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Abstract

The efficiency of the analytical methods based dmational spectroscopy has been
widely verified in a high number of publications. dddition, it has been recognized that
the pretreatment of the original signals is absbjubecessary to obtain enough quality
in the subsequent classification and/or regressmmalels. In fact, an inappropriate
pretreatment makes the results worse. It is algwssible to give “a priori” rules that
guarantee the adequacy of a pretreatment for spéaifa.

The effect of the pretreatments is evaluated thraigir impact on the quality of the
classification and /or regression models built fritam due to the double dependence
(on the data and on the purpose of the analysi®.effect of the pretreatment has been
evaluated using partial least squares regressibBRIP in some works and the root
mean squares in prediction or in cross-validatias been always used as a criterion to
evaluate the regression in all these cases. Howg\sems appropriate to use quality
criteria of the calibration of the analytical meththrough the figures of merit: the
significance of the regression, the absence oftaah®r proportional bias, the residual
standard deviation, the mean of the absolute vabiethe relative errors and the
capability of detection.

In this work, the use of these analytical critenia desirability function is proposed for
the first time with calibration data of oxybenzooletained by ATR-FTIR and PLSR.

! Corresponding author. Telephone number: +34-94525.E-mail addressmcortiz@ubu.es
(M.C. Ortiz).

Z Attenuated total reflectance-Fourier transformaréd (ATR-FTIR), oxybenzone (BP3),
capability of detection (Cf) data preprocessing (DP), design of experiment&jPdirect
orthogonal signal correction (DOSC), extended rplitiative scatter correction (EMSC),
infrared (IR), latent variable (LV), multiplicativecatter correction (MSC), near infrared (NIR),
orthogonal signal correction (OSC), partial leagtages regression (PLSR), root mean square
error (RMSEC), root mean square error of crossadibon (RMSEC_CV), Standard error in
prediction(SEP), standard normal variate (SNV).
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This desirability function enables to choose thestbpretreatment among the 39
possibilities studied. In addition, it is shown tthlae same optimum is not obtained if
the minimum of RMSEC_CV is considered as a criterio
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1. Introduction

Data preprocessing (DP) has been recognized asiclcstage for high dimensional
data analysis, particularly for data obtained usiigational spectroscopy techniques.
There are a lot of scientific works about differ@R methods which can be classified in
two large groups: i) pretreatment by means of @timal projections to extract the
relevant information of a training set [1] usingr@wspectra and information extracted
from experimental design and calibration datades includes the Orthogonal Signal
Correction (OSC) family; ii) pretreatment by tramshation of the spectral signal
removing undesired physical phenomena [2,3]. Tdss$ §roup can be divided into two
categories. The first one, scatter correction,udes Multiplicative Scatter Correction
(MSC), Inverse MSC, Extended MSC (EMSC) [4,5], Exted Inverse MSC,
normalization, and Standard Normal Variate (SNWeTsecond group belongs to the
spectral derivatization group which includes therrd¢eWilliams derivatives and
Savitzky-Golay polynomial derivatives. The relatibatween MSC and SNV [6] has
been studied because are the pretreatments mogiy@apn practice, also their effect
on the signals [7] and the chemical interpretapiit pretreated spectra [8]. At the same
time, there are different review articles [5,9] anmthny tutorials that have been
published to show the practical aspects of using foP example with near infrared
(NIR) [2], Raman and infrared (IR) [3,5,10,11] dtemuated total reflectance-Fourier
transform infrared (ATR-FTIR) [12] data.

However, despite the emphasis on the importandbeopretreatment of spectra data,
there are few contributions on the search of thena pretreatment for a data set. The
critical revision of the most common three strategused for the data pretreatment
concludes thatall three have serious drawbacks: they may be ‘woesuming beyond
practicability or may provide misleading resul{d'3]. Then, it is necessary to consider
jointly successive types of pretreatment. For teason, J. Engelt al.[13] have used a
search space formed by 7x10x10x7 pretreatmentsafseline, scatter, noise, smoothing
and scaling/transformations, respectively. Othprétreatments are added for OSC and
Direct Orthogonal Signal Correction (DOSC). A smnilstrategy includes binning,
smoothing, normalization and baseline correctioth\8628 different pretreatments that
could be partially permuted [14]. In other workperimental design (DoE), specifically
a full factorial (2), is used as a strategy to explore the effeche$e same types of
pretreatments [15]. In reference [16] this stratdgy pretreatment is linked with
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variable selection to improve the interpretationd aime predictive capacity of a
regression model. On the other hand, a factorisigde? is used with three different
methods applied in variable selection to the foatneatments selected in [17]. A D-
optimal design to optimize the pretreatment in ¢hredermediate stages is also used for
a metabolomic data fusion of urine and serum in.[18

Many works analyse or optimise the data pretreatrbefore applying a classification
technique. In general, a criterion to evaluate ttlassifier (e.g. the % of

misclassification) is used. Only H.J. Butlet al. [14] used several criteria combined
additively in one unique value.

The need for carrying out a pretreatment of thectspeprovided by vibrational
spectroscopic techniques before applying a regnessethod, which is usually a Partial
Least Squares Regression (PLSR), is completelyptedeln the literature consulted,
the effect of changing the pretreatment is analybeough the change caused in the
PLSR quality parameteri this case, Root Mean Square Error of PredictRMSEP)
[15,17], Root Mean Square Error of Cross-ValidatRMSEC CV) [16] and a
estimation of Root Mean Square Error (RMSEC) basedootstrap [2] are used. In
these works, the use of quality criteria of an i@l method evaluated by means of
the regression “predicted concentration with Ph@Rsustrue concentration of the test
sample”, which is named as the accuracy line imipt®n, is not tackled. This work
proposes to study the effect of the pretreatmertherguality parameters of the PLSR
model and on the accuracy line in prediction by mseaf ATR-FTIR data of the
determination of oxybenzone, benzophenone-3 (BBB}R is an additive used in the
manufacture of sunscreen cosmetic creams and terndeation by ATR-FTIR is
possible due to the amount found in creams.

2. Material and methods
2.1 Chemicals

2-hydroxy-4-methoxybenzophenone (oxybenzone, CASLBd-57-7, 98% purity) was
purchased from Sigma-Aldrich (Steinheim, Germany).

Ethanol (96% vol., CAS no. 64-17-5, HiPerSolv CHRABNDRM®, gradient grade for
HPLC) was supplied by VWR International (Radnornisylvania, USA) and acetone
(CAS no. 67-64-1) for liquid chromatography Lichobs® was from Merck KGaA
(Darmstadt, Germany).

2.2 Standard solutions

A stock solution of BP3 at 30275 mg'lwas prepared in ethanol and intermediate
solutions at concentrations of 5000, 10000, 15080 20000 mg L* were prepared
from that stock solution in ethanol as calibratistandards. All solutions, whose
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weights were controlled to verify that the solvéaid not evaporated, were stored in
crimp vials at 4°C and protected from light. Thabdity of the solutions of BP3 has

been verified by GC/MS, being the stock and intetiaie solutions of BP3 stable for

15 days as can be seen in ref. [19].

2.3. Instrumental

An Agilent Cary 630 FTIR spectrometer coupled @6n&se ATR module for measuring
liquids samples (Agilent Technologies, Santa Cla@®, USA) was used to perform the
analyses. The number of reflections of the cryst#th this module was 5. The main
optical unit dimensions were only 16 x 22 x 13 drhe Cary 630 FTIR spectrometer
contained a unique Michelson interferometer.

The spectral range to collect the absorbance sigaalfrom 650 to 4000 chwith 32
scans and the spectral resolution was fixed to 4 asing Happ-Genzel as apodization
function [20]. The method gain was set at 255.

2.4. Steps to measure the sample

First, air collection as background was selecteth ii6 scans. The background was
collected at the beginning of the sequence andag wot measured again between
samples. Then, a volume of 100 pL of the sample puson the crystal. In this step,
the absorbance signal was collected. Finally, toloeents (ethanol and acetone) were
used to clean the crystal using delicate task wiféimwipes®, from Sigma-Aldrich).
A volume of 100 pL of ethanol was put on the criystad the signal was recorded to
check if the crystal was clean.

2.5. Software

MicroLab PC, version 5.3.1748 (Agilent Technologidac.) with Data Analysis
software was used for acquiring data. The diffeqgnetreatments of the signals and
PLSR models were performed with the PLS_Toolbox] [@4ed under MATLAB
environment [22]. The regression models were fittad validated using
STATGRAPHICS Centurion XVI [23]. Capability of det#on (C) was calculated
using the DETARCHI program [24].

3. Calculations
3.1. Data

A wide calibration range and few concentration Isweere used as in routine analyses.
The calibration set was made up of four samplesoatentrations of 5000, 10000,
15000 and 20000 mg“Lof BP3 and a blank. The test set was made uphef samples
of the same concentrations of BP3 which were pegpagain and independently of the
calibration standards. The matrix dimensions irhlmaises arexd.798.
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3.2. Pretreatment

The introduction section described different datetneatments. In this work, the most
common data pretreatment is chosen for ATR-FTIRctspscopy data with liquid
samples:

1) Multiplicative Scatter Correction (MSC) or Stamd Normal Variate (SNV) to
correct the scattering signal.

2) Savitzky-Golay smoothing (SG) with windows of (d¥ 25) points, a second order
polynomial and second derivative.

3) Mean centering or Autoscaling for scale coratti

In addition,the possibility of applying only one, two or no mmstion has been included.
Scaling is the only pretreatment of the three ahescribed above that is not directly
related to the elimination of any signal artefdcscaling is used, it should be the last
step of the pretreatment because its effect isitky the statistical scale of the variables
(mean and/or variances). Therefore, if scaling 9eduprior to scatter correction, the
scaling effect will be partially attenuated by gwatter correction method. However, the
other two steps may be changed in order. This neaynportant, e.g., the effect of
exchanging the MSC and SG pretreatments is cheickesf. [25]. Table 1 shows the
code of the different pretreatments used. By wagxaimple, the code "253" means that
SNV has been applied in the first step, Savitzkya@@moothing with windows of 15
points in the second step, and Autoscaling in #s¢ $tep. The code “141” means that
no pretreatment has been performed. When the chaingeder between scatter and
smoothing is considered, duplication must be awbigben one of them is not applied.
By way of example, the pretreatment “153” (whichame using the code of Table 1: do
not apply scatter correction, SG with 15 points atoscaling) would be the same
pretreatment as "513". Therefore, only a total ®fd&ferent pretreatments have been
applied.

Given a set of spectra,$=1,.., n (e.g. a set of calibration samplesi), [& shows that
there is a linear relationship between each spectransformed by SNV and the one
transformed by MSC, although that linear relatiopsis different for each ;S
Therefore, the pretreated spectra are similar éxéep a rotation and an offset
correction and it is generally assumed that “MS@ 8NV are the same for the most
practical applications” [9,26] but the results acg always very similar. Fearn et al. [7]
obtained “very different results when NIR specttata were pre-treated with SNV and
MSC, the former leading to a striking ellipsoiddtusture in a plot of principal
component scores and the latter to a plot with mexigeme outliers”. In addition, ref.
[8] shows that MSC (and other pretreatments ofsdi@e family including non-linear
approaches as EMSC) produces a shift along thalsmafile which leads to artefacts
in the principal component analysis of the specBath pretreatments have been
included since the aim of this work is the analydishe effect of the pretreatments on



the PLSR calibrations and there are no comparatudies in literature about the
differences caused by SNV and MSC in the figuresefit.

<Table 1>

3.3. PLSR model

The PLSR model is built with the training data seid each of the 39 different
pretreatments. The number of latent variables esahe that provides the minimum
RMSEC_CV with leave-one-out as cross-validationed,ithe model is applied to the
test set. In both cases, Hotellingsahd Q-residual statistic at a 95% confidence level
are used to check if there is any outldo. outlier data was found in the built models.

4. Results and discussion
4.1. Effect of the pretreatment on PLSR models

Table 2 shows all the pretreatments with diffeiaefdrmation about the PLSR models.
The second column of this table indicates the nurmbéatent variables in the model,
whereas root mean square in calibration (RMSEC) and cross-validation
(RMSEC_CV) are collected in the third and fourthuoons, respectively. In addition,
standard error in prediction (SEP) has been cdkxdila

<Table 2>

The pretreatments with Savitzky-Golay smoothinghwitindows of 15 points and
without scaling (codes 151, 251 and 351) show tkatgst values of RMSEC_CV, SEP
and RMSEC. On the other hand, the pretreatmentsuitSavitzky-Golay smoothing
and no autoscaling (codes 342, 341, 241, 242, hd2141) show the lowest values of
RMSEC_CV with values between 2881.7 and 3002.9, ibtdrmediate values of
RMSEC (between 900 and 1000). In those casesgtbeti®n of scatter correction (1, 2
or 3 in the first position of the code) is indiféet. The effect of no scaling or mean
centering (1 or 2 in the third position of the cpdevery small and it is only observed
when the scatter correction is used, in which casan centering provides better values
of RMSEC, RMSEC_CV and SEP, but increases ERRQRasd C@. The absolute
minimum is achieved with a value of 2881.7 of RMSEXY with the pretreatment 342.

4.2. Effect of the pretreatment on the figures efinof the analytical method

In the scope of chemical analysis, it is importanvalidate the calibration model of an
analytical method as well as to obtain the figusemerit. The statistical procedure for
this task can be found in reference [27]. It iigsting to know, through the PLSR
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model, the impact on these figures of merit to et the different pretreatments
carried out. First, the PLSR model is built; theéhe regression line "predicted

concentration with PLSRersustrue concentration of BP3" which is known as accura

line is validated. The test set samples of thegeessions were not used to build the
previous PLSR model.

Table 2 shows the parameters of the accuracy imeslumns 6, 7, 8 and 9 such as the
correlation coefficient (r), residual standard d@dan (sx), intercept () and slope (9,
respectively.

4.2.1. Significance of the accuracy line

The hypothesis test to evaluate the significandé®ficcuracy line involves:
Ho: the regression does not explain a variance bitger the residual.

Ha the regression explains the variability of thep@nse, so the regression is
significant.

The null hypothesis (§) is rejected if the p-value of test is lower tHa05, in which
case the alternative hypothesis,)(ik accepted. Table 2 shows the p-values of the
significance test (p-s, column 10) which are sigatit and K is rejected. These results
are coherent with the correlation coefficients whiave values between 0.96 and 1.00
(Table 2, column 6).

4.2.2. Bias of the accuracy line

The accuracy line should have the intercept equaleto and the slope equal to one.
Otherwise, the analytical procedure has constafoaproportional bias.

The hypothesis test is the following one (page d#Ef. [27]):
Ho: intercept and slope are equal to zero and ospentively (=0 and h=1).
Ha: is not the case, the accuracy line is biased.

The null hypothesis (§) is rejected if the p-value is lower than 0.05wihich case the
alternative hypothesis @His accepted. Table 2 shows the p-values (p-Rincol11).
The nine pretreatments with Savitzky-Golay smoahaith windows of 15 points (all
of them marked with number 5 in the second positibthe code in PRET of Table 2)
show values lower than 0.05, thereforg,i¢irejected.

These pretreatments (151, 152, 153, 251, 252, 3253, 352 and 353) are not
considered acceptable from an analytical pointiedvyin addition, the greatest values
of RMSEC_CV and SEP are among them.

4.2.3. Relative error



All the pretreatments (39) are evaluated by themuddhe absolute value of the relative
error, ERROR (see Table 2, column 12) which isudated through the concentration
of BP3. The lowest value of ERROR (11.1%) is redchwth the pretreatments 631,
532 and 531. In the three cases, a noise corre¢8anitzky-Golay smoothing with
windows of 15 or 25 points) is applied first, thanscatter correction (MSC) is
considered and, finally, a mean centering in oneéhefn. These three pretreatments
have nearly the same value, 4742, of RMSEC_CV enupper half of the range of
values of this parameter. In addition, the valu&BP is 2881 in the three cases and 18
pretreatments have a value of SEP lower than ties o

4.2.4. Capability of detection

Finally, the capability of detection (PLis another analytical criterion which is defined
by ISO 11843 Part 1 and 2 [28,29] and IUPAC [30thessmallest concentration of the
substance that may be detecteg,with the probabilities of false positive)(and false
negative f) fixed at 0.05."Capability of detection is the smallest value ltd het state
variables which can be detected with a probabihtyl —f as different from zero'This
parameter is considered as the hypothesis testrewhés the probability of false
positive andp is the probability of false negative. 1ISO 11843ires » which is
equivalent to C@ in IUPAC. In this specific case, GGs the amount of BP3 such that
there is a probability of andp of 0.05 to get a false positive and false negategeilt,
respectively. Table 2 (column 13) contains thepCelues and shows that the
pretreatment has an important effect, since theesatanged from 88 to 23062 mg.L
Therefore, the pretreatments 533, 633, 263 ang6Adde the minimum values.

4.3. Visualizing the conflict caused by the pretmeants
4.3.1. Parallel coordinates

The representation of the parallel coordinatesllaf@umns in Table 2 enables a joint
interpretation of the results and the visualizatadnthe conflict with all the criteria
caused by different pretreatments of the ATR-FTitals.

The vertical axes, Figure 1, show the variablesotdmn 3 to 13 of Table 2 which have
been described in sections 4.1 and 4.2. The ravfgée variables are very different, so
they have been scaled between 0 to 1; otherwiseutd be impossible to visualize the
individual values of each of them. However, theresponding minimum and maximum
values are indicated at the end of each axis tavsthe relative position of each

represented value. The values obtained in eachepteient for each of the 11 variables
are joined by a polygonal line. The grey lines shinv 9 pretreatments that led to
biased calibrations in section 4.2.2.



The continuous red line shows the pretreatments &4l 342) that make RMSEC_CV
minimum. Both lines coincide in all the variabldhe dashed red lines correspond to
the pretreatments (143 and 162) that make SEP mmimhich differ in RMSEC_CV
and ERROR and less ipggnd CG.

The overlapping green lines show three pretreatneoit biased and with less ERROR
(section 4.2.3). These pretreatments (531, 532681) have RMSEC_CV values far
from the minimum. The same goes for the correspandialues of g and CQ.
Therefore, the pretreatments that minimize the mefathe absolute values of the
relative errors in prediction do not provide minimwalues of RMSEC_CV or SEP.

The magenta lines highlight four pretreatments withlowest C@ (better capability of
detection) values (section 4.2.4). These pretrean@63, 622, 533 and 633) do not
have minimum values of RMSEC_CV or SEP. Howevezs¢hpretreatments reach the
minimum value of & but not of the ERROR since they take differentueal in that
variable.

From the analysis of the data of Table 2 and ofjigghical version in Figure 1, it can
be concluded that: (1) minimizing the quality anide of the PLS regression
(RMSEC_CV and SEP) does not lead to minimize thedyéioal quality criteria (g,
ERROR and C@), and (2) a minimum of the three analytical qyabtiteria is not
obtained simultaneously.

Figure 1 shows other general aspects, for exartipegeneral contradictory behaviour
between RMSEC and RMSEC_CV. The black line in Fegar corresponds to no
pretreatment of the data (code 141) and it is oesethat most of the pretreatments
make RMSEC_CV worse as already explained [13,1%le Bame effect can be
observed in SEP even i SERROR and C£but in a lower degree in these last cases.

<Figure 1>
4.3.2 Principal component analysis

It has been proved that the pretreatments thatigeothe minimum value of each
variable do not share any pattern or characterifticdescribe globally the behaviour of
the variables with regard to the pretreatments,riacipal component analysis of
RMSEC, RMSEC_CV, SEP, r,s b, b, ERROR and Cg£ is useful. Once the

variables have been autoscaled, a 87.9 % of thancar is explained with 3 PC. The
evolution of the eigenvalues and the percentagexplained variance are contained in
Table 3.

<Table 3>

The loadings of the original variables in the fitstee components are displayed in
Figure 2. As can be seen in Figure 2a, the vasabddated to the accuracy line
(ERROR, g, and C@) have little correlation and the same happens RMSEC with

respect to RMSEC_CV and SEP. Therefore, there idireztion in the space of the
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principal components linked exclusively to one tygethe variables, either those that
define the quality of PLSR, or those that define @inalytical quality of the method.

Figure 2b contains the loadings of the first aricdtbomponent. As can be seen in this
last figure, RMSEC is not related to the rest @& Wariables in this projection plane. To

sum up, when the variability of the different pegtiments is studied, it is necessary to
consider the joint contribution of the variablgg ERROR and Cg

<Figure 2>
4.4 A Multicriteria solution

The quality criteria of the analytical method arsalg in section 4.2 are two p-values
corresponding to the significance tests of thebeation line (p-s), and the joint one for
the intercept and of the slope (p-F). On the otteerd, the rest of the criteria are the
correlation coefficient (r), the residual standaeliation (s.), the intercept (), the
slope (k), the mean of the absolute value of the relativere (ERROR) and the
capability of detection (CE).

Section 4.3 has shown that it is not possiblerid & pretreatment that optimize all of
them simultaneously. Therefore, a desirability tiorc of Derringer [31] built with
these criteria is proposed to minimizg, £RROR and Cg and it is also combined
with the conclusion of the two hypothesis tests.

The hypothesis tests are a very useful tool in ¢bananalysis [32] but the p-values
cannot be used quantitatively as an index of thgrese of validity of the null or
alternative hypothesis [33]. Therefore, only theult of the test will be considered
instead of taking into account the p-values (p& i), that is, if the null hypothesis is
rejected or accepted. Therefore, two binary vaesbll i=1,2, will be assigned. A
significance level oft =0.05 is considered as usual for the two tesis asction 4.2.1
and 4.2.2. In particular avill have the value of 1 if p-s is lower thand, will have the
value of 1 if p-F is greater than If the accuracy line is not significant or thésebias,
the product of these functions will be zero.

The individual desirability functionszdd, and & to minimize g, ERROR and Cg;
respectively, are defined in the same wayldf the value of the variable is below the
10" percentile of the data;=D if the value of the variable is over the"#%ercentile of
the data and;ds a linear function between both values if théugaof the variable is
between them. The choice of the thresholdd' @&d 18" percentiles) is subjective and
the value of the desirability is modified when thaye changed but not the order, in
particular, the pretreatment in which the minimumd anaximum are reached.

Finally, each pretreatment is evaluated with thebgl desirability function
D=d, xd,xd¥*xd**xd!° The weighting of the three figures of merit isgative,
but it does not seem conceptually that one of tleemore important than the other ones
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in this problem. ERROR and @Cave a direct analytical meaning, byt affects the
accuracy in the determination. To sum up, a pretreat will have desirability equal to
zero if it causes a biased or non-significant aacyiline and if one or more of thg,s
ERROR and C@ values are in the corresponding upper quartile.

The result is shown in Table 4, being 622 (S-G dinag, window 25 pt/SNV scatter
correction/Mean centering) the pretreatment whigtinaizes the figures of merit of the
method. On the other hand, the pretreatments thatide the lowest values of
RMSEC_CV (342, 341, 241, 242, 142 and 141, sedlid) have a value of global
desirability equal to zero since they are in thpargjuartile in at least one of the figures
of merit (5x, ERROR and Cg). The 9 pretreatments that lead to a biased acglirse
have also desirability equal to zero (section 4.Z.Be five pretreatments with a value
of desirability greater than or equal to 0.90 (6832, 163, 263 and 363) share a
smoothing with windows of 25 points which is mortfeetive if it is done first.
Regarding the scatter correction, it can be seanttle SNV pretreatment gives lower
global desirability values than MSC when it is apghlafter smoothing and keeping the
rest of the pretreatments the same. This tendenversed when the correction of the
dispersion is applied first.

<table 4>
5. Conclusions

The effect of 39 different pretreatments which coreld scatter, noise and scaling
correction on ATR-FTIR signals for the determinataf oxybenzone was studied.

The pretreatments behave in a different way ifet@uation is about the quality of the
PLSR models or over the quality parameters of thedyéical procedure. In addition,
some PLSR models provide biased results in theracgdine, so it is important to
consider both evaluations to select the best @etrent.

The proposal is to work jointly with the quantitedi criteria of the calibration in
prediction (mean of absolute values of relativemsrresidual standard deviation, and
capability of detection) by means of a desirabifimction which also includes the
significance of the regression and the absencesf b

The procedure could be applied to other calibrairatependently of the multivariate
regression model because the criteria depend cactheacy line.
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FIGURE CAPTIONS

Figurel

Figure 2

Parallel coordinates plot of the values of thelify variables of the
PLSR model and the accuracy line. The codificatibmariables is the
same as in Table 2.

Principal component analysis of the variables IGSRMSEC_CV,
SEP, 1, &, o, b;, ERROR and Cgof Table 2. A) Loadings on the first
and second PC and B) loadings on the first and (.
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Table 1 Pretreatments and their codification.

Code / Scatter correction Code / Noise correction Code/ Scaling

1 No scatter correction 4 No noise removal 1 No scaling

2 SNV 5 S-G smoothing, window 15 points 2 Mean centering
3 MSC 6 S-G smoothing, window 25 points 3 Autoscaling

SNV, Standard Normal Variate; MSC, Multiplicative Scatter Correction; S-G, Savitzky-Golay.



Table 2 PLS models and accuracy line (see the pretreatments codification in Table 1)

PRET L. RMSEC RMSEC CV  SEP r Six bo by p-s pF  ERROR CCB
141 3 994.02 300291 242231 09709 17037 4020 0757 000590 0.118 244 12687
142 2 99057 2967.13  2367.66 09705 17461 3976 0770 0.00610 0.126 249 12790
143 2 1098.44 348776 177656 09853 13100 2755 0.827 000210 0154 160 8928
151 2 177922 626601 496547 09650 9433 7150 0380 000780 0004 381 13975
152 2 167.99 568447 388048 09747 10967 5884 0524 000480 0013 338 1179
153 2 8947 434381 308947 009803 11606 4476 0630 000330 0031 220 10376
161 2 912.70 471750 237571 09806 13460 3334 0738 000320 0100 118 10279
162 1 660.33 406157 173471 09885 11469 2509 0820 000150 0.141 128 7883
163 2 738.88  3751.92  2276.04 1.0000 63.7 0 1.000 000001 1000 145 359
241 3 899.14 288914 227284 09766 15427 3795 0767 000430 0108 227 11331
242 2 900.19 2889.48 227166 09766 15418 3794 0768 0.00430 0108 227 11323
243 2 86546  3864.61  2480.90 09686 17628 4225 0753 000660 0.113  27.4 13202
251 2 174041 6257.89  4939.87 09666 ~ 927.7 7101 0383 000730 0004 378 13637
252 2 10520 597419  4230.66 09734 10245 6322 0477 000520 0008 342 12113
253 2 8407 431610 314811 09797 11636 4534 0623 000350 0030 221 10533
261 2 928.66 472640  2361.94 09807 13481 3310 0740 000320 0103 115 10265
262 1 811.85 4480.37 203353 09863 11893 2851 0778 0.00190 0109 113 8614
263 2 2053  3759.02  2462.69  1.000 2650 0 1.000 0.00001 1000  15.3 88
341 3 89952 288197 227351 09767 15394 3801 0767 000430 0107 227 11312
342 2 899.62 288171 227352 09767 15394 3801 0767 000430 0107 227 11312
343 2 79041 386169 240857 09714 16924 4140 0758 0.00580 0.107  27.3 12581
351 2 174309 625458 494396 09667 9256 7112 0383 000730 0004 378 13626
352 2 11370  5969.39 423679 009726 10386 6340 0476 0.00540 0.008 344 12292
353 2 8428 430806 315174 09798  1157.6 4554 0622 000340 0029 222 10490
361 2 91948 472054 236363 09808 13439 3319 0740 0.00320 0101 115 10240
362 2 5354 453590 211054 09889 31038 3102 0759 000140 0501 137 23062
363 2 72144 375532 246120  1.0000 63.7 0 1.000 000001 1000 154 359
521 3 36.13 614540 451896 0.9767 4664 0 1.000 0.00001 1000 342 263
522 2 36.29 614419 451984 0.9767 4685 0 1.000 000001 1.000 343 264
523 2 8434 438323 307023 09999 10889 1 1.000 0.00001 1000 225 614
621 2 1679.93 6227.64 490601 09714 210597 522 0944 000580 0917 371 12581
622 2 7431 485911  2353.86  1.0000 1563 0 1.000 0.00001 1000 125 88



623 2 34.57 6144.32 3104.53  0.9999 108.74 1 1.000 0.00001  1.000 22.3 613
531 2 958.31 474201 235593 09908  1225.76 185 0982 0.00110 0974 11.1 7039
532 2 958.60  4742.02 2355.93 09908  1226.13 184 0982 0.00110 0.974 111 7041
533 2 1210  3788.33 2577.24  1.0000 15.62 0 1.000 0.00001  1.000 17.6 88
631 2 95754  4741.76 2355.06 09908  1224.79 181 0982 0.00110 0.974 111 7033
632 2 7441  4850.72 234598  0.9999 96.06 1 1.000 0.00001  1.000 12.6 542

633 2 1212  3779.46 2530.69  1.0000 15.64 0 1.000 0.00001  1.000 17.5 88

PRET, spectra data pretreatment (see the codification in Table 1); LV, number of latent variable in the PLS model; RMSEC, Root Mean Squares Error in
Calibration and the same in cross validation, RMSEC_CV; SEP, Standard Error in Prediction; r, correlation coefficient; s, residual standard deviation; by,
intercept ; by, dope; p-s, p-value of the significance test; p-by& by, p-value to jointly test the intercept = 0 and slope = 1; ERROR (%), mean of the absolute values
of the relative error; CCP (mg L™), capability of detection with the probabilities of fase positive and false negative fixed to 0.05.



Table 3 Principal component analysis of the variables RMSEC, RMSEC_CV, SEP, s, by, b1, ERROR
and CCp

Principal Component Eigenvalue Explained variance (%) Accumulated variance (%)
1 3.943 49.29 49.29
2 2.317 28.96 78.25

3 0.773 9.66 87.91




Table 4 Global desirability (D) for each pretreatment

(PRET)
PRET D PRET D PRET D
141 0.0000 241 0.0000 341 0.0000
142 0.0000 242 0.0000 342 0.0000
143 0.2898 243 0.0000 343 0.0000
151 0.0000 251 0.0000 351 0.0000
152 0.0000 252 0.0000 352 0.0000
153 0.0000 253 0.0000 353 0.0000
161 0.2511 261 0.2521 361 0.2556
162 0.4269 262 0.3965 362 0.0000
163 0.9188 263 0.9105 363 0.8969
921 0.0000 531 0.4284
522 0.0000 532 0.4281
523 0.6529 533 0.8486
621 0.0000 631 0.4290
622 0.9761 632 0.9497
623 0.6618 633 0.8515
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HIGHLIGHTS

Signal pretreatment mostly influences the vibrational spectroscopy methods
A procedure to obtain the best pretreatment is developed for PLSR calibration
The procedure is a multicriteria strategy that models the accuracy line quality

The performance of the procedure has been proved for calibration of BP3 by ATR-FTIR
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