics 

Forty-nine well-characterized MRSA isolates coming from animal food sources (21 milk and dairy products 
and 5 meat and meat products) were selected to be used for their biofilm formation capacity. Previously, 
their genetic background has been characterized based on MLST, SCCmec typing and PFGE typing by SmaI. 
Moreover, antimicrobial susceptibility testing to 20 antimicrobial agents has been performed following the 
recommendations of EUCAST guidelines 2015, using a Microscan automated system. 

Prior to biofilm assays, MRSA isolates were transferred from the freeze-dried culture state (preserved in 
25% glycerol, -80°C) to Baird Parker (BP- Biolife Italiana, Milano, Italy) agar plates, followed by their 
aerobic incubation for 24 h at 37°C. Reference strain ATCC 25923 (Stepanović et al., 2000; Bauer et al., 
2013) was introduced in all assays.  

 

Biofilm formation and quantification 

Broth subcultures were prepared by inoculating one single colony of MRSA from the BP plate into a test 
tube containing 10 mL of Tryptic Soy Broth (TSB-HiMedia, Mumbai, India) media, then incubated 
overnight at 37°C±1°C. Inoculum of each MRSA isolate has been adjusted to OD600 1, later being confirmed 
by plate counts of ten-fold dilutions of each standardized inoculum. Experiments were performed in 96-
well polystyrene microtiter plates (Nunc® MicroWellTM, Saint Louis, Missouri, USA) using TSB enriched 
with 0.4% (w/v) glucose (TSBG, Sigma Aldrich, Saint Louis, Missouri, USA), glucose supplement being 
sterilized by 0.22 μm (Minisart®, Sartorius Stedim Biotech, Germany) filtration and added to the broth 
media after autoclavation. A total volume of 0.2 mL of TSBG and a starting inoculum approximately equal 
to 106 CFU/mL were added into each well, followed by their 24 h aerobic incubation at 37ºC, without 
shaking. 

Crystal violet (CV- Merck KGaA, Darmstadt, Germany) staining was used to quantify the total amount of 
biofilm biomass attached on the 96-well hydrophobic surfaces following the procedure developed by 
Stepanović et al. (2000). After carefully removing broth media from wells, biofilms were rinsed twice with 
0.9% NaCl (Liofilchem, Roseto degli Abruzzi, Italy) to remove weakly adherent cells. Pure methanol (15 
min) (Sigma Aldrich, Saint Louis, Missouri, USA) has been used for biofilm fixation, then the supernatants 
were discarded allowing the wells to dry at room temperature.  

Gram staining has been achieved with 1% CV, the stain excess being removed after 5 min by gently wash 
with tap water. Absorbance was determined at 570 nm using an ELISA reader (Tecan 900 Pro), after CV 
bound being released in 0.2 mL of 33% acetic acid (Sigma Aldrich, Saint Louis, Missouri, USA).  

S. aureus biofilm-forming strain ATCC 25923 (positive control) and broth medium (negative control) were 
used as controls during all biofilm assays. All assays were carried out three times and results were averaged. 
Prolonged incubation time (48 h) was performed (Peeters et al., 2008) for those MRSA isolates exhibiting a 
biofilm forming capacity in accordance with OD570 higher than 3, in order for the cells located in the deeper 
layers of biofilms (adhesion surface) to overcome and stimulate their metabolic activity as well. 
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Cell viability by CFU and dry weight determination 

Viable cell quantification was performed by CFU counting using nutrient agar media (Biolife Italiana, 
Milano, Italy). After 48 h incubation, non-adherent cells were removed from the 24-well plates and rinsed 
twice with 0.9% NaCl. Then, each biofilm was resuspended in 1 mL of 0.9% saline solution and dislodged 
by vigorous scraping and vortexing. Three replicates of ten-fold dilutions were made and the plates were 
incubated at 37°C for 24 h, before counting the number of grown colonies using the following equation:  

ܮ݉/ܷܨܥ      ൌ 	 ∑ி

ሺభା.ଵమሻ∙ௗ
                  (6) 

whereas:	∑  ;total number of colonies from plates containing 10-150 colonies -ܷܨܥ
  ݊ଵ- number of plates containing 10-150 colonies each; 

   ݊ଶ- number of plates from the following dilution; 
  ݀- dilution factor corresponding to the plates containing 10-150 colonies. 
 

Similarly to viable cell quantification, the amount of each biofilm growing on the well surface of the 24-well 
plate was scraped into 1 mL of 0.9% saline solution. Resuspended biofilm cells were filtered through a 
preweighted filter (0.45 μm) (Teknokroma, Professionally Friendly, Spain) and air dried in the oven for 24 
h at 105°C. The dry weight (DW) of each biofilm was calculated by differences between weights. Moreover, 
the coefficient of variation (e%) was used to estimate the experimental error using the following formula: 

݁% ൌ
௦


∙ 100                   (7) 

whereas: ഥ݉- average of ݊ values; 
 .standard deviation of these ݊ values -ݏ   
 

Structural and matrix composition evidenced by CLSM 

Biofilm composition (48 h) of MRSA isolates with the OD570 > 3 was evidenced by confocal laser scanning 
microscopy (CLSM) after exposure to three types of dyes: 5 μM SYTO 9 green fluorescent nucleic acid stain 
(Molecular Probes, Eugene, Oregon, USA); 0.01 mg/mL wheat germ agglutinin (WGA) conjugated with 
Oregon Green488 (Molecular Probes, Eugene, Oregon, USA) for N-acetyl-D-glucosamine residues staining 
(Wright, 1984); undiluted Film Tracer SYPRO Ruby biofilm matrix for protein staining (ThermoFisher 
Scientific, Carlsbad, California, USA) (Berggren et al., 2000). Prior to the CLSM assay, the supernatant and 
non-adherent cells were removed, rinsed with sterile water, then biofilms were treated with the above 
mentioned fluorescent dyes. The excess of each stain was gently removed, then MRSA biofilms were 
automatically scanned with an inverted Zeiss LSM710 T-PMT CLSM, which has been configured with three 
lasers (Argon 458/488/514 nm, Diode 405 and HeNe 633 nm). Confocal images (2048 x 2048 pixels) of each 
MRSA-producing biofilm were captured using a 63X oil immersion objective with minimum 1.4 numerical 
aperture and a working distance of 0.19 mm. Labelled cells were detected using the following combination 
of laser excitation and emission band-pass wavelengths: SYTO 9 (514-582 nm); WGA (406-511 nm) and 
SYPRO (584-700 nm). Quantitative structural parameters of MRSA-producing biofilms were calculated 
using the freely available COMSTAT v2.1 software. 
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Statistical analysis 

All experiments were done in triplicates. Statistical analysis of 24 h and 48 h MRSA biofilms have been 
performed using classical statistical parameters. Coefficient of variations (e%) was calculated in order to 
estimate the experimental errors. 

 

Results  

Biofilm forming ability of MRSA isolates 

Isolates were categorized based on their ability to produce biofilms (Figure 19). The cut-off points based on 
OD values separate MRSA biofilm producing ability into weak (ODNC ≤ OD < ODC), moderate (ODNC < 
OD ≤ 3) and strong (OD > 3) biofilm formers. The cut-off OD values for weak (OD570 1.03, SD 0.03), 
moderate (OD570, 1.03  ̶  3), and strong (OD570 3.82, SD 0.12) biofilm formers were defined based on the 
averaged ODC obtained (OD570, 3.65, SD 0.07) after the correction of the blank sample (OD570 0.16, SD 0.03). 
Forty-one (83.7%) of the 49 MRSA tested isolates showed moderate biofilm formation, whereas the 
remaining 8 (16.3%) were strong biofilm producers. Table 16 describes the summarized results of MRSA 
isolates from different food sources based of their ability to produce biofilms. 

Table 16. Biofilm formation by MRSA isolates on hydrophobic 96-well microtiter plates at 37°C, static conditions 

Source 
Biofilm producer 

Moderate 
biofilm producer 

Strong 
biofilm producer 

n % n % n % 
Milk and dairy products 42 85.7 37 75.5 5 10.2 
Meat and meat products 7 14.3 4 8.17 3 6.13 

 

Molecular aspects and biofilm formation pattern of MRSA isolates have been evidenced (Table 17), 
whereas, overall, a higher biofilm biomass has been put into evidence for those harboring SCCmec type IV. 
However, MRSA isolates analyzed in this study harbored SCCmec types IV or V, being in accordance that 
such strains are having greater probability to produce higher biofilm biomasses in comparison with those 
carrying SCCmec types I-III (Vanhommerig et al., 2014).  

Table 17. Molecular aspects of MRSA and its 24 h biofilm formation pattern, static conditions 

Isolate 
Sample 
type 

Country 
of origin 

SCCmec ST 
Biofilm formation 
Moderate Strong  

50 meat Egypt IV 22 + 

 

151-1.1 
cheese Bolivia IV 1649 + 151-1.2 

151-1.3 
153-1.1* 

cheese Bolivia IV 8 + 153-1.2* 
153-1.3* 
137-2.1 fresh 

meat 
Republic 
of Serbia 

V 398 + 
137-2.2 

140 
brined 
cheese Turkey V 5 + 

132.2 cheese Columbia IV 5 + 
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132.3 
165 cheese Turkey IV 22 + 
41 cheese Egypt V 5 + 
80-2.1 

cheese Nicaragua IV 5 + 80-2.2 
80-2.3 
138.1 

cheese Nicaragua IV 5 + 
138.2 

476 
cheese in 
spicy 
sauce 

Egypt V 1 + 

124.1 cheese Nicaragua IV 5 + 
68.1 

cheese Nicaragua V 72 + 68.2 
68.3 

 

133-1.1 
cheese Nicaragua IV 5 + 133-1.2 

133-1.3 
115-1.1 

cheese Bolivia IV 1649 + 115-1.2 
115-1.3 
01-05a maturated 

sheep 
cheese 

Romania IV 1 + 
01-05b 

01-02a 
soft goat 
cheese Romania IV 1 + 

135.1 
cheese Peru IV 1649 + 135.2 

135.3 

45-3.1 
fresh beef 
meat Egypt V 5 + 

117.1* 
cheese Ecuador IV 8 

+ 
117.2*  + 
117.3* 
122-2.1* cheese Peru IV 8 +  
45-1.1 cheese Egypt V 97 + 

50-2.1 
dried 
meat China IV 7  + 

74.1 
cheese Bolivia IV 1649 

 + 
74.2 
74.3 + 
24.1 sheep 

meat Nigeria V 8 

 

+ 
24.2 

46-2.3 cheese 
Republic 
of 
Honduras 

IV 7 + 

        Note: *-presence of pvl gene 

Prolonged incubation period (48 h) has been applied for those eight MRSA isolates having an OD570 higher 
than 3, proving an increased biofilm biomass accumulation during the analyzed time course (Figure 20). 
Based on these findings, we further characterize MRSA isolates after 48 h of incubation.  
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Figure 20. Quantification of 24- and 48 h MRSA biofilm biomasses using TSBG. Bars indicate the average 
of the OD value ± standard deviation (SD) from three independent experiments. Negative samples have 

been extracted from the shown values 

Similarly to the OD measurements, significant differences in viable cell quantification and dry weight 
calculations of MRSA isolates were observed for the older 48 h MRSA biofilms (Figure 21). As can be seen, 
the number of viable cells within a MRSA biofilm decreases as its biomass increases. This can be explained 
by the fact that metabolic activity differs as MRSA biofilms are competing for nutrients available in a 
delimited space. The remaining viable cells may show different metabolic states dependent of the total 
biofilm biomass accumulated during 48 h. Although Staphylococcus spp. are known to produce strong 
biofilms (Bridier et al., 2010), this is not the case for biofilm mode of growth of isolates 117.2 and 117.3 in 
which cell viability was extremely higher, explained by the lack of cells adhesion to the polystyrene surfaces.  

 
Figure 21. Biomass and viable cell quantification of 48 h MRSA biofilms. Values indicate the average ± 

standard deviation from 3 independent experiments 
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Figure 22. Coefficient of variation as a function of biofilm biomass in MRSA isolates 

In Figure 22 is represented the coefficient of variation calculated for different biomasses belonging to the 
48 h MRSA biofilms. No more than 15% error was observed between different plotted biomasses. 

 

CLSM analysis of MRSA isolates 

Representative 48 h MRSA-producing biofilm structures by CLSM in conjugation with different fluorescent 
dyes are presented in Figure 23. CLSM images differentiate bacterial cells (green) from proteins (red) and 
PNAG (blue) within the biofilm matrix. MRSA isolates formed flat and compact structures, while some of 
them developed slightly three-dimensional structures covered by highly fluorescent cell aggregates areas 
within. For example, MRSA isolate 117.2 had a biomass accumulation of 0.06481 μm3/μm2 represented by 
proteins; 0.0792 μm3/μm2 for PNAG while cells covered only 0.05938 μm3/μm2 (Figure 24). The biofilm-
producing strain of S. aureus ATCC 25923 used in this study as reference apparently formed biofilms 
mainly composed of PNAG, data confirmed also by other studies (Skogman et al., 2012; Oniciuc et al., 
2016). This is not the case of isolate MRSA 24.1 where it had a biomass accumulation of 0.15277 μm3/μm2 

covered by proteins; 0.08279 μm3/μm2 of poly-N-acetylglucosamine residues and 0.10528 μm3/μm2 of viable 
cells. It seems that, in this particular case, protein content is responsible for the structure of this biofilm. 
However, biofilm matrices of the analyzed MRSA biofilms had similar amounts of polysaccharides, proteins 
and DNA in their matrix.  
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Figure 23. Biofilm imaging obtained from confocal observations of MRSA isolate 117.2, with different 
biofilm components differentiated (cells- left; proteins- center; polysaccharides- right). One z-stack is 

represented 

 
Figure 24. Biofilm imaging obtained from 63X confocal observations of MRSA isolate 117.2 stained with 

all three types of dyes 
 

Discussions 

Bacterial ability to form biofilms is of great importance and represents a big challenge for the food industry, 
as some strains in their sessile state may tolerate antimicrobial agents, making the bacterium extremely 
difficult to eradicate (Basanisi et al., 2017). The emergence of S. aureus resistant to antimicrobial agents, 
such as methicillin resistance has provoked a great concern due to its presence in associated foodstuff 
(Rodríguez-Lázaro et al., 2015). However, the risk of MRSA to produce biofilms may occur by 
contamination from human handlers rather than food itself (Doulgeraki et al., 2016). On the other hand, 
MRSA biofilm mode of growth has been deeply studied in clinical branch, as being one of the important 
pathogens associated with indwelling medical devices, catheters, or surface colonization of such 
equipments, besides S. epidermidis (Ferreira et al., 2012; Prakash et al., 2016). Likewise, MRSA can adhere 
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and form biofilms on different surfaces mostly used in food sector such as polystyrene, stainless steel, glass, 
ceramic and others (Oulahal et al., 2008; Mirani et al., 2013; Di Ciccio et al., 2015). 

In the present study, forty-nine MRSA isolates recovered from food sources were tested regarding their 
biofilm formation ability using TSBG media at 37°C, the temperature relevant for infectious disease’s 
appearance (EC 853/2004). TSB plus glucose or NaCl have been shown to improve the biofilm formation 
on microtiter (static well) plates as suggested by some researchers in their attempt to find the best culture 
media whereas S. aureus may be able to form reproducible and robust biofilms (Luong et al., 2009; Merino 
et al., 2009; Chen et al., 2012). However, Stepanović et al. (2007) conducted a study where he demonstrated 
that some S. aureus strains may have greater adherence in TSB without glucose than in TSBG, but may not 
support the S. aureus biofilm mode of growth. 

Based on results obtained, a variation in the ability to form biofilms based on OD measurements has been 
observed. Our data showed that most of the MRSA isolates had the ability to accumulate moderate (83.7%) 
but there are also strong biofilm formers (16.3%). Hydrophobicity seems to be an important factor 
contributing to the biofilm formation capacity of MRSA isolates. Similar results are in accordance with 
previous studies (Pagedar et al., 2010).  

Evaluation of 48 h MRSA biofilms has been achieved by correlating the number of viable cells within the 
total amount of biofilm biomass. Based on DW measurements, MRSA isolate 74.1 had a significantly higher 
biomass than the biofilm-producing model ATCC25923, but those differences were not correlated with the 
CFU’s counting after 48 h of growth. These may be explained by the fact that those biofilms were composed 
of bacterial cells and extracellular polymeric substances, suggesting that 74.1 accumulated a denser biofilm 
matrix, the remaining cells competing for their survival. However, older biofilms may expect to have stable 
cell clusters which can interfere with the quantification of sessile bacteria by plate-counting (Freitas et al., 
2014). Later, CLSM allowed us to perform a visual analysis of the concurrent distribution of 
polysaccharides, nucleic acids, and proteins components within the biofilms. Similar distribution in cell 
density as well as regarding the self-produced exopolymeric matrix has been noticed. However, higher 
content of proteins rather than PNAG within the biofilm matrices related to food sources has been 
previously observed (Ferreira et al., 2012; Oniciuc et al., 2016). 

In this study, different biofilm patterns related to MRSA clonal lineages were observed, especially for those 
MRSA harboring SCCmec type IV and V, these data being in accordance with other studies. For example, 
Mirani et al. (2013) found that 98.3% of MRSA isolates harbored SCCmec type IV being related further with 
their biofilm ability. Moreover, different biofilm patterns related to MRSA clonal lineages are presented in 
a work study performed by Vanhommerig et al. (2014), suggesting that MRSA harboring SCCmec type IV 
produce significantly more biomass under static conditions than SCCmec type I-III. But better biofilm 
formers are corresponding to SCCmec type I-III rather than to SCCmec type IV, when dynamic conditions 
are used (Vanhommerig et al., 2014). However, Parisi et al. (2016) noticed an association between SCCmec 
type IV or V and biofilm formation, whereas the high prevalence of such staphylococcal cassettes promotes 
the S. aureus biofilm producing ability, thus allowing the bacteria to persist in the environment. 

Conclusions 

Since many studies confirmed the potential role of food in the successful dissemination of MRSA lineages, 
it is important, as well, to take into consideration their capacity to form biofilms. Nowadays, there is a 
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growing concern regarding potential routes of MRSA vehiculating from passengers’ luggage in the EU space 
as these strains can form biofilms, which may act as survival strategists against harsh environmental 
conditions that may encounter. Results obtained so far gave us new insights that MRSA strains isolated 
from food of animal origin are capable of forming biofilms. By knowing the main matrix components 
within biofilms, we can counteract the mechanisms involved in biofilm resistance by applying proper 
control strategies with a great focus, currently, on alternative ones such as biofilm degrading enzymes, 
quorum sensing inhibitors or the use of bacteriophages. Thus, efforts to combine conventional solution-
based targeting different biofilm constitutes should be done. Moreover, a considerable need for routine 
surveillance and control regarding foods introduced in the EU is necessary as foodborne pathogens can be 
freely distributed and promote biofilm formation. 
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Figure 19. Biofilm forming ability (arranged in an increasing order) of MRSA isolated from food animal sources using TSBG. Bars indicate the average of the OD 

value ± standard deviation (SD) from three independent experiments. Blank sample represented by TSBG media has been extracted from the shown values 
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Case study- Oxacillin-Susceptible mecA-positive Staphylococcus aureus 
Associated to Processed Food in Europe  

 

Methicillin-resistant Staphylococcus aureus (MRSA) is an opportunistic pathogen associated with 
nosocomial and community acquired infections and recently being found in food producing animals and 
associated processed food (Rodríguez-Lázaro et al., 2015; Oniciuc et al., 2015). MRSA is mediated by the 
expression of mecA or mecC genes, encoding a modified penicillin-binding protein (PBP) designated as 
PBP2a with reduced affinity for β-lactams and phenotypically having a minimum inhibitory concentration 
(MIC) of oxacillin higher than 4 μg/mL. Moreover, expression of mecA or mecC can be additionally 
regulated by the bla system (Sabat et al., 2015). Beta-lactamase regulates the synthesis of blaZ gene (Sabat 
et al., 2015), while regulation of mecA gene is predicted by the production of PBP2a located in the mobile 
genetic element, named as staphylococcal chromosomal cassette (SCCmec) (Milheiriço et al., 2007; Peacock 
and Paterson, 2015). Later on, transcription of blaZ and mecA genes is driven by their genetic organization 
of blaR1-blaI genes, and mecR1 (sensor/inducer)-mecI (repressor), respectively (Milheiriço et al., 2007; 
Peacock and Paterson, 2015), in which higher similarity has been noticed between blaZ and mecA inducers 
(61% amino acid similarity) and repressors (44%) (Oliveira and de Lencastre, 2011), allowing to cross-talk 
between their regulatory systems (Sabat et al., 2015). However, it is not necessary for both systems to be 
present in a S. aureus strain as each one alone can control the transcription of mecA and blaZ genes (Ryffel 
et al., 1992; Mckinney et al., 2001). This is the case of SCCmec types IV and V in which the mecI-mecR1 
regulatory elements are absent or truncated resulted from the insertion of IS1272 and IS431, respectively 
(http://www.sccmec.org/Pages/SCC_ClassificationEN.html). 

Some studies reported cefoxitin or methicillin-sensitive S. aureus (MSSA) strains classified by conventional 
phenotypic laboratory testing, but genotypically carrying mecA gene. These strains have been defined as 
oxacillin-susceptible mecA-positive (OS-MRSA), also known as cefoxitin-sensitive MRSA. Such strains are 
exhibiting oxacillin MIC in the susceptible range (≤ 2 mg/L) (EUCAST, 2015), showing an intermediate 
susceptibility by disk diffusion tests and low sensitivity of chromogenic media for their detection (Saeed et 
al., 2014). Due to misinterpretation of oxacillin or cefoxitin phenotypic studies, such strains can easily be 
misdiagnosed, potentially triggering the development of highly new resistant MRSA variants under 
antibiotic selection due to the possession of mecA. 

OS-MRSA has been reported in clinical isolates (Hososaka et al., 2007; Chen et al., 2012; Conceiçao et al., 
2015), in animals (Pu et al., 2014) and recently in meat (Raji et al., 2016), posing a serious challenge for 
routine conventional diagnostic tests (Malhotra-Kumar et al., 2010; Ariza-Miguel et al., 2015) and for 
possible associated treating infections due to oxacillin-susceptible phenotype of such strains. OS-MRSA 
strains seems to be genetically diverse in which regulatory systems mentioned above are of prime 
importance in regulating the phenotypic expression of methicillin resistance (Sabat et al., 2015). This study 
aimed to examine the whole genome sequence of an oxacillin-susceptible mecA S. aureus isolated from a 
processed food, harboring a SCCmec type V and belonging to the MLST sequence type 5. 
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Bacterial strain 

An oxacillin-susceptible mecA positive strain has been previously isolated from a dairy product among 600 
foods confiscated from August 2012 to March 2013 at International Vienna airport from passengers of 
international flights from non-EU countries. This strain, designated OS-MRSA 41, has been genetically 
characterized and demonstrated that it belong to MLST ST5, SCCmec type V. 

Phenotypic testing of mecA positive isolate 

The OS-MRSA 41 was tested to 20 antimicrobials agents by the Microscan (Beckman Coulter S.L.U, USA) 
and Vitek II (BioMérieux, France) automated systems for MICs interpretation and disk diffusion method 
for zone diameter measurements, following the recommendations of EUCAST guidelines, 2015 v5.0. The 
Sensititre Gram Positive All-in-One Plate system (TREK Diagnostic Systems Inc., Cleveland) was also used. 

Whole genome sequencing 

Genomic DNA of OS-MRSA 41 strain was extracted using the DNeasy Blood and Tissue Kit (Qiagen, 
Hilden, Germany) and the purified DNA was quantified with a Fluorometer Qubit 2.0 (Life Technologies). 
Whole genome sequencing (WGS) approach was undertaken by preparing libraries from the genomic DNA 
using tagmentation procedure and 300 bp-paired-end sequencing. A next-generation sequencing approach 
was launched in a MiSeq device (Illumina). 

Data analysis 

Raw reads quality was evaluated by using FastQC 
(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Bases with a Phred score below 25 within a 
20-bp-long window were trimmed and reads shorter than 100 bp were discarded by using Prinseq 
(http://prinseq.sourceforge.net/). Filtered reads were assembled by using SPAdes version 3.10.0 (option “-
-careful” enabled) (Bankevich et al., 2012) and contigs shorter than 200 bp were discarded. The resulting 
190 contigs were ordered against S. aureus isolate JS395 (Larsen et al., 2017) by using Mauve (Darling et al., 
2004). Ordered contigs annotation was performed using the RAST annotation server (Aziz et al., 2008). 
MLST and SPA typing were performed by using mlst v2.6. (T. Seemann; 
https://github.com/tseemann/mlst) and spaTyper v1.0 (Bartels et al., 2014), respectively. BLASTn (Altschul 
et al., 1990) searches were undertaken on the draft genome against a custom gene database. Insertion and 
CRISPR sequences were predicted by using ISFinder (Siguier et al., 2006) and CRISPRFinder (Grissa et al., 
2007), respectively. Whole genome SNPs were identified by mapping the sequence reads to S. aureus isolate 
JS395 genome using Bowtie2 v2.2.6 aligner (Langmead and Salzberg, 2012) and generating a Variant Call 
Format with SAMtools v1.3.1 (Li et al., 2009) and VarScan v2.3.9 (Koboldt et al., 2012). Antimicrobial 
resistance genes were predicted by using abricate v0.3 (T. Seemann; https://github.com/tseemann/abricate) 
against the ResFinder database (https://cge.cbs.dtu.dk/services/ResFinder/). Plasmids presence was 
evaluated by assembling the reads by using PlasmidSpades (Antipov et al., 2016), which uses reads coverage 
to infer the difference between chromosomic and plasmidic reads. 
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Results and discussions 

Phenotypic features 

The MIC for oxacillin of the OS-MRSA 41 was in the susceptibility range by Microscan (Beckman Coulter 
S.L.U) and Vitek II (BioMérieux, France) automated systems, confirmed also by Sensititre Gram Positive 
All-in-One Plate system (TREK Diagnostic Systems Inc., Cleveland). Further screening for zone diameter 
interpretation showed that the studied strain was susceptible to cefoxitin (30 μg/disk, Oxoid) by disk 
diffusion method. Moreover, the antibiotic susceptibility pattern showed to be positive for inducible 
clindamycin resistance and tetracycline, resistant to penicillin and exhibiting intermediary resistance to 
erythromycin. The characteristics of the OS-MRSA isolate are detailed in the following table (Table 18). 

Table 18. Phenotypic and genotypic characterization of the OS-MRSA 41 strain 

Test OS-MRSA 41 
Phenotypic screening  
Coagulase production 
MIC for oxacillin (μg/mL) 
MIC for tetracycline (μg/mL) 
MIC for erythromycin (μg/mL) 
MIC for penicillin (μg/mL) 
Cefoxitin screening 
  -Disk diffusion (mm) 
  -Brilliance MRSA 2 Agar 

positive 
0.5 
>8 
>4 
>0.25 
 
sensitive (24.5) 
sensitive 

Genotypic screening  
mecA 
SCCmec type 
lukS-PV & lukF 
Sequence Type 

positive 
V 
negative 
ST5 

 

Genome features 

The genome sequence of OS-MRSA 41 was compared with the sequence of a mecA-positive S. aureus isolate 
harboring SCCmec V, recovered from a patient in Switzerland in 2008, designated as JS395 (CC395-V) 
(Larsen et al., 2017). MLST and SPA typing were performed by using mlst v2.6. (T. Seemann; 
https://github.com/tseemann/mlst) and spaTyper v1.0 (Bartels et al., 2014), respectively, showing that OS-
MRSA 41 have a spa-type t688 usually associated with MRSA ST5/SCCmec V (Basanisi et al., 2017). The 
genome of OS-MRSA 41 strain consisted of a 2,819,217 bp chromosome size while the JS395 complete 
genome was composed of 2,846,866 bp (GenBank/ DDBJ/ENA; accession number CP012756). Ordered 
contigs were annotated using the RAST platform determining the number of subsystems automatically 
determined and being present in the both genomes taken into analysis. Detailed estimation regarding 
various subsystems present in both genomes are illustrated in Figure 25. 
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Figure 25. Comparison between various subsystems present in the OS-MRSA 41 and JS295 genomes 

As can be seen, gene content belonging to each subsystem present in both genomes are slightly different. 
Distribution of genes related to phages, prophages, transposable elements, or plasmids present in the OS-
MRSA 41 seems to be higher in comparison with the one belonging to JS395-related subsystem group. 
Thirty-two phage and transposable elements, represented by 1.57% of its total genome content were present 
in the OS-MRSA 41. However, less variants were present in the JS395, amounting only 0.44% (no. 9) of its 
total DNA content.  

 

Figure 26. Chromosome of OS-MRSA 41  
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The OS-MRSA 41 genome consists of a circular 2,819,217 bp chromosome size, with a GC content of 32.8% 
(Figure 26). The unique features of this genome were compared with the genome of JS395 S. aureus strain 
(black inner circle). OS-MRSA 41 genome represents the blue inner circle. The red outer circle predicted 
the coding sequences (putative genes) on the plus and minus strands, respectively. Both strains carried 
SCCmec type V, whereas detailed analysis showed that the structure of J1 region and mecA and ccrC genes 
are nearly identical, but differing between them in the J3 region (Figure 27). In the OS-MRSA 41 SCCmec 
element, a tetracycline resistance gene, tet(K), caused by the integration of IS431 is to be found in the J2 
region. Of note, CRISPRFinder (Grissa et al., 2007) identified 11 CRISPR spacers in the whole genome of 
the studied strain, whereas a CRISPR locus of 10,687 bp size has been found in the J1 region. 

 

Figure 27. Comparative structure analysis of the SCCmec element in the S. aureus JS395 
(DDBJ/ENA/GenBank accession number CP012756) and OS-MRSA 41 strain 

Sequence analysis of present genes  

Antimicrobial resistance genes prediction performed by using abricate v0.3 (T. Seemann; 
https://github.com/tseemann/abricate) revealed the presence of blaZ, erm(C), fexA, mecA, norA, tet(K) and 
tet(M) (Table 19). In addition, were observed to have mobile genetic elements such as insertion sequences 
(IS)30, IS256, IS431, IS1181, IS1182(ISSau3), ISL3 (ISSau8); transposon (Tn)3; tyrosinase recombinase 
XerD. The genome analysis showed resistance genes that should have conferred phenotypic resistance to β-
lactams, macrolides, tetracyclines and aminoglycosides. 

Sequence analysis of mec gene complex. SCCmec type V possesses the class C mec gene complex and the 
mecI-mecR1 regulatory elements are absent or truncated resulted from the insertion of IS431. The 1904 bp 
mec gene was almost identical to the JS395, for which mecA was found with 100% gene coverage but 99.95% 
gene identity. Variant calling revealed a SNP (A  G) in mecA position 1770 that is translated in an amino 
acid variation in the trans peptidase domain (position 589) of the forming MecA protein (S  P). 

Sequence analysis of blaZ system. The β-lactamase gene blaZ and its regulatory genes blaI and blaR1 were 
present in the OS-MRSA 41 strain, with 100% coverage but 99.054% identity, revealing seven SNPs. Even 
though OS-MRSA 41 strain showed a penicillin resistance level (MIC >0.25 μg/mL), several SNPs in the 
sequence of the blaZ gene could contribute to the phenotypical susceptibility to oxacillin of the mecA-
positive strain studied. 
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Sequence analysis of other genes. BLASTn (Altschul et al., 1990) against a custom gene database was 
performed. Table 19 describe virulence factors associated with adherence-associated proteins, exotoxins 
and exoenzymes expressed in the OS-MRSA 41. Many secreted exoenzymes found in the OS-MRSA 41 
were represented by proteases, lipases (such as glycerol ester hydrolase) and nucleases, with their specific 
role on pathogenesis. OS-MRSA 41 produces several major proteases, including a metalloproteinase (Aur, 
aureolysin), two cysteine proteases (SspB, staphopain B and SspC, staphostatin B) and a serine protease 
(SspA, staphopain A). The biological function of such proteases can be regarded as potential complement 
inhibitors (Jusko et al., 2014), by limiting the capacity of the host to fight against bacterial pathogens. For 
example, cysteine proteases expressed by OS-MRSA 41 could degrade elastin, collagen and fibrinogen 
(Ohbayashi et al., 2011), most important affecting tissues, leading to destruction and ulceration; while 
degradation of human immunoglobulins could be produced by the serine protease V8 (Prokešová et al., 
1992). Other studies showed the implications of metalloproteinase Aur in the formation of a mature serine 
protease (Rice et al., 2001). Moreover, inactivation of antimicrobial peptides can be assessed by the 
metalloproteinase Aur, which have already been shown to have a great impact on the pathogenesis of 
osteomyelitis (Cassat et al., 2013). Other exoproteins found in the OS-MRSA 41 were represented by 
staphylokinase and staphylococcal complement inhibitor (SCIN) implicated in the degradation of fibrin 
clots, due to their activation of plasminogen into plasmin (Jusko et al., 2014). Finally, other exoenzymes 
encoding potential virulence factors are represented by lipases and nucleases which can inactivate fatty acids 
and decrease the antibacterial activity of neutrophils, respectively (Otto, 2014). 

Moreover, virulence of OS-MRSA 41 could be characterized by the secretion of several exotoxins, in which 
its potential to cause possible diseases is greater as can interfere directly with the host (Otto, 2014). Several 
γ-hemolysin variants encoding hlgA, hlgB and hlgC genes were found in OS-MRSA 41, with their 
presumptive role in damaging the host cell plasma membrane (Vandenesch et al., 2012). Later on, although 
enterotoxigenic MRSA in foods have been found sporadically and typically associated with dairy products 
(Haran et al., 2012; Carfora et al., 2015), OS-MRSA 41 harbored not one but several types of enterotoxins, 
fact confirmed by PCR when testing for classical enterotoxins (types A-E). Such enterotoxins may be 
resistant to most proteolytic enzymes, by retaining their activity in the digestive tract after ingestion (Ortega 
et al., 2010), for this reason, their presence and possible activation should not be disregarded. However, the 
pyrogenic toxin superantigen such as toxic shock syndrome toxin (TSST), exfoliatins and leukocidins such 
as Panton Valentine leukocidin (PVL) were not detected. The fact that PVL was not detected was not 
surprising as all the environmental tested OS-MRSA isolates published so far have been negative for this 
virulence factor, instead lukED genes encoding the biocomponent leukotoxin LukE and LukD (Gharsa et 
al., 2012) with weak leukotoxic activity was detected.  In addition, cell wall adhesion (CWA) components 
found in OS-MRSA 41 may have a role in virulence (Gordon and Lowy, 2008), favorizing bacteria to adapt 
to hostile environmental conditions, allowing its survival and promoting infection by invading and 
destroying host tissues and metastasize to other sites. For all this to happen, the predominant agr regulon 
in OS-MRSA 41 needs to be expressed. Has been demonstrated that the agr system is needed for the 
expression of staphylococcal enterotoxins (Ortega et al., 2010). Moreover, upon activation, agr system can 
regulate the synthesis of extracellular toxins and enzymes (Ortega et al., 2010); however, Bap gene presence 
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is lacking so proliferation and production of a scaffolding extracellular matrix (Speziale et al., 2014) once 
attached to tissue or matrix-covered devices might be missing. 

Conclusions 

Numerous studies have been reported during the last decade regarding detection of OS-MRSA isolates from 
very distinct geographical countries (Hososaka et al., 2007; Kumar et al., 2013; Pu et al., 2014; Andrade-
Figueiredo and Leal-Balbino, 2016; Sabat et al., 2015) but, to our knowledge, this is the first report on the 
presence of oxacillin-susceptible mecA-positive S. aureus on processed foods in Europe. This finding 
together with previous results obtained in our group (Rodríguez-Lázaro et al., 2015; Oniciuc et al., 2015) 
draw attention on a neglected dissemination route of MRSA via the entrance of illegal food in Europe. 

The OS-MRSA isolate was found in a cheese confiscated to an air passenger traveling from Cairo, Egypt. It 
has an oxacillin MIC in the susceptible range of the EUCAST breakpoint (< 2μg/mL), indicating that 
presence of mecA gene does not confer a high-level resistance to oxacillin. It was also resistant to penicillin, 
tetracycline and exhibiting intermediary resistance to erythromycin. Without testing mecA gene by PCR, 
the isolate could have been misinterpreted as MSSA based only on the result of conventional antimicrobial 
susceptibility tests such as Microscan, VITEK, or Sensititre screening. Studies reported that routine clinical 
laboratories could misidentify such OS-MRSA isolates, by applying only conventional phenotypic methods, 
e.g. chromogenic media, antimicrobial susceptibility testing or detection of PBP2a by latex agglutination 
tests. In contrast, using molecular detection method alone, targeting mecA gene, could lead to false 
positively interpretation of such strains as MRSA. This is why culture-based and molecular detection 
methods must be done in parallel. Since few information is available regarding the biology of such isolates, 
they should be regarded as MRSA with more safety measures that needs to be taken.  

The results of WGS analysis indicated that several mutations in the promoter and operator regions of the 
resistance genes mecA and blaZ drove to the low-level oxacillin MIC in the genetic background of OS-
MRSA 41 strain. Moreover, other genetic factors involved contributed as well to the phenotypic oxacillin 
susceptibility. One reason could be related to the SNP located in the mecA gene that led to an amino acid 
change from serine to proline in the position 589.  Moreover, amino acid substitutions in the bla system are 
also factors involved in the oxacillin-susceptible phenotype. Sabat et al. (2015) demonstrated that truncated 
blaR1 gene was responsible for the susceptibility of GR2 isolate since, after removing the bla operon, has 
regained resistance to penicillin and oxacillin. Likewise, accumulation of amino acid mutations in Fem 
proteins (responsible for the stabilization of the staphylococcal cell wall), may contribute to the atypical 
oxacillin responsiveness and may be correlated with the oxacillin susceptibility of OS-MRSA (Giannouli et 
al., 2010; Pournaras et al., 2013). 

The detection of OS-MRSA is quite recent. Reports of OS-MRSA isolates in hospital settings have 
increasingly appeared in the recent years with a wide geographical distribution; from Asian counties such 
as Taiwan, Japan or China to European (UK) and African countries (Pournaras et al. 2013). Although OS-
MRSA has been mainly circumscribed to medical settings, a recent study demonstrated the presence of OS-
MRSA isolates in livestock associated to bovine mastitis in four different regions in China (Pu et al. 2014) 
and camel meat samples from a neighborhood meat shop in Riyadh, Saudi Arabia (Raji et al. 2016). Since 
very few information is available about their ability to regain full gene regulatory capacity (Sabat et al. 2015), 
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such isolates should not be neglected because it may develop unusual resistance under antibiotic selection 
due to its mecA gene (Saeed et al. 2014) and instead should be regarded of prime importance concerning 
clinical settings and livestock. 

However, until this current study, OS-MRSA had not been reported in processed foodstuff. Interestingly, 
the OS-MRSA obtained in this study was classified into MRSA-ST5-V, which has been also identified 
previously in environmental OS-MRSA isolates (Pu et al., 2014; Raji et al., 2016). MRSA STs and SCCmec 
types identified in isolates from non-clinical settings are not identical to the most recurrent ones isolated in 
clinical environments. This could suggest that a significant dissemination from medical settings to the 
environment has not occurred yet as environmental OS-MRSA strains show a distinctive genetic profile. 
Clinical OS-MRSA strains isolated so far in medical settings have shown a variable ST and SCCmec types, 
irrespective of the geographic origin from which they were recovered. 

In conclusion, we report, for the first time, the presence of OS-MRSA in a processed food in Europe. 
Although this MRSA variant seems to be rare, it is of particular public health relevance because of its 
potential of develop highly resistant MRSA under treatment with β-lactam antibiotics, and as it might not 
have been detected by standard test procedures.  The demonstration that new emerging MRSA variant, OS-
MRSA, is already present in food in Europe, highlights the need for not underestimating food as neglected 
route of MRSA transmission as well as the need for monitoring the presence and evolution of OS-MRSA in 
food and environmental reservoirs. However, further studies are necessary to identify additional genetic 
factors and mechanisms within such isolates. 
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Table 19. Antimicrobial resistance and virulence genes found in the OS-MRSA 41 

Gene 
Identity 

(%) 
Coverage Contig 

Position in 
contig 

Predicted phenotype Function 
Acc. number 
comparison 

Antimicrobial resistance genes 
blaZ 99.054 846/846 NODE_37 15953...16798 Beta-lactam resistance Beta-lactamase AJ302698 
erm(C) 100.000 735/735 NODE_119 875...1609 Macrolide resistance rRNA adenine N-6-methyltransferase  M13761 
fexA 99.720 1428/1428 NODE_25 14056…15483 Phenicol resistance Drug resistance transporter, EmrB/QacA family AJ549214 

mecA 99.950 2010/2010 NODE_68 1797...3806 Beta-lactam resistance Penicillin-binding protein PBP2a, methicillin resistance 
determinant MecA, transpeptidase AB512767 

norA 91.252 1165/1167 NODE_23 25843...27008 Fluoroquinolone resistance Quinolone resistance protein norA M97169 

tet(K) 99.928 1380/1380 NODE_68 10135...11514 Tetracycline resistance 
Tetracycline resistence protein, metal-tetracycline/H+ 
antiporter U38428 

tet(M) 99.583 1920/1920 NODE_21 33371...35290 Tetracycline resistance Tetracycline resistance protein TetM X92947 

S. aureus exoenzyme associated genes 

aur 99.935 1530/1530 NODE_7 32516...34045 Aureolysin Zinc metalloproteinase precursor, inactivate 
antimicrobial peptides 

EF070223.1  

cysM 100.000 906/906 NODE_12 31135...32040 Cysteine (e.g. staphopain) Cystathionine beta-synthase, block neutrophil activation 
and chemotaxis AKA98565.1 

femA 98.892 1262/1263 NODE_48 1481...2743 Methicillin resistance Cell wal synthesis, formation of the pentaglycine bridges GQ284643.1 
femB 99.841 1259/1260 NODE_48 203...1462 Methicillin resistance Cell wal synthesis, formation of the pentaglycine bridges GQ284646.1 
femX 99.052 1265/1266 NODE_27 3709...4974 Methicillin resistance Cell wal synthesis, formation of the pentaglycine bridges KXA35239.1 
geh 97.447 2076/2076 NODE_9 46461...48536 Glycerol ester hydrolase Triacylglycerol lipase, inactivate fatty acids SHC05250.1 
nuc 99.237 655/655 NODE_36 26091...26745 Nuclease Phage-encoded chromosome degrading nuclease YokF DQ507377.1 
sak 99.797 492/492 NODE_14 35818...36309 Staphylokinase Cleave nucleic acids SHC59485.1  

scn 100.000 351/351 NODE_14 37806...38156 SCIN 
Involved in expression of fibrinogen binding protein, 
phage associated BAV01400.1 

sspA 98.084 1095/1167 NODE_145 342...1437 Serine V8 protease Staphopain A precursor, inhibit complement activation AJ538362.1 
sspB 99.323 1182/1182 NODE_73 4941...6122 Cisteine protease Staphopain B precursor, inhibit complement activation SHB67173.1 
sspC 99.394 330/330 NODE_73 4574...4903 Cisteine protease Staphostatin B AAG45845.1 



 
 

108 
 

S. aureus toxin genes 

hlgA 99.896 966/966 NODE_2 35824...36789 
Gamma-hemolysin chain II 
precursor Gamma-hemolysin component A AKB00487.1 

hlgB 100.000 978/978 NODE_2 38305...39282 Gamma-hemolysin 
component B precursor 

Gamma-hemolysin component B AKB00489.1 

hlgC 100.000 948/948 NODE_2 37356...38303 Gamma-hemolysin 
component C precursor 

Gamma-hemolysin component C AKB00488.1 

lukD 98.171 984/984 NODE_116 934...1917 Leukocidins D Leukotoxin LukD, induce lysis on leukocytes SHC70465.1 
lukE 100.000 936/936 NODE_116 1919...2854 Leukocidins E Leukotoxin LukE, induce lysis on leukocytes BAU35396.1 
sed 100.000 777/777 NODE_37 6380...7156 Enterotoxin D Enterotoxin, phage associated EUR29576.1 
sej 100.000 807/807 NODE_37 8051...8857 Enterotoxin J Enterotoxin, phage associated AAC78590.1 
sep 99.872 783/783 NODE_14 33233...34015 Enterotoxin P Enterotoxin, phage associated SAO38424.1 
ser 99.359 780/780 NODE_37 8947...9726 Enterotoxin R Enterotoxin, phage associated BAC97795.1 
set3 98.723 705/705 NODE_31 30207...30911 Superantigen-like protein Exotoxin  AMV89422.1 
set5 90.831 697/699 NODE_12 417...1114 Superantigen-like protein Exotoxin  CXU96712.1 
set6 100.000 681/681 NODE_31 25579...26259 Superantigen-like protein Exotoxin  BAU33973.1 

S. aureus adherence associated genes 
agr 98.728 786/786 NODE_123 1092...1877 Accessory regulator Hydrolase in agr operon CRI15192.1  
atl 99.600 3747/3747 NODE_85 993...4739 Bifunctional autolysin Atl Phage lysin, N-acetylmuramoyl-L-alanine amidase AMR00583.1 

clfB 99.383 648/648 NODE_7 42873...43520 Clumping factor protein B 
Mediate clumping and adherence to fibrinogen in the 
presence of fibronectin AJ744763.1 

eap 100.000 435/435 NODE_107 114...548 Extracelullar adherence 
protein 

Similar to cell surface protein Map-w, inhibit neutrophil 
migration 

AKA98985.1  

eap 99.656 291/291 NODE_14 41361...41651 Extracelullar adherence 
protein 

Extracellular adherence protein of broad specificity 
Eap/Map, inhibit neutrophil migration 

KZS28310.1 

ebpS 99.247 1461/1461 NODE_44 8057...9517 
Cell surface elastin-binding 
protein Elastin binding protein EbpS SGV08663.1 

efb 99.509 611/611 NODE_152 374...984 Extracelullar fibrinogen-
binding protein 

Extracellular fibrinogen-binding protein Efb, inhibit 
complement activation 

AJ306909.1 

icaA 100.000 1239/1239 NODE_90 405...1643 Intercelullar adhesion 
protein A 

Polysaccharide intercellular adhesin (PIA) biosynthesis 
N-glycosyltransferase IcaA  

SGU84486.1 
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icaB 99.885 873/873 NODE_90 1909...2781 
Intercelullar adhesion 
protein B PIA biosynthesis deacetylase IcaB  CUD59794.1 

icaC 98.865 1053/1053 NODE_90 2768...3824 Intercelullar adhesion 
protein C 

PIA biosynthesis protein IcaC AAD52058.1 

sdrE 96.852 3462/3462 NODE_19 7836...11297 Ser-Asp rich fibrinogen-
binding protein E 

Adhesin of unknown specificity SdrE, similar to bone 
sialoprotein-binding protein Bbp CYC72419.1 

sdrH 99.365 1260/1260 NODE_70 9433...10692 
Ser-Asp rich fibrinogen-
binding protein H Membrane anchored protein BAS52105.1 
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Chromogenic Media Evaluation for Confirmation of MRSA Isolated from 
Humans, Animals and Food Samples 

 

Dissemination of MRSA from the healthcare system to community and animal settings in the last two decades 
has elicited a great concern (Okuma et al., 2002; Graveland et al., 2011). Furthermore, the emergence of MRSA 
in food-producing animals and derived food products has raised the question on the potential role of food as 
a route for transmission of successful livestock and community associated MRSA lineages (Oniciuc et al., 2015; 
Rodríguez-Lázaro et al., 2015). Therefore, monitoring the presence and genetic features of MRSA in all 
environments and potential reservoirs is required to better understand the dissemination, genetic evolution 
and evolutionary success of epidemic MRSA lineages. 

Several commercially available chromogenic media have been developed to facilitate the screening of MRSA, 
and some studies have assessed their diagnostic performance (Verkade et al., 2011; Veenemans et al., 2013; 
McElhinney et al., 2013). However, they have been mainly focused on human clinical samples, and there is a 
knowledge gap regarding MRSA from animal and food samples. Therefore, in this study we evaluated the 
performance of Brilliance MRSA 2 Agar (ThermoFisher Scientific, Waltham, MA, USA) and ChromID MRSA 
Agar (bioMérieux, France) (Figure 28) as rapid MRSA confirmation screening assays for S. aureus isolates 
from a wide range of origins: clinical, animal and food samples. We assessed, by using the McNemar's test for 
paired samples, if there are statistically significant differences among a reference method, the molecular 
detection of resistance genes mecA and mecC, and MRSA confirmation by using both chromogenic media.  

 

Figure 28. Evaluation of chromogenic media for MRSA detection: Baird Parker media (left side), Brilliance 
MRSA 2 Agar (center) and ChromID MRSA Agar (right side) (www.oxoid.com; www.biomerieux.com) 

Bacterial isolates 

A collection of 239 S. aureus isolates, comprising 154 methicillin-sensitive S. aureus isolates (MSSA), 83 MRSA 
isolates harbouring mecA, and two MRSA isolates harbouring mecC, were selected to perform this study 
(Appendix 14). Isolates were collected from clinical (70 isolates), animal (48 isolates) and food samples (121 
isolates) of very diverse geographical origin (Table 20) (Ariza et al., 2014a; Ariza-Miguel et al. 2014b; Oniciuc 
et al., 2015; Rodríguez-Lázaro et al., 2015).  
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Species confirmation was done by real-time PCR (Trnčíková et al., 2008). Further characterization of the S. 
aureus isolates was performed (Ariza et al., 2014a; Ariza-Miguel et al. 2014b; Oniciuc et al., 2015; Rodríguez-
Lázaro et al., 2015): presence of the β-lactam resistance genes mecA and mecC by multiplex PCR (Stegger et 
al., 2012), characterization of the SCCmec (Kondo et al., 2007; Milheiriço et al., 2007; Shore et al., 2011), the 
presence of PVL genes (Lina et al., 1999), and the antimicrobial susceptibility testing using the microdilution 
method following the recommendations and MIC breakpoints of the CLSI guidelines (2012) to 20 
antimicrobial agents: PEN, OXA, AMC, DAP, ERY, CLI, TEC, VAN, CIP, LVX, AMK, GEN, TOB, MUP, 
rifampin (RMP), TET, FUS, FOF, LZD and CTX. 

 

Growth of bacterial isolates 

Isolated colonies of S. aureus isolates on BP agar (ThermoFisher Scientific, Waltham, MA, USA) were streaked 
onto two chromogenic selective media, Brilliance MRSA 2 Agar (ThermoFisher Scientific) and ChromID 
MRSA Agar (bioMérieux). Growth and characteristic morphology was assessed after 24 h of incubation at 
37°C, as recommended by the manufacturers. Presumptive MRSA strains form blue denim or green colonies 
on Brilliance MRSA 2 and ChromID MRSA Agars, respectively. Experiments were performed in duplicate, and 
inconsistencies in the results among the methods were repeated in triplicate. 

 

Statistical analysis 

Comparisons between both chromogenic media and mecA/mecC detection, which was considered the 
reference method, were performed in terms of sensitivity, specificity, Positive Predictive Value (PPV) and 
Negative Predictive value (NPV). Differences of analytical performance between chromogenic media, and 
mecA/mecC detection, were analyzed using McNemar paired samples non-parametric test with an α= 0.01. 

 

Results and discussion  

Overall, whereas statistically significant differences were not observed between MRSA confirmation by 
mecA/mecC PCR, and by culture in both chromogenic media (p= 0.013 and p= 1.000 for Brilliance MRSA 2 
agar and ChromID MRSA agar, respectively), a statistically significant difference was observed between the 
results obtained by both chromogenic media (p= 0.003). ChromID MRSA agar showed better overall 
performance values (i.e. sensitivity and specificity) than Brilliant MRSA 2 agar (Table 20): 83 and 84 out of 85 
mecA/mecC positive MRSA were detected by Brilliance MRSA 2 agar and ChromID MRSA agar, respectively, 
corresponding to a sensitivity of 97.7% and 98.8%. The general specificity was also higher for the ChromID 
MRSA agar (100% vs 92.9%) (Table 20). Remarkably, both chromogenic media were capable of detecting 
mecC-positive MRSA. 

Segregated analysis of the results depending on the origin of the isolates (clinical, animal, and food) revealed 
that performance for clinical and animal isolates was excellent regardless the chromogenic media used (i.e., 
100% specificity and sensitivity in animal samples, and 100% specificity and sensitivity or 100% and 98.5% in 
clinical samples by ChromID MRSA agar and Brilliant MRSA 2 agar, respectively). These results are similar to 
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those obtained previously in human clinical samples (McElhinney et al., 2013; Veenemans et al., 2013). 
However, a significantly lower performance was observed in the MRSA confirmation of food-derived isolates 
by using Brilliance MRSA 2 agar in comparison to PCR-based MRSA confirmation (p= 0.003) or ChromID 
MRSA agar (p= 0.001). In addition, the results obtained by using Brilliance MRSA 2 agar in food-derived 
isolates differed significantly from those obtained in human and animal isolates (p= 0.0001).  

Interestingly, most of the false positives by using Brilliance MRSA 2 agar were detected in milk and cheese 
samples regardless the time of isolation or the geographical origin (10 out of 12 false negatives; 83.3%). A 
remarkable finding is that the sensitivity obtained in food samples by both chromogenic media was not 100% 
as in both cases it was 1 false negative. This particular isolate belongs to a novel emergent MRSA type: OS-
MRSA, that harbours mecA but it is sensitive to both cefoxitin and oxacillin antibiotics. 

In conclusion, the use of chromogenic agar plates for MRSA confirmation of S. aureus isolates can provide a 
good diagnostic performance regardless of the type of chromogenic media used or the origin of the S. aureus 
isolates. However, our results revealed a lower diagnostic performance for MRSA confirmation of S. aureus 
isolates from food samples by using Brilliance MRSA 2 agar. This fact should be taken into account when 
designing MRSA screening in food samples and food processing facilities-associated isolates. 
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Table 20. Comparative diagnostic performance of Brilliance MRSA 2 Agar and Chrom ID MRSA Agar for detection of animal, human and food isolates of MRSA 

Performance* No. of isolates (n=239) Clinical isolates (n=70) Animal isolates (n=48) Food isolates (n=121)
Brilliance Chrom ID Brilliance Chrom ID Brilliance Chrom ID Brilliance Chrom ID

Positive 83 84 67 68 4 4 12 12
False negative 2 1 1 0 0 0 1 1 
Negative 142 154 2 2 44 44 96 108 
False positive 12 0 0 0 0 0 12 0 
Sensitivity 97.7 (91.7-99.7) 98.8 (93.6-99.8) 98.5 (92.1-99.8) 100 (94.7-100) 100 (40.2-100) 100 (40.2-100) 92.3 (63.9-98.7) 92.3 (63.9-98.7) 
Specificity 92.2 (86.8-95.9) 100 (97.6-100) 100 (19.3-100) 100 (19.3-100) 100 (91.9-100) 100 (91.9-100) 88.9 (81.4-94.1) 100 (96.6-100) 
PPV 87.4 (79.0-93.3) 100 (95.7-100) 100 (94.6-100) 100 (94.7-100) 100 (40.2-100) 100 (40.2-100) 50.0 (29.2-70.9) 100 (73.4-100) 
NPV 98.6 (95.1-99.8) 99.4 (96.4-99.9) 66.7 (11.5-94.5) 100 (19.3-100) 100 (91.9-100) 100 (91.9-100) 99.0 (94.4-99.8) 99.1 (95.0-99.9) 

        Note: *PPV- positive predictive value; NPV- negative predictive value. 
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General Discussion 
 

Food safety is an important concept aiming to protect consumers’ health.  In EU, the General Food Law 
Regulation must guarantee a high level of protection for consumers’ life and health, and fair practices in 
food trade, for animal health and welfare, plant health and environment. 

Moreover, the Treaty of Rome signed in 1957 (EC, 1957) and its revisions stipulates the movement of food 
and feed manufactured and marketed in the Union as being free, facilitating trade of safe food and feed 
between member states, in accordance with standards and criteria established by the EU legislation. To 
achieve these objectives, the EU established and implemented control standards measures related to food 
and feed hygiene in which all member states are involved.  

However, some member states are having border inspection posts mainly for travelers and commercial 
imports coming from third countries. It is known that high number of travelers coming from the non-EU 
space are entering to EU with food, either raw or cooked, without any food hygiene control based on the 
EU legislation regarding food safety.  

Illegally imported food represents a worldwide problem nowadays as traceability of such items cannot be 
performed, in terms of raw material origin and quality, or technological process and hygienic conditions 
during food processing being known. Food illegally brought can be carried by people through different 
points of entering the EU such as airports, ports or major railways, post and road entry stations, facilitating 
the widespread of food- or airborne pathogens. Largest amounts of food items have been confiscated in 
Spain, the United Kingdom, and Germany (EC 206/2009); in these cases food was mainly carried in the 
personal luggage of travelers and primarily designated for personal consumption, and secondly for illegal 
sale (Noordhuizen et al., 2013; Beutlich et al., 2015; de Melo et al., 2015; Rodríguez-Lázaro et al., 2015; 
Schoder et al., 2015). A better situation exists in the United States, where some of such foods are 
microbiologically examined. For example, cheese smuggled into the country by Mexican citizens has been 
tested for presence of pathogens and has been found that such foods were harboring Salmonella (13%), 
Listeria subsp. (4%), and Mycobacterium subsp. (Kinde et al., 2007). Moreover, given the major ways of 
pathogens’ transmission, the USA custom officers oblige all passengers coming from outside the USA to 
fulfill a form in which they declare if, previously, they have visited farms and were in contact with animals 
(Category A) or if they are transporting food products of animal origin or animals infected with zoonotic 
agents (Category B) (www.cbp.gov). In this way, USA customs have a better control regarding introduction 
and possible spread of infectious diseases for humans and animals. Similar situation exists in Australia in 
which import permissions are necessary prior to importing animal origin foods, regulated by the 
Biosecurity Act (2015). 

Furthermore, travelers are not aware about associated risks and incidence of possible pathogens in illegally 
introduced foods and that the conditions during food transportation and sale might violate the safety rules, 
as refrigeration and adequate packaging are lacking (Ciolacu et al., 2016).  

These contribute to possible food-derived diseases in which not only the public health and well-being is 
affected, but also economic loses are taking place for individuals, families, communities, or at larger scale, 
countries. Moreover, failure at border inspection posts might facilitate entrance of pathogens by citizens 
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which have been in contact with apparently healthy animals. Furthermore, a single failure at border control 
is sufficient to waste decades of financial efforts supported by the farming communities or national 
authorities (Noordhuizen et al., 2013). For example, in case of highly contagious diseases such as classical 
swine fever (CSF), avian influenza (AIV), porcine epidemic diarrhea (PED), or foot and mouth disease 
(FMD), many animals must be killed, thus going to huge economic losses. 

Foodborne and waterborne diarrheal diseases taken together kill almost two millions of people annually 
(Food Standards Agency, 2011). By these alarming statistics, outbreaks of foodborne diseases attract social 
media attention and raise consumers’ concern. Despite strong efforts made by all involved agencies for 
controlling these outbreaks, foodborne pathogens play their role since they can enter the food chain at 
different steps and can adapt to any kind of environment. In 2013, a total of 5196 foodborne and waterborne 
outbreaks were reported in the EU causing 43,183 human cases, 5946 hospitalizations, and 11 deaths. Most 
of them were caused by Salmonella (22.5%), viruses (18.1%), bacterial toxins (16.1%), and Campylobacter 
(8.0%) (EFSA and ECDC, 2015). Of great concern is that in 28.9% of all outbreaks, the causative agent was 
unknown (EFSA and ECDC, 2015). 

Nowadays, a dynamic and complex relationship exists between human, animal and environment since 
globalization, food trade and increased urbanization hit, influencing the organization of food supply chain. 
The highly demand of food made the global food supply undergo dramatic changes in the last twenty years, 
forcing the food products to arrive as fast as possible on the consumer’s table (Noordhuizen et al., 2013). 
For this, intensive livestock farming has been developed for satisfying consumers but this speed came 
together with emergence of zoonotic pathogens resistant to antimicrobials through live animals or goods 
of animal origin (www.cbp.gov). 

The purpose of this thesis was to assess presence of S. aureus, especially MRSA isolated from foods being 
introduced into EU via uncontrolled imports from terrestrial EU borders and airports. Nevertheless, the 
thesis treats the actual problematic of this emergent pathogen and its tolerance to antimicrobial agents in 
which food- security, food safety, food hygiene, and biological risks associated are detailed and the overall 
findings are discussed. 

Food security concept comes into our attention as food availability at all times is necessary to sustain a 
steady expansion of food consumption. In 2015, the global community proposed to improve people’s lives 
by making great progress in reducing hunger by 2030, according to FAO. However, by 2050 at least 50% of 
food needs to be produced in order for all population to be fed (www.worldbank.org). In this regard, the 
top priority of the World Bank Group is focused on investment in agriculture and rural development to 
boost food production and nutrition (www.worldbank.org). To date, all this comes with a price: higher 
demand of food needs intensive production for a global food system sustaining conjoined with possible 
appearance of drug-resistant infections causing global economic damages (www.worldbank.org).  

Food safety aspect represents the gateway in which a high level of human’ health protection is achieved, 
however, forgetting about it, is an assuring recipe for disaster. Nowadays, resistance to antimicrobials has 
become a worldwide problem for both human and animal health sector. The massive use of antibiotics in 
feed to promote growth, and the inappropriate use of antimicrobial agents in veterinary and human 
medicine are considered to be major contributors to the emergence of resistance (Oniciuc et al., 2017). In 
addition, overuse of antimicrobial agents has been adopted in animal husbandry for disease prevention, 
apart to the veterinary use for treatment of a certain disease. In USA, for example, up to 70% of antibiotics 
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goes to animals raised on industrial farms that are not sick, in order to eradicate the effects of crowding and 
poor sanitation conditions (www.collective-evolution.com). 

Since 1960s, the massive use of antimicrobial agents has facilitated intensive farming, contributing further 
to increasing outputs together with meat prices lowering. In this way, such amounts of antimicrobials used 
in livestock led to propagation of resistant bacteria in the animal reservoir (Choffnes et al., 2012), further 
having consequences on the animal and human health. It has been stated that almost 700,000 people died 
in 2014 due to antimicrobial resistant bacteria and could increase up to 10 million by 2050, with almost 100 
trillion of dollars in economic losses (www.worldbank.org). Further, transmission from animals to humans 
can take place by different routes in which bacterial movements could play an important role as variants of 
bacterial clones between animals might appear. 

In this case, developments in the epidemiology of MRSA, in hospital (human) settings and primary food 
production are taking place. Furthermore, MRSA spread along the food chain could be enhanced by an 
expansion in the international movement of people, animals and food (Oniciuc et al., 2015; Rodríguez-
Lázaro et al., 2015). For this, relevance of MRSA in the food safety context remains a public health priority 
as its incidence is still above 25% in seven of 29 reporting countries, according to ECDC (ECDC, 2015). 

Moreover, food hygiene plays its role for delivering safe foods to consumers. By applying GMP and GHP 
along the food chain, it is certain at least, that food does not pose any possible threat for consumer’s health. 
However, this thesis has been focused on food samples that are not having any traceability in place, in which 
we may know exactly the food origin, conditions of transport, storage or other important information 
related with.  

In this thesis, a total of 1079 food products were analyzed, prior being confiscated from luggage of 
passengers on flights from non-EU countries by border authorities at the border inspection posts in 
International Bilbao Airport (Spain) (269 food products) and Vienna International Airport (Austria) (600 
food products). Moreover, others (210 food products) were collected at terrestrial border traffic between 
Republic of Moldova and Romania (Giurgiulești-Galați).  

The great diversity of food highlights the biological risks associated, leading to presumptive foodborne 
outbreaks due to people’s ignorance. Randomized food sampling (August 2012 to July 2015) applied led to 
investigation of 519 (48.1%) milk and dairy products of diverse animal origin (cow, sheep or goat milk and 
cheese- either fresh, brined or with spices), 448 (41.52%) meat samples of diverse animal origin (including 
antelope, beef, chicken, duck, guinea pig, pork, rodents and turkey), fish and fish products (68, 6.3%), 9 
eggs (0.83%), and other products such as pastry, alga, biscuits or dried fruits (35, 3.24%). 

Regarding foods collected from black market at EU border, presence of MRSA in foods sold in Galati (the 
South-East part of Romania, on the border with Republic of Moldova) has been assessed, as illegal entrance 
of foods to EU through black markets at the EU borders can constitute a neglected route of dissemination 
of foodborne pathogens, and in particular of MRSA. Food illegally brought into the EU, mainly in the 
personal luggage of travelers, represents a potential threat to consumers’ health. 

However, at the Eastern EU border, the Romanian Law 10/2010 (Monitorul Oficial) ratifies the agreement 
on cross-border traffic between Romania and the Republic of Moldova. Among other goods, foods that are 
officially declared for personal use are legally brought into EU, but illegally sold in local Romanian markets 
organized to sell fresh fruits and vegetables. Even though selling food of animal origin is forbidden in these 
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markets and that the local authorities are regularly performing controls and post informative 
advertisements, food products such as eggs, fish and fish products, milk and dairy products, or meat and 
meat products are daily sold. Foods, either homemade or industrially produced, are kept at ambient 
temperatures and displayed out of the original package. 

This study investigated 200 food samples collected from 2012 to 2013, searching for MRSA presence in the 
analyzed food samples introduced into the EU. All S. aureus were studied by PFGE, SE profile and 
antimicrobial susceptibility testing. MRSA isolates were further characterized by MLST and SCCmec 
typing, and tested for the presence of PVL virulence factors. Overall, 32 S. aureus isolates were recovered 
from 16 food samples (8%). One isolate detected in a pork lard sample was MRSA (0.5%), however not 
enterotoxigenic. Among S. aureus isolates, eight of them harbored sea gene, while seg and sei genes were 
found only in five S. aureus isolates. 

PFGE with the restriction enzyme SmaI revealed 12 genotypes among the 32 S. aureus isolates. The MRSA 
isolate belonged to ST398, harbored SCCmec type V, tested negative for the presence of the PVL genes and 
was resistant to ciprofloxacin, tetracycline and cefazolin, besides all β-lactams. Among 31 MSSA, 29% were 
resistant to penicillin, 9.7% to tetracycline and 3.2% to ciprofloxacin. 

S. aureus spa types t449, t304, and t524 were most often isolated from raw-milk cheeses contaminated with 
103–105 CFU per gram, evidencing a contamination at herd level or unhygienic conditions during 
processing. S. aureus t011 and t3625 were isolated from pork lard and poultry meat. Finally, we reported 
the presence of LA-MRSA (ST398-MRSA-V) in foods brought by Moldavian citizens but illegally sold in a 
black market, evidencing that cross-border trade from non-member states represents a neglected route of 
transmission of foodborne pathogens such as MRSA into the EU, that could lead to sporadic or family-
associated cases of disease.  

Other studies focused on identification of foodborne pathogens by illegal foods introduced into the EU has 
been reported so far. For example, Beutlich et al. (2015) analyzed a total of 663 confiscated food products 
from passengers arriving in Germany in which most of the contaminated food was represented by meat 
(33%), meat products (42%) and milk products (21%). However, their objective was to identify foodborne 
zoonotic bacteria such as Salmonella subsp., Listeria subsp., Campylobacter subsp., Yersinia subsp., 
verocytotoxin-producing Escherichia coli (VTEC) and Brucella subsp. but not S. aureus resistant to 
antimicrobials. Later on, Rodríguez-Lázaro et al. (2015) performed a study as a concern on the amount of 
foods which people bring with them in their luggage, confirming presence of foodborne pathogens in such 
items and more important, presence of CA-MRSA strains in such foods being reported.  

Regarding biofilm formation, we further analyzed composition of biofilms formed by S. aureus isolated 
from food sources illegally sold in a local Romanian market (Oniciuc et al., 2015). For this, 16 S. aureus 
isolates originating from foods (eight from dairy products, five from fish and fish products and three from 
meat and meat products) recovered from foods collected from black market at EU border were evaluated 
regarding their biofilms formation ability. Six strains (E2, E6, E8, E10, E16, and E23) were distinguished as 
strong biofilm formers, either in standard Tryptic Soy Broth, Tryptic Soy Broth supplemented with 0.4% 
glucose or with 4% NaCl. The biofilms composition formed by these S. aureus strains on polystyrene 
surfaces was first inferred using enzymatic and chemical treatments. Later on, biofilms were characterized 
by CLSM. 
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Our experiments proved that protein-based matrices are of prime importance for the structure of biofilms 
formed by S. aureus strains isolated from food sources. These biofilm matrix compositions are similar to 
those put into evidence for coagulase negative staphylococci. However, other studies mention abundance 
of exopolysaccharides in biofilms produced by S. aureus isolated from poultry processing plant, proteins 
occupying only a small fraction of their matrices (Ferreira et al., 2014). 

As discussed before, we have detected presence of S. aureus, particularly MRSA in food brought into the 
EU by Moldavian travelers, in which under improper food transportation conditions, heat-stable 
enterotoxins may develop in such food items, leading to possible foodborne outbreaks. Although in our 
case, MRSA isolate was not enterotoxigenic, several studies have demonstrated that such MRSA strains 
isolated from food sources could yield SE types. Furthermore, S. aureus isolates have demonstrated to have 
capacity to form biofilm which is of great concern as it can adhere to different surfaces, leading to serious 
engineering associated problems. This is a new finding having in view that scientific literature mentions 
exopolysaccharide abundance in biofilms produced by clinical isolates and food processing environment 
isolates of S. aureus. 

Later on, this thesis intended to expand its research by tracking MRSA in food entering to the EU via cross 
border traffic and international flights. It is already known that MRSA represents the major causative agent 
of severe and non-severe infections in humans, which in principle started to be a problem for healthcare 
settings, further reports elicited its presence in livestock. 

This study aimed to determine the prevalence and characteristics of MRSA isolated from animal origin 
foods illegally brought by travelers in their luggage, coming from non-EU countries through international 
flights and markets close to EU ground borders. Out of 868 food samples confiscated (meat samples of 
diverse animal origin such as antelope, duck, guinea pig, pork, rodents, turkey; milk and dairy products or 
eggs), 136 (15.7%) were positive for S. aureus, in which 3% were represented by MRSA-positive strains 
exhibiting mecA resistance mechanism. None isolate harbored the mecC homologue.  

To date, we found a prevalence of 64.6% in S. aureus-positive milk and dairy food samples confiscated in 
International Bilbao Airport (Spain), and the highest value (11.8%) registered for MRSA-positive samples. 
Such values have been reported for food-producing animals and retail meat in North Dakota, USA, 
accounting the highest prevalence in chicken (67.6% out of 37) (Buyukcangaz et al., 2013). Furthermore, 
de Neeling et al. (2007) reported an unexpected high prevalence of MRSA (39% out of 540) associated with 
pigs and people in contact with such animals.  

Furthermore, MRSA isolates were studied by PFGE and antimicrobial susceptibility testing, later 
characterized by MLST, SCCmec typing and tested for the presence of SEs genes and Panton-Valentine 
leukocidin virulence factors.  

Fourteen resistance profiles resulted, out of which a high number of MRSA isolates showed to be 
multiresistant to three or more antimicrobial agents and sensitive to all non β-lactams tested. SmaI-PFGE 
provided a fingerprint pattern consisting of 13-17 DNA fragments of 20-670 kbp, approximately. The 
predominant genetic spread belonged to ST5 (30.8%), followed by ST8 (15.4%), ST1649 (15.4%), ST1 
(11.5%) and other lineages locally distributed such as ST7 (7.7%), ST22 (7.7%), ST72 (3.8%), ST97 (3.8%) 
and ST398 (3.8%).  
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Seven isolates were tested positive for luk-PVL genes (SCCmec IV- subtypes IVc and IVe). Enterotoxin 
profile revealed that 19 MRSA strains were enterotoxigenic, harboring one or more se genes. Interestingly, 
MRSA isolates tested positive for luk-PVL genes were not enterotoxigenic, as well as none of the isolates of 
the total of MRSA tested positive for enterotoxin E. Of great importance is the isolation of an OS-MRSA 
strain harboring SCCmec type V, positive for sed, seg, and sej genes but negative for PVL virulence factors.  

Besides, MRSA strains recovered from foods illegally transported by travelers via ground border and 
international flights were tested to observe if there is any correlation between biofilm formation and 
composition and their molecular aspects. 

As evidenced before, there is a growing concern regarding potential transmission of MRSA by illegal 
entrance of food to Europe. From a food safety perspective, different MRSA lineages can be acquired via 
food manipulation and/or consumption, and consequently circulation of multidrug resistant strains may 
arise.  

In this assay, our objective was focused on obtaining further information regarding MRSA strains capacity 
to build biofilms. Likewise, matrix composition involved in the attachment and colonization of food-
contact surfaces has been evaluated.  

Forty-nine MRSA isolates recovered from animal food origin, previously confiscated from travelers’ 
luggage coming from non-EU countries, were evaluated for their biofilm formation (24 h) ability using TSB 
supplemented with 0.4% glucose in which MRSA isolates had the capacity to accumulate moderate (83.7%) 
to strong (16.3%) amounts of biofilm biomasses on polystyrene surfaces. Resistance to antimicrobial agents 
can be also related to different responses in attachment and biofilm formation. 

Further, different biofilm patterns related to MRSA lineages have been observed, in which those harboring 
SCCmec type IV produced more biomass after 48 h incubation. This is in accordance with Vanhommerig 
et al. (2014) in which MRSA strains harboring smaller cassettes (types IV, V) have been shown to produce 
higher biofilm biomasses than those carrying types I-III, this fact being later confirmed by Parisi and 
coworkers (2016). 

Besides, composition of biofilms with an OD570 higher than 3 was evidenced by CLSM after exposure to 
three types of dyes: SYTO9 (nucleic acids), SYPRO Ruby (proteins), and WGA-TRITC (N-acetyl-D-
glucosamine residues). Half of the isolates formed flat and compact structures, while the rest of them 
developed highly fluorescent cell aggregates areas within the three-dimensional structures.  

In conclusion, this study emphasizes the possible risks among population associated with presence of 
multidrug resistant and enterotoxigenic strains such as MRSA, additionally capable of forming biofilms, in 
food products illegally introduced into EU by citizens coming from America (Dominican Republic, Cuba, 
Honduras, Nicaragua, Panama, Mexico, Bolivia, Paraguay, Ecuador, Argentina, Colombia, Peru, Brazil), 
Europe (Albania, Kosovo, Montenegro, Romania, Serbia, Macedonia, Russian Federation (Moscow), 
Ukraine, Republic of Moldova), Africa (Tunisia, Egypt, Nigeria) or Asia (Armenia, North Korea, Turkey, 
China). In addition, this could become a serious concern as most of foods encountered in passenger’s 
luggage were not previously suffered a thermal treatment. Further, routine surveillance and control is 
needed regarding foods illegally introduced in the EU space as MRSA strains are freely being distributed 
and promote biofilm formation. 
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Of great interest for this thesis, from a food safety point of view, is the successful isolation of an OS-MRSA 
associated with a processed food product, highlighting the potential role of food brought by passengers via 
international flights as a neglected route of dissemination of new emergent MRSA variants. Although such 
isolates have been reported among clinical ones, isolation from animals and food products has been 
described quite recently. Such MRSA variants are representing a challenge because routine microbiological 
testing cannot identify them due to an oxacillin susceptible phenotype.  

In this study, OS-MRSA 41 has been found in a dairy product (unknown cheese origin) confiscated from a 
passenger travelling from Cairo, Egypt towards Vienna, Austria. Antimicrobial susceptibility testing 
showed to be resistant to penicillin, tetracycline, erythromycin but susceptible to oxacillin (<2 μg/mL). 
Further testing showed to harbor the mecA gene by PCR. WGS analysis revealed SNPs located in the mecA 
and blaZ genes, which could perhaps have influenced the low level of oxacillin in OS-MRSA 41. Before, 
such investigation led in describing an oxacillin-susceptible CC80 mecA-positive S. aureus in a clinical 
isolate (Sabat et al., 2015), but is the first time such an analysis is performed for an OS-MRSA (MRSA-ST5-
V) isolated from a food product. 

Interestingly, until now, no OS-MRSA strains have been reported in associated foods, mostly being 
described in medical settings and rarely in livestock. However, it seems to be widely distributed, from Asia 
to Europe and Africa continents (Pournaras et al., 2013). A recent study highlighted the successful isolation 
of an OS-MRSA associated to bovine mastitis in China (Pu et al., 2014) and camel meat samples in Saudi 
Arabia (Malhotra-Kumar et al., 2010). 

Even though 0.17% of food samples (no. samples 600) tested in this study was represented by one MRSA 
variant, it should not be neglected due to its particular relevance for public health. It can develop highly 
resistant MRSA variants under treatment with β-lactams. Once more, we are highlighting the potential role 
of food as neglected route of transmission of MRSA and other MRSA variants, stressing the need for 
monitoring and controlling possible spread of such foodborne pathogens. Close attention shall be conferred 
to new emerging MRSA variants as additional genetic factors and mechanisms may appear, crypting the 
methicillin resistance. 

The last part of this thesis is proposing to evaluate two commercially available chromogenic media for 
confirmation of MRSA from human, animal, and food samples. We have compared the diagnostic 
performance of two chromogenic media, Brilliance MRSA 2 agar (ThermoFisher Scientific) and ChromID 
MRSA agar (bioMérieux), for MRSA confirmation of 239 S. aureus isolates from clinical (70 isolates), 
animal (48 isolates) and food samples (121 isolates) of very diverse geographical origin. Statistically, 
significant differences were not observed between MRSA confirmation by mecA/mecC PCR, and by culture 
in both chromogenic media.  

However, a statistically significant difference was observed between the results obtained by both 
chromogenic media (p= 0.003). Segregated analysis of the results depending on the origin of the isolates 
(clinical, animal, and food) revealed a significant lower performance in the MRSA confirmation of food-
derived isolates by using Brilliance MRSA 2 agar in comparison to PCR confirmation (p= 0.003) or 
ChromID MRSA agar (p= 0.001). Our results are in accordance to those obtained previously by McElhinney 
et al. (2013) and Veenemans et al. (2013) in testing clinical samples. 
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Both chromogenic media provided a good diagnostic performance for detection of MRSA isolates of human 
and animal origin. In conclusion, the use of chromogenic agar plates for MRSA confirmation of S. aureus 
isolates can provide a good diagnostic performance (sensitivity > 92% and specificity > 89%) regardless of 
the type of chromogenic media used or the origin of the S. aureus isolates. However, our results revealed a 
lower diagnostic performance for MRSA confirmation of S. aureus isolates from food samples by using 
Brilliance MRSA 2 agar, fact which should be considered when designing chromogenic media especially for 
MRSA confirmation in food samples. 

Overall, these findings highlighted in the present thesis confirm once again the potential role of food in the 
dissemination of MRSA lineages among population, and the potential role of illegally introduced food into 
EU by road and air entries. Confiscated foods were coming from travelers with a diverse geographical origin 
such as South, Central and North America, Europe, Africa, or Asia accounting a wide dissemination of 
MRSA lineages. 

We have demonstrated that foods, without being able to trace back to its origin, not knowing how they were 
transported or manipulated, either being processed or homemade food, may lead to appearance of 
foodborne outbreaks since raw food products that have been found in passenger’s luggage, products which 
have not suffered previously a thermal treatment, could lead to the spread of multidrug resistant and 
enterotoxigenic strains such as MRSA. 

It is known that EU has issued several regulations regarding introduction of animal origin foods into the 
EU space but, however, people’s disregard is still of concern as they are trespassing with food saying that is 
intended for personal use but ending by selling them in markets. Therefore, the purpose of this thesis 
regarding MRSA dissemination has been attained, stressing the need of an adequate control and prevention 
programmes to avoid food safety issues together with the protection of human life and health. 
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Concluding Remarks 
 

Research activities accomplished in the current doctoral thesis have been focused on analysis of MRSA 
strains isolated from animal origin foods, either homemade or industrially produced, illegally introduced 
to EU from non-EU countries. Based on the results obtained, several concluding remarks have been 
formulated: 

 Elevated prevalence of Staphylococcus aureus (14.1%) and MRSA (2.5%) in foods highlights the 
potential risk generated at public health level by foods illegally entered to EU through different 
neglected routes as airports or terrestrial borders; 

 Presence of enterotoxigenic HA-, CA- and LA-MRSA strains identified in animal origin foods 
illegally introduced to EU should not be neglected as their potential pathogenic role is yet unknown; 

 Activation of classical enterotoxins and their potential presence in diverse food products brought 
by travelers in their luggage should not be disregarded; 

 Detection of distinct genetic lineages associated to livestock (ST398-MRSA-V) and community 
settings (ST8-MRSA-IV/V and ST1649-MRSA-IV) emphasizes that illegal importation of animal 
origin foods constitutes routes of dissemination of S. aureus resistant to antimicrobials; 

 Successful isolation, for the first time, of a ST5-OS-MRSA-V (OS-MRSA 41) strain associated to a 
processed food illegally transported by a passenger from Turkey towards Vienna. WGS analysis 
showed that several mutations in the mecA and blaZ resistance genes could be responsible for the 
low-level oxacillin MIC in the genetic background of OS-MRSA 41 strain; 

 Biofilm formation assays evidenced the capacity of S. aureus and MRSA strains to build moderate 
to strong biofilms; 

 Different biofilm patterns related to distinct MRSA lineages have been noticed, greater production 
of biofilm biomasses being evidenced for those harboring SCCmec type IV; 

 Use of conventional microbiological methods have been succeeded by the molecular detection 
techniques, more sensitive, for validating and/or evidencing genetic patterns among analyzed 
isolates; 

 Poor diagnostic performance of chromogenic agar plates, such as Brilliance MRSA 2 agar, for 
MRSA confirmation of S. aureus isolated from food samples, revealed that the exclusive use of 
conventional methods could lead to false positive results; 

 Need for efficient control measures at the border inspection posts is imperative for lowering down 
the prevalence and dissemination of MRSA related with food producing animals (raw materials for 
food industry) and associated foodstuff. 

Summarizing, outbreaks could be detected earlier if the holistic strategies could undergo, encompassing all 
relevant aspects of the food chain in the community as a whole, from primary production to final 
consumers.  
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By the attained research, we have demonstrated the necessity of conducting such studies to characterize 
MRSA strains isolated from foods from a phenotypical and genotypical point of view, in order to improve 
the prevention/control and surveillance programmes. Moreover, the research opens new directions for food 
processing facilities, contributing to the improvements of food safety and hygiene.  

Beyond scientific aspects, this thesis had contributed to the overall database regarding the epidemiology of 
Staphylococcus aureus resistant to antimicrobials. 
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Concluzii Generale 
 

Activitățile de cercetare realizate în această teză de doctorat s-au axat pe analiza tulpinilor de MRSA izolate 
din alimente de origine animală, produse în casă sau la nivel industrial, introduse ilegal în UE din țări care 
nu au aderat la această comunitate. Pe baza rezultatelor obținute, au fost formulate mai multe concluzii: 

 Prevalența crescută a bacteriei Staphylococcus aureus (14,1%) și MRSA (2,5%) în alimente 
evidențiază riscul potențial generat asupra consumatorilor, cauzat de introducerea în UE a 
produselor alimentare, pe cale ilegală, prin diferite rute, cum ar fi aeroporturile sau frontierele 
terestre; 

 Prezența tulpinilor enterotoxigenice HA-, CA- și LA-MRSA identificate în alimentele de origine 
animală introduse ilegal în UE nu trebuie neglijată, deoarece rolul lor patogen nu este cunoscut; 

 Activarea enterotoxinelor clasice și prezența lor potențială în produsele transportate de călători în 
bagajele lor nu ar trebui ignorate; 

 Detectarea liniilor genealogice distincte asociate animalelor (ST398-MRSA-V) sau comunităților 
(ST8-MRSA-IV/V și ST1649-MRSA-IV) subliniază faptul că importul ilegal de alimente de origine 
animală constituie căi de transmisie a bacteriei S. aureus rezistentă la antibiotice; 

 A fost izolată pentru prima oară o tulpină ST5-OS-MRSA-V (OS-MRSA 41) asociată cu un produs 
procesat de origine animală, transportat ilegal de către un pasager din Turcia către aeroportul din 
Viena. Analiza WGS a arătat că mai multe mutații în genele de rezistență mecA și blaZ ar putea fi 
responsabile pentru nivelul scăzut de concentrație minimă inhibitorie a oxacilinei în background-
ul genetic al acestei tulpini; 

 Evaluarea capacității tulpinilor de S. aureus și MRSA de a forma biofilme, evidențiind faptul că 
acestea pot adera moderat sau puternic pe suprafețe; 

 S-au observat diferite capacități de aderare a biofilmelor funcție de liniile genealogice ale tulpinilor 
de MRSA analizate, unde producție mai mare de biomasă s-a observat în cazul acelor tulpini care 
posedă SCCmec type IV; 

 Utilizarea metodelor microbiologice convenționale a fost urmată de tehnicile de detecție 
moleculară, mai sensibile, pentru validarea și/sau evidențierea tiparelor genetice în rândul 
tulpinilor analizate; 

 Performanță scăzută a mediului cromogen Brilliance MRSA 2 în ceea ce privește confirmarea 
tulpinilor de MRSA izolate din produsele alimentare, indicând faptul că utilizarea exclusivă a 
metodelor convenționale ar putea duce la rezultate fals pozitive; 

 Necesitatea unor măsuri eficiente la punctele de control la frontieră este imperativă pentru 
reducerea prevalenței și diseminării MRSA legate de materiile prime provenite de la animale și 
alimentele asociate. 

Rezumând, epidemiile ar putea fi detectate din timp dacă s-ar aplica strategii holistice, care să cuprindă 
toate aspectele relevante ale lanțului alimentar în ansamblu, de la producția primară la consumatorii finali. 
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Prin cercetarea realizată, am demonstrat necesitatea efectuării unor astfel de studii pentru a caracteriza 
tulpinile de MRSA izolate din alimente din punct de vedere fenotipic și genotipic, pentru a îmbunătăți 
programele de prevenire/control și supraveghere. Mai mult, cercetarea deschide noi direcții pentru fabricile 
de procesare a alimentelor, contribuind la îmbunătățirea siguranței și igienei alimentare. 

Dincolo de aspectele științifice, această teză contribuie la baza de date globală privind epidemiologia lui 
Staphylococcus aureus rezistent la antimicrobiene. 
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Conclusiones 
 

Las actividades de investigación llevadas a través de la tesis doctoral se han centrado en el análisis de cepas 
de MRSA aisladas de alimentos de origen animal, caseras o producidas industrialmente, introducidas 
ilegalmente en la UE de países no pertenecientes a la UE. Sobre la base de los resultados obtenidos, se han 
formulado varias observaciones finales: 

 Prevalencia de Staphylococcus aureus (14.1%) y MRSA (2.5%) en los alimentos constituye un riesgo 
potencial generado a nivel de salud pública, por los alimentos ingresados ilegalmente en la UE a 
través de diferentes rutas descuidadas como aeropuertos o fronteras terrestres; 

 No debe descuidarse la presencia de cepas enterotoxigénica de HA, CA y LA-MRSA identificadas 
en alimentos de origen animal introducidos ilegalmente en la UE, ya que aún no se conoce su 
posible función patogénica; 

 No debe descartarse la activación de las enterotoxinas clásicas y su presencia potencial en diversos 
productos traídos por los viajeros en su equipaje; 

 La detección de distintos linajes genéticos asociados al ganado (ST398-MRSA-V) y la comunidad 
(ST8-MRSA-IV/V y ST1649-MRSA-IV) enfatiza que la importación ilegal de alimentos de origen 
animal constituye rutas de diseminación de S. aureus resistente a los antimicrobianos; 

 El aislamiento, por primera vez, de una cepa ST5-OS-MRSA-V (OS-MRSA 41) asociada a un 
alimento procesado ilegalmente transportado por un pasajero de Turquía hacia Viena. El análisis 
WGS mostró que varias mutaciones en los genes de resistencia mecA y blaZ podrían ser 
responsables de la MIC de oxacilina, de bajo nivel, en el fondo genético de la cepa OS-MRSA 41; 

 Los ensayos de formación de biofilm demostraron la capacidad de las cepas de S. aureus y MRSA 
para construir moderada y fuerte biofilms; 

 Se han observado diferentes patrones de biofilm relacionados con distintos linajes de MRSA, y se 
evidencia una mayor producción de biomasa de biofilms para los que tiene SCCmec tipo IV; 

 El uso de métodos microbiológicos convencionales ha sido seguido por las técnicas de detección 
molecular, más sensibles, para validar y/o evidenciar patrones genéticos entre los aislamientos 
analizados; 

 El diagnóstico de bajo nivel de las placas de agar cromogénico, como el Brilliance MRSA 2, para la 
confirmación de cepas de S. aureus aislada de muestras de alimentos, reveló que el uso exclusivo de 
métodos convencionales podría conducir a resultados falsos; 

 La necesidad de eficaces métodos de control en los puestos de inspección fronterizos es 
imprescindible para reducir la prevalencia y la diseminación de MRSA relacionados con los 
animales productores de alimentos (materias primas para la industria alimentaria) y los productos 
asociados. 

Resumiendo, los brotes se podrían detectar más temprano si la estrategia holística podría ser seguido, 
abarcando todos los aspectos relevantes de la cadena alimentaria en la comunidad en su conjunto, desde la 
producción primaria hasta los consumidores finales. 
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Por la investigación obtenida, hemos demostrado la necesidad de llevar a cabo estos estudios para 
caracterizar las cepas de MRSA aisladas de los alimentos desde un punto de vista fenotípico y genotípico, 
mejorar los programas de prevención/control y vigilancia. Además, la investigación abre nuevas direcciones 
para las instalaciones de procesamiento de alimentos, contribuyendo a mejorar la seguridad alimentaria. 

Más de los aspectos científicos, esta tesis ha contribuido a la base de datos global sobre la epidemiología de 
Staphylococcus aureus resistente a los antimicrobianos. 
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Original contributions 
 

By overall results obtained in the present thesis, I have contributed to the extension of the current 
knowledge related to Staphylococcus aureus and its antimicrobial resistance, by the following key elements: 

 Assessing for the first time S. aureus for being introduced into EU via uncontrolled imports (such 
as raw and RTE food collected either from airports or from terrestrial EU borders);  

 Reporting for the first time presence of HA-, CA-, and LA- MRSA strains in food confiscated from 
non-EU flights and ground borders; 

 Reporting for the first time ST5-OS-MRSA-V associated to a processed food product. This finding 
highlights the potential role of food as a neglected route of dissemination of this new emerging 
MRSA variant; 

 Comparative genome analysis of OS-MRSA strain with other S. aureus strain already published in 
the literature; 

 Characterization of biofilm matrices of S. aureus strains by chemical and enzymatic tests, reporting 
that proteins were the main source for maintaining the structure of biofilms formed by S. aureus 
strains isolated from food sources (confirmed by CLSM assays). Such studies are necessary as better 
strategies may be developed for solution-based cleaning surfaces; 

 Comparing the genotypic features of MRSA isolated strains with their biofilm capacity, in which 
we have confirmed that those harboring smaller SCCmec cassettes are showing greater capacity of 
forming biofilms;   

 Proving the necessity of using molecular biology techniques such as PFGE or MLST for evidencing 
genetic relationships that might exist among analyzed MRSA isolates. Results obtained helped on 
improving the database regarding this foodborne pathogen, the existing genetic relationship among 
isolates but also comparing allelic profiles with data available in the S. aureus MLST database for 
traceability purposes; 

 Managing different sequencing and bioinformatic tools for analyzing and interpreting data 
obtained in the present thesis; 

 Confirmation of the potential role of food in the prevalence and dissemination of successful MRSA 
lineages among illegally introduced and sold food into the EU; 

 Implementation of surveillance programmes for the food chain in Romania in case of an early 
outbreak caused by livestock associated clones; 

 Research achieved in the current doctoral thesis opens new directions on how MRSA should be 
regarded from a food safety perspective, whereas monitoring and surveillance programmes should 
not be watched as options but as fundamental for MRSA control. 
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Future research perspectives 

 
 Correlating genotypic features of the analyzed MRSA isolates with their susceptibility to essential 

oils and plant extracts; 

 Evaluating the antibiofilm activity of such alternative compounds (essential oils and different 
solvent extracts) against MRSA biofilms; 

 Evaluating alternative coatings (based on zinc oxide nanoparticles) on inhibiting S. aureus to 
adhere and form biofilms; 

 Risk assessment of S. aureus and its antimicrobial resistance along the food chain in Romania; 

 Contributing/ or coming with improvements of the overall food safety in Romania.  
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Protocol for detection of mecA and mecC by multiplex PCR (Stegger et al., 2012) 

 Reagents's Traceability PCR 
REACTIVES Supplier Reference Stock conc. Units Final conc. Units μL/ reaction MIX SUPERMIX 
Primer Mix MWG (Stegger et al. 2012) 10 μM/each 0.4 μM/each 1 1 -- 
PCR Buffer Roche 12 161 559 10 × 1 × 2.5 

22 

2.5 
MgCl2 Solution Applied 58002032-1 25 mM 2 mM 2 2 
PCR Nucleotide Mix Roche 11 581 295 001 10 mM/each 0.2 mM 0.5 0.5 
FastStart Taq DNA Polymerase Roche 04 659 163 5 U/μL 1 U 0.2 0.2 
Water Molecular Biology Reagent Sigma W4502 -- -- -- -- 16.8 16.8 
DNA -- -- 1 ng/μL 2 ng 2 -- -- 
   25 23 22 
Number Total reactions per MIX 1     
Number Total reactions 1    

 

Thermocycler conditions:  

1 cycle 95°C 5 min 

35 cycles 
95°C 1 min 
59°C 1 min 
72°C 1 min 

1 cycle 72°C 7 min 
Genes to amplify: 

 Primer sequence (5'→3') Product size (bp) Tm supplier(ºC) Tm used(ºC) 

mecA 
mecA P4 TCCAGATTACAACTTCACCAGG 162 58.4 

59 
mecA P7 CCACTTCATATCTTGTAACG 53.2 

mecC mecAlga251 MultiFP GAAAAAAAGGCTTAGAACGCCTC 138 58.9 
mecAlga251 MultiRP GAAGATCTTTTCCGTTTTCAGC 56.5 

 
Gel electrophoresis in 2% low EEO agarose (10 μL PCR product)
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Protocol for detection of SCCmec (ccr gene complex type) by multiplex PCR (Kondo et al., 2007) 

 

 Reagents's Traceability PCR 
REACTIVES Supplier Reference Stock conc. Units Final conc. Units μL/ reaction MIX 
Primer Mix MWG (Kondo et al., 2007) 2 μM/each 0.2 μM/each 2.5 2.5 
Multiplex PCR Master Mix QIAGEN  206143 2 × 1 × 12.5 12.5 
Water Molecular Biology Reagent Sigma W4502 -- -- -- -- 5 5
DNA -- -- 1 ng/μL 5 ng 5 -- 
   25 20 
Number Total reactions per MIX 1      
Number Total reactions 1    

 

Thermocycler conditions: 
1 cycle 95°C 15 min 

30 cycles 
94°C 30 sec 
57°C 1 min 30 sec 
72°C 2 min 

1 cycle 72°C 10 min
Genes to amplify: 

Primer sequence (5'→3') Product size (bp) Tm supplier(ºC)  Tm used(ºC) 

mecA 
mA1 TGCTATCCACCCTCAAACAGG

286 
59.8

57 

mA2 AACGTTGTAACCACCCCAAGA 57.9 

type 1 (A1B1) α1 AACCTATATCATCAATCAGTACGT 695 55.9 
βc ATTGCCTTGATAATAGCCITCT 54.7 

type 2 (A2B2) α2 TAAAGGCATCAATGCACAAACACT 937 57.6 
βc ATTGCCTTGATAATAGCCITCT 54.7 

type 3 (A3B3) 
α3 AGCTCAAAAGCAAGCAATAGAAT

1791 
55.3

βc ATTGCCTTGATAATAGCCITCT 54.7 
type 4 (A4B4) α4.2 GTATCAATGCACCAGAACTT 1287 53.2 
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β4.2 TTGCGACTCTCTTGGCGTTT 57.3 

type 5 (C1) γR CCTTTATAGACTGGATTATTCAAAATAT 518 56.3 
γF CGTCTATTACAAGATGTTAAGGATAAT 57.4

 

Gel electrophoresis in 1.5% agarose gels (25 μL PCR product
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Protocol for detection of SCCmec (mec gene complex class) by multiplex PCR (Kondo et al., 2007) 

 Reagents's Traceability PCR 
REACTIVES Supplier Reference Stock conc. Units Final conc. Units μL/ reaction MIX 
Primer Mix MWG (Kondo et al., 2007) 2 μM/each 0.2 μM/each 2.5 2.5 
Multiplex PCR Master Mix QIAGEN  206143 2 × 1 × 12.5 12.5 
Water Molecular Biology Reagent Sigma W4502   -- -- -- -- 5 5 
DNA -- -- 1 ng/μL 10 ng 5 -- 
  25 20 
Number Total reactions per MIX 1     
Number Total reactions 1    

 

Thermocycler conditions: 

1 cycle 95°C 15 min 

30 cycles 
94°C 30 sec 
60°C 1 min 30 sec 
72°C 2 min 

1 cycle 72°C 10 min 
Genes to amplify: 

Primer sequence (5'→3') Product size (bp) Tm supplier(ºC) Tm used(ºC) 

A mA7 ATATACCAAACCCGACAACTACA 1963 57.1 

60 

mI6 CATAACTTCCCATTCTGCAGATG 58.9 

B mA7 ATATACCAAACCCGACAACTACA 2827 57.1 
IS7 ATGCTTAATGATAGCATCCGAATG 57.6

C 
mA7 ATATACCAAACCCGACAACTACA 

804 
57.1 

IS2(iS-2) TGAGGTTATTCAGATATTTCGATGT 56.4 
 

Gel electrophoresis in 1.5% agarose gels (25 μL PCR product) 
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Protocol for subtyping the SCCmec type IV by multiplex PCR (Milheiriço et al., 2007) 

 

 Reagents's Traceability PCR 
REACTIVES Supplier Reference Stock conc. Units Final conc. Units μL/ reaction MIX SUPERMIX 
Primer Mix 1 MWG 

(Milheiriço et al., 2007) 

20 μM 0.2 μM 0,5 0.5 -- 
Primer Mix 2 MWG 20 μM 0.4 μM 1 1 --
Primer Mix 3 MWG 20 μM 0.8 μM 2 2 -- 
Primer Mix 4 MWG 20 μM 0.9 μM 2.25 2.25 -- 
Primer Mix 5 MWG 20 μM 1.8 μM 4.5 4.5 -- 
PCR Buffer Roche 12 161 559 10 × 1 × 5 

34.75 

5 
MgCl2 Solution Applied 58002032-1 25 mM 2 mM 4 4 
PCR Nucleotide Mix Roche 11 581 295 001 10 mM/each 0.2 mM 1 1 
FastStart Taq DNA Polymerase Roche 04 659 163 5 U/μL 2 U 0.4 0.4 
Water Molecular Biology Reagent Sigma W4502 -- -- -- -- 24.35 24.35 
DNA -- -- 1 ng/μL 5 ng 5 -- -- 
    50 45 34.75 
Number Total reactions per MIX              1      
Number Total reactions 1   

 

Thermocycler conditions: 

1 cycle 95°C 5 min 

35 cycles 
95°C 1 min 
48°C 30 sec 
72°C 2 min 

1 cycle 72°C 7 min 
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Genes to amplify: 

Primer sequence (5'→3') Product size (bp) Tm supplier(ºC) Tm used (ºC) 
ccrB2 (internal 
positive control) 

ccrB2 F CGAACGTAATAACATTGTCG 
203 

53.2 

48 

ccrB2 R TTGGCWATTTTACGATAGCC 53.2 

Type IVa J IVa F ATAAGAGATCGAACAGAAGC 278 53.2 
J IVa R TGAAGAAATCATGCCTATCG 53.2 

Types IVb and 
IVF 

J IVb F TTGCTCATTTCAGTCTTACC
336 

53.2
J IVb R TTACTTCAGCTGCATTAAGC 53.2 

Types IVc and 
IVE 

 
J IVc F 

 
CCATTGCAAATTTCTCTTCC 

 
483 

 
53.2 

J IVc R ATAGATTCTACTGCAAGTCC 53.2 

Type IVd J IVd F TCTCGACTGTTTGCAATAGG 575 53.2 
J IVd R CAATCATCTAGTTGGATACG 53.2

Type IVg 
J IVg F TGATAGTCAAAGTATGGTGG 

792 
53.2 

J IVg R GAATAATGCAAAGTGGAACG 53.2 

Type IVh J IVh F TTCCTCGTTTTTTCTGAACG 663 53.2 
J IVh R CAAACACTGATATTGTGTCG 53.2 

 

Gel electrophoresis in 2% low EEO agarose (20 μL PCR product) 
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Protocol for Panton-Valentine Leukocidin gene detection by conventional PCR (Lina et al., 1999) 

  

 Reagents's Traceability PCR 
REACTIVES Supplier Reference Stock conc. Units Final conc. Units μL/ reaction MIX  SUPERMIX 
Primer Forward MWG 

(Lina et al., 1999) 
10 μM 0.5 μM 1 1 -- 

Primer Reverse MWG 10 μM 0.5 μM 1 1 -- 
PCR Buffer Roche 12 161 559 10 × 1 × 2 

16 

2 
MgCl2 Solution Applied 58002032-1 25 mM 2 mM 1.6 1.6 
PCR Nucleotide Mix Roche 11 581 295 001 10 mM/each 0.2 mM 0.4 0.4
FastStart Taq DNA Polymerase Roche 04 659 163 5 U/μL 0.5 U 0.1 0.1 
Water Molecular Biology Reagent Sigma W4502 -- -- -- -- 11.9 11.9 
DNA -- -- 1 ng/μL 2 ng 2 -- -- 
   20 18 16 
Number Total reactions per MIX 1     
Number Total reactions 1    

 

Thermocycler conditions:  

1 cycle 95°C 5 min 

30 cycles 
95°C 30 sec 
55°C 30 sec 
72°C 1 min 

1 cycle 72°C 7 min 
Gene to amplify: 

Primer sequence (5'→3') Product size (bp) Tm supplier (ºC) Tm used (ºC) 

luk-PV 
luk-PV Up ATCATTAGGTAAAATGTCTGGACATGATCCA 

433  
62.9 

55 
luk-PV Dn GCATCAASTGTATTGGATAGCAAAAGC 61.9 
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Protocol for staphylococcal enterotoxin genes (sea-see) detection by multiplex PCR (Gonano et al., 2009) 

 

 Reagents's Traceability PCR 
REACTIVES Supplier Reference Stock conc. Units Final conc. Units μL/ reaction MIX  SUPERMIX 
Primer Mix 1 Eurofins 

(Gonano et al., 2009) 

10 μM 0.4 μM 1 1 -- 
Primer Mix 2 Eurofins 10 μM 0.4 μM 1 1 -- 
Primer Mix 3 Eurofins 10 μM 0.4 μM 1 1 -- 
Primer Mix 4 Eurofins 10 μM 0.4 μM 1 1 -- 
Primer Mix 5 Eurofins 10 μM 0.4 μM 1 1 -- 
PCR Buffer Roche 12 161 559 10 × 1 × 2.5 

18 

2.5 
MgCl2 Solution Applied 58002032-1 25 mM 2 mM 2 2 
PCR Nucleotide Mix Roche 11 581 295 001 10 mM/each 0.2 mM 0.5 0.5 
FastStart Taq DNA Polymerase Roche 04 659 163 5 U/μL 2 U 0.4 0.4 
Water Molecular Biology Reagent Sigma W4502 -- -- -- -- 12.6 12.6 
DNA -- -- 1 ng/μL 2 ng 2 -- --
   25 23 18 
Number Total reactions per MIX 1     
Number Total reactions 1    

 

Thermocycler conditions:  

1 cycle 95°C 5 min 

30 cycles 
95°C 1 min 
55°C 1 min 
72°C 1 min 

1 cycle 72°C 7 min 
 

 



134 
 

Genes to amplify: 

Primer sequence (5'→3') Product size (bp) Tm supplier (ºC) Tm used (ºC) 

sea 
GSEAR1 GGTTATCAATGTGCGGGTGG 102 59.4 

55 

GSEAR2 CGGCACTTTTTTCTCTTCGG 57.3 

seb GSEBR1 GTATGGTGGTGTAACTGAGC 164 57.3 
GSEBR2 CCAAATAGTGACGAGTTAGG 55.3 

sec 
GSECR1 AGATGAAGTAGTTGATGTGTATGG

451 
57.6

GSECR2 CACACTTTTAGAATCAACCG 53.2 

sed 
GSEDR1 CCAATAATAGGAGAAAATAAAAG 278 51.7 
GSEDR2 ATTGGTATTTTTTTTCGTTC 47.0 

see GSEER1 AGGTTTTTTCACAGGTCATCC 209 55.9 
GSEER2 CTTTTTTTTCTTCGGTCAATC 52.0 

 

Gel electrophoresis in 3% low EEO agarose (10 μL PCR product)
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Protocol for staphylococcal enterotoxin genes (seg-sej) detection by multiplex PCR (Gonano et al., 2009) 

 

 Reagents's Traceability PCR 
REACTIVES Supplier Reference Stock conc. Units Final conc. Units μL/ reaction MIX  SUPERMIX 
Primer Mix 1 Eurofins 

(Gonano et al., 2009) 
10 μM 0.4 μM 1 1 -- 

Primer Mix 2 Eurofins 10 μM 0.4 μM 1 1 -- 
Primer Mix 3 Eurofins 10 μM 0.4 μM 1 1 -- 
Primer Mix 4 Eurofins 10 μM 0.4 μM 1 1 -- 
PCR Buffer Roche 12 161 559 10 × 1 × 2.5 

19 

2.5 
MgCl2 Solution Applied 58002032-1 25 mM 2 mM 2 2 
PCR Nucleotide Mix Roche 11 581 295 001 10 mM/each 0.2 mM 0.5 0.5 
FastStart Taq DNA Polymerase Roche 04 659 163 5 U/μL 2 U 0.4 0.4 
Water Molecular Biology Reagent Sigma W4502 -- -- -- -- 13.6 13.6 
DNA -- -- 1 ng/μL 2 ng 2 -- -- 
   25 23 19 
Number Total reactions per MIX 1     
Number Total reactions 1    

 

Thermocycler conditions: 

1 cycle 95°C 5 min 

30 cycles 
95°C 1 min 
55°C 1 min 
72°C 1 min 

1 cycle 72°C 7 min 
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Genes to amplify: 

Primer sequence (5'→3') Product size (bp) Tm supplier (ºC) Tm used (ºC) 

seg 
SEG1 TGCTATCGACACACTACAACC 704 57.9 

55 

SEG2 CCAGATTCAAATGCAGAACC 55.3 

seh  SEH1 CGAAAGCAGAAGATTTACACG 495 55.9 
SEH2 GACCTTTACTTATTTCGCTGTC 56.5 

sei 
SEI1 GACAACAAAACTGTCGAAACTG

630 
56.5

SEI2 CCATATTCTTTGCCTTTACCAG 56.5 

sej 
SEJF CATCAGAACTGTTGTTCCGCTAG 142 60.6 
SEJR CTGAATTTTACCATCAAAGGTAC 55.3 

 

Gel electrophoresis in 3% low EEO agarose (10 μL PCR product) 
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Protocol for S. aureus specific staphylococcal protein A detection by conventional PCR (Harmsen et al., 2003) 

 

 Reagents's Traceability PCR 
REACTIVES Supplier Reference Stock conc. Units Final conc. Units μL/ reaction MIX SUPERMIX 
Primer Forward Eurofins 

(Harmsen et al., 2003) 
10 μM 0.5 μM 1 1 -- 

Primer Reverse Eurofins 10 μM 0.5 μM 1 1 -- 
PCR Buffer Roche 12 161 559 10 × 1 × 2 

16 

2 
MgCl2 Solution Applied 58002032-1 25 mM 2 mM 1.6 1.6 
PCR Nucleotide Mix Roche 11 581 295 001 10 mM/each 0.2 mM 0.4 0.4 
FastStart Taq DNA Polymerase Roche 04 659 163 5 U/μL 0.5 U 0.1 0.1 
Water Molecular Biology Reagent Sigma W4502 -- -- -- -- 11.9 11.9 
DNA -- -- 1 ng/μL 2 ng 2 -- -- 
   20 18 16 
Number Total reactions per MIX 1     
Number Total reactions 1    

 

Thermocycler conditions: 

1 cycle 95°C 5 min 

30 cycles 
95°C 30 sec 
55°C 30 sec 
72°C 1 min 

1 cycle 72°C 7 min 
Gene to amplify: 

Primer sequence (5'→3') Product size (bp) Tm supplier (ºC) Tm used (ºC) 

spa 1095F AGACGATCCTTCGGTGAGC 422  58.8 57 
1517R GCTTTTGCAATGTCATTTACTG 54.7 
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Protocol for MultiLocus Sequence Typing by multiplex PCR (Enright et al., 2000) 

 

 Reagents's Traceability PCR 
REACTIVES Supplier Reference Stock conc. Units Final conc. Units μL/ reaction MIX SUPERMIX 
Primer Forward Metabion 

(Enright et al., 2000) 
10 μM 0.5 μM 2.5 2.5 -- 

Primer Reverse Metabion 10 μM 0.5 μM 2.5 2.5 -- 
PCR Buffer Roche 12 161 559 10 × 1 × 5 

5.7 

5 
MgCl2 Solution Applied 58002032-1 25 mM 2 mM 4 4 
PCR Nucleotide Mix Roche 11 581 295 001 10 mM/each 0.2 mM 1 1 
FastStart Taq DNA Polymerase Roche 04 659 163 5 U/μL 2 U 0.4 0.4 
Water Molecular Biology Reagent Sigma W4502 -- -- -- -- 29.6 29.6 
DNA -- -- 1 ng/μL 5 ng 5 -- -- 
   50 10.7 40 
Number Total reactions per MIX 1     
Number Total reactions 1    

 

Thermocycler conditions: 

1 cycle 95°C 5 min 

35 cycles 
95°C 1 min 
55°C 1 min 
72°C 1 min 

1 cycle 72°C 10 min 
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Genes to amplify: 

 Primer sequence (5'→3') Product size (bp) Tm supplier (ºC) Tm used (ºC) 

arcC TTGATTCACCAGCGCGTATTGTC 456 63.0 

55  

AGGTATCTGCTTCAATCAGCG 59.0 

aroE 
ATCGGAAATCCTATTTCACATTC

456 
58.0

GGTGTTGTATTAATAACGATATC 56.0 

glpF 
CTAGGAACTGCAATCTTAATCC 465 58.0 
TGGTAAAATCGCATGTCCAATTC 59.0 

gmk ATCGTTTTATCGGGACCATC 417 56.0 
TCATTAACTACAACGTAATCGTA 56.0 

pta 
GTTAAAATCGTATTACCTGAAGG

474 
58.0

GACCCTTTTGTTGAAAAGCTTAA 58.0 

tpi 
TCGTTCATTCTGAACGTCGTGAA 402 61.0 
TTTGCACCTTCTAACAATTGTAC 58.0 

yqiL CAGCATACAGGACACCTATTGGC 516 65.0 
CGTTGAGGAATCGATACTGGAAC 63.0 
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Protocol for Real Time PCR (Trnčíková et al., 2008) 

 

 Reagents's Traceability PCR 
REACTIVES Supplier Reference Stock conc. Units Final conc. Units μL/ reaction MIX SUPERMIX 
Primer Forward MWG 

(Trnčíková et al., 2008) 
10 μM 0.3 μM 0.6 0.6 -- 

Primer Reverse MWG 10 μM 0.3 μM 0.6 0.6 -- 
Taqman PCR Master Mix ThermoFisher 4304437 2 × 1 × 10 

18.8 
10 

Taqman probe aurP (FAM/BHQ) ThermoFisher 4304437 10 μM 0.2 μM 0.4 0.4 
Water Molecular Biology Reagent Sigma W4502 -- -- -- -- 8.4 8.4 
DNA -- -- 1 ng/μL 5 ng 5 -- -- 
    25 20 18.8 
Number Total reactions per MIX 1      
Number Total reactions 1    

 

Thermocycler conditions: 

1 cycle 50°C 2 min 
1 cycle 95°C 10 min 

50 cycles 
95°C 15 sec 
60°C 1 min 

Genes to amplify: 

Primer sequence (5'→3') Product size (bp) Tm used (ºC) 

nuc 
fmhb4416F CTAGCTTTATTTCAGCAGGTGACGAT 

102  60 aurR TCAACATCTTTCGCATGATTCAACAC 
aurP FAM-CTTGCTCCGTTTCACCAGGCTTCGGTG-TAMRA 
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PFGE working protocol for S. aureus DNA fragments, by using SmaI restriction enzyme 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Agarose plugs 
preparation 

Preliminary step 

Inoculating in the BP plate

Striation

Incubation 37°C, 15-20 h

One isolated colony

Transfer in 5 mL BHIB

Incubation 37°C, 15-20 h, 200 rpm 

Agarose melting conc. 2%, 900 rpm, 95°C Cooling at 42°C 

Centrifugation 200 μL culture, 
12000 rpm, 2 min

Remove supernatant

Pelet washing with 500 μL buffer PIV

Incubation 10 min, temp. 42°C 

Pelet resuspension with 300 μL 
buffer PIV

Mix 100 μL culture + 100 μL 
agarose 2%

Arrangement into the matrix 

Measuring OD, 600 nm OD= 1 by adding PIV 

Centrifugation 12000 rpm, 4 min Remove supernatant

Easy pippeting 
Overpippeting may lead to DNA 
shearing 

Cooling at RT, 10 min 

Cooling at 4°C , 15 min

+ 1 mL lysis buffer EC in 2 mL tubes 
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Agarose plugs removal from the matrix 

Adding 1 mL ESP solution in 2 mL 
tubes

Transfer in lysis solution EC

Incubation at 37°C, 600 rpm, 5-6 h

Transfer agarose plugs into ESP 
solution

Incubation at 56°C, 16-20 h

Warming TE buffer, 50°C  

Washing steps min 5 times

Transfer agarose plugs into TE buffer, 
50°C, 500 rpm, 30 min

Adding 1 mL buffer TE

Remove supernatant 

Cut 1/3 agarose plug, incubate in 100 μL 
restriction buffer for 30 min, RT 

Remove restriction buffer 

Remove restriction solution

Overnight incubation 25°C 

Transfer into 100 μL restriction solution 
SmaI

Adding 100 μL TBE 0,5X

Stabilise plugs at 4°C, 30 min 

Add plugs into agarose gel, 1% conc. 

Cell lysis 

 

Washing step 

DNA 
fragmentation 

Gel 
electrophoresis 
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Image capture 

Seal with agarose, 1% conc. 

Add Lambda Ladder PFG 

Electrophoresis conditions 

Pulses  5-15”x 10 h 
15-60”x 13 h 

Time  23 h 
Voltage  6 V/cm 
Angle  120° 
Temp. 14°C

Agarose gel laying into a cuvette with 
ethidium bromide, 15 min 

Submerge into distilled water, 2 h

Gel visualization 
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Biofilm quantification procedure using 96-well plate 

 
Biofilm quantification using CV stain 

 
 

Strike 1 colony on BP (37°C, 24h) 
 
 

ON culture in TSB (37°C, 24h, 120 rpm) 
 
 

OD 600nm of 1≈ 1x108 CFU/mL  
 
 

+200 μL adjusted culture in 96-well plate  
 

 
Incubation at 37°C, 24h, 120 rpm, 24h   remove supernatant 

 
 

Rinsing three times with 0.95% NaCl 
 
 

+ 200 μL methanol 99%, 15’ (fixation) 
 

 
Air drying at RT, 20’ 

 
 
+ 200 μL CV, 1%, 5’ 

 
 
Washing with tap water 

 
 
+ 200 μL acetic acid 33% (solubilization) 

 
 
OD 570nm 
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Staphylococcus aureus- Allelic profile of C38-ST 1 (Saureus.mlst.net) 
 
arcC 
TTATTAATCCAACAAGCTAAATCGAACAGTGACACAACGCCGGCAATGCCATTGGATACTTGTGGTGCAATGTCACA
GGGTATGATAGGCTATTGGTTGGAAACTGAAATCAATCGCATTTTAACTGAAATGAATAGTGATAGAACTGTAGGCA
CAATCGTTACACGTGTGGAAGTAGATAAAGATGATCCACGATTCAATAACCCAACCAAACCAATTGGTCCTTTTTAT
ACGAAAGAAGAAGTTGAAGAATTACAAAAAGAACAGCCAGACTCAGTCTTTAAAGAAGATGCAGGACGTGGTTATA
GAAAAGTAGTTGCGTCACCACTACCTCAATCTATACTAGAACACCAGTTAATTCGAACTTTAGCAGACGGTAAAAAT
ATTGTCATTGCATGCGGTGGTGGCGGTATTCCAGTTATAAAAAAAGAAAATACCTATGAAGGTGTTGAAGCG 
aroE 
AATTTTAATTCTTTAGGATTAGATGATACTTATGAAGCTTTAAATATTCCAATTGAAGATTTTCATTTAATTAAAGAA
ATTATTTCGAAAAAAGAATTAGATGGCTTTAATATCACAATTCCTCATAAAGAACGTATCATACCGTATTTAGATCAT
GTTGATGAACAAGCGATTAATGCAGGTGCAGTTAACACTGTTTTGATAAAAGATGACAAGTGGATAGGGTATAATAC
AGATGGTATTGGTTATGTTAAAGGATTGCACAGCGTTTATCCAGATTTAGAAAATGCATACATTTTAATTTTGGGCG
CAGGTGGTGCAAGTAAAGGTATTGCTTATGAATTAGCAAAATTTGTAAAGCCCAAATTAACTGTTGCGAATAGAACG
ATGGCTCGTTTTGAATCTTGGAATTTAAATATAAACCAAATTTCATTAGCAGATGCTGAAAAGTATTTA 
glpF 
GGTGCTGATTGGATTGTCATCACAGCTGGATGGGGATTAGCGGTTACAATGGGTGTGTTTGCTGTCGGTCAATTCTC
AGGTGCACATTTAAACCCAGCGGTGTCTTTAGCTCTTGCATTAGACGGAAGTTTTGATTGGTCATTAGTTCCTGGTTA
TATTGTTGCTCAAATGTTAGGTGCAATTGTCGGAGCAACAATTGTATGGTTAATGTACTTGCCACATTGGAAAGCGA
CAGAAGAAGCTGGCGCGAAATTAGGTGTTTTCTCTACAGCACCGGCTATTAAGAATTACTTTGCCAACTTTTTAAGT
GAGATTATCGGAACAATGGCATTAACTTTAGGTATTTTATTTATCGGTGTAAACAAAATTGCCGATGGTTTAAATCCT
TTAATTGTCGGAGCATTAATTGTTGCAATCGGATTAAGTTTAGGCGGTGCTACTGGTTATGCAATCAACCCAGCACG
T 
gmk 
CGAATATTTGAAGATCCAAGTACATCATATAAGTATTCTATTTCAATGACAACACGTCAAATGCGTGAAGGTGAAGT
TGATGGCGTAGATTACTTTTTTAAAACTAGGGATGCGTTTGAAGCTTTAATCAAAGATGACCAATTTATAGAATATG
CTGAATATGTAGGCAACTATTATGGTACACCAGTTCAATATGTTAAAGATACAATGGACGAAGGTCATGATGTATTT
TTAGAAATTGAAGTAGAAGGTGCAAAGCAAGTTAGAAAGAAATTTCCAGATGCGCTATTTATTTTCTTAGCACCTCC
AAGTTTAGAACACTTGAGAGAGCGATTAGTAGGTAGAGGAACAGAATCTGATGAGAAAATACAAAGTCGTATTAAC
GAAGCGCGTAAAGAAGTTGAAATGATGAATTTA 
pta 
GCAACACAATTACAAGCAACAGATTATGTTACACCAATCGTGTTAGGTGATGAGACTAAGGTTCAATCTTTAGCGCA
AAAACTTGATCTTGATATTTCTAATATTGAATTAATTAATCCTGCGACAAGTGAATTGAAAGCTGAATTAGTTCAATC
ATTTGTTGAACGACGTAAAGGTAAAGCGACTGAAGAACAAGCACAAGAATTATTAAACAATGTGAACTACTTCGGT
ACAATGCTTGTTTATGCTGGTAAAGCAGATGGTTTAGTTAGTGGTGCAGCACATTCAACAGGAGACACTGTGCGTCC
AGCTTTACAAATCATCAAAACGAAACCAGGTGTATCAAGAACATCAGGTATCTTCTTTATGATTAAAGGTGATGTAC
AATACATCTTTGGTGATTGTGCAATCAATCCAGAACTTGATTCACAAGGACTTGCAGAAATTGCAGTAGAAAGTGCA
AAATCAGCATTA 
tpi 
CACGAAACAGATGAAGAAATTAACAAAAAAGCGCACGCTATTTTCAAACATGGAATGACTCCAATTATTTGTGTTGG
TGAAACAGACGAAGAGCGTGAAAGTGGTAAAGCTAACGATGTTGTAGGTGAGCAAGTTAAGAAAGCTGTTGCAGGT
TTATCTGAAGATCAACTTAAATCAGTTGTAATTGCTTATGAGCCAATCTGGGCAATCGGAACTGGTAAATCATCAAC
ATCTGAAGATGCAAATGAAATGTGTGCATTTGTACGTCAAACTATTGCTGACTTATCAAGCAAAGAAGTATCAGAAG
CAACTCGTATTCAATATGGTGGTAGTGTTAAACCTAACAACATTAAAGAATACATGGCACAAACTGATATTGATGGG
GCATTAGTAGGTGGCGCA 
yqiL 
GCGTTTAAAGACGTGCCAGCCTATGATTTAGGTGCGACTTTAATAGAACATATTATTAAAGAGACGGGTTTGAATCC
AAGTGAGATTGATGAAGTTATCATCGGTAACGTACTACAAGCAGGACAAGGACAAAATCCAGCACGAATTGCTGCT
ATGAAAGGTGGCTTGCCAGAAACAGTACCTGCATTTACAGTGAATAAAGTATGTGGTTCTGGGTTAAAGTCGATTCA
ATTAGCATATCAATCTATTGTGACTGGTGAAAATGACATCGTGCTAGCTGGCGGTATGGAGAATATGTCTCAGTCAC
CAATGCTTGTCAACAACAGTCGCTTCGGTTTTAAAATGGGACATCAATCAATGGTTGATAGCATGGTATATGATGGT
TTAACAGATGTATTTAATCAATATCATATGGGTATTACTGCTGAAAATTTAGTGGAGCAATATGGTATTTCAAGAGA
AGAACAAGATACATTTGCTGTAAACTCACAACAAAAAGCAGTACGTGCACAGCAA 



Table S1. Information of the S . aureus  isolates analyzed in this study.

Pathogen Species
Sample-

Nr. Isolate-Nr. Isol. Date Origin (food item) Control point Country of origin mecA/mecC

Antibiotic resistance by 

susceptibility testinga

Staphylococcus S. aureus 6 LBMM 820 19/05/2012 Cheese Airport Bilbao Ecuador — None
Staphylococcus S. aureus 10 LBMM 821 19/05/2012 Pork meat Airport Bilbao Ecuador — PEN, ERY, TET
Staphylococcus S. aureus 13 LBMM 822 19/06/2012 Antelope Airport Bilbao Unknown — PEN, AMI, TOB, (TET)
Staphylococcus S. aureus 15 LBMM 823 11/06/2012 Unknown meat Airport Bilbao Ecuador — PEN, AMI, TOB, (TET)
Staphylococcus S. aureus 16 LBMM 824 11/06/2012 Unknown meat Airport Bilbao Ecuador — PEN, (CIP)
Staphylococcus S. aureus 18 LBMM 825 18/06/2012 Cheese Airport Bilbao Ecuador — None
Staphylococcus S. aureus 19 LBMM 826 18/06/2012 Cheese Airport Bilbao Ecuador — TET
Staphylococcus S. aureus 23 LBMM 827 09/06/2012 Eggs Airport Bilbao Ecuador — PEN, ERY, (TET)
Staphylococcus S. aureus 24 LBMM 828 09/06/2012 Guinea pig Airport Bilbao Ecuador — None
Staphylococcus S. aureus 28 LBMM 829 14/05/2012 Cheese Airport Bilbao Perú — PEN
Staphylococcus S. aureus 30 LBMM 830 12/07/2012 Pork meat Airport Bilbao Argentina — PEN, TET
Staphylococcus S. aureus 35 LBMM 831 27/05/2012 Unknown meat Airport Bilbao China — PEN
Staphylococcus S. aureus 36 LBMM 832 27/05/2012 Duck meat Airport Bilbao China — None
Staphylococcus S. aureus 50 LBMM 833 03/08/2012 Cheese Airport Bilbao Bolivia — None
Staphylococcus S. aureus 51 LBMM 834 03/08/2012 Cheese Airport Bilbao Bolivia — None
Staphylococcus S. aureus 53 LBMM 835 03/08/2012 Cheese Airport Bilbao Bolivia — None
Staphylococcus S. aureus 54 LBMM 836 03/08/2012 Cheese Airport Bilbao Bolivia — PEN, AMI, TOB, TET
Staphylococcus S. aureus 55 LBMM 837 15/05/2012 Cheese Airport Bilbao Ecuador — PEN
Staphylococcus S. aureus 58 LBMM 838 04/07/1905 Rodents Airport Bilbao Guinea ecuatorial — PEN
Staphylococcus S. aureus 71 LBMM 839 30/08/2012 Cheese Airport Bilbao Romania — None
Staphylococcus S. aureus 72 LBMM 840 30/08/2012 Cheese Airport Bilbao Romania — None
Staphylococcus S. aureus 74 LBMM 841 30/08/2012 Unknown meat Airport Bilbao Romania — None
Staphylococcus S. aureus 75 LBMM 842 30/08/2012 Unknown meat Airport Bilbao Romania — PEN
Staphylococcus S. aureus 77 LBMM 843 11/09/2012 Duck meat Airport Bilbao China — PEN
Staphylococcus S. aureus 81 LBMM 844 13/08/2012 Pork Airport Bilbao Bolivia — PEN
Staphylococcus S. aureus 85 LBMM 845 30/05/2012 Unknown meat Airport Bilbao Perú — PEN
Staphylococcus S. aureus 87 LBMM 846 30/05/2012 Cheese Airport Bilbao Perú — None
Staphylococcus S. aureus 89 LBMM 847 30/05/2012 Cheese Airport Bilbao Perú — None
Staphylococcus S. aureus 91 LBMM 848 30/05/2012 Cheese Airport Bilbao Perú — None
Staphylococcus S. aureus 92 LBMM 849 30/05/2012 Cheese Airport Bilbao Perú — None
Staphylococcus S. aureus 99 LBMM 850 11/09/2012 Unknown meat Airport Bilbao China — None
Staphylococcus S. aureus 103 LBMM 851 09/02/2013 Beef meat Airport Bilbao Bolivia — PEN
Staphylococcus S. aureus 104 LBMM 852 09/02/2013 Beef meat Airport Bilbao Bolivia — None
Staphylococcus S. aureus 105 LBMM 853 09/02/2013 Cheese Airport Bilbao Bolivia — None
Staphylococcus S. aureus 106 LBMM 854 09/02/2013 Cheese Airport Bilbao Bolivia — PEN, AMI, TOB, TET
Staphylococcus S. aureus 109 LBMM 855 24/01/2013 Unknown meat Airport Bilbao Serbia — PEN
Staphylococcus S. aureus 111 LBMM 856 04/01/2013 Cheese Airport Bilbao Peru — None
Staphylococcus S. aureus 112 LBMM 857 20/02/2013 Duck meat Airport Bilbao China — PEN, (CIP)
Staphylococcus S. aureus 118 LBMM 858 04/01/2013 Cheese Airport Bilbao Peru — None
Staphylococcus S. aureus 119 LBMM 859 04/01/2013 Cheese Airport Bilbao Peru — None
Staphylococcus S. aureus 120 LBMM 860 27/01/2013 Cheese Airport Bilbao Peru — None
Staphylococcus S. aureus 125 LBMM 861 17/02/2013 Cheese Airport Bilbao Paraguay — None
Staphylococcus S. aureus 132 LBMM 862 16/02/2013 Unknown meat Airport Bilbao Bolivia mecA β-lactams
Staphylococcus S. aureus 133 LBMM 863 16/02/2013 Unknown meat Airport Bilbao Bolivia mecA β-lactams
Staphylococcus S. aureus 134 LBMM 864 16/02/2013 Unknown meat Airport Bilbao Bolivia mecA β-lactams
Staphylococcus S. aureus 135 LBMM 865 16/02/2013 Unknown meat Airport Bilbao Bolivia mecA β-lactams
Staphylococcus S. aureus 137 LBMM 866 16/02/2013 Cheese Airport Bilbao Bolivia — None
Staphylococcus S. aureus 138 LBMM 867 16/02/2013 Cheese Airport Bilbao Bolivia — None
Staphylococcus S. aureus 139 LBMM 868 16/02/2013 Unknown meat Airport Bilbao Bolivia mecA β-lactams
Staphylococcus S. aureus 144 LBMM 869 18/04/2013 Cheese Airport Bilbao Bolivia — None
Staphylococcus S. aureus 145 LBMM 870 18/04/2013 Cheese Airport Bilbao Bolivia — PEN, AMI, TOB, TETStaphylococcus S. aureus 145 LBMM 870 18/04/2013 Cheese Airport Bilbao Bolivia — PEN, AMI, TOB, TET
Staphylococcus S. aureus 152 LBMM 871 28/03/2013 Cheese Airport Bilbao Bolivia — PEN
Staphylococcus S. aureus 153 LBMM 872 07/04/2013 Beef meat Airport Bilbao Colombia — None
Staphylococcus S. aureus 157 LBMM 873 11/04/2013 Cheese Airport Bilbao Bolivia — None
Staphylococcus S. aureus 168 LBMM 874 28/04/2013 Cheese Airport Bilbao Peru — None
Staphylococcus S. aureus 179 LBMM 875 27/04/2013 Cheese Airport Bilbao Bolivia mecA β-lactams
Staphylococcus S. aureus 180 LBMM 876 21/02/2013 Meat Airport Bilbao Brazil — PEN
Staphylococcus S. aureus 181 LBMM 877 16/05/2013 Cheese Airport Bilbao Brazil — None
Staphylococcus S. aureus 182 LBMM 878 27/05/2013 Cheese Airport Bilbao Paraguay — None
Staphylococcus S. aureus 185 LBMM 879 01/06/2013 Cheese Airport Bilbao Bolivia — None
Staphylococcus S. aureus 186 LBMM 880 01/06/2013 Cheese Airport Bilbao Bolivia — None
Staphylococcus S. aureus 188 LBMM 881 09/05/2013 Cheese Airport Bilbao Colombia — PEN
Staphylococcus S. aureus 190 LBMM 882 03/05/2013 Cheese Airport Bilbao Brazil — PEN
Staphylococcus S. aureus 208 LBMM 883 18/12/2012 Cheese Airport Bilbao Bolivia — PEN
Staphylococcus S. aureus 209 LBMM 884 11/03/2013 Cheese Airport Bilbao Peru — None
Staphylococcus S. aureus 213 LBMM 885 27/01/2013 Cheese Airport Bilbao Peru — PEN
Staphylococcus S. aureus 72 E1 04/02/2013 Whey cheese Market Galati Rep. Moldova — None
Staphylococcus S. aureus 18 E2 14/09/2012 Smoked salmon Market Galati Rep. Moldova — None
Staphylococcus S. aureus 31 E3 06/11/2012 Fish in oil with herbs Market Galati Rep. Moldova — TET
Staphylococcus S. aureus 17 E4 14/09/2012 Unfermented goat cheese Market Galati Rep. Moldova — None
Staphylococcus S. aureus 92 E5 07/02/2013 Poultry Market Galati Rep. Moldova — None
Staphylococcus S. aureus 16 E6 14/09/2012 Sheep cheese salted in brine Market Galati Rep. Moldova — None
Staphylococcus S. aureus 30 E7 06/11/2012 Smoked fish (savorian) Market Galati Rep. Moldova — TET, CIP
Staphylococcus S. aureus 23 E8 06/11/2012 Poultry Market Galati Rep. Moldova — None
Staphylococcus S. aureus 17 E9 14/09/2012 Unfermented goat cheese Market Galati Rep. Moldova — PEN
Staphylococcus S. aureus 12 E10 14/09/2012 Artificial red caviar Market Galati Rep. Moldova — None
Staphylococcus S. aureus 63 E11 29/01/2013 Goat cheese Market Galati Rep. Moldova — None
Staphylococcus S. aureus 17 E12 14/09/2012 Unfermented goat cheese Market Galati Rep. Moldova — PEN
Staphylococcus S. aureus 25 E13 06/11/2012 Non fermented unsalted sheep cheese Market Galati Rep. Moldova — None
Staphylococcus S. aureus 25 E14 06/11/2012 Non fermented unsalted sheep cheese Market Galati Rep. Moldova — None
Staphylococcus S. aureus 17 E15 14/09/2012 Unfermented goat cheese Market Galati Rep. Moldova — PEN
Staphylococcus S. aureus 15 E16 14/09/2012 Fresh cow cheese (cottage cheese) Market Galati Rep. Moldova — None
Staphylococcus S. aureus 63 E17 29/01/2013 Goat cheese Market Galati Rep. Moldova — None
Staphylococcus S. aureus 11 E18 14/09/2012 Artificial black caviar Market Galati Rep. Moldova — PEN
Staphylococcus S. aureus 22 E19 06/11/2012 Milk Market Galati Rep. Moldova — PEN
Staphylococcus S. aureus 17 E20 14/09/2012 Unfermented goat cheese Market Galati Rep. Moldova — PEN
Staphylococcus S. aureus 15 E21 14/09/2012 Fresh cow cheese (cottage cheese) Market Galati Rep. Moldova — None
Staphylococcus S. aureus 21 E22 06/11/2012 Pork lard Market Galati Rep. Moldova mecA β-lactams, TET, (CIP)
Staphylococcus S. aureus 13 E23 14/09/2012 Milk Market Galati Rep. Moldova — PEN
Staphylococcus S. aureus 23 E24 06/11/2012 Poultry Market Galati Rep. Moldova — None
Staphylococcus S. aureus 13 E25 14/09/2012 Milk Market Galati Rep. Moldova — PEN
Staphylococcus S. aureus 72 E26 04/02/2013 Whey cheese Market Galati Rep. Moldova — None
Staphylococcus S. aureus 25 E29 06/11/2012 Non fermented unsalted sheep cheese Market Galati Rep. Moldova — None
Staphylococcus S. aureus 17 E30 14/09/2012 Unfermented goat cheese Market Galati Rep. Moldova — None
Staphylococcus S. aureus 72 1NC 04/02/2013 Whey cheese Market Galati Rep. Moldova — PEN
Staphylococcus S. aureus 30 7NC 06/11/2012 Smoked fish (savorian) Market Galati Rep. Moldova — TET
Staphylococcus S. aureus 72 26NC 04/02/2013 Whey cheese Market Galati Rep. Moldova — None
Staphylococcus S. aureus 25 29NC 06/11/2012 Non fermented unsalted sheep cheese Market Galati Rep. Moldova — None
Staphylococcus S. aureus -- SA11 23/09/2012 Cheese Land border Obrežje Turkey — None
Staphylococcus S. aureus -- SA17 03/10/2012 Meat-salami (dry) Brnik airport Republic of Kosovo — None
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Staphylococcus S. aureus -- SA21 08/11/2012 Cheese (green mold) Land border Obrežje Turkey — None
Staphylococcus S. aureus -- SA43 06/02/2013 Meat Brnik airport Republic of Kosovo — None
Staphylococcus S. aureus 21 21a 13/08/2008 Sheep Castile and Leon Spain — (ERY)
Staphylococcus S. aureus 125 125a 01/09/2008 Sheep Castile and Leon Spain — None
Staphylococcus S. aureus 282 282b 28/10/2008 Sheep Castile and Leon Spain — (CLI)
Staphylococcus S. aureus 355 355b 18/11/2008 Sheep Castile and Leon Spain — PEN
Staphylococcus S. aureus 358 358c 18/11/2008 Sheep Castile and Leon Spain — (ERY), TET
Staphylococcus S. aureus 620 620a 24/02/2009 Sheep Castile and Leon Spain — PEN
Staphylococcus S. aureus 621 621a 24/02/2009 Sheep Castile and Leon Spain — None
Staphylococcus S. aureus 622 622a 24/02/2009 Sheep Castile and Leon Spain — None
Staphylococcus S. aureus 623 623a 24/02/2009 Sheep Castile and Leon Spain — None
Staphylococcus S. aureus 625 625a 24/02/2009 Sheep Castile and Leon Spain — None
Staphylococcus S. aureus 626 626a 24/02/2009 Sheep Castile and Leon Spain — None
Staphylococcus S. aureus 627 627a 24/02/2009 Sheep Castile and Leon Spain — None
Staphylococcus S. aureus 628 628a 24/02/2009 Sheep Castile and Leon Spain — PEN
Staphylococcus S. aureus 629 629a 24/02/2009 Sheep Castile and Leon Spain — PEN
Staphylococcus S. aureus 630 630a 24/02/2009 Sheep Castile and Leon Spain — None
Staphylococcus S. aureus 631 631a 24/02/2009 Sheep Castile and Leon Spain — None
Staphylococcus S. aureus 633 633a 24/02/2009 Sheep Castile and Leon Spain — None
Staphylococcus S. aureus 681 681a 17/03/2009 Sheep Castile and Leon Spain — None
Staphylococcus S. aureus 684 684a 17/03/2009 Sheep Castile and Leon Spain — None
Staphylococcus S. aureus 686 686a 17/03/2009 Sheep Castile and Leon Spain — None
Staphylococcus S. aureus 689 689a 17/03/2009 Sheep Castile and Leon Spain — None
Staphylococcus S. aureus 690 690a 17/03/2009 Sheep Castile and Leon Spain — None
Staphylococcus S. aureus 691 691a 17/03/2009 Sheep Castile and Leon Spain — None
Staphylococcus S. aureus 694 694a 17/03/2009 Sheep Castile and Leon Spain — None
Staphylococcus S. aureus 696 696a 17/03/2009 Sheep Castile and Leon Spain — FOS
Staphylococcus S. aureus 697 697a 17/03/2009 Sheep Castile and Leon Spain — None
Staphylococcus S. aureus 764 764a 14/04/2009 Sheep Castile and Leon Spain — PEN
Staphylococcus S. aureus 769 769a 14/04/2009 Sheep Castile and Leon Spain — None
Staphylococcus S. aureus 770 770a 14/04/2009 Sheep Castile and Leon Spain — None
Staphylococcus S. aureus 771 771a 14/04/2009 Sheep Castile and Leon Spain — None
Staphylococcus S. aureus 772 772a 14/04/2009 Sheep Castile and Leon Spain — None
Staphylococcus S. aureus 773 773a 14/04/2009 Sheep Castile and Leon Spain — None
Staphylococcus S. aureus 775 775a 14/04/2009 Sheep Castile and Leon Spain — None
Staphylococcus S. aureus 776 776a 14/04/2009 Sheep Castile and Leon Spain — None
Staphylococcus S. aureus 777 777b 14/04/2009 Sheep Castile and Leon Spain — None
Staphylococcus S. aureus 778 778a 14/04/2009 Sheep Castile and Leon Spain — TET
Staphylococcus S. aureus 779 779a 14/04/2009 Sheep Castile and Leon Spain — None
Staphylococcus S. aureus 924 924a 09/06/2009 Sheep Castile and Leon Spain — None
Staphylococcus S. aureus 929 929a 09/06/2009 Sheep Castile and Leon Spain — TET
Staphylococcus S. aureus 943 943a 16/06/2009 Sheep Castile and Leon Spain — None
Staphylococcus S. aureus 945 945a 16/06/2009 Sheep Castile and Leon Spain — None
Staphylococcus S. aureus 947 947a 16/06/2009 Sheep Castile and Leon Spain — None
Staphylococcus S. aureus 949 949a 16/06/2009 Sheep Castile and Leon Spain — None
Staphylococcus S. aureus 1008 1008a 14/07/2009 Sheep Castile and Leon Spain — None
Staphylococcus S. aureus 648 648c 03/03/2009 Sheep Castile and Leon Spain mecC β-lactams
Staphylococcus S. aureus 741 741a 07/04/2009 Sheep Castile and Leon Spain mecA β-lactams, TET
Staphylococcus S. aureus 1040 1040a 28/07/2009 Sheep Castile and Leon Spain mecA β-lactams, TET
Staphylococcus S. aureus 1043 1043a 28/07/2009 Sheep Castile and Leon Spain mecA β-lactams, TET
Staphylococcus S. aureus -- SA 1 16/01/2008 Blood culture Hospital of León Spain mecA β-lactams, CIP
Staphylococcus S. aureus -- SA 2 28/01/2008 Blood culture Hospital of León Spain mecA β-lactams, CIP
Staphylococcus S. aureus -- SA 3 31/01/2008 Blood culture Hospital of León Spain mecA β-lactams, ERY, CIP
Staphylococcus S. aureus -- SA 4 06/02/2008 Central vascular catheter Hospital of León Spain mecA β-lactams, ERY, CIP, COTStaphylococcus S. aureus -- SA 4 06/02/2008 Central vascular catheter Hospital of León Spain mecA β-lactams, ERY, CIP, COT
Staphylococcus S. aureus -- SA 5 11/02/2008 Blood culture Hospital of León Spain mecA β-lactams, CIP
Staphylococcus S. aureus -- SA 6 18/02/2008 Blood culture Hospital of León Spain mecA β-lactams, CIP
Staphylococcus S. aureus -- SA 7 28/03/2008 Central vascular catheter Hospital of León Spain mecA β-lactams, CIP
Staphylococcus S. aureus -- SA 8 05/05/2008 Blood culture Hospital of León Spain mecA β-lactams, CIP
Staphylococcus S. aureus -- SA 9 05/05/2008 Central vascular catheter Hospital of León Spain mecA β-lactams, ERY, CIP
Staphylococcus S. aureus -- SA 10 19/05/2008 Blood culture Hospital of León Spain mecA β-lactams, CIP
Staphylococcus S. aureus -- SA 11 26/05/2008 Blood culture Hospital of León Spain mecA β-lactams, ERY, CIP
Staphylococcus S. aureus -- SA 12 02/06/2008 Blood culture Hospital of León Spain mecA β-lactams, ERY, CIP
Staphylococcus S. aureus -- SA 13 30/06/2008 Blood culture Hospital of León Spain — PEN
Staphylococcus S. aureus -- SA 14 01/07/2008 Blood culture Hospital of León Spain mecA β-lactams, CIP
Staphylococcus S. aureus -- SA 15 04/07/2008 Central vascular catheter Hospital of León Spain mecA β-lactams, CIP
Staphylococcus S. aureus -- SA 16 04/07/2008 Central vascular catheter Hospital of León Spain mecA β-lactams, ERY, CIP
Staphylococcus S. aureus -- SA 17 18/07/2008 Blood culture Hospital of León Spain mecA β-lactams, CIP
Staphylococcus S. aureus -- SA 18 21/07/2008 Blood culture Hospital of León Spain mecA β-lactams, ERY, CIP
Staphylococcus S. aureus -- SA 19 28/07/2008 Blood culture Hospital of León Spain mecA β-lactams, CIP
Staphylococcus S. aureus -- SA 20 09/08/2008 Blood culture Hospital of León Spain mecA β-lactams, ERY, CIP, RIF
Staphylococcus S. aureus -- SA 21 11/08/2008 Blood culture/bile Hospital of León Spain mecA β-lactams, ERY, CIP
Staphylococcus S. aureus -- SA 22 25/08/2008 Drainage Hospital of León Spain mecA β-lactams, ERY, CIP
Staphylococcus S. aureus -- SA 23 26/08/2008 Central vascular catheter Hospital of León Spain mecA β-lactams, ERY, CIP
Staphylococcus S. aureus -- SA 24 06/10/2008 Blood culture Hospital of León Spain mecA β-lactams, CIP
Staphylococcus S. aureus -- SA 25 16/10/2008 Blood culture Hospital of León Spain mecA β-lactams, ERY, CIP
Staphylococcus S. aureus -- SA 26 18/10/2008 Peripheral vascular catheter Hospital of León Spain mecA β-lactams, ERY, CIP
Staphylococcus S. aureus -- SA 27 27/10/2008 Packed red blood cells Hospital of León Spain mecA β-lactams, CIP
Staphylococcus S. aureus -- SA 28 28/10/2008 Ascitic fluid Hospital of León Spain mecA β-lactams, CIP
Staphylococcus S. aureus -- SA 29 04/11/2008 Peripheral vascular catheter Hospital of León Spain mecA β-lactams, CIP
Staphylococcus S. aureus -- SA 30 15/11/2008 Blood culture Hospital of León Spain mecA β-lactams, ERY, CIP
Staphylococcus S. aureus -- SA 31 23/12/2008 Blood culture Hospital of León Spain mecA β-lactams, CIP
Staphylococcus S. aureus -- SA 32 26/12/2008 Blood culture Hospital of León Spain mecA β-lactams, CIP
Staphylococcus S. aureus -- SA 33 29/12/2008 Blood culture Hospital of León Spain mecA β-lactams, CIP, RIF, TET
Staphylococcus S. aureus -- SA 34 01/01/2007 Blood culture Hospital of León Spain mecA β-lactams, CIP
Staphylococcus S. aureus -- SA 35 17/01/2007 Central vascular catheter Hospital of León Spain mecA β-lactams, CIP
Staphylococcus S. aureus -- SA 36 22/01/2007 Peripheral vascular catheter Hospital of León Spain mecA β-lactams, CIP
Staphylococcus S. aureus -- SA 37 22/01/2007 Central vascular catheter Hospital of León Spain mecA β-lactams, CIP
Staphylococcus S. aureus -- SA 38 01/02/2007 Blood culture Hospital of León Spain mecA β-lactams, CIP
Staphylococcus S. aureus -- SA 39 01/02/2007 Central vascular catheter Hospital of León Spain mecA β-lactams, CIP
Staphylococcus S. aureus -- SA 40 06/02/2007 Blood culture Hospital of León Spain mecA β-lactams, CIP
Staphylococcus S. aureus -- SA 41 27/02/2007 Blood culture Hospital of León Spain mecA β-lactams, ERY, CIP
Staphylococcus S. aureus -- SA 42 05/03/2007 Blood culture Hospital of León Spain mecA β-lactams, ERY, CIP
Staphylococcus S. aureus -- SA 44 12/03/2007 Blood culture Hospital of León Spain mecA β-lactams, ERY, CIP
Staphylococcus S. aureus -- SA 45 26/03/2007 Blood culture Hospital of León Spain mecA β-lactams, ERY, CIP
Staphylococcus S. aureus -- SA 46 26/03/2007 Blood culture Hospital of León Spain mecA β-lactams, ERY, CIP
Staphylococcus S. aureus -- SA 47 07/04/2007 Blood culture Hospital of León Spain mecA β-lactams, CIP
Staphylococcus S. aureus -- SA 48 07/04/2007 Blood culture Hospital of León Spain mecA β-lactams, ERY, CIP
Staphylococcus S. aureus -- SA 49 12/04/2007 Blood culture Hospital of León Spain mecA β-lactams, CIP
Staphylococcus S. aureus -- SA 50 24/04/2007 Blood culture Hospital of León Spain mecA β-lactams, ERY, CIP, RIF
Staphylococcus S. aureus -- SA 51 30/04/2007 Blood culture Hospital of León Spain mecA β-lactams, ERY, CIP
Staphylococcus S. aureus -- SA 52 02/05/2007 Blood culture Hospital of León Spain mecA β-lactams, CIP
Staphylococcus S. aureus -- SA 53 16/05/2007 Blood culture Hospital of León Spain mecA β-lactams, CIP
Staphylococcus S. aureus -- SA 54 17/05/2007 Blood culture Hospital of León Spain mecA β-lactams, CIP
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Staphylococcus S. aureus -- SA 55 28/05/2007 Central vascular catheter Hospital of León Spain mecA β-lactams, CIP
Staphylococcus S. aureus -- SA 56 07/06/2007 Blood culture Hospital of León Spain mecA β-lactams, CIP
Staphylococcus S. aureus -- SA 57 02/07/2007 Blood culture Hospital of León Spain mecA β-lactams, ERY, CIP
Staphylococcus S. aureus -- SA 58 30/07/2007 Blood culture Hospital of León Spain mecA β-lactams, ERY, CIP
Staphylococcus S. aureus -- SA 59 07/08/2007 Central vascular catheter Hospital of León Spain mecA β-lactams, ERY, CIP
Staphylococcus S. aureus -- SA 60 24/08/2007 Blood culture Hospital of León Spain mecA β-lactams, CIP
Staphylococcus S. aureus -- SA 61 18/09/2007 Blood culture Hospital of León Spain mecA β-lactams, ERY, CIP
Staphylococcus S. aureus -- SA 62 21/09/2007 Central vascular catheter Hospital of León Spain mecA β-lactams, CIP
Staphylococcus S. aureus -- SA 63 04/10/2007 Blood culture Hospital of León Spain mecA β-lactams, CIP
Staphylococcus S. aureus -- SA 64 15/10/2007 Central vascular catheter Hospital of León Spain mecA β-lactams, ERY, CIP
Staphylococcus S. aureus -- SA 65 18/10/2007 Central vascular catheter Hospital of León Spain — PEN
Staphylococcus S. aureus -- SA 66 05/11/2007 Blood culture Hospital of León Spain mecA β-lactams, CIP
Staphylococcus S. aureus -- SA 67 07/11/2007 Blood culture Hospital of León Spain mecA β-lactams, CIP
Staphylococcus S. aureus -- SA 68 19/11/2007 Blood culture Hospital of León Spain mecA β-lactams, CIP
Staphylococcus S. aureus -- SA 69 27/11/2007 Blood culture Hospital of León Spain mecA β-lactams, ERY, CIP
Staphylococcus S. aureus -- SA 70 27/11/2007 Synovial joint fluid Hospital of León Spain mecA β-lactams, CIP
Staphylococcus S. aureus -- SA 71 19/12/2007 Blood culture Hospital of León Spain mecA β-lactams, ERY, CIP
Staphylococcus S. aureus -- 41 10/08/2012 Cheese Airport Vienna Egypt mecA β-lactams, TET, ERY, CLI 
Staphylococcus S. aureus -- 47 11/08/2012 Raw breaded meat Airport Vienna Egypt — CIP, AMI, GEN, TOB
Staphylococcus S. aureus -- 50 11/08/2012 Meat Airport Vienna Egypt mecA β-lactams
Staphylococcus S. aureus -- 140 19/09/2012 Cheese in brine Airport Vienna Turkey mecA CIP, GEN, TET, TOB
Staphylococcus S. aureus -- 153 19/09/2012 Pastrami, sliced Airport Vienna Turkey — None
Staphylococcus S. aureus -- 165 25/09/2012 Lor cheese Airport Vienna Turkey mecA β-lactams
Staphylococcus S. aureus -- 176 28/09/2012 Cheese, ripened Airport Vienna Armenia — None
Staphylococcus S. aureus -- 226 30/09/2012 Sausage Airport Vienna North Korea — TET
Staphylococcus S. aureus -- 247 25/10/2012 Raw muscle meat Airport Vienna Albannia — None
Staphylococcus S. aureus -- 249 25/10/2012 Head meat, cooked Airport Vienna Albannia — ERY
Staphylococcus S. aureus -- 294 08/11/2012 Cheese in brine with herbs Airport Vienna Kosovo — None
Staphylococcus S. aureus -- 298 08/11/2012 Cheese Airport Vienna Turkey — None
Staphylococcus S. aureus -- 364 29/11/2012 Sausage Airport Vienna Tunisia — None
Staphylococcus S. aureus -- 476 26/01/2013 White cheese with spice sauce Airport Vienna Egypt mecA β-lactams, TET, AMI, TOB, GEN
Staphylococcus S. aureus -- 498 31/01/2013 Cheese, ripened Airport Vienna Egypt — None
Staphylococcus S. aureus -- 519 09/02/2013 White cheese Airport Vienna Turkey — None
Staphylococcus S. aureus -- 550 17/02/2013 White cheese Airport Vienna Tunisia — None
Staphylococcus S. aureus -- 576 03/03/2013 Cheese, ripened, sliced Airport Vienna Egypt — ERY
Staphylococcus S. aureus -- LGA251 05/2007 Bulk milk Cattle farm Southwest England mecC β-lactams

aPEN, penicillin; ERY, erythromycin; TET, tetracycline; AMI, amikacin; TOB, tobramycin; CIP, ciprofloxacin; FOS, fosfomycin; COT, cotrimoxazole; RIF, rifampicin; CLI, clindamycin; GEN, gentamicin
Brackets mean intermediate resistance
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Background: Antimicrobial resistance is one of the major challenges in medicine and methicillin-
resistant Staphylococcus aureus (MRSA) is a particularly problematic nosocomial pathogen. Many
recent studies document successful MRSA lineages in farm animals and derived foodstuffs, highlighting
the need for adequate control and prevention programmes to avoid food transmission.
Scope and approach: We review the presence of MRSA along the food chain, and the potential of food-
producing animals and associated foodstuffs for the transmission of MRSA. The massive use of antibi-
otics in feed to promote growth, and the inappropriate use of antimicrobial agents in veterinary and
human medicine are considered to be major contributors to the emergence of resistance. Developments
in the epidemiology of MRSA, in hospital (human) settings and primary food production, and MRSA
spread along the food chain are described here. Information from EU surveillance programmes is also
taken into consideration.
Keys findings and conclusions: The emergence of MRSA has implications for food safety and surveillance
programmes are required for rapid MRSA detection and control.

© 2017 Elsevier Ltd. All rights reserved.
1. Introduction

Methicillin-resistant Staphylococcus aureus (MRSA) is becoming
clinically problematic worldwide. The appearance of antimicrobial-
resistant bacteria as a result of inappropriate use of antibiotics
either as antimicrobial therapy or for growth promotion is affecting
the food chain sectors, with implications for food-producing ani-
mals and associated foodstuff. Here, we review recent evidence of
the increasing prevalence of MRSA, with particular attention to the
food chain and the genetic background.
2. Methicillin-resistant Staphylococcus aureus (MRSA)

Resistance to penicillinase-stable penicillins, also called
“methicillin resistance” or “oxacillin resistance”, in S. aureus is
ubu.es (D. Rodríguez-L�azaro).
manifested as resistance to all b-lactam antimicrobial agents
including cephalosporins and carbapenems and potential suscep-
tibility to the newest class of MRSA-active cephalosporins (e.g.
ceftaroline).

The appearance of methicillin-resistant Staphylococcus aureus
(MRSA) dates back to 1961 in the United Kingdom (Petinaki &
Spiliopoulou, 2012), one year after the first introduction of methi-
cillin in clinical practice to treat infections with penicillin-resistant
S. aureus (Jevons, 1961). MRSA became a serious threat in the early
90s in the USA and UK (Kluytmans, 2010). Resistance is conferred
by a mobile genetic element, named the staphylococcal chromo-
somal cassette (SCCmec) (Milheiriço, Oliveira, & de Lencastre,
2007), carrying mecA or mecC genes, encoding a penicillin-
binding protein 2a (PBP2a) (Paterson, Morgan, et al., 2014;;
Petinaki & Spiliopoulou, 2012). Beta-lactam drugs bind to PBPs,
essential for cell wall peptidoglycan synthesis, leading to bacterial
cell lysis. However, PBP2a has low affinity for b-lactam agents, such
that peptidoglycan synthesis can continue in MRSA strains
(Paterson, Morgan, et al., 2014) even in the presence of diverse b-
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The illegal entrance of foods to EU through black markets at the EU borders can constitute a neglected route of
dissemination of foodborne pathogens, and in particular of methicillin-resistant Staphylococcus aureus (MRSA).
In this study, we have assessed the presence of MRSA in foods sold in a blackmarket at an EU border (the south-
east part of Romania, on the border with Republic of Moldavia). We performed a search for MRSA among 200
food samples collected from 2012 to 2013. All S. aureus were studied by pulsed-field gel electrophoresis
(PFGE) and antimicrobial susceptibility testing.MRSA isolateswere further characterized bymultilocus sequence
typing (MLST) and SCCmec typing, and tested for the presence of Panton–Valentine leukocidin (PVL) virulence
factors. Overall, 32 S. aureus isolates were recovered from 16 food samples (8%). One isolate detected in a
pork lard sample was MRSA (0.5%). PFGE with the restriction enzyme SmaI revealed 12 genotypes among the
32 S. aureus isolates. The MRSA isolate belonged to sequence type 398, harbored SCCmec type V, tested negative
for the presence of the PVL genes and was resistant to ciprofloxacin, tetracycline and cefazolin, besides all β-
lactams. Among 31 methicillin-sensitive S. aureus (MSSA), 29% were resistant to penicillin, 9.7% to tetracycline
and 3.2% to ciprofloxacin. In conclusion, in this study we report the presence of livestock-associated MRSA in
foods sold in a black market at an EU border: ST398-MRSA-V. These results confirm the potential role of food
in the dissemination of MRSA lineages among population, and the potential role of illegally introduced food to
EU in the prevalence and evolution of MRSA clones in the community.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

It is estimated that Staphylococcus aureus produced an average of
241,148 episodes of domestically acquired foodborne illnesses caused
in United States (Scallan et al., 2011), representing an important cause
of food poisoning. In addition, this foodborne pathogen cause nosocomi-
al invasive infections ranging from mild skin and soft tissue infections
to life-threatening diseases such as septicaemia, endocarditis and
ccus aureus; SCCmec, staphylo-
ntine leukocidin; CA-MRSA,
iated MRSA; PFGE, pulsed-field
sequence type
rio de Castilla y León (ITACyL),
León, Carretera de Burgos km.

83 410462.
zaro).
necrotizing pneumonia (Lowy, 1998). It has been estimated that around
30% of healthy human individuals are colonized by this opportunistic
pathogen (Graveland et al., 2011). S. aureus frequently harbor antibiotic
resistance determinants which complicate treatment and significantly
increase the associated costs. Currently, methicillin-resistant S. aureus
(MRSA) is distributed worldwide and constitutes a major concern in
human health because of its complex epidemiology and its ability to ac-
quire novel antibiotic resistance mechanisms.

MRSAwasfirst described in 1960, within a year after the inclusion of
methicillin in the clinical practice to treat infections caused by the emer-
gence of penicillin-resistant S. aureus (Jevons, 1961). Its presence was
restricted to the clinical environment initially, but at the end of the
past decade first cases of MRSA infections in the community were re-
ported affecting people who exhibited no typical risk factors of hospital
acquisition (Otter and French, 2010). Until the beginning of this century,
MRSA had been rarely reported in livestock. It was first described in
1975, and after that, only sporadic cases were reported in the following
25 years. From 2005 onwards, MRSA belonging to sequence type (ST)
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Tracking Foodborne Pathogenic Bacteria
in Raw and Ready-to-Eat Food Illegally Sold

at the Eastern EU Border

Luminita Ciolacu,1,2 Beatrix Stessl,2 Andrei Sorin Bolocan,1 Elena Alexandra Oniciuc,1

Martin Wagner,2 Kathrin Rychli,2 and Anca Ioana Nicolau1

Abstract

Food illegally brought into the European Union, mainly in the personal luggage of travelers, represents a
potential threat to consumers’ health. The aim of this study was to investigate the presence of five pathogens in
food brought into the European Union by Moldavian citizens as personal goods and illegally sold in Romania in
the vicinity of the border. The occurrence of Staphylococcus aureus and Listeria monocytogenes was 7.5% and
8%, while Campylobacter spp., Escherichia coli O157:H7, and Salmonella spp. were absent in all samples.
L. monocytogenes sequence type 2, 9, 121, and 155, highly prevalent among foodstuffs worldwide, was also
present among isolates from ready-to-eat food illegally sold in Romania, even at the same date of sampling,
indicating cross-contamination during food handling. S. aureus spa types t449, t304, and t524 were most often
isolated from raw-milk cheeses contaminated with 103–105 colony-forming units per gram, evidencing a
contamination at herd level or unhygienic conditions during processing. S. aureus t011 and t3625, both included
in the livestock-associated CC398, were isolated from pork lard and poultry meat. This study shows that cross-
border trade from nonmember states represents a neglected route of transmission of foodborne pathogens into
the European Union that could lead to sporadic or family-associated cases of disease.

Introduction

Illegally imported food, also known as contraband or
smuggled food, is a worldwide problem. In the European

Union (EU), the high number of foreigners to illegally import
food is proved by the amounts of confiscated items in dif-
ferent points of entering (ports, airports, terrestrial borders)
with the largest amounts in Spain, the United Kingdom, and
Germany (EC, 2011). Food is mainly carried in the personal
luggage of travelers and is primarily designated for personal
consumption, and secondly for illegal sale (Noordhuizen
et al., 2013; Beutlich et al., 2015; de Melo et al., 2015;
Rodriguez-Lazaro et al., 2015; Schoder et al., 2015).

As neither raw material origin and quality, nor techno-
logical process and hygienic conditions during food proces-
sing are known, smuggled food poses a potential health risk.
Furthermore, the conditions during transportation and sale
might violate the safety rules since refrigeration and adequate
packaging are missing. Usually little information is available
regarding associated risks and prevalence of pathogens in
these foods. A better situation exists in the United States,

where some of such foods are microbiologically examined.
For example, it is known that cheese smuggled into the
country by Mexican citizens harbors Salmonella (13%), Lis-
teria spp. (4%), and Mycobacterium spp. (Kinde et al., 2007).

To fill this gap, one objective of the EU research project
‘‘Protection of consumers by microbial risk mitigation through
combating segregation of expertise’’ (PROMISE) was to as-
sess five significant foodborne pathogens for being introduced
into EU via uncontrolled imports (www.promise-net.eu).
Thus, the prevalence of Salmonella spp., Campylobacter spp.,
Escherichia coli O157:H7, Listeria monocytogenes, and Sta-
phylococcus aureus was investigated by all project partners in
raw and ready-to-eat (RTE) food collected either from ports
and airports or from terrestrial EU borders. At the Eastern EU
border, the Romanian Law 10/2010 ratifies the agreement on
cross-border traffic between Romania and the Republic of
Moldova. Among other goods, foods that are officially de-
clared for personal use are legally brought into European
Union, but illegally sold in local Romanian markets organized
to sell fresh fruits and vegetables. There are nine crossing
points between Romania and the Republic of Moldova that are
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2Institute for Milk Hygiene, University of Veterinary Medicine Vienna, Vienna, Austria.
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Compositional Analysis of Biofilms
Formed by Staphylococcus aureus
Isolated from Food Sources
Elena-Alexandra Oniciuc 1, 2, Nuno Cerca 2 and Anca I. Nicolau 1*

1 Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, Galati, Romania, 2Centre of Biological

Engineering, Universidade do Minho, Braga, Portugal

Sixteen Staphylococcus aureus isolates originating from foods (eight from dairy products,

five from fish and fish products and three from meat and meat products) were evaluated

regarding their biofilms formation ability. Six strains (E2, E6, E8, E10, E16, and E23)

distinguished as strong biofilm formers, either in standard Tryptic Soy Broth or in Tryptic

Soy Broth supplemented with 0.4% glucose or with 4% NaCl. The composition of the

biofilms formed by these S. aureus strains on polystyrene surfaces was first inferred

using enzymatic and chemical treatments. Later on, biofilms were characterized by

confocal laser scanning microscope (CLSM). Our experiments proved that protein-based

matrices are of prime importance for the structure of biofilms formed by S. aureus strains

isolated from food sources. These biofilm matrix compositions are similar to those put

into evidence for coagulase negative staphylococci. This is a new finding having in view

that scientific literature mentions exopolysaccharide abundance in biofilms produced by

clinical isolates and food processing environment isolates of S. aureus.

Keywords: Staphylococcus aureus, biofilm, food, CLSM, exopolysaccharide, protein

INTRODUCTION

Few studies have been reported so far regarding the biofilm formation by Staphylococcus aureus

isolated from foods (Di Ciccio et al., 2015) and the impact of the environmental factors encountered
in food processing plants on the adherence and biofilm formation (Vázquez-Sánchez et al., 2013;
Santos et al., 2014).

In food industry it is important to know the conditions under which S. aureus is able
to survive, adhere to surfaces and form biofilms (Futagawa-Saito et al., 2006), leading to
contamination of food products. In planktonic form, S. aureus does not appear resistant
to disinfectants, compared to other bacteria, but it may be among the most resistant ones
when is attached to a surface (Fratamico et al., 2009). S. aureus can produce a multilayered
biofilm embedded within a glycocalix with heterogeneous protein expression throughout,
forming at least two types of biofilms: ica-dependent, mediated by polysaccharide intercellular
adhesin (PIA)/poly-N-acetyl-1,6-β-glucosamine (PNAG), and ica-independent, mediated by
proteins (Beloin and Ghico, 2005). Biofilm-associated protein (Bap), which shows global
organizational similarities to surface proteins of Gram-negative (Pseudomonas aeruginosa
and Salmonella enterica serovar Typhi) and Gram-positive (Enteroccocus faecalis) bacteria
(Cucarella et al., 2001), was the first protein that has been found to be involved in
biofilm formation by staphylococcal strains isolated from mammary glands in ruminants
suffering from mastitis (Speziale et al., 2014). Meanwhile, Foulston et al. (2014) discovered
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We compared the diagnostic performance of two chromogenic media, Brilliance MRSA 2 agar (Thermo Fisher
Scientific) and ChromID MRSA agar (bioMérieux), for MRSA confirmation of 239 Staphylococcus aureus isolates
from clinical, animal and food samples. Statistically significant differences were not observed between MRSA
confirmation bymecA/mecC PCR, and by culture in both chromogenic media. However, a statistically significant
differencewas observed between the results obtained by both chromogenicmedia (p=0.003). Segregated anal-
ysis of the results depending on the origin of the isolates (clinical, animal, and food) revealed a significant lower
performance in theMRSA confirmation of food-derived isolates by using BrillianceMRSA 2 agar in comparison to
PCR confirmation (p= 0.003) or ChromIDMRSA agar (p b 0.001). Both chromogenic media provided a good di-
agnostic performance for detection of MRSA isolates of human and animal origin. In conclusion, the use of chro-
mogenic agar plates for MRSA confirmation of S. aureus isolates can provide a good diagnostic performance
(sensitivity N92% and specificity N89%) regardless of the type of chromogenic media used or the origin of the
S. aureus isolates. However, our results revealed a lower diagnostic performance for MRSA confirmation of
S. aureus isolates from food samples by using Brilliance MRSA 2 agar.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction
Dissemination of methicillin-resistant Staphylococcus aureus (MRSA)
from the health care system to community and animal settings in the last
two decades has elicited a great concern (Graveland et al., 2011; Okuma
et al., 2002). Furthermore, the emergence ofMRSA in food-producing an-
imals and derived food products has raised the question on the potential
role of food as a route for transmission of successful livestock and com-
munity associated MRSA lineages (Oniciuc et al., 2015–in this issue;
Rodríguez-Lázaro et al., 2015–in this issue). Therefore, monitoring the
presence and genetic features ofMRSA in all environments and potential
reservoirs is required to better understand the dissemination, genetic
evolution and evolutionary success of epidemic MRSA lineages.

Several commercially available chromogenic media have been
developed to facilitate the screening of MRSA, and some studies have
assessed their diagnostic performance (McElhinney et al., 2013;
rio de Castilla y León (ITACyL),
León, Carretera de Burgos km.

zaro).
Veenemans et al., 2013; Verkade et al., 2011). However, they have been
mainly focused in human clinical samples, and there is a knowledge gap
regarding MRSA from animal and food samples. Therefore, in this study
we evaluated the performance of Brilliance MRSA 2 Agar (Thermo Fisher
Scientific, Waltham, MA, USA) and ChromID MRSA Agar (bioMérieux,
France) as rapidMRSA confirmation screening assays for S. aureus isolates
from a wide range of origins: clinical, animal and food samples. We
assessed, by using the McNemar's test for paired samples, if there are
statistically significant differences among a reference method, the
molecular detection of resistance genes mecA and mecC, and MRSA
confirmation by using both chromogenic media. Furthermore, we have
compared the diagnostic performance between the chromogenic media.

2. Material and methods

2.1. Bacterial isolates

A collection of 239 S. aureus isolates, comprising 154 methicillin-
sensitive S. aureus isolates (MSSA), 83 MRSA isolates harbouringmecA,
and two MRSA isolates harbouring mecC, were selected to perform the
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i2uX+zx4dOnZq55pAZig/wCWe4Nn16/r0qSHUmhhRFjiAAyOT35pxA0Jpknt5VinZiYQX9OV4GPz
xWVo9k9/cEKM+WQ7luFCA889T96pxbvbyMxZRuZi4O04ycA/y/CrFgIraZdj7WlLASiXaFHpx1ye
x4rmuWaW55L+e9L4Wf5iByobANQR70u3OzcrHaRzlQD97HsKtNNEIcDau4sQc5DFeP5dutVbYfbI
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5PJI96Xa6SAfMV70gZLB+7T+E9SB3qB2LyFl2jgVMwCZYcDpj2qKLqW3cdqYDwx+Xld4zhTzjPep
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Fcxea+6aXpyQSZLxh7gn7u0u2Vx9MD6UxFlWW402MF5yFtgXeTuzsefbt0NULqJb/Rxkr9qsEMZU
f8tEDBc/qDVeKWX7fteZltbmVo1ywXDoo6fnkCtHS1WK01xJHzPPEIwDwRu459MnHSlOzWpUNGYK
2dqdjsFZiOWLYwpOP5Gt83EUBitnkWNMYf5juHHy49RxXOKpgnaxuNqyMfLVmOBt69vXtWlPdiS1
HnRoxQrGf72AQK5lZHSLcnfCHtLmCSQPidtuW56nj2rctLRYNO2QhUzuYkJhjluuaw7ONZTKUhwi
EqSU4yetaNszfZDEyZCAAFfXmmgY64uRboqOGGSABggjtVW8u5La1uUSFCrFQJG6qA38I6E1JcoE
C527u9Urt/8AQAPuoxyPrTTJexm6jKJIAQu3dIDj0DVav7YENEOQvyj/AHao3GXgUHgM3LdMYrVu
STHC3zDfEu9tvc80zN7mQYvLjMROMHgU3P7kbhwUOakuzsTOcqwzuqqN5gGeQeMVNhlC6iMo3qFI
A5B7ir+k7ILWU4XegyoP93/GprDT7iVwMYUNlieflqSWaCeN9o2Shzgf7Oa6IaIymMjmYEseqkMO
/wCFd/p1lpttp0Ec6qZdgZjtHU8/1rzmFyUlHzHnnHBNd7bhXtomeRtxQZ/Kto6kM89vYkQJt4OS
Me1ZZQk46YOM1rXKm4fIDYI6VGLMjHp3xXnmxTVSmT1I7DpUoWWUEY47N2P1q9BHaI+JnXAOCcjj
61rJcQi1GwRY+9u2k8elMDEg0x5SQAxyOtaUen2lvDmUbn75OBUgvwCQCh/2e1Zd9et5hSLcM8sQ
CeaCSa58ieMqgXHpghQawZ0MExRt3HKg+lXlYR4YnLMMmob3LpG/rlR9OtUtALenTl0IAVFHDHvx
U10I5YCAW4Iz0yRUGgQCUzD5SVKMAfSt3UjH0CICflA29KhvUDmZQY0BCKEPAYGoVOJUOzocjP0q
9ehUVBjIIJI/2s1WQoAWwpPUZqwJJSu/I3bu1ALcbkbb0yegpiOU+ZTgjgY5zTZmUgk7iMHB77qq
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3Wp3V3tsb2bHr1H9f0qBS6PjCkEZHPUUrJCuaun2EHmFmu3yewG0DP1rpUsbeVIwsk6sRkurKa5r
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74LuVCNkIzRNtABdPmGO5BPHNU4FbWfDbmHdJeWGGUAf6xDyV/DH/jvvR4GmP2YDCktt3tu+cg1D
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bGnSgyLvC5UE78nA+XvWBcNNbv6LvyCpBH3fStLSLwywsrH5gr7SGw33fStYskz7/L+ELhhyjzxt
nrj5j3645rFvZSbQI0i4xx34rSuTH/wiVwA7EhotwOfUVzdxMN6KOoAzn1rOoyolzw2RHqwBdsLl
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XnkHH1FREfIT0UmnzAB8OO+R7CmMxG4AcHla5UbsibHCr69ai2n+81LvG88deMUmJPVaok7lt/2h
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ayWaOBx9jn43wKQNpX1BG0kenPWvPdY0y60bVLmwux++gk2secH3Hseo9q4qlPkfkdEJ8yKO4Zzj
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lXW/foBnCgZGKyoCTb4z+FT2s2yQxu+1R0J64/u1CGaMEmHCkspByR/dFXJGWTYBuABwo9qzmBdE
dAwwclas2zNIME/gauLJZaQDGF+8O3TNRTHG8Zx6mps7E/iL1Vn6Et35AFWIrEjjHc9asxqvBPUf
d9KqLjIJ65wauAYBZuF7Ad6BsmXIOSeM/lU4ZevUAcfWqoZnkC9BjhfT/wCvViBc4BPyg9QvH400
SXLZlJB+YkYZCODuz1rTsmd5Cp5BGd3+11rNRk7cYHOOKntyyHcv3gQy5/n9Kpx5lYcXaVzWQP5x
J+5jira/pVeMqXVVddzDcqHjIPp688VZA6A8GvNnSlBnorVJkqjPSpdoPbnp+FRx+n61YGMe9TYb
I9owffrWZfrwfTFa7Dis2+GYzmhrQEcNeSf6awNCtkAVV1FiL9+1EMtRYrcvqfzqVWzwaqq/FSLJ
x70rCJGNV3yTjvnAxUpNTWcG8tORlI+VHqx6D860hDndkOMbsztRUJCif3evuT1rLG1Hx0GK1dXG
JFjJ+71Pqx6/rxWUSN4ztOeK62raFVloa2mOfu4Urn5VPr/hXToxQBs5UDJHdW9K5Gy25wRnj196
345uAG3KVGAR+Va02eXPc0QW2bcYzzzyMVAWYzADd1wADg0sErEESvlQg2HjqKizH53zHgnlumOa
0ILF9MRpaIOrSYIIHGOtSxMxtF3FTuJ2kfePH6VS1R445LaIurZy7ewHAz6mrqtGbKPbySOMdM01
uI5nxoQNO08fKP3kgP12rXKrjYPTFdT40UnSrNgG2rO4B78qP8K5IsETPQgcVhU+I1hsSxkjnue9
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