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Stability for Best Experienced Payoff Dynamics∗

William H. Sandholm†, Segismundo S. Izquierdo‡, and Luis R. Izquierdo§

October 23, 2019

Abstract

We study a family of population game dynamics under which each revising agent
randomly selects a set of strategies according to a given test-set rule; tests each strategy
in this set a fixed number of times, with each play of each strategy being against a
newly drawn opponent; and chooses the strategy whose total payoff was highest,
breaking ties according to a given tie-breaking rule. These dynamics need not respect
dominance and related properties except as the number of trials become large. Strict
Nash equilibria are rest points but need not be stable. We provide a variety of sufficient
conditions for stability and for instability, and illustrate their use through a range of
applications from the literature. JEL classification numbers: C72, C73.

1. Introduction

By assuming that agents apply simple myopic rules to update their strategies, evolu-
tionary game dynamics provide a counterpoint to traditional approaches to prediction in
games based on equilibrium knowledge assumptions. To focus on dynamics that only
impose mild informational demands on the agents, one can model explicitly how agents
obtain information through individual random matches and use this information to de-
cide which strategy to play. For instance, Helbing (1992) and Schlag (1998) show that
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if agents’ decisions are based on single matches rather than complete matching, propor-
tional imitation rules lead aggregate behavior to follow the classical replicator dynamic
of Taylor and Jonker (1978).

Two distinct approaches based on optimization rather than imitation have also been
analyzed. In the approach closer to traditional economic modeling, agents use information
from samples of opponents play to form point estimates of the population distribution
of actions, and then play a best response to this estimate (Sandholm (2001), Kosfeld et al.
(2002), Kreindler and Young (2013), Oyama et al. (2015)). An approach using weaker
assumptions about agents’ capacities was pioneered by Osborne and Rubinstein (1998)
and Sethi (2000). Here a revising agent tests each candidate strategy in random matches
against distinct draws of opponents, and then selects the one that earned the highest total
payoff during testing. This approach does not assume that agents know the payoffs of
the game they are playing, or even that they know they are playing a game; only payoff
experiences count.

This paper introduces a general formulation of these best experienced payoff (BEP) dynam-
ics, allowing variation in which candidate strategies agents contemplate, in the number of
trials of each such strategy, and in tie-breaking rules. While the resulting dynamics have
complicated functional forms, we find that they are surprisingly susceptible to analysis.

We show that if revising agents do not consider all available strategies as candidates
for revision, then the rest points of BEP dynamics can include not only strictly domi-
nated strategies, as Osborne and Rubinstein (1998) observe, but even strategies that are
guaranteed to perform worse than a given alternative strategy even if opponents choose
different responses to each. We also show that strictly dominant strategies are globally
asymptotically stable when the number of trials of each tested strategy is large enough.
Surprisingly, the latter conclusion is not obvious, but instead requires precise estimates of
the likely outcomes of samples at population states in the vicinity of the equilibrium.

The remainder of the paper concerns the instability and stability of strict equilibria.
Under the assumption that revising agents know the current state, strict equilibria are
stable under very weak assumptions (Sandholm (2014)). But Sethi (2000) shows that
under dynamics based on testing each strategy exactly once, strict equilibria need not be
stable. His sufficient condition for instability in two-player games, requires that every
nonequilibrium strategy i supports invasion of at least two nonequilibrium strategies j
and k, in that the presence of strategy i in a match makes both j and k outperform the
equilibrium strategy.1

1Sethi (2000) shows that in games with more than two players, it is enough that every nonequilibrium
strategy supports invasion by one other nonequilibrium strategy—see Section 5.1 below.
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Here we obtain instability results for a considerably more general class of dynamics,
and in doing so we identify two qualitatively new sources of instability. First, we show
that instability can be driven by the introduction of “spoiler” strategies, whose presence in
matches causes the equilibrium strategy to earn a lower payoff than does the second-best
response to the equilibrium. Second, we show that instability can be generated not only by
the concerted action of all opposing strategies, but by any smaller group of nonequilibrium
strategies that through both support and spoiling are mutually supportive of invasion.
We complement these analyses with sufficient conditions for stability of strict equilibrium,
and we illustrate the wide applicability of our conditions through a range of applications.

Our analyses of local stability all originate from a simple observation. While the
general formulas for best experienced payoff dynamics are daunting (see Section 2.3), the
behavior of the dynamics near strict equilibria is driven by terms of at most first order in
the fractions playing nonequilibrium strategies. This greatly reduces the number of terms
relevant to the stability analysis, allowing us to derive our sufficient conditions by direct
manipulation and by applying basic results from linear algebra. Specifically, our main
instability result is an application of Perron’s theorem to the dynamics’ Jacobian matrices,
and our stability results rely on direct bounds on the flows of agents between strategies
and on basic conditions for diagonalizability.

There are some questions about BEP dynamics—the computation of all rest points
for a given instance of the dynamics in a given game, and the evaluation of stability
of interior rest points—that are not susceptible to the approaches we follow here. In a
companion paper, Sandholm et al. (2017), we show how Gröbner bases and other tools
from computational algebra, along with approximation results from linear algebra, can be
used to answer such questions. We combine these techniques with exact and numerical
analyses to provide a complete account of the behavior of BEP dynamics in the Centipede
game (Rosenthal (1981)).

As noted above, BEP dynamics have their origins in the work of Osborne and Ru-
binstein (1998) and Sethi (2000). Osborne and Rubinstein (1998) introduce the notion of
S(k) equilibrium to describe stationary behavior among “procedurally rational” agents.
This equilibrium concept corresponds to the rest points of the BEP dynamic under which
agents test all strategies, subject each to k trials, and break ties via uniform randomization.
They present many examples, and show that the limits of S(k) equilibria as k grows large
are Nash equilibria. Building on this work, Sethi (2000) introduces the corresponding
specification of BEP dynamics, focusing on the case in which strategies are tested once.
Sethi (2000) shows that both dominant strategy equilibria and strict equilibria can be
repellors under these dynamics, and that dominated strategies can be played in stable
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equilibria. He also provides a sufficient condition for repulsion from strict equilibria that
includes one restriction on payoffs for each nonequilibrium strategy (see Section 5.1).2

Our analysis generalizes the work of Sethi (2000) in various respects. First, by account-
ing for the effects of spoilers, our sufficient condition for repulsion applies to a larger
class of games than that of Sethi (2000). Second, using an analysis of eigenvalues, we
obtain conditions under which a strict equilibrium is unstable but not necessarily a repel-
lor. Third, we provide new sufficient conditions for instability, including one that only
requires mutual reinforcement by small sets of invading strategies. Finally, our results
hold for the general class of BEP dynamics rather than just the basic instance considered
by Sethi (2000).

Procedurally rational agents and their associated equilibria have been used in a va-
riety of applications, including trust and delegation of control (Rowthorn and Sethi
(2008)), market entry (Chmura and Güth (2011)), use of common-pool resources (Cárdenas
et al. (2015)), contributions to public goods (Mantilla et al. (2019)), ultimatum bargaining
(Miȩkisz and Ramsza (2013)), and the Traveler’s Dilemma (Berkemer (2008)). As we will
show, the general instability and stability criteria we develop here provide a simple and
unified way of deriving many of the results that these papers derive individually, as well
as several new results.

Our study of best experienced payoff dynamics also contributes to a literature on
the aggregate consequences of decision rules that restrict attention to small numbers
of alternative strategies. For instance, Berger and Hofbauer (2006) and Hofbauer and
Sandholm (2011) show that strictly dominated strategies need not be eliminated when
revising agents consider limited numbers of alternatives, as under the BNN (Brown and
von Neumann (1950)) and Smith (1984) dynamics: a strictly dominated strategy may
achieve the second-best payoff at many states, and so may survive when agents do not
always evaluate every strategy. Our analysis of dominated strategies accords with these
results. Zusai (2018) introduces a general class of optimizing dynamics that converge
globally to Nash equilibrium in contractive games (Hofbauer and Sandholm (2009)),
providing a general argument for convergence that allows the set of candidate strategies
to be random and incomplete. In a similar spirit, our analysis shows that the instability of
strict equilibria is partially robust to the incompleteness of the set of candidate strategies;
however, we show that smaller consideration sets must be paired with stronger restrictions
on payoffs for instability to be assured.

The remainder of the paper is organized as follows. Section 2 introduces the family
of best experienced payoff dynamics. Section 3 evaluates properties of their rest points.

2Ramsza (2005) also provides a sufficient condition for stability of strict Nash equilibria.
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Section 4 presents elimination and survival results connected to dominance and related
notions. Section 5 presents sufficient conditions for the stability and instability of strict
equilibria. Section 6 concludes. The appendix presents basic definitions from dynamical
systems, provides proofs of most of the results in the paper, and analyzes examples that
are not covered by our general results.

2. Best experienced payoff dynamics

2.1 Single-population matching in symmetric games

We consider a unit-mass population of agents who are matched to play a symmetric
p-player normal form game G = {S,U}. This game is defined by a strategy set S = {1, . . . ,n},
and a payoff function U : Sp → R, where U(i; j1, . . . , jp−) represents the payoff obtained by
a strategy i player whose opponents play strategies j1, . . . , jp− . Our symmetry assumption
requires that the value of U not depend on the ordering of the last p− ≡ p − 1 arguments.
When n = 2, we sometimes write Uij instead of U(i; j).

Aggregate behavior in the population is described by a population state x in the simplex
X = {x ∈ RS

+ :
∑

i∈S xi = 1}, with xi representing the fraction of agents in the population
using strategy i ∈ S. When describing revision protocols, we also use X to represent the set
of mixed strategies. The standard basis vector ei ∈ X represents the pure (monomorphic)
state at which all agents play strategy i.

2.2 Revision protocols and evolutionary dynamics

We define evolutionary game dynamics by specifying microfoundations in terms of
revision protocols.3 At each moment in time, each agent has a strategy he uses when
matched to play game G. Agents occasionally receive opportunities to switch strategies
according to independent rate 1 Poisson processes. An agent who receives an opportunity
considers switching to a new strategy, making his decision by applying a revision protocol.

Formally, a revision protocol is a map σ : RS×S × X → XS, where the X before the arrow
represents the set of population states, and the X after the arrow represents the set of
mixed strategies. For any payoff function U and population state x ∈ X, a revision
protocol returns a matrix σ(U, x) of conditional switch probabilities, where σi j(U, x) is the
probability that an agent playing strategy i ∈ S who receives a revision opportunity
switches to strategy j ∈ S.

3See Björnerstedt and Weibull (1996), Weibull (1995), Sandholm (2010a,b), and Izquierdo et al. (2019).
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Well-known results of Benaı̈m and Weibull (2003) show that the behavior of a large but
finite population following the procedure above is closely approximated by the solution of
the associated mean dynamic, a differential equation which describes the expected motion
of the population from each state:

(1) ẋi =
∑
j∈S

xjσ ji(U, x) − xi for all i ∈ S.

Since revision opportunities are assigned to agents randomly, there is an outflow from
each strategy i proportional to its current level of use, accounting for the −xi term in
(1). To generate inflow into i, an agent playing some strategy j must receive a revision
opportunity, and applying his revision protocol must lead him to play strategy i; this leads
to the initial term in (1).

2.3 Best experienced payoff protocols and dynamics

We now introduce the classes of revision protocols and dynamics we study in this
paper. A best experienced payoff protocol is defined by a triple (τ, κ, β) consisting of a
test-set rule τ = (τi)i∈S, a number of trials κ, and a tie-breaking rule β = (βi)i∈S. The triple
(τ, κ, β) defines a revision protocol in the following way. When an agent currently using
strategy i ∈ S receives an opportunity to switch strategies, he draws a set of strategies
T ⊆ S to test according to the distribution τi on the power set of S. He then plays each
strategy in T in κ random matches against members of the opposing population. He thus
engages in |T|κ random matches in total, facing newly drawn sets of p− opponents during
each. The agent then selects the strategy in T that earned him the highest total payoff,
breaking ties according to rule β.

Proceeding more formally, let Si = {T ⊆ S : i ∈ T, |T| ≥ 2} comprise the subsets of S that
include strategy i and at least one other strategy. We define a test-set distribution τi used
by a strategy i ∈ S player to be a probability distribution on Si. Osborne and Rubinstein
(1998), Sethi (2000), and subsequent papers have focused on the test-all rule, defined by
τall

i (S) = 1. Here we consider a generalization of test-all that we call test-α, under which
the revising agent tests his current strategy and α − 1 strategies chosen at random from
the n − 1 that remain:

(2) ταi (T) =
(
n − 1
α − 1

)−1

for all T ∈ Si with |T| = α.

The key consequence of using test-α rules is that revising agents may wind up not consid-
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ering strategies that perform well at the current state, just as in the classical BNN (Brown
and von Neumann (1950)) and Smith (1984) dynamics.4 The opposite extreme from τall,
under which revising agents test just α = 2 strategies, will be called test-two, and denoted
τtwo. Most of our results extend to protocols in which α is itself random, and some require
still less structure—see Section 6 below.

A tie-breaking rule for strategy i ∈ S, denoted βi, is a function that for each vector π of
realized payoffs and each set of tested strategies T ∈ Si specifies the probability βi j(π,T) of
adopting strategy j ∈ S.5 Since agents are payoffmaximizers, βi j(π,T) may only be positive
if j ∈ argmaxk∈T πk. If there is a unique optimal strategy in T, it is chosen with probability
one; in general, βi ·(π,T) is a probability distribution on S whose support is contained in
argmaxk∈T πk. In normal form games, tie-breaking rules only matter in nongeneric cases.6

Osborne and Rubinstein (1998) and Sethi (2000) use the uniform-if-tie rule, defined by

(3) βi j(π,T) =
1

#(argmaxk∈T πk)
if j ∈ argmax

k∈T
πk.

The tie-breaking rules we find most natural are stick-if-tie rules, which always select the
agent’s current strategy if it is among the optimal tested strategies:

(4) βii(π,T) = 1 whenever i ∈ argmax
k∈T

πk.

Condition (4) completely determines βi under test-set rule τtwo. One full specification
for games with many strategies uses uniform tie breaking whenever the agent’s current
strategy is not optimal:

(5) βi j(π,T) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if i = j ∈ argmaxk∈T πk,

1|argmaxk∈T πk| if i � argmaxk∈T πk and j ∈ argmaxk∈T πk.

In applications in which the ordering on strategies is meaningful, agents may use tie-
breakers that account for this ordering. For instance, the min-if-tie rule favors strategies
with smaller indices:

(6) βi j(π,T) = 1 if j = min
(
argmax

k∈T
πk

)
.

4For revision protocols based on random consideration sets and exact best responses, see Zusai (2018).
5For now the notation π is a placeholder; it will be defined in equation (7b). The values assigned to

components of π corresponding to strategies outside of T are irrelevant, and βi j(π,T) = 0 whenever j � T.
6In extensive form games and in BEP dynamics with κ > 1, it is common for different strategies to earn

the same payoffs, giving tie-breaking rules greater importance; see Sandholm et al. (2017).
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In what follows, we denote the uniform-if-tie rule (3), the stick-if-tie rule (5), and the
min-if-tie rule (6) by βunif, βstick, and βmin, respectively.

At last, given a collection (τα, κ, β), we define the corresponding best experienced payoff
protocol as follows:

σi j(U, x) =
∑
T∈Si

ταi (T)

⎡⎢⎢⎢⎢⎢⎣
∑

m∈MT

⎛⎜⎜⎜⎜⎜⎝
∏
k∈S

x|m
−1(k)|

k

⎞⎟⎟⎟⎟⎟⎠ βi j(πU(m),T)

⎤⎥⎥⎥⎥⎥⎦ ,(7a)

where πU
k (m) =

κ∑
�=1

U(k; mk,1,�, . . . ,mk,p−,�) for all k ∈ T.(7b)

The interior sum in (7a) is taken over all match assignments in the set MT = {m | m : T ×
{1, . . . , p−} × {1, . . . , κ} → S}; when the agent tests strategy k for the �th time, mk,q,� is the
strategy of the qth of his p− = p − 1 opponents. The exponent |m−1(k)| is the cardinality
of the inverse image of strategy k under the match assignment m. One can verify that
(7) is the formal expression for the procedure described at the start of this section. That
every test of a strategy occurs against an independently drawn opponent is captured by
the product in parentheses in expression (7a). This feature of BEP protocols plays a basic
role in our analysis.

Inserting (7) into the mean dynamic equation (1) yields the best experienced payoff
dynamic defined by τα, κ, and β, called the BEP(τα, κ, β) dynamic for short:

(8) ẋi =
∑
j∈S

xj

⎛⎜⎜⎜⎜⎜⎜⎝
∑
T∈S j

ταj (T)

⎡⎢⎢⎢⎢⎢⎣
∑

m∈MT

⎛⎜⎜⎜⎜⎜⎝
∏
k∈S

x|m
−1(k)|

k

⎞⎟⎟⎟⎟⎟⎠ β ji(πU(m),T)

⎤⎥⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎟⎟⎠ − xi,

with πU(m) defined in (7b).
When each tested strategy is played exactly once, best experienced payoff dynam-

ics only depend on ordinal properties of payoffs. If in addition the underlying normal
form game has two players, the formulas for specific instances of the dynamics are rela-
tively simple. Using 1[·] to denote the indicator function, and writing Uij for U(i; j), the
BEP(τall, 1, βmin) dynamic is expressed as

(9) ẋi =
∑

m : S→S

⎛⎜⎜⎜⎜⎜⎝
∏
�∈S

xm�

⎞⎟⎟⎟⎟⎟⎠ 1
[
i = min

(
argmax

k∈S
Ukmk

)]
− xi.

Here the fact that an agent’s choice probabilities do not depend on his current strategy
leads to a particularly compact expression.

For its part, the BEP(τtwo, 1, βstick) dynamic is written as
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(10) ẋi =
1

n − 1

∑
h�i

∑
(k,�)∈S×S

xk x� (xi 1[Uik ≥ Uh�] + xh 1[Uik > Uh�]) − xi.

The first term in parentheses captures the case in which the revising agent is a strategy i
player who continues to play strategy i, while the second term captures the case in which
the revising agent is a strategy h � i player who switches to strategy i. The stick-if-tie rule
requires that different payoff inequalities be applied in these two cases.

The definitions above generalize those of the models studied by Osborne and Rubin-
stein (1998) and Sethi (2000). Specifically, the rest points of the BEP(τall, κ, βunif) dynamic
are Osborne and Rubinstein’s (1998) S(k) equilibria (with k = κ), and Sethi’s (2000) analysis
concerns the corresponding BEP(τall, 1, βunif) dynamic. The examples and analyses in the
sections to come display both differences and commonalities in the predictions generated
by different BEP dynamics.

3. Rest points

We start our analysis by deriving some basic properties of rest points of BEP dynamics.
First we have an immediate observation about pure and strict Nash equilibria. The
observation shows that BEP dynamics agree with traditional analyses of games in one
basic sense, and highlights an important feature of stick-if-tie rules.

Observation 3.1. Strict equilibria are rest points under all BEP dynamics. Pure equilibria are
rest points under any BEP(τα, κ, β) dynamic for which β is a stick-if-tie rule (4).

In the second claim, the restriction to stick-if-tie rules ensures that indifferent agents do not
switch to alternate best responses at equilibria that are pure but not strict. By definition,
other tie-breaking rules do not possess this property.

Next we present a result on the limiting behavior of sequences of rest points of BEP
dynamics as the number of trials grows large: for any specification of BEP dynamics,
limits of such sequences are Nash equilibria.

Proposition 3.2. Fixτ and β, and let (xκ)∞κ=1 be a convergent sequence of rest points of BEP(τα, κ, β)
dynamics for game G. Then the limit x∗ of this sequence is a Nash equilibrium of G.

Proposition 3.2 generalizes Proposition 4 of Osborne and Rubinstein (1998), which
concerns the BEP(τall, κ, βunif) dynamic. The main novelty in Proposition 3.2 is its allowance
for more general test set rules under which revising agents may have no optimal strategies
in their test sets. To account for this, the proof of Proposition 3.2 shows that for large κ,
agents rarely switch to strategies that lower their expected payoffs at the current state, and
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then uses this fact to argue that the mass that rest point xκ places on suboptimal strategies
must be close to zero.

We conclude this section with an example that illustrates how predictions of play may
differ among different specifications of BEP dynamics, and that motivates the stability
analyses of strict equilibria in Section 5.

Example 3.1. Consider the following game, which can be viewed as a stylized model of
Bertrand competition with a price floor:

U =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
2 4 4
0 3 6
0 0 5

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .

Osborne and Rubinstein (1998) prove that the only rest point of BEP(τall, 1, βunif) is the
strict equilibrium e1 (Figure 1(i)). This conclusion is sensitive both to the choice of the
test-set rule τall and of the number of trials κ = 1. If agents instead test two strategies, or
if they apply τall but test strategies in the test set twice, we obtain dynamics under which
the strict equilibrium e1 is unstable, and which instead possess stable interior rest points
(Figures 1(ii) and 1(iii)).7 �

(i) BEP(τall, 1, βunif) (ii) BEP(τtwo, 1, βunif) (iii) BEP(τall, 2, βunif)

Figure 1: Bertrand competition under different BEP dynamics.

7In the figures, colors represent speed of motion: red is fastest, blue is slowest. All figures in this paper
were created using EvoDyn3s (Izquierdo et al. (2018)), which also performs exact computations of rest
points and exact linearization analyses.
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4. Global elimination and convergence results

4.1 Overwhelmed and overwhelming strategies

Under best experienced payoff protocols, a revising agent faces different opponents
when testing each of his own strategies. This leads him to make payoff comparisons that
do not arise in traditional game-theoretic analyses, which are generally based on best
responses to fixed beliefs.8 Thus what is required under BEP protocols for a strategy to
“always be better” than another is more than the usual dominance relation.

With this motivation, we say that strategy i overwhelms strategy j in game G = {S,U}
if U(i; k1, . . . , kp−) > U( j; �1, . . . �p−) for all choices of k1, . . . kp− ∈ S and �1, . . . �p− ∈ S. This
condition ensures that even if strategies i and j are tested against distinct sets of opponents,
strategy i always earns a higher payoff. Likewise, we say that strategy s ∈ S is overwhelming
if it overwhelms all other strategies.

Surprisingly, overwhelmed strategies need not be eliminated under BEP dynamics.

Example 4.1. In the game

U =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 1 1
2 2 2
2 2 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,

strategy 1 is overwhelmed by strategy 2. Even so, Figure 2 shows that under the
BEP(τtwo, 1, βunif) dynamic, the unique rest point x∗ = (0.049, 0.662, 0.289) has strategy
1 being used by a positive fraction of the population.

The intuition behind the survival of strategy 1 is straightforward. Strategy 3 is “weakly
overwhelmed” by strategy 2. But since both strategies get the same payoff against strategy
2 and since tie-breaking is uniform, strategy 3 is not eliminated. Once strategy 3 maintains
a presence in the population, so does strategy 1, since an agent who tests strategy 3 against
an opponent who plays strategy 3 will always choose the other strategy in his test set, be
it strategy 2 or strategy 1.

It can be shown that strategy 1 is played with positive probability in any rest point of
any BEP(τtwo, κ, βunif) dynamic, regardless of the choice of κ. Proposition 3.2 implies that
the presence of strategy 1 at any rest point will tend to 0 as the number of trials κ goes to
infinity. �

8Maxmin play in zero-sum games is an obvious exception to this rule.
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Figure 2: Survival of an overwhelmed strategy under the BEP(τtwo, 1, βunif) dynamic.

The following simple proposition shows that overwhelmed strategies are eliminated
by BEP dynamics that use the test-all rule,9 and that overwhelming strategies are globally
asymptotically stable under any test-set rule. The proof of the latter result must account
for the fact that the overwhelming strategy need not be present in a revising agent’s
randomly-determined test set.

Proposition 4.1. (i) Suppose that strategy j is overwhelmed. Then the set {x ∈ X : xj = 0} is
globally asymptotically stable under all BEP(τall, κ, β) dynamics.

(ii) Suppose that strategy i is overwhelming. Then state ei is globally asymptotically stable
under all BEP(τα, κ, β) dynamics.

Proof. For part (i), the τall rule ensures that revising agents always test both strategy j
and the strategy i that overwhelms it, implying that no revising agent ever chooses j. It
follows that ẋ j = −xj, which implies the result.

For part (ii), if a revising player is not playing i, he tests this strategy with at least
probability 1

n−1 (the probability it is tested under τtwo), and if he is playing i, he tests it for
sure. Since i is overwhelming, it performs best whenever it is tested. These observations
and the definition (1) of the dynamics imply that

ẋi ≥
(
xi +

1
n−1 (1 − xi)

)
− xi =

1
n−1(1 − xi).

The last expression is positive when xi < 1, implying the result. �
9See Osborne and Rubinstein (1998, Proposition 3) for a related result.

–12–



4.2 Dominated and dominant strategies

Because agents using BEP protocols may face different opponents when testing dif-
ferent strategies, domination has limited predictive power under BEP dynamics, at least
when the number of trials is small.

Example 4.2. Consider the following public good contribution game from Osborne and
Rubinstein (1998) (see also Sethi (2000) and Mantilla et al. (2019)) in which each unit of
effort has a cost of c = 4 but confers a benefit of b = 3 on both players.

(11) U =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 3 6
−1 2 5
−2 1 4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .

Clearly, choosing zero effort is a strictly dominant strategy. Game (11) is used by Osborne
and Rubinstein (1998) to show that strictly dominated strategies can be used in rest
points of the BEP(τall, 1, βunif) dynamic, and by Sethi (2000) to show that dominant-strategy
equilibria can be unstable and that rest points using strictly dominated strategies can be
stable (cf. Figure 3(i)). Both of these conclusions depend on strategies being tested only
once: see Figure 3(ii) and Proposition 4.3 below. We analyze the stability of equilibrium
in a general class of public good contribution games in Examples 5.1 and 5.4. �

(i) κ = 1 (ii) κ = 4

Figure 3: A public good provision game under BEP(τall, κ, βunif) for κ = 1 and κ = 4.

Before presenting the elimination result, we first indicate limitations on how much
weight strictly dominated strategies may receive at rest points of BEP dynamics.
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Proposition 4.2. Suppose that strategy i strictly dominates strategy j. Under any BEP(τα, κ, β)
dynamic, all rest points x∗ satisfy x∗i ≥ x∗j .

The proof of Proposition 4.2 creates pairs of match assignments in which the matches
assigned to strategies i and j are reversed. This device allows us to take advantage of the
dominance relation between i and j, once we state the conditions for strategies i and j to be
at rest in a form that does not refer to self-switches (e.g., decisions by i players to continue
playing strategy i). Proposition 4.2 builds on Proposition 2 of Osborne and Rubinstein
(1998), which establishes the analogous comparison for weakly dominant strategies under
BEP(τall, κ, βunif) dynamics. This conclusion for weakly dominated strategies is sensitive
to the tie-breaking rule.

Example 4.3. Consider a game U in which all payoffs are 0, and suppose that test sets
are determined using a test-α rule. Under uniform tie-breaking, the unique rest point is
x∗ = ( 1

n , . . . ,
1
n ), agreeing with the conclusion of the proposition. But under any stick-if-tie

rule (4), all states are rest points, and under min-if-tie (6), only state e1 is a rest point. �

With a large enough number of trials, the empirical distributions of opponents’ play
that an agent faces when testing each of his strategies should each be close to the current
population state. This should lead the agent not to choose a dominated strategy when
the dominating strategy is available. We next develop this intuition into a global stability
result. Paralleling Proposition 4.1, the elimination result for dominated strategies is only
proved for the τall rule, while the selection result for dominant strategies is proved for
general test-set rules.

Proposition 4.3. (i) Suppose that strategy j is strictly dominated. Then for each ε > 0, the
set {x ∈ X : xj ≤ ε} is globally asymptotically stable under BEP(τall, κ, β) dynamics for all
large enough numbers of trials κ.

(ii) Suppose that strategy s is strictly dominant. Then state es is globally asymptotically stable
under BEP(τα, κ, β) dynamics for all large enough numbers of trials κ.

The proof of part (i) shows that for κ large enough, the proportion of agents playing
a strictly dominated strategy decreases monotonically until it is used by less than an ε
fraction of the population. For a strictly dominant strategy s, Proposition 5.7 below shows
that state es is locally asymptotically stable once κ is large enough. Combining these two
facts is not enough to conclude that es is globally stable for large enough numbers of
trials, since in principle, the basins of attraction of es could become arbitrarily small as
κ grows large. To complete the proof of part (ii), we use results from large deviations
theory (Dembo and Zeitouni (1998)) to obtain precise upper bounds on the probabilities
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of unrepresentative results during testing when xs is small. Doing so enables us to show
that the rate of inflow into strategy s due to revising players choosing it always exceeds
the rate of outflow of −xs.

5. Instability and stability of strict equilibria

Sethi (2000) shows that a strict symmetric equilibrium s of a normal form game can
be stable or unstable under BEP(τall, 1, βunif) dynamics, and provides a sufficient condition
for instability. In this section, we introduce new sufficient conditions for instability and
stability of strict equilibrium for general BEP(τ, κ, β) dynamics.

All of our analyses build on a simple observation about the behavior of BEP dynamics
near strict equilibria, versions of which underlie all existing stability analyses. If s is a
strict equilibrium, the polynomial form of the dynamics (8) implies that in a neighborhood
of the state xs, match assignments m (see (7)) can be ranked in probability by the number
of matches against opponents who do not use strategy s. If all opponents use s, then the
strict equilibrium s earns the best experienced payoff. Thus in generic cases, local stability
can be determined from the consequences of match assignments in which exactly one
match out of the αp−κ in total is against an opponent who plays a strategy besides s. The
analyses to follow come down to accounting for the consequences of such assignments.

With this motivation, we introduce notation needed to state the results to come:

ui|s = U(i; s, s, ..., s), vκi|s = κui|s,(12)

ui| j,s = U(i; j, s, ..., s), vκi| j,s = (κ − 1)ui|s + ui| j,s.

In words, ui|s is the payoff to playing i when all opponents play the equilibrium strategy
s, and ui| j,s is the payoff to playing i when all but one opponent plays the equilibrium
strategy s, with the remaining opponent playing j. Likewise, vκi|s is the total payoff in κ
trials from always playing i against opponents playing s, and vκi| j,s is the total payoff to
i in κ trials when all but one opponent in all trials play s, with the remaining opponent
playing j.

Our instability and stability conditions are based on two kinds of inequalities, each
representing a distinct contribution to the destabilization of strict equilibrium s. We call
strategy j � s a supporter of invasion by strategy i � s if

(13) vκi| j,s > vκs|s.

Thus j supports invasion by strategy i if over the course of κ trials, strategy i earns a higher
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total payoff than s if i has one match that includes an opponent playing j, with all other
opponents of i and s being s players. In short, a supporter of invasion works by increasing
the payoffs of some invading strategy.

We call strategy j � s a spoiler that benefits strategy t � s if

(14) vκs| j,s < vκt|s.

Thus j is a spoiler if when one of strategy s’s matches includes an opponent playing j
(with all remaining opponents playing s), the total payoff that s earns in its matches is
lower than that of another strategy that only faces s. Put differently, a spoiler works by
decreasing the payoffs of the strict equilibrium strategy. If a spoiler works to its own
benefit, in that t = j in (14), then we describe j as spiteful. In this case, j enables itself
to outperform s by reducing the payoff that s achieves. The fact that spiteful behavior
can influence equilibrium outcomes in finite-player strategic interactions is well known
in other contexts; see Schaffer (1988), Bergin and Bernhardt (2004), and the references
therein.

5.1 Repulsion

To start, we extend work of Sethi (2000) providing a sufficient condition for a strict
equilibrium es to be a repellor under BEP dynamics, meaning that all solutions of (8) from
initial conditions near es lead away from es.

Proposition 5.1. Let s be a strict equilibrium, let t ∈ argmaxi�s ui|s, and consider any BEP(τα, κ, β)
dynamic. Then state es is a repellor if

(15) p−κ

⎛⎜⎜⎜⎜⎜⎝
∑
i�s

1[vκs|s < vκi| j,s] + 1[vκs| j,s < vκt|s]

⎞⎟⎟⎟⎟⎟⎠ > 1 for all j � s.

Corollary 5.2. If we define

(16) κ̄ = min
j�s

max
{

max
i�s

⌈
ui| j,s − us|s
us|s − ui|s

⌉
,

⌈
ut|s − us| j,s
us|s − ut|s

⌉}
,

then state es is a repellor if p = 2 and κ ∈ {2, . . . , κ̄}, or if p > 2 and κ ∈ {1, . . . , κ̄}.
The sufficient condition (15) for es to be a repellor comprises an inequality for each

strategy j � s. The condition adds up the number of strategies i that j supports as an
invader, and adds an additional unit if j is a spoiler. If p = 2 and κ = 1, a total of 2 implies
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repulsion; in all other cases, a total of 1 is enough. Corollary 5.2 is obtained by rewriting
(15) in terms of the payoffs of the original normal form game.

Sethi’s (2000) conditions for an inferior and a twice inferior strict equilibrium only
consider the initial sum in (15).10 Proposition 5.1 generalizes the instability results in Sethi
(2000) for the BEP(τall, 1, βunif) case to other BEP dynamics and to any number of trials,
and also identifies spoilers as a novel source of instability.

Following Sethi’s (2000) analysis, the proof of Proposition 5.1 argues that under condi-
tion (15), the growth rate ẋs of strategy s is negative in a neighborhood of the equilibrium
es. As suggested above, the fact that few agents use other strategies means that terms in
ẋs that are of more than linear order in such strategies are of negligible magnitude, letting
us focus on revision opportunities and match assignments with exactly one agent playing
a strategy other than s. By accounting for all of the ways that supporters and spoilers can
reduce ẋs, we show that condition (15) leads to a lower bound on ẋs that is linear in xs.

Example 5.1. Consider a p-player public good contribution game in which the allowable
contributions are i ∈ {0, 1, ...,n − 1}, n ≥ 2, and where each unit of contribution costs the
contributing player c and provides a benefit of b < c to all players. Payoffs are thus given
by

(17) U(i; j1, . . . , jp−) = b
p−∑

q=1

jq + (b − c)i,

Since c > b, contributing zero units is a strictly dominant strategy.
Evidently ui| j,0 = bj+ (b− c)i and vκi| j,0 = bj+κ(b− c)i. Thus if κ < b

c−b , then vκi|i,0 > 0 = vκ0|0
for all i > 0, so the sufficient condition for repulsion (15) holds when p−κ ≥ 2, that is, when
there are more than two players or at least two trials.

With two players and one trial, observe that if c
b <

3
2 , then ui| j,0 > 0 = u0|0 when j ≥ i > 0

and when (i, j) = (2, 1). Thus if n ≥ 3, then for each j � 0 the sum in (15) is at least 2, again
implying that equilibrium e0 is a repellor under any BEP(τα, 1, β) dynamic.

For the case of the BEP(τall, 1, βunif) dynamic, the conclusions about repulsion above
can be obtained using Sethi’s (2000) inferiority conditions. The novelty from applying
Proposition 5.1 here is that repulsion is established for dynamics based on any test-α rule
(2), any number of trials κ, and any tiebreaking rule β. �

While stability in Example 5.1 relies on support of profitable invasions by other strate-
gies, Proposition 5.1 also shows that BEP dynamics can select against strict equilibria

10Strict equilibrium s is inferior if
∑

i�s 1[ui| j,s > us|s] > 0 for all j � s, and twice inferior if this sum always
exceeds 1. Sethi (2000) proves that under the BEP(τall, 1, βunif) dynamic, an inferior equilibrium is unstable
if p > 2, and a twice inferior equilibrium is unstable if p ≥ 2.
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that instead admit spiteful deviations. For a simple result to this effect, we call strict
equilibrium s uniformly susceptible to spite if

(18) uj|s ≥ us| j,s for all j � s.

In words, (18) says that each strategy j does better as a unilateral deviation from equilib-
rium s than s does in a match that includes a single j player.

Corollary 5.3. Suppose G has more than two players. If the strict equilibrium s of G is uniformly
susceptible to spite, then state es is a repellor under all BEP(τα, 1, β) dynamics.

Proof. By condition (18), us| j,s ≤ uj|s ≤ ut|s < us|s, implying that κ̄ ≥ 1 in Corollary 5.2. �

Example 5.2. Consider a p > 2 player, n = 2 strategy public good contribution game in
which contributing is a strictly dominant strategy: specifically, contributing costs the
contributor c but benefits all players b > c. If strategy 1 represents contributing to the
public good and strategy 2 represents not contributing, then payoffs are given by

U(1; j1, . . . , jp−) = |{q : jq = 1}| b + (b − c),

U(2; j1, . . . , jp−) = |{q : jq = 1}| b.

Clearly, strategy 1 is strictly dominant. But since u2|1 = (p − 1)b > (p − 1)b − c = u1|2,1,
Corollary 5.3 implies that state e1 is a repellor when κ = 1. In fact, Proposition 5.1 implies
that e1 is a repellor for numbers of trials κ up to

⌈
u2|1 − u1|2,1
u1|1 − u2|1

⌉
=

⌈
(p − 1)b − ((p − 1)b − c)

(pb − c) − ((p − 1)b)

⌉
=

⌈
c

b − c

⌉
. �

5.2 Instability

In order to provide a condition ensuring that a strict equilibrium repels solutions from
all initial conditions, Proposition 5.1 imposes conditions on support and spoiling by all
alternative strategies. If our primary interest is in instability rather than repulsion—
in particular, if it is enough that solutions from most (rather than all) nearby initial
conditions move away from the equilibrium—then intuition suggests that restrictions
involving smaller numbers of strategies whose presences are mutually reinforcing might
be sufficient for this conclusion.

Proposition 5.4 verifies that the intuition above is correct, providing conditions under
which invasions by a mutually reinforcing group of strategies will succeed.
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Proposition 5.4. Let s be a strict equilibrium, let S2 = argmaxi�s ui|s, and let t ∈ S2. Under any
BEP(τα, κ, β) dynamic, state es is linearly unstable if either of these conditions hold:

(i) For some nonempty J ⊆ S � {s},

(19) p−κ
α − 1
n − 1

∑
j∈J

1[vκi| j,s > vκs|s] > 1 for all i ∈ J.

(ii) For some nonempty J ⊆ S � {s},

(20) p−κ
α − 1
n − 1

⎛⎜⎜⎜⎜⎜⎝
∑
i∈J

1[vκi| j,s > vκs|s] + 1[S2 ⊆ J] 1[vκs| j,s < vκt|s]

⎞⎟⎟⎟⎟⎟⎠ > 1 for all j ∈ J;

Corollary 5.5. Strict equilibrium es is linearly unstable under any BEP(τα, κ, β) dynamic if

(21) p−κ
α − 1
n − 1

(
1[vκj| j,s > vκs|s] + 1[S2 = { j}] 1[vκs| j,s < vκj|s]

)
> 1 for some j � s.

Proposition 5.4 tells us that given any set J ⊆ S� {s}, we can establish that es is unstable
by showing that each invading strategy j ∈ J provides an adequate combination of support
of invasion and spoiling in favor of strategies that are themselves in J. Sufficient condition
(19) focuses on the lowest total benefit obtained by any of the invading strategies from
the presence of other strategies in the invading group. Sufficient condition (20) focuses
instead on the lowest total benefit provided by an invading strategy to other members of
the group, accounting both for support and for spoiling. Corollary 5.5 highlights the case
of a lone invader.

The proof of Proposition 5.4 uses Perron’s theorem to show that under condition (19)
or (20), the Jacobian matrix of any BEP(τα, κ, β) dynamic at equilibrium state es has a
positive eigenvalue, implying instability. Specifically, consider the “inflow Jacobian” of
the dynamic, by which we mean the contribution to the Jacobian of the inflow terms in
(1). (The “outflow Jacobian” is −I, the negative of the identity matrix.) The conditions of
the proposition each imply that the submatrix of the inflow Jacobian corresponding to the
set of invading strategies J has Perron eigenvalue greater than 1.11 Then the monotonicity
of the Perron eigenvalue of a nonnegative matrix in the values of its components implies
that the full inflow Jacobian, which is a nonnegative matrix, also has Perron eigenvalue
greater than 1. Therefore, the complete Jacobian matrix has a positive eigenvalue; this
eigenvalue is associated with a nonnegative eigenvector that represents the proportions
of strategies in a self-reinforcing invasion.

11To be more precise, this is true even after a dimension reduction that eliminates the xs component of the
state: see equations (54), (55), and (52).
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Corollary 5.6 provides a number of sufficient conditions for instability stated directly
in terms of the payoff matrix of the underlying normal form game. The conditions
are sufficient when revising agents test more than half of the available strategies—more
precisely, under the assumption that α ≥ 
n

2 � + 1. All conditions are easily derived from
condition (20). The (a) conditions only reflect support of invasions, while the (b) conditions
also account for spoiling.

Corollary 5.6. Let s be a strict equilibrium. The following conditions are sufficient for linear
instability of state es under BEP(τα, κ, β) dynamics with α ≥ 
n

2 � + 1.
(i.a) κ ≥ 2 and κ ≤ maxi�s

⌈ui|i,s−us|s
us|s−ui|s

⌉
.

(i.b) κ ≥ 2, S2 = { j}, and κ ≤
⌈uj|s−us| j,s

us|s−uj|s

⌉
.

(ii.a) κ = 1, p > 2, and maxi�s ui|i,s > us|s.
(ii.b) κ = 1, p > 2, S2 = { j}, and uj|s > us| j,s
(iii.a) κ = 1, p = 2, and min{uii, uij, uji, ujj} > uss for some pair of distinct strategies i, j � s.
(iii.b) κ = 1, p = 2, S2 = { j}, uj|s > us| j,s, and uj| j,s > us|s

Example 5.3. The Traveler’s Dilemma (Basu (1994)) is a normal form analogue of the
Centipede game (Rosenthal (1981)) in which the unique rationalizable strategy earns the
players far less than many other strategy profiles. Payoffs in the n-strategy Traveler’s
Dilemma are

U(i, j) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

i + 2 if i < j,

i if i = j,

j − 2 if i > j,

or, in matrix form,

(22)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 3 3 3 · · · 3
−1 2 4 4 · · · 4
−1 0 3 5 · · · 5

−1 0 1 4 . . .
...

...
...
...
. . . . . . n + 1

−1 0 1 . . . n − 3 n

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Strategy 1 is the unique Nash equilibrium and the unique rationalizable strategy. Berke-
mer (2008) shows that under the BEP(τall, κ, βunif) dynamic, state e1 is stable when is n odd
and κ > n+1

2 , and that it is unstable when n is odd and κ = n+1
2 .

We consider the stability of e1 under any BEP(τα, κ, β) dynamic withα ≥ 
n
2 �+1. If κ = 1,
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Corollary 5.6(iii.a) implies that e1 is unstable if n ≥ 5: choosing i = n− 1 and j = n leads to
min{uii, uij, uji, ujj} = n − 3 > 1 = u11. If instead 2 ≤ κ ≤ �n

2 , then Corollary 5.6(i.a) implies
that e1 is unstable for 2 ≤ κ ≤ �n

2 : this follows because maxi�1
 uii−u11
u11−ui1

� = 
 n−1
1−(−1)� = 
n−1

2 � =
�n

2 . In Section 5.4 we consider stability in Traveler’s Dilemmas with larger numbers of
trials. �

5.3 Stability

We now provide some sufficient conditions for a strict equilibrium to be stable. One
can write down more general conditions for stability, but the ones we focus on are simple,
and enough to complete the analyses of some of our earlier examples.

Proposition 5.7 is our first sufficient condition. It requires that no strategy supports
invasion of the strict equilibrium or is a spoiler against the strict equilibrium. The proof
of the proposition shows that under this condition, the growth rate of xs must be positive
at states close to es.

Proposition 5.7. Let s be a strict equilibrium. Then state es is asymptotically stable under any
BEP(τα, κ, β) dynamic if

(23) vκs|s > vκi| j,s and vκs| j,s > vκi|s for all i, j � s.

The immediate Corollary 5.8 provides sufficient conditions for stability in terms of
payoffs in the normal form game and the number of trials κ.

Corollary 5.8. State es is asymptotically stable under any BEP(τα, κ, β) dynamic if

(24) us|s > ui| j,s and us| j,s > ui|s for all i, j � s.

or if

(25)

κ ≥ κ1 ≡ max
i�s

⌊
max j�s ui| j,s − us|s

us|s − ui|s

⌋
+ 2 and

κ ≥ κ2 ≡ max
i�s

⌊
ui|s −min j�s us| j,s

us|s − ui|s

⌋
+ 2 =

⌊
us|s −min j�s us| j,s
us|s −maxi�s ui|s

⌋
+ 1.

In particular, any strict equilibrium of any game is asymptotically stable under any BEP(τ, κ, β)
dynamics with κ large enough.

The prospects for stability of a strict equilibrium s are best when agents use the test-
all rule τall, which ensures that agents currently experimenting with other strategies

–21–



always consider strategy s itself during subsequent testing and revision. Because of this,
considerably fewer inequalities from (23) must hold for stability to be ensured: compare
the quantifier in condition (26) to that in (23).

Proposition 5.9. Let s be a strict symmetric Nash equilibrium. Then state es is asymptotically
stable under any BEP(τall, κ, β) dynamic if

(26) vκs|s > vκi| j,s and vκs| j,s > vκi|s for all i, j � s with i ≥ j.

Corollary 5.10. State es is asymptotically stable under any BEP(τall, κ, β) dynamic if

(27) κ ≥ κ1
all ≡ max

i�s

⌊
max j�s, j≤i ui| j,s − us|s

us|s − ui|s

⌋
+ 2 and κ ≥ κ2

Of course, stability only requires conditions (26) and (27) to hold after some relabelling of
the strategies.

Condition (26) requires that no strategy j � s supports or acts as a spoiler in favor
of itself or any higher-numbered strategy. For intuition about why this condition is
sufficient, suppose for convenience that s = 1. Condition (26) with i = n ensures that
strategy n cannot invade on its own. Condition (26) with i = n − 1 says that strategy n − 1
only benefits from the presence of strategy n, and so it in turn cannot invade. Continuing
in this vein shows that no strategy down through strategy 2 is able to invade. Formally,
the proof of Proposition 5.9 shows that under condition (26), the Jacobian of BEP(τall, κ, β)
dynamics at state es is upper triangular with all diagonal elements equal to −1, which
implies asymptotic stability.

Example 5.4. In Example 5.1, we showed that in the public good contribution game (17),
when either p > 2 or κ ≥ 2, the zero-contribution equilibrium e0 is a repellor under
BEP(τα, κ, β) dynamics when the number of trials κ is less than b

c−b . Proposition 5.9 implies
that if instead κ > b

c−b , then equilibrium e0 is asymptotically stable under BEP(τall, κ, β)
dynamics. Recall that payoffs from κ trials in game (17) satisfy vκi| j,0 = bj + κ(b − c)i. It
follows easily from this that vκ0|0 > vκi| j,0 for all i ≥ j > 0, and that vκ0| j,0 > 0 > vκi|0 for all
i, j � 0, and so that stability condition (26) holds. �

We conclude this section with a simple stability result for two-player normal form
games under BEP(τall, 1, β) dynamics.

Proposition 5.11. Let s be a strict Nash equilibrium of the two-player symmetric game G = {S,U}.
(i) If Uss > Uij for all i, j � s, then the growth rate of strategy s under BEP(τall, 1, β) dynamics

is nonnegative at all states in X, so state es is Lyapunov stable.
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(ii) If in addition to (i) we have Usj > min{Uij,Uis} for all i, j � s, then the growth rate of
strategy s is positive whenever xs ∈ (0, 1), so state es is almost globally asymptotically
stable.

(iii) If in addition to (i) strategy s is strictly dominant, then state es is globally asymptotically
stable.

The strict inequalities in (ii) can be replaced by weak inequalities under βunif or βstick, and all
inequalities can be replaced by weak inequalities under βmin if s = 1.

Example 5.5. Studying a family of two-player public good contribution games, Mantilla
et al. (2019) show that if full contribution is a dominant strategy, it is globally stable under
the BEP(τall, 1, βunif) dynamic. Analogously, suppose that in the public good contribution
game (17) from Example 5.1, there are two players, and that the per-player benefit b of
contributing exceeds the contribution cost c. Then choosing the maximum contribution
is strictly dominant for each player, and each player’s payoffs are maximized when both
choose this contribution level. Thus Proposition 5.11(iii) implies that the maximal contri-
bution is globally asymptotically stable under BEP(τall, 1, β) dynamics. In fact, the proof
of Proposition 5.11(iii) builds directly on the analysis of Mantilla et al. (2019).12 �

As another application of our results, we now show that the stability of a strict equi-
librium need not be monotonic in the number of trials κ.

Example 5.6. Consider evolution under the BEP(τall, κ, βunif) dynamic in the game below:

U =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
6 1 1
4 0 0
2 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Proposition 5.11(iii) implies that strict equilibrium e1 is globally asymptotically stable
when κ = 1 (Figure 4(i)), Corollary 5.2 implies that e1 is unstable for 2 ≤ κ ≤ 
4−1

6−4� = 2
(Figure 4(ii)), and Corollary 5.8 implies that e1 is asymptotically stable when κ is at least
�4−1

6−4 + 2 = 3 (Figure 4(iii)).
The intuition behind this nonmonotonicity is as follows: When κ = 1, the presence of

a small number of agents playing the spiteful strategy 2 does not place it in enough tests
of strategy 1 to render e1 unstable. If we increase κ to 2, the appearance of strategy 2 in a
test of strategy 1 becomes twice as likely, which is sufficient to make e1 unstable. But once
κ = 3, strategy 2 is very unlikely to appear in more than one-third of the trials in which
strategy 1 is tested, and this again is not enough to render e1 unstable. �

12We thank an anonymous referee for suggesting this example.
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(i) κ = 1 (ii) κ = 2 (iii) κ = 3

Figure 4: Nonmonotonicity of stability under BEP(τall, κ, βunif) dynamics.

5.4 Examples

The foregoing results are enough to establish the stability and instability of strict
equilibria in many examples. In instances where they are not enough—for instance, in
cases where the details of the tie-breaking rules matter—one can directly compute the
Jacobian of the dynamics (8) at the equilibrium to assess stability (see Lemma A.3 in
Appendix A.3). Sometimes, as in Section 5.2, one can use Perron’s theorem to establish
instability without actually calculating the eigenvalues of the Jacobian; alternatively, as in
Section 5.3, one can show without calculation all eigenvalues of the Jacobian are negative.
When these approaches are not applicable, one can explicitly compute the eigenvalues
in order to establish stability or instability. We illustrate these ideas in the examples that
follow.

Example 5.7. In Example 5.3, we used Corollary 5.6 to show that in the Traveler’s Dilemma
(22) with n ≥ 5, the strict equilibrium e1 is unstable under BEP(τα, κ, β) dynamics with α ≥

n

2 � + 1 and 1 ≤ κ ≤ �n
2 . On the other hand, Corollary 5.8 implies that e1 is asymptotically

stable under any BEP(τα, κ, β) dynamic with κ ≥ � (n+1)−1
3−1  + 2 = �n

2  + 2. Under test-all,
Corollary 5.10 gives us the improved lower bound κ ≥ �n−1

3−1  + 2 = 
n
2 � + 1. Thus for

test-all, the only undecided cases are those with κ = n+1
2 (and hence n odd). What is

special about this case is that the payoff from κ rounds of playing strategy 1 against itself
is the same as the payoff from playing strategy n κ − 1 times against strategy 1 and once
against itself. (That is, vκnn =

n−1
2 (−1) + n = n+1

2 = vκ11.) Because of this, stability depends
on the tie-breaking rule β: rules that favor the incumbent strategy 1 will support stability
compared to those that do not. In Appendix A.3 we use linearization to show that when
κ = n+1

2 , e1 is asymptotically stable under βstick and βmin, but unstable under βunif for n ≥ 5.
�

Example 5.8. Consider BEP(τall, κ, βunif) dynamics in 123 Coordination:
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(28) U =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 0 0
0 2 0
0 0 3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .

All pure strategies of this game are strict equilibria. Since U33 is the highest payoff and
U3 j ≥ Ui3 for i, j � 3, Proposition 5.11(ii) implies that when κ = 1, the equilibrium state e3 is
almost globally asymptotically stable, and so that states e1 and e2 are unstable (Figure 5(i)).
Corollary 5.8 implies that states e3 and e2 are asymptotically stable when κ ≥ 2, and that
state e1 is asymptotically stable when κ ≥ �3−1

1−0+2 = 4 (Figure 5(iii)). Corollary 5.6 implies
that e1 is unstable when κ = 
3−1

1−0� = 2. In Appendix A.3 we use linearization to show that
for κ = 3, e1 is unstable under βunif, but asymptotically stable under βstick and βmin. �

(i) κ = 1 (ii) κ = 2 (iii) κ = 4

Figure 5: 123 Coordination under BEP(τall, κ, βunif), for different values of κ.

6. Concluding remarks

Building on the work of Osborne and Rubinstein (1998) and Sethi (2000), we defined
the family of best experienced payoff dynamics, under which revising agents test each
strategy from a random candidate set κ times and choose the strategy from the set that
earned the highest total payoffs. We developed results on the elimination of overwhelmed
and dominated strategies for large numbers of trials, introduced sufficient conditions for
the instability and stability of strict equilibrium, and illustrated the use of these results in
a range of applications.

We conclude with a few comments on the generality of the analysis. While we have
defined the dynamics (8) using a fixed test-set size α and a fixed number of trials κ of each
tested strategy, neither of these assumptions is necessary for our results. We call the test
set rule τ symmetric if feasible test sets with the same cardinality have the same probability
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under τ. One such example is the rule test-q, q ∈ (0, 1], under which each alternate
strategy is chosen independently with probability q to be in the test set. We can likewise
define dynamics under which the number of trials κ of each tested strategy is drawn
from a finite-support distribution on the positive integers. What makes these extensions
tractable is the fact that symmetric test-set rules and random numbers of trials generate
convex combinations of the original dynamics (8). It turns out that the analyses leading
to our main results are “closed under convex combinations”, so that their conclusions
extend immediately to the class of dynamics defined here.13

Some of the techniques employed in this paper to establish stability and instability of
equilibrium have broader applicability. BEP dynamics are mean dynamics of the form

(1) ẋi =
∑
j∈S

xjσ ji(U, x) − xi for all i ∈ S.

where the conditional switch rates σ ji(U, x) are polynomials with nonnegative coefficients.
Thus the inflow Jacobian of (1) (i.e., the Jacobian corresponding to the initial sum in (1))
also has nonnegative coefficients. In Section 5.2, this fact allowed us to establish sufficient
conditions for instability using Perron’s theorem. Clearly, the same approach is applicable
for other dynamics based on random sampling, including, for example, the sampling best
response dynamics of Oyama et al. (2015). This phenomenon is actually quite general:
in Appendix A.2, we argue that linearizations at pure rest points of dynamics of form
(1) always have this property, and so are always candidates for analysis using Perron’s
theorem. Likewise, the methods from computational algebra that we employ in our com-
panion paper, Sandholm et al. (2017), are applicable beyond the class of best experienced
payoff dynamics studied here.

A. Appendix

A.1 Background from dynamical systems

Consider a C1 differential equation ẋ = V(x) defined on X whose forward solutions
(x(t))t≥0 do not leave X. State x∗ is a rest point if V(x∗) = 0, so that the unique solution
starting from x∗ is stationary.

Let Y ⊂ X be closed and connected. The set Y is Lyapunov stable if for every neigh-
borhood O ⊂ X of Y, there exists a neighborhood O′ ⊂ X of Y such that every forward

13A number of our results do not even require symmetry of the test-set rule, but instead hold under any
test-set rule that puts a lower bound on the probabilities with which each strategy is tested. These include
the results in Sections 3, 4 (except Proposition 4.2) and 5.3 in which a specific test-set rule is not specified.
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solution that starts in O′ is contained in O. If Y is not Lyapunov stable it is unstable, and
it is repelling if there is a neighborhood O ⊂ X of Y such that solutions from all initial
conditions in O � Y leave O. A minimal repelling set is called a repellor.

A rest point x∗ is linearly unstable if the Jacobian DV(x∗) of V at x∗ has an eigenvector
in the tangent space TX = {z ∈ Rn :

∑
i zi = 0} whose eigenvalue has positive real part.

If in addition x∗ is hyperbolic, in that all eigenvalues corresponding to eigenvectors in
TX have nonzero real part, then the Hartman-Grobman theorem implies that there is a
neighborhood of O of x∗ such that solutions starting from almost all initial conditions in
O move away from x∗ at an exponential rate.

The set Y is attracting if there is a neighborhood O ⊂ X of Y such that all solutions
that start in O converge to Y. A set that is Lyapunov stable and attracting is asymptotically
stable; a minimal asymptotically stable set is called an attractor. In this case, the maximal
(relatively) open set of states from which solutions converge to Y is called the basin of Y. If
the basin of Y contains int(X), we call Y almost globally asymptotically stable; if it is X itself,
we call Y globally asymptotically stable.

The Lipschitz function L : O → [c,∞) is a strict Lyapunov function for set Y ⊂ O if
L−1(c) = Y, and if its time derivative L̇(x) ≡ ∇L(x)′V(x) is negative on O � Y. Standard
results imply that if such a function exists, then Y is asymptotically stable.14 If L is a strict
Lyapunov function for Y with domain X, then Y is globally asymptotically stable.

A.2 Proofs

Proof of Proposition 3.2.
To start, recall that in the normal form game G = {S,U} the expected payoff to strategy

i at state x ∈ X takes the usual multilinear form:

U i(x) =
∑

( j1,..., jp−1)∈Sp−1

⎛⎜⎜⎜⎜⎜⎝
p−1∏
�=1

xj�

⎞⎟⎟⎟⎟⎟⎠ U(i| j1, . . . , jp−1).

Next we state a slight generalization of the weak law of large numbers.

Lemma A.1. For each k, let (Xk
i )
∞
i=1 be i.i.d. with E(Xk

1) = μk and Var(Xk
1) ≤ σ̄2 < ∞. If

limk→∞ μk = μ, then X̄k
k ≡ 1

k

∑k
i=1 Xk

i

p−→ μ as k→∞.

Proof. Let c > 0 be arbitrary. Then for some k , |μk − μ| < c
2 for all k ≥ k . Chebyshev’s

inequality and the triangle inequality imply that for such k, Var(X̄k
k) ≥ P(|X̄k

k − μk| ≥ c) c2 ≥
P(|X̄k

k − μ| ≥ c
2 ) c2, and so P(|X̄k

k − μ| ≥ c
2 ) ≤ σ̄2

k c2 , which vanishes as k grows large. �

14See, e.g., Sandholm (2010b, Appendix 7.B).
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Taking a subsequence if necessary, let (xκ)∞κ=1 be a sequence of BEP(τ, κ, β) equilibria
that converges to x∗. For each κ, let (Jκ,mi, j ) with i ∈ S, j ∈ {1, . . . , p − 1}, m ∈ {1, . . . , κ}
be a collection of i.i.d. multinomial(xκ) random variables whose realizations represent the
strategies of opponents faced during testing. An agent’s payoff during his mth test of
strategy i ∈ T is U(i|Jκ,mi,1 , . . . , J

κ,m
i,p−1), a random variable with expectation Ui(xκ). Thus

Lemma A.1 implies that the realized average payoff during κ tests of action i converges
in probability to Ui(x∗):

(29)
1
κ

κ∑
m=1

U(i|Jκ,mi,1 , . . . , J
κ,m
i,p−1)

p−→ Ui(x∗) as κ→∞.

Next, let σκ be a BEP(τα, κ, β) protocol as defined in (7), and for i, j ∈ T ⊆ S, let

(30) σκi j(U, x|T) =
∑

m∈MT

⎛⎜⎜⎜⎜⎜⎝
∏
k∈S

x|m
−1(k)|

k

⎞⎟⎟⎟⎟⎟⎠ βi j(πU(m),T)

be the probability under (7) that a revising agent playing strategy i who uses test set T
chooses strategy j at state x. Then (29) implies that if j � argmaxk∈T Uk(x∗), then σκi j(U, x

κ|T)
vanishes as κ grows large. It follows that if Ui(x∗) > U j(x∗), then

σκi j(U, x
κ) =

∑
T∈Si

ταi (T) σκi j(U, x
κ|T)→ 0 as κ→∞.

Thus if S∗ is the set of optimal strategies at x∗ and i ∈ S∗, we have

(31) lim
κ→∞

∑
k∈S∗
σκik(U, x

κ) = 1.

Since xκ is a rest point of the BEP(τα, κ, β) dynamic (8), the total growth rate of strategies
in S∗ at state xκ is zero. Thus

0 =
∑
k∈S∗

⎛⎜⎜⎜⎜⎜⎜⎝
∑
j∈S

xκj σ
κ
jk(U, x

κ) − xκk

⎞⎟⎟⎟⎟⎟⎟⎠
=

∑
i∈S∗

xκi

⎛⎜⎜⎜⎜⎜⎝
∑
k∈S∗
σκik(U, x

κ)

⎞⎟⎟⎟⎟⎟⎠ +
∑
j�S∗

xκj

⎡⎢⎢⎢⎢⎢⎣
∑
k∈S∗
σκjk(U, x

κ)

⎤⎥⎥⎥⎥⎥⎦ −
∑
k∈S∗

xκk .(32)

Equation (31) says that the sum in parentheses in (32) converges to 1, implying that in
the limit the first and third terms of (32) cancel. The definition (7) of σκ implies that for
each j � S∗, the sum in brackets converges to a limit greater than 1

n under any test-α rule.
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Altogether, this implies that

∑
j�S∗

x∗j = lim
κ→∞

∑
j�S∗

xκj = 0,

Since x∗ puts no mass on suboptimal strategies, it is a Nash equilibrium. �

Proof of Proposition 4.2. The inflow into strategy i at state x under (8) is

∑
h∈S

xhσhi(U, x) =
∑
h∈S

xh

⎛⎜⎜⎜⎜⎜⎝
∑
T∈Shi

ταh (T)
∑

m∈MT

P(m|x) βhi(πU(m),T)

⎞⎟⎟⎟⎟⎟⎠ , where(33a)

P(m|x) =
∏
k∈S

x|m
−1(k)|

k and(33b)

πU
k (m) =

κ∑
�=1

U(k; mk,1,�, . . . ,mk,p−,�)(33c)

are the probability of match assignment m ∈ MT and the total payoff to strategy k during
the relevant matches in m, respectively. The second sum in (33a) is taken over Shi, the set
of subsets of S containing strategies h and i. The notations Shj and Shij used below are
defined similarly.

Fix a test set T ∈ Shij. For a match assignment m ∈MT for this test set, define the match
assignment m̃ by

(34) m̃k,q,� =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

mj,q,� if k = i,

mi,q,� if k = j,

mk,q,� otherwise.

That is, m̃ switches the strategies faced under m when testing i and j. Then by construction
and by strict dominance,

U(i; mi,·,�) = U(i; m̃j,·,�) > U( j; m̃j,·,�),

where mi,·,� = (mi,1,�, . . . ,mi,p−1,�). (33c) then implies that πU
i (m) > πU

j (m̃), which in turn
implies that

(35) βhi(πU(m),T) ≥ βhj(πU(m̃),T) for all h ∈ T.

Also, since m and m̃ are permutations of one another, (33b) implies that P(m|x) = P(m̃|x).

–29–



Combining this fact with (35) and considering all T in Shij, we have

(36)
∑

T∈Shij

ταh (T)
∑

m∈MT

P(m|x) βhi(πU(m),T) ≥
∑

T∈Shij

ταh (T)
∑

m̃∈MT

P(m̃|x) βhj(πU(m̃),T).

Now consider a test set T in Shi�Shij. Let T̃ = T∪{ j}�{i}, and for each m ∈ T define m̃ ∈ T̃
by (34) (noting that the middle case of (34) never occurs). Then the fact that ταh (T) = ταh (T̃)
and a minor variation on the argument above shows that

(37)
∑

T∈Shi�Shij

ταh (T)
∑

m∈MT

P(m|x) βhi(πU(m),T) ≥
∑

T̃∈Shj�Shij

ταh (T̃)
∑

m̃∈MT̃

P(m̃|x) βhj(πU(m̃), T̃).

Combining (36) and (37) with (33a) and (33b), we conclude that

(38) σhi(U, x) ≥ σhj(U, x) for all x ∈ X and h � i, j.

Using similar arguments, one can also show that

σ jh(U, x) ≥ σih(U, x) for all x ∈ X and h � i, j, and(39)

σ ji(U, x) ≥ σi j(U, x) for all x ∈ X.(40)

Now let y be a rest point of (8). Then equating inflows and ouflows shows that

yjσ ji(U, y) +
∑
k�i, j

ykσki(U, y) = yiσi j(U, y) + yi

∑
k�i, j

σik(U, y) and

yiσi j(U, y) +
∑
k�i, j

ykσkj(U, y) = yjσ ji(U, y) + yj

∑
k�i, j

σ jk(U, y).

Subtracting and rearranging yields

∑
k�i, j

yk

(
σki(U, y) − σkj(U, y)

)
(41)

= 2
(
yiσi j(U, y) − yjσ ji(U, y)

)
+

⎛⎜⎜⎜⎜⎜⎜⎝yi

∑
k�i, j

σik(U, y) − yj

∑
k�i, j

σ jk(U, y)

⎞⎟⎟⎟⎟⎟⎟⎠ .

(38) implies that the left-hand side of (41) is nonnegative, which along with (39) and (40)
implies that yi ≥ yj. �

Proof of Proposition 4.3. For part (i), suppose that strategy j is strictly dominated by strategy
i: Ui(x) > U j(x) for all x ∈ X. The weak law of large numbers implies that as κ grows large,
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the realized average payoffs during κ tests of each k at state x converges in probability
to Uk(x) (cf. (29)). Moreover, since the variance in realized payoffs can be bounded over
x ∈ X, the proof of the weak law (cf. Lemma A.1) implies that for each ε > 0 there is a
κ such that for all x ∈ X and κ ≥ κ , the probability is at most ε that the total realized
payoff from κ trials of j exceeds the total realized payoff from κ trials of i. Hence, letting
σκ denote a BEP(τall, κ, β) protocol (7), we have that the probability σκkj(U, x) that a revising
k player chooses j is at most εwhen κ ≥ κ . Thus when κ ≥ κ , definition (1) of the dynamic
implies that

ẋ j =
∑
k∈S

xkσkj(U, x) − xj ≤ ε − xj.

The last expression is negative when xj > ε, implying that L(x) = max{xj, ε} is a strict
global Lyapunov function for the set {x ∈ X : xj ≤ ε}.

For part (ii), let i be the strictly dominant strategy. Mimicking the argument above
shows that for each ε > 0 there is a κ such that for all x ∈ X and κ ≥ κ , the probability is at
least 1− ε that the total realized payoff from κ trials of strategy i exceeds the total realized
payoff from κ trials of strategy j for all j � i. Since under any test-α rule, strategy i is in
the test set with probability greater than 1

n , and with probability 1 if the revising agent is
currently playing it, we find that for κ ≥ κ ,

ẋi =
∑
k∈S

xkσki(U, x) − xi(42)

>
∑
k�i

1
nxk(1 − ε) + xi(1 − ε) − xi

= 1
n (1 − xi)(1 − ε) − εxi

= 1
n [(1 − ε) − (1 + (n − 1)ε)xi] ,

and so ẋi is positive whenever xi < 1 − nε
1+(n−1)ε .

Since ei is a strict equilibrium, there is a b > 0 such that Ui(x) > U j(y) for all j � i
whenever xi and yi exceed 1−b. The proof of part (ii) follows from the previous argument,
with ε > 0 chosen small enough that nε

1+(n−1)ε ≤ b
3 , and the following lemma.

Lemma A.2. Under any BEP(τα, κ, β) dynamic with κ sufficiently large and at any state x ∈ X
with xi ∈ [1 − 1

3b, 1), we have ẋi > 0.

Proof. By the choice of b, a revising agent with strategy i in his test set will choose strategy
i if when testing each strategy j in his test set, the fraction of those encountered playing
strategies other than i is at most b. Then a necessary condition for his choosing some
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other strategy is that there be a strategy in his test set for which this fraction exceeds b.
Thus, letting Qκb (x) denote the probability that when testing a given strategy, the fraction
of those of those encountered playing strategies other than i exceeds b, defining σκji(U, x|T)
as in (30), and using the fact that the probability of the union of events is at most the sum
of the events’ probabilities, we have

(43) 1 − σκji(U, x|T) ≤ nQκb (x).

Now let x−i =
∑

j�i xj, and suppose that

(44) Qκb (x) ≤ 1
n2 x−i.

If (44) holds, then by equations (8) and (43), the growth rate of strategy i satisfies

ẋi ≥
∑
j�i

1
nxj(1 − nQκb (x)) + xi(1 − nQκb (x)) − xi ≥ 1

nx−i

(
1 − 1

nx−i − xi

)
.

The last expression is positive when xi ∈ (0, 1).
To show that (44) holds when x−i ∈ (0, 1

3b], we use a large deviations bound. The
proof of Cramér’s theorem, along with the fact that the Cramér transforms of binomial
distributions are relative entropy functions (see Dembo and Zeitouni (1998, Theorem 2.2.3
and Exercise 2.2.23)), imply that

Qκb (x) ≤ 2 exp
(
−κ

(
b log

(
b

x−i

)
+ (1 − b) log

(
1−b

1−x−i

)))
.

Some rearranging shows that to establish (44), it is enough to prove that

(45) 2n2(x−i)κb−1b−κb exp
(
−κ(1 − b) log

(
1−b

1−x−i

))
< 1.

Since x−i ∈ (0, 1
3b], the the LHS of (45) is at most

2n2

(
b
3

)κb−1

b−κb exp(−κ(1 − b) log(1 − b)) ≤ 2n2b−1
(1
3

)κb−1

exp(κb)

= 6n2b−1
(e
3

)κb
→ 0 as κ→∞.

The inequality follows from the fact that the function f (z) = −(1 − z) log(1 − z) satisfies
f (b) ≤ b (since f (0) = 0, f ′(0) = 1, f ′′(z) < 0 on [0, 1) ). �

We prove the results from Section 5.3 before returning to those from Sections 5.1 and
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5.2.

Proof of Proposition 5.7. Write the law of motion (1) for strategy s as

(46) ẋs =
∑
j�s

xjσ js(U, x) − xs

∑
j�s

σsj(U, x),

where the conditional switch rates are given by

(7a) σi j(U, x) =
∑
T∈Si

ταi (T)

⎡⎢⎢⎢⎢⎢⎣
∑

m∈MT

⎛⎜⎜⎜⎜⎜⎝
∏
k∈S

x|m
−1(k)|

k

⎞⎟⎟⎟⎟⎟⎠ βi j(πU(m),T)

⎤⎥⎥⎥⎥⎥⎦
and (7b).

Write x−s =
∑

j�s xj. To understand the behavior of the dynamics in a neighborhood
of es, we can focus on terms of the polynomial (46) that are of order no greater than 1
in x−s. In particular, we need only look at terms of (46) in which there is at most one
xj, j � s of order 1, with the remaining terms for nonequilibrium strategies having order
0. In the initial sum in (46), because of the initial xj, the only such terms (i) have agents
only playing s in the match assignment m (implying that the revising agent chooses s). In
the last expression of (46), there are two kinds of such terms: (i) as above; (ii) those that
have exactly one opponent playing k � s in a match in m. Defining S js as in the proof of
Proposition 4.2, we can express (46) as follows:

ẋs =
∑
j�s

xj

∑
T∈S js

ταj (T)x|T|p−κs β js(πU
s ,T) −

∑
j�s

∑
T∈Ss

ταs (T)x|T|p−κ+1
s βsj(πU

s ,T)(47)

−
∑
j�s

∑
T∈Ss

ταs (T)

⎡⎢⎢⎢⎢⎢⎣
∑
k�s

p−κx|T|p−κs xk

∑
�∈T

βsj(πU
s,k@�,T)

⎤⎥⎥⎥⎥⎥⎦ +O((x−s)2),

where

(πU
s )h = vκh|s = κuh|s and

(πU
s,k@�)h =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
vκh|s = κuh|s if h � �,

vκh|k,s = (κ − 1)uh|s + uh|k,s if h = �.
(48)

The first two sums in (47) correspond to case (i) above. Since s is uniquely optimal in
πU

s we can rewrite (47) as
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ẋs =
∑
j�s

xj

∑
T∈S js

ταj (T)x|T|p−κs(49)

−
∑
T∈Ss

∑
j�s

ταs (T)

⎡⎢⎢⎢⎢⎢⎣
∑
k�s

p−κx|T|p−κs xk

∑
�∈T

βsj(πU
s,k@�,T)

⎤⎥⎥⎥⎥⎥⎦ +O((x−s)2).

The first term on the right-hand side of (49) is at leastτx−sx
|T|p−κ
s , whereτ = min j�s

∑
T∈S js
ταj (T) >

0. To prove that ẋs > 0 when x−s � 0 is small, we show that the second term in (49) is 0
by showing that βss(πU,κ

s,k@�,T) = 1 for all T ∈ Ss, k � s, and � ∈ T. For this to be true, it
is sufficient that vκs|s > vκ

�|k,s for all k, � � s (to cover cases in which � � s) and vκs|k,s > vκh|s
(for � = s). (The first cases also require vκs|s > vκh|s for h � s; this is true because s is a
strict equilibrium.) These are precisely the conditions assumed in (23). Thus ẋs > 0 when
x−s � 0 is small, proving the proposition. �

Proof of Proposition 5.9. Write the law of motion ẋ = V(x) (1) as

(50) Vi(x) =
∑
j∈S

xjσ ji(U, x) − xi,

where the conditional switch rates are given by (7a) and (7b). Write x−s =
∑

j�s xj. Assume
from this point forward that i � s.

As in the previous proof, we can focus on terms of the sum in (50) that are of order no
greater than 1 in x−s. There are two sorts of such terms: (i) those that have agents only
playing s in the match assignment m; (ii) those in which the revising agent plays s and
that have exactly one opponent playing k � s in a match in m. Noting that in the first case,
a revising agent playing s will continue to play s (since s will be in his test set), we can
express (50) as follows:

Vi(x) =
∑
j�s

∑
T∈S j

ταj (T)x|T|p−κs xjβ ji(πU
s ,T)(51)

+
∑
T∈Ssi

ταs (T)

⎡⎢⎢⎢⎢⎢⎣
∑
k�s

p−κx|T|p−κs xk

∑
�∈T

βsi(πU
s,k@�,T)

⎤⎥⎥⎥⎥⎥⎦ − xi +O((x−s)2),

with πU
s,k@� defined in (48).

Since (es)k = 0 for k � s, it follows from (51) that

(52)
∂Vi

∂xs
(es) = 0.

Focusing on the case of τall, note that β ji(πU
s , S) = 0 for i � s, implying that the first term
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in (51) is zero, and note that βsi(πU
s,k@�, S) can only be positive if � = i or � = s. Combining

these two facts with (51), we find that under τall,

Vi(x) = p−κx|T|p−κs

∑
k�s

xk

(
βsi(πU

s,k@i, S) + βsi(πU
s,k@s, S)

)
− xi +O((x−s)2),

and hence

∂Vi

∂xj
(es) = p−κ

(
βsi(πU

s, j@i, S) + βsi(πU
s, j@s, S)

)
− 1[ j = i] for j � s.(53)

Assumption (26) ensures the terms in parentheses in (53) are 0 when i � s is not less than
j. Thus ∂Vi

∂xj
(es) = 0 when i � s is greater than j, and ∂Vi

∂xi
(es) = −1.

To complete the proof, we change the state space of the dynamic ẋ = V(x) from
the simplex X to the set Y = {y ∈ Rn−1

+ :
∑

i yi ≤ 1} by leaving off the sth component
of both x and V(x) but retaining the labels of the remaining coordinates: that is, x �→
(y1, . . . , ys−1, ys+1, . . . , yn)′ = (x1, . . . , xs−1, xs+1, . . . , xn)′. The transformed dynamic can be
expressed as ẏ =W(y), where

(54) Wi(y) = Vi

(
y1, . . . , ys−1, 1 −

∑
i�s

yi, ys+1, . . . , yn

)
.

and the equilibrium x = es is sent to y = 0. Thus the Jacobian of the transformed dynamic
at the transformed rest point 0 has components

(55)
∂Wi

∂yj
(0) =

∂Vi

∂xj
(es) − ∂Vi

∂xs
(es), i, j � s.

Combining (55) with our previous arguments shows that ∂Wi
∂yj

(0) = 0 when j � i is less than

i and that ∂Wi
∂yi

(0) = −1. Thus DW(0) is an upper diagonal matrix with all diagonal elements
equal to −1. Therefore all eigenvalues of DW(0) are −1, and so 0 is asymptotically stable
under ẏ =W(y), which implies in turn that es is asymptotically stable under ẋ = V(x). �

Proof of Proposition 5.11. For part (i), note that since Uss > Uij for all i, j � s, any match
assignment r in which the revising agent tests s against an opponent playing s will lead
to him to choose s. Since such r have total probability xs, we have

ẋs =
∑
j∈S

xjσ js(U, x) − xs ≥
⎛⎜⎜⎜⎜⎜⎜⎝
∑
j∈S

xj

⎞⎟⎟⎟⎟⎟⎟⎠ xs − xs = 0.

Turning to part (ii), let x be a state with xs ∈ (0, 1). Then there is a j∗ � s such that
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xj∗ > 0. By assumption, for each i � s, either Usj∗ > Uis or Usj∗ > Uij∗ . Let R ⊂ T � {s} be
the set of strategies i for which the first inequality holds. Consider the match result r ∈ Sn

defined by ri = s for i ∈ R and ri = j∗ for i � R. Then match result r leads a revising agent
to choose s. The definition of τall and (7) then imply that

ẋs =
∑
j∈S

xjσ js(U, x) − xs

≥
⎛⎜⎜⎜⎜⎜⎜⎝
∑
j∈S

xj

⎞⎟⎟⎟⎟⎟⎟⎠
(
xs + xn−|R|

j∗ (xs)|R|
)
− xs

= xn−|R|
j∗ (xs)|R|

> 0,

completing the proof.
For part (iii), following the proof of (i), we obtain

ẋs =
∑
j∈S

xjσ js(U, x) − xs ≥
⎛⎜⎜⎜⎜⎜⎜⎝
∑
j∈S

xj

⎞⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎝xs +

∑
j�s

xn
j

⎞⎟⎟⎟⎟⎟⎟⎠ − xs =
∑
j�s

xn
j .

where the terms xn
j correspond to the probability of match assignments such that the

revising agent tests each of his n strategies against an agent playing strategy j � s, leading
to the choice of the dominant strategy s. It follows then that ẋs > 0 if xs < 1, proving the
result. �

Proof of Proposition 5.1. Writing

ẋs =
∑
j�s

xjσ js(U, x) − xs

∑
j�s

σsj(U, x)

and using the logic from the proof of Proposition 5.7, we express ẋs as follows:

Vs(x) =
∑
j�s

xj

∑
T∈S js

ταj (T)x|T|p−κs β js(πU
s ,T) −

∑
j�s

∑
T∈Ss

ταs (T)x|T|p−κ+1
s βsj(πU

s ,T)(56)

−
∑
j�s

∑
T∈Ss

ταs (T)

⎡⎢⎢⎢⎢⎢⎣
∑
k�s

p−κx|T|p−κs xk

∑
�∈T

βsj(πU
s,k@�,T)

⎤⎥⎥⎥⎥⎥⎦ +O((x−s)2).

The first two terms correspond to cases in which all agents in the match assignment play
s. Since after such an assignment the revising agent chooses s, (56) simplifies to
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ẋs =
∑
j�s

xj

∑
T∈S js

ταj (T)x|T|p−κs(57)

−
∑
T∈Ss

∑
j�s

ταs (T)

⎡⎢⎢⎢⎢⎢⎣
∑
k�s

p−κx|T|p−κs xk

∑
�∈T

βsj(πU
s,k@�,T)

⎤⎥⎥⎥⎥⎥⎦ +O((x−s)2).

Define Sαs = {T ⊆ S : s ∈ T, |T| = α} and define Sαjs analogously. Then using the facts
that ταj (T) = ( n−1

α−1 )−1 and |Sαjs| = ( n−2
α−2 ), we obtain

ẋs =
α − 1
n − 1

x|T|p−κs x−s −
∑
T∈Sαs

∑
j�s

( n−1
α−1 )−1

⎡⎢⎢⎢⎢⎢⎣
∑
k�s

p−κx|T|p−κs xk

∑
�∈T

βsj(πU
s,k@�,T)

⎤⎥⎥⎥⎥⎥⎦ +O((x−s)2)

≤ α − 1
n − 1

x|T|p−κs x−s −
∑
��s

∑
T∈Sαs�

( n−1
α−1 )−1

∑
k�s

p−κx|T|p−κs xkβs�(πU
s,k@�,T)(58)

−
∑

T∈Sαs : T∩S2�∅

( n−1
α−1 )−1

∑
k�s

p−κx|T|p−κs xk

∑
t∈T∩S2

βst(πU
s,k@s,T) +O((x−s)2).

The upper bound (58) is obtained by considering two cases: (i) for some � � s in T, �
is matched once against some k � s; and (ii) test set T contains at least one second-best
strategy t ∈ S2, and when tested s is matched once against some k � s. In case (i) we also
use the fact that changing a test result for strategy � � s cannot cause strategy j � �, s to
have the best test result.

The third term in (58) (with the minus sign excluded) is smallest when S2 = {t} is a
singleton, so that its initial sum is over T in Sαst. Thus, again using the fact that |Sαsj| = ( n−2

α−2 ),
we obtain

ẋs ≤ α − 1
n − 1

x|T|p−κs

⎛⎜⎜⎜⎜⎜⎝x−s − p−κ

⎛⎜⎜⎜⎜⎜⎝
∑
k�s

xk

⎡⎢⎢⎢⎢⎢⎣
∑
��s

1[vs|s < v�|k,s] + 1[vs|k,s < vt|s]

⎤⎥⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎠ +O((x−s)2).(59)

The assumption of the proposition is that for each k � s the expression in brackets exceeds
1

p−κ . We conclude that for some c > 0, ẋs ≤ −cx−s +O((x−s)2), proving the proposition. �

Proof of Corollary 5.2. Rewrite condition (15) as

(60) p−κ

⎛⎜⎜⎜⎜⎜⎝
∑
i�s

1
[
κ − 1 <

ui| j,s − us|s
us|s − ui|s

]
+ 1

[
κ − 1 <

us|s − us| j,s
us|s − ut|s

]⎞⎟⎟⎟⎟⎟⎠ > 1 for all j � s,

Definition (16) of κ̄ ensures that this inequality holds for κ ≤ κ̄, completing the proof of
the proposition. �
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Proof of Proposition 5.4. Let ẋ = V(x) be the law of motion for the BEP dynamic, and define
V+(x) by V(x) = V+(x) − diag(x). Let J ⊆ S � {s}. Taking the derivative of (51) at x = es and
dropping some nonnegative terms, we obtain for all i, j � s that

∂V+i
∂xj

(es) =
∑
T∈S j

ταj (T)β ji(πU
s ,T) +

∑
T∈Ssi

ταs (T)p−κ
∑
�∈T

βsi(πU
s, j@�,T)

≥ p−κ
∑
T∈Ss

ταs (T)
(
βsi(πU

s, j@i,T) + βsi(πU
s, j@s,T)

)
(61)

≥ 0.

To prove part (i), we use the facts that ταj (T) = ( n−1
α−1 )−1 and |Sαjs| = ( n−2

α−2 ) to bound the
submatrix row sums of DV+(x):

(62)
∑
j∈J

∂V+i
∂xj

(es) ≥ p−κ
α − 1
n − 1

∑
j∈J

1[vκi| j,s > vκs|s] for all i � s.

Now define the change of coordinates W of V as in (54), and define W+(x) by W(x) =
W+(x) − diag(x). Equations (52) and (55) imply that

∂W+
i

∂yj
(0) =

∂V+i
∂xj

(es) ≥ 0 for all i, j � s.

Equation (62) and condition (19) from the proposition imply that (after rearranging indices)
the square block of DW+(0) corresponding to J has minimum row sum greater than 1.
Therefore, since all entries of DW+(0) are nonnegative, Horn and Johnson (1985, Theorem
8.1.22) implies that the matrix in R(n−1)×(n−1) consisting of block DW+(0) and three zero
blocks has spectral radius greater than 1, and the monotonicity of the spectral radius
in matrix entries (Horn and Johnson (1985, Theorem 8.1.18)) then implies that DW+(0)
itself has spectral radius greater than 1. A standard extension of Perron’s Theorem (Horn
and Johnson (1985, Theorem 8.3.1)) implies that the spectral radius of DW+(0) is an
eigenvalue of DW+(x) corresponding to a nonnegative eigenvector. We thus conclude that
DW(0) = DW+(0)−I has a positive eigenvalue corresponding to a nonnegative eigenvector.
We conclude that 0 is unstable under ẏ =W(y), and hence that es is unstable under ẋ = V(x).

To prove part (ii), we must bound the submatrix column sum of DV+(es). To do so note
as in the proof of Proposition 5.1 that the probability under test-α of choosing a test set
in Ss that contains at least one element t of S2 is smallest when S2 is a singleton, in which
case the probability is α−1

n−1 . If such a test set is chosen, the realized payoffs are πU
s, j@s, and

vκs| j,s < vκt|s, a revising agent will chose some strategy in S2. From this and equation (61) it
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follows that

∑
i∈J

∂V+i
∂xj

(es) ≥ p−κ

⎛⎜⎜⎜⎜⎜⎝α − 1
n − 1

∑
i∈J

1[vκi| j,s > vκs|s] +
∑
T∈Ss

ταs (T)
∑
i∈J

βsi(πU
s, j@s,T)

⎞⎟⎟⎟⎟⎟⎠
≥ p−κ

⎛⎜⎜⎜⎜⎜⎝α − 1
n − 1

∑
i∈J

1[vκi| j,s > vκs|s] + 1[S2 ⊆ J]
(
α − 1
n − 1

1[vκs| j,s < vκt|s]
)⎞⎟⎟⎟⎟⎟⎠

= p−κ
α − 1
n − 1

⎛⎜⎜⎜⎜⎜⎝
∑
i∈J

1[vκi| j,s > vκs|s] + 1[S2 ⊆ J] 1[vκs| j,s < vκt|s]

⎞⎟⎟⎟⎟⎟⎠ for all j � s.(63)

Equation (63) and condition (20) from the proposition imply that the square block of
DW+(0) corresponding to J has minimum row sum greater than 1. The reminder of the
proof is identical to that of part (i). �

Proof of Corollary 5.6. For α ≥ 
n
2 � + 1 we have α−1

n−1 >
1
2 , and then condition (20) in Proposi-

tion 5.4 implies that for κ > 1, and for κ = 1 if p− > 1, a sufficient condition for instability
is either that there is some strategy i � s with vκi|i,s > vκs|s, or that S2 = { j} and vj|s > vs| j,s.
Parts (i) and (ii) follow directly from these conditions and the relation (12) between total
payoffs and matrix payoffs. Part (iii.a) follows from (20) from setting J = {i, j}, and part
(iii.b) in the second case follows from (20) from setting J = { j}when S2 = { j}. �

Argument that components of the inflow Jacobian of the reduced dynamics at a pure rest point are
nonnegative (Section 6). At pure rest point es, after dimension reduction (see (54) and (55)),
the partial derivatives of the inflow terms of system (1) are

(64)
∂W+

i

∂xj
(0) =

∂V+i
∂xj

(es) −
∂V+i
∂xs

(es) =
(
σ ji(U, es) +

∂σsi

∂xj
(U, es)

)
−

(
σsi(U, es) +

∂σsi

∂xs
(U, es)

)
.

Since es is a rest point, we must have σsi(U, es) = 0, and hence ∂σsi
∂xj

(U, es) ≥ 0 (since (es) j = 0)

and ∂σsi
∂xs

(U, es) ≤ 0 (since (es)s = 1). Thus (64) is nonnegative.

A.3 Analyses of examples

We describe the Jacobian at rest point es after dropping the sth coordinate of the state,
changing from ẋ = V(x) to ẏ = W(y) as in equation (54), so that the rest point es is sent to
y = 0 and the Jacobian of W is described by (55). To specify the Jacobian of W at 0, we let
S2 = argmaxk�s uk|s be the set of strategies that earn the second-best payoff at es.

Lemma A.3.
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(i) The Jacobian DW(0) for BEP(τall, κ, βmin) dynamics has components

∂Wi

∂yj
(0) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p−κ 1[vκi| j,s > vκs|s] − 1[ j = i] if i � min S2 and i > s,

p−κ 1[vκi| j,s ≥ vκs|s] − 1[ j = i] if i � min S2 and i < s,

p−κ
(
1[vκi| j,s > vκs|s] + 1[vκi|s > vκs| j,s]

)
− 1[ j = i] if i = min S2 and i > s,

p−κ
(
1[vκi| j,s ≥ vκs|s] + 1[vκi|s ≥ vκs| j,s]

)
− 1[ j = i] if i = min S2 and i < s.

(65)

(ii) The Jacobian DW(0) for the BEP(τall, κ, βstick) dynamic has components

∂Wi

∂yj
(0) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
p−κ 1[vκi| j,s > vκs|s] − 1[ j = i] if i � S2,

p−κ
(
1[vκi| j,s > vκs|s] +

1
|S2|1[vκi|s > vκs| j,s]

)
− 1[ j = i] if i ∈ S2.

(iii) The Jacobian DW(0) for the BEP(τall, κ, βunif) dynamic has components

∂Wi

∂yj
(0) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

p−κ
(
1[vκi| j,s > vκs|s] +

1
21[vκi| j,s = vκs|s]

)
− 1[ j = i] if i � S2,

p−κ
(
1[vκi| j,s > vκs|s] +

1
21[vκi| j,s = vκs|s]

+ 1
|S2|1[vκi|s > vκs| j,s] +

1
|S2+1|1[vκi|s = vκs| j,s]

)
− 1[ j = i] if i ∈ S2.

Proof. We only prove part (i); the proofs of parts (ii) and (iii) are similar. The BEP(τall, κ, βmin)
dynamic is expressed as

(66) ẋi = Vi(x) =
∑

m∈MS

⎛⎜⎜⎜⎜⎜⎝
∏
k∈S

x|m
−1(k)|

k

⎞⎟⎟⎟⎟⎟⎠ 1
[
i = min

(
argmax

k∈S
πU

k (m)
)]
− xi,

where MS = {m | m : S × {1, . . . , p−} × {1, . . . , κ} → S}.
Now suppose that i � s, and consider the partial derivatives of Vi at the equilibrium

state e1. Since the match assignment in which all opponents play s leads the indicator
function in (66) to equal 0, the only summands in (66) whose partial derivatives at state
x = es can be nonzero are those in which |m−1(s)| = np−κ − 1. There are two types of
match assignments that can lead to nonzero derivatives in (66). In the first, one of the p−κ
opponents when strategy i is tested plays strategy j � s, and the remaining opponents
play s. Strategy i is best for such match assignments if vκi| j,s > vκs|s, so in this case, these
match assignments contribute p−κ (i.e., the corresponding number of summands in (66))
to ∂Vi
∂xj

(es). This contribution also occurs if vκi| j,s = vκs|s and i < s, in which case i beats s under
the βmin tiebreaker. In the second type of match assignment, i = min S2, one of the p−κ
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opponents when strategy s is tested plays strategy j � s, and the remaining opponents
play s. Strategy i is best for such match assignments if vκt|s > vκs| j,s (or if vκt|s = vκs| j,s and i < s),

contributing p−κ to ∂Vi
∂xj

(es) in this case. Accounting for these and for the −xi term in (66)
and then using (55), we obtain (65). �

Analysis of Example 5.7.
Here we analyze the stability of the strict equilibrium state e1 of the Traveler’s Dilemma

(22) under BEP(τall, κ, β) dynamics with n odd and κ = n+1
2 . For κ = n+1

2 and 1 < j ≤ i, the
only total payoff vκi j = (κ−1)ui1+uij which is not smaller than vκ11 =

n+1
2 is vκnn =

n−1
2 (−1)+n =

n+1
2 = vκ11. According to Lemma A.3, this leads to an upper triangular Jacobian with all

diagonal elements equal to −1 except possibly the last one, ∂Wn
∂yn

(0). Since the diagonal
elements are the eigenvalues of the matrix, the stability of e1 is determined by the sign of
∂Wn
∂yn

(0). For βunif we obtain ∂Wn
∂yn

(0) = n−3
4 , so e1 is unstable for odd n ≥ 5. For βstick and βmin

we obtain ∂Wn
∂yn

(0) = −1, so e1 is asymptotically stable.

Analysis of Example 5.8
Here we analyze the stability of the strict equilibrium state e1 of game (28) under

BEP(τall, κ, β) dynamics for κ = 3. The matrix v3, with elements vκi j = 2ui1 + uij, is

v3 = 2 ·
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 1 1
0 0 0
0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ +
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 0 0
0 2 0
0 0 3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
3 2 2
0 2 0
0 0 3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
By Lemma A.3 and the fact that v3

11 = 3, the Jacobian for the BEP(τall, 3, βunif) dynamic is

DW(0) = 3 ·
⎛⎜⎜⎜⎜⎝0 0
0 1

21[3 = 3]

⎞⎟⎟⎟⎟⎠ −
⎛⎜⎜⎜⎜⎝1 0
0 1

⎞⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎝−1 0

0 1
2

⎞⎟⎟⎟⎟⎠ ,

so the strict equilibrium e1 is unstable. For the BEP(τall, 3, βmin) and BEP(τall, 3, βstick)
dynamics, the Jacobian is

DW(0) = 3 ·
⎛⎜⎜⎜⎜⎝0 0
0 0

⎞⎟⎟⎟⎟⎠ −
⎛⎜⎜⎜⎜⎝1 0
0 1

⎞⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎝−1 0

0 −1

⎞⎟⎟⎟⎟⎠ ,
so e1 is asymptotically stable.
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Miȩkisz, J. and Ramsza, M. (2013). Sampling dynamics of a symmetric ultimatum game.
Dynamic Games and Applications, 3:374–386.

Osborne, M. J. and Rubinstein, A. (1998). Games with procedurally rational players.
American Economic Review, 88:834–847.

Oyama, D., Sandholm, W. H., and Tercieux, O. (2015). Sampling best response dynamics
and deterministic equilibrium selection. Theoretical Economics, 10:243–281.

Ramsza, M. (2005). Stability of pure strategy sampling equilibria. International Journal of
Game Theory, 33:515–521.

Rosenthal, R. W. (1981). Games of perfect information, predatory pricing and the chain-
store paradox. Journal of Economic Theory, 25:92–100.

Rowthorn, R. and Sethi, R. (2008). Procedural rationality and equilibrium trust. The
Economic Journal, 118:889–905.

Sandholm, W. H. (2001). Almost global convergence to p-dominant equilibrium. Interna-
tional Journal of Game Theory, 30:107–116.

Sandholm, W. H. (2010a). Pairwise comparison dynamics and evolutionary foundations
for Nash equilibrium. Games, 1:3–17.

Sandholm, W. H. (2010b). Population Games and Evolutionary Dynamics. MIT Press, Cam-
bridge.

Sandholm, W. H. (2014). Local stability of strict equilibrium under evolutionary game
dynamics. Journal of Dynamics and Games, 1:485–495.

–43–



Sandholm, W. H., Izquierdo, S. S., and Izquierdo, L. R. (2017). Best experienced payoff
dynamics and cooperation in the Centipede game. Unpublished manuscript, University
of Wisconsin, Universidad de Valladolid, and Universidad de Burgos.

Schaffer, M. E. (1988). Evolutionarily stable strategies for a finite population and a variable
contest size. Journal of Theoretical Biology, 132:469–478.

Schlag, K. H. (1998). Why imitate, and if so, how? A boundedly rational approach to
multi-armed bandits. Journal of Economic Theory, 78:130–156.

Sethi, R. (2000). Stability of equilibria in games with procedurally rational players. Games
and Economic Behavior, 32:85–104.

Smith, M. J. (1984). The stability of a dynamic model of traffic assignment—an application
of a method of Lyapunov. Transportation Science, 18:245–252.

Taylor, P. D. and Jonker, L. (1978). Evolutionarily stable strategies and game dynamics.
Mathematical Biosciences, 40:145–156.

Weibull, J. W. (1995). Evolutionary Game Theory. MIT Press, Cambridge.

Zusai, D. (2018). Gains in evolutionary dynamics: a unifying approach to stability for
contractive games and ESS. Unpublished manuscript, Temple University.

–44–


