
Author’s Accepted Manuscript

Green determination of brominated flame retardants
and organochloride pollutants in fish oils by vortex
assisted liquid-liquid microextraction and gas
chromatography-tandem mass spectrometry

Angela G. Solaesa, José O. Fernandes, María T.
Sanz, Óscar Benito-Román, Sara C. Cunha

PII: S0039-9140(18)31202-5
DOI: https://doi.org/10.1016/j.talanta.2018.11.048
Reference: TAL19281

To appear in: Talanta

Received date: 20 June 2018
Revised date: 14 November 2018
Accepted date: 16 November 2018

Cite this article as: Angela G. Solaesa, José O. Fernandes, María T. Sanz, Óscar
Benito-Román and Sara C. Cunha, Green determination of brominated flame
retardants and organochloride pollutants in fish oils by vortex assisted liquid-
liquid microextraction and gas chromatography-tandem mass spectrometry,
Talanta, https://doi.org/10.1016/j.talanta.2018.11.048

This is a PDF file of an unedited manuscript that has been accepted for
publication. As a service to our customers we are providing this early version of
the manuscript. The manuscript will undergo copyediting, typesetting, and
review of the resulting galley proof before it is published in its final citable form.
Please note that during the production process errors may be discovered which
could affect the content, and all legal disclaimers that apply to the journal pertain.

www.elsevier.com/locate/talanta

http://www.elsevier.com/locate/talanta
https://doi.org/10.1016/j.talanta.2018.11.048
https://doi.org/10.1016/j.talanta.2018.11.048


 

Green determination of brominated flame retardants 

and organochloride pollutants in fish oils by vortex 

assisted liquid-liquid microextraction and gas 

chromatography-tandem mass spectrometry  

 

Angela G. Solaesaa, José O. Fernandesb* María T. Sanza, Óscar Benito-Romána, Sara 

C. Cunhab* 

 

a
Department of Biotechnology and Food Science (Chemical Engineering Section), University of 

Burgos, 09001 Burgos. Spain 

b
LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University 

of Porto, Portugal 

*LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University 

of Porto, Portugal, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal,  

Josefer@ff.up.pt 

sara.cunha@ff.up.pt 

 

ABSTRACT 

. A "green", simple, and low-cost sample extraction procedure involving the use of a 

deep eutectic solvent (DES) in a vortex assisted liquid-liquid microextraction (VALLME) 

technique followed by gas chromatography-tandem mass spectrometry (GC-MS/MS) 

analysis was developed for the simultaneous determination of different PBDEs 

congeners and OCPs residues in fish oils. After evaluation of different eutectic 

mixtures, the extraction parameters (volume of DES, amount of oil sample and 

extraction time) were optimized by means of experimental design in order to maximise 

extraction efficiency. The developed method was validated in terms of linearity, 

accuracy and precision, presenting limits of detection in the low ng g-1 level. Its 

application in the analysis of five fish oil samples, allowed the detection of all the target 

analytes at levels up 21.5 ng g-1. Fish oils used in animal feed showed to be more 

contaminated than fish oils for human consumption. 
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INTRODUCTION  

Over the past 70 years, persistent organic pollutants (POPs) including organochlorine 

pesticides (OCPs), polybrominated diphenyl ethers (PBDEs), polychloro biphenyls 

(PCBs), and polychlorinated dibenzodioxins and dibenzofurans (PCDDs/PCDFs) have 

been released into the environment through anthropogenic activities, being nowadays 

dispersed all over the world, in the different environmental compartments. Overall 

POPs are characterized by low water solubility and high lipophicity, which gives them 

high potential for bioaccumulation in fatty tissues of living organisms, reaching all 

trophic levels [1,2]. Moreover, these compounds have a significant negative impact on 

human and animal health, causing different adverse effects such as endocrine 

disruption [3], reproductive [4] and neuronal disturbances [5], and carcinogenesis [6].  



 

OCPs, such as hexachlorobenzene (HCB) or dichloro-diphenyl-trichloroethane (DDT), 

were for a long time widely used in agriculture due to their efficacy against harmful 

insects. Currently, their application is banned or strongly restricted, owing to their 

persistence in the environment and bioaccumulation potential [7,8]. PBDEs are 

synthetic chemicals that have been widely used in many industrial products to reduce 

its flammability and thereby prevent or retard fire spread. Because PBDEs are mixed 

into polymers and not chemically bound to other components, they may separate from 

the products, leaching into the environment [9]. The Stockholm Convention have 

decided to list the most dangerous PBDEs (Deca-BDEs, Penta-BDEs and Octa-BDEs), 

as well as HCB and DDT as POPs substances, in order to the parties take measures to 

eliminate both the production and use of these toxic chemicals [10].  

Human exposure to OCPs and PBDEs occur mainly through the consumption of 

contaminated food, especially fatty fish. Since some fish varieties could have a 

relatively high lipid content, elevated concentrations of POPs can be present in those 

fish and derivative products including fish oils. Currently, extraction of PBDEs from fish 

oils supplements are commonly performed by accelerated solvent extractor [11] and 

solid liquid extraction (SLE) [1-1] followed by gel chromatography column [13,14] or 

sulphur treatment [12, 15] as cleanup. In case of OCPs, SLE and Quick, Easy, Cheap, 

Effective, Rugged and Safe (QuEChERS) are the most common extractive techniques 

[15-17]. Despite QuEChERS provided a huge reduction in time and solvent 

consumption compared with SLE, this approach provides no additional enrichment 

factor making it difficult to achieve stricter limits of quantification [18]. The current trend 

in contaminant analysis is to employ microextraction approaches, with low solvent 

consumption and high enrichment factor such as dispersive liquid-liquid microextraction 

(DLLME) [19] and other similar techniques such as air assisted liquid-liquid 

microextraction (AALLME) or vortex assisted liquid-liquid microextraction (VALLME). In 

all these techniques a small amount of  extractant (water immiscible solvent, added or 

not with a dispersive solvent) is rapidly injected into the aqueous sample to form a 

cloudy solution promoting the easy interaction of fine droplets of extractant with the 

analytes. To the best of our knowledge the simultaneous extraction of OCPs and 

PBDES with an LLME approach has not been so far applied in fish oil analysis.  

The solvents currently employed in all extraction techniques above mentioned are 

classified as volatile organic compounds and possess a negative impact on health, 

safety and environment [20]. To surpass these drawbacks, scientific effort has been 

made to develop ecological friendly and sustainable solvents. Deep eutectic solvents 



 

(DESs) firstly proposed by Abbot [21] match well with what is intended. DESs are 

eutectic mixtures prepared by simply mixing two or more inexpensive naturally 

occurring compounds, which are non-toxic and totally biodegradable. The availability, 

low cost, biodegradability and environmental friendliness of the components makes the 

DESs versatile alternatives to conventional organic solvents [22, 23]. 

DESs have been applied for extraction and separation of bioactive phenolic 

compounds, saponins and flavonoids from plant materials and vegetable oils [23-26]. 

Recently, Farajzadeh et al. used a DES mixture (choline chloride/4-chlorophenol) as 

extractant for extraction of pesticide residues from fruit and vegetable juices [27]. 

Nevertheless, to the best of our knowledge there are no reports on their use for 

extraction of POPs from fish oil supplements. 

The aim of this work was to evaluate the performance of hydrophilic DESs as an 

alternatives extractant in a VALLME procedure designed for the simultaneous 

extraction of several prevalent PBDEs (28, 47, 99, 153 and 154) and OCPs (HCH, 

HCB, 4,4 DDT) in fish oils followed by gas-chromatography tandem mass spectrometry 

(GC-MS/MS) analysis. Several hydrophilic DESs solvents were evaluated and an 

experimental design was conducted to optimize different VALLME parameters. The 

results from the design were evaluated with the analysis of variance to determine the 

statistical significance of the main factors of extraction and interaction effects of these 

factors. The method developed was validated and applied to different fish oils 

supplements as a demonstration of its applicability in monitoring studies.  

 

 
EXPERIMENTAL SECTION  

Reagents and solutions 

Individual standards of PBDE (each at 50.0 µg mL-1 in nonane, purity ≥98%) and OCPs 

("pestanal" purity) were obtained from Wellington laboratories (Canada) and Sigma-

Aldrich (Steinheim, Germany), respectively. Working standard solutions with mixture of: 

2,4,4′-TriBDE (BDE-28), 2,2′,4,4′-TetraBDE (BDE-47), 2,2′,4,4′,5-PentaBDE (BDE-99), 

2,2′,4,4′,5,6′-HexaBDE (BDE-154), 2,2′,4,4′,5,5′-HexaBDE (BDE-153), 

hexachlorobenzene (HCB), α-hexachlorocyclohexane (α-HCH) and 1,1,1-Trichloro-2,2-

bis(4-chlorophenyl)ethane (4,4-DDT) were prepared in toluene at 5 µg mL-1 Internal 

standards (ISs) 5′-fluoro-3,3′,4,4′,5-pentabromodiphenyl ether (FBDE-126, 50 µg mL-1 

in isooctane) and triphenylphosphate (TPP, purity ≥98%) were purchased from 



 

AccuStandard (New Haven, CT, USA) and Sigma-Aldrich, respectively. Working ISs of 

FBDE-126, to final concentration of 100 ng mL-1 and TPP to final concentration of 250 

ng mL-1 were prepared in toluene. All the solutions were stored at 4ºC when not in use. 

Choline chloride (ChCl, purity ≥98%), phenol (Ph, purity≥ 99%), glycerol (Gly, purity 

≥99.5%), urea (Ur, purity for synthesis), DL-lactic acid (Lac, purity ≥90%) and ethylene 

glycol anhydrous (Eg, purity ≥99.8%) used in DES preparation were all purchased from 

Sigma Aldrich. 

Ethanol, methanol (MeOH) and toluene were of HPLC grade and were purchased from 

Merck (Darmstadt, Germany). 

 

Sampling 

Five samples of different fish oils were analyzed. One refined sardine oil (sardine_AF) 

was provided by Industrias Afines S.L. (Spain) and one mix refined tune and sardine oil 

(tuna_AF) was provided by AFAMSA S.L. (Spain). Both are considered as animal feed 

quality. Two omega-3 concentrates (n3-HF1 and n3-HF2, from tuna and salmon, 

respectively) currently commercialized in capsules for human supplementation were 

obtained in local markets of Burgos (Spain) and one omega-3 concentrate capsule (n3-

HF3) was obtained in a local market of Porto (Portugal).  

 

Preparation of DES  

All DESs were prepared according to the methodologies described in literature [22,23]. 

Briefly ChCl (2 g), as hydrogen bond acceptor (HBA), was mixed with different 

compounds as hydrogen bond donors (HBD) at a proper molar ratio in a 40 mL screw-

cap tube with a mechanical stirrer at 350 rpm and 60°C, until a clear and homogeneous 

liquid was formed. The compounds of DES mixture were weighed in an analytical high 

precision balance with an resolution of ± 10-4 under a controlled atmosphere box. Table 

1 listed the abbreviations of the DESs produced in this work.  

 

GC-MS/MS conditions 

The chromatographic analysis was performed using an Agilent 7890B gas 

chromatograph, equipped with an Agilent 7693A autosampler with multimode inlet 

(MMI), coupled to a triple quadrupole mass spectrometer, 7000C (Agilent Technologies 

Inc., Palo Alto, CA, USA), with an EI source working at 320°C in electron capture 

positive ionization mode. The GC separation was performed using a ZB-5MS capillary 



 

column (30 m × 0.32 mm ID and a film thickness of 0.25 μm, Phenomenex, Torrance, 

CA, USA) working at a constant flow of 1.3 mL min-1 of helium (99.999%; Gasin, 

Portugal). The oven program was set as follows: 150 °C (1.5 min); 40 °C min-1 to 250 

°C; then 7 °C min-1 to 320 °C, stay 1.5 min with a total run time of 15.5 min. Figure S1 

shows a Total Ion Chromatogram of a standard solution with all the analytes in study 

and ISs. The injection of 1 μL of sample extracts was performed in pulsed splitless 

mode (purge-off time 60 s) at a temperature of 300°C.  

The MSD was operated using electron ionization (70 eV) in the multiple reaction 

monitoring (MRM) mode. The MRM conditions and retention times (tR) for the selected 

analytes are presented in Table S1. Dwell times were set between 10 to 22 ms. The 

MSD transfer line was at 250 °C, ion source at 320 °C, and quadrupoles at 150 °C. 

Helium was used as the quench gas (at 2.25 mL min-1) and nitrogen as the collision 

gas (at 1.5 mL min-1). Agilent MassHunter software was used for instrument control and 

data analysis.  

 

Sample preparation 

An aliquot of sample (300 mg) spiked with 24 µL of TPP at 250 µg L-1 was mixed with 

180 µL of DES: EtOH (1:1 v/v) solution. Then, the mixture was vortexed for 5 min until 

a cloud solution was formed. After centrifuged at 2000 g for 3 min, 50 µL of the lower 

phase was transferred to an insert tube and mixed with 10 µL of FPBDE (IS) 126 at 

250 µg L-1.  

 

Quality assurance/quality control 

Taking into account the widespread use of PBDEs at relevant concentrations in daily 

life products, laboratory contamination can be a common situation. Therefore, plastic 

material was avoided to prevent contamination. Blank samples were analyzed for each 

batch of samples to verify the background contamination. 

Extra-virgin olive oil (free of the analytes of interest - blank sample) obtained from a 

local market on Porto (Portugal) was used as food matrix to carry out the experiment 

design, to optimize the extraction conditions. Calibration curve (CC) standards and 

quality control (QC) samples were prepared by spiking virgin olive oil (blank sample) 

with working solutions. CC were prepared at 1.0, 2.5, 5.0, 12.5, 25.0, 50.0, 75.0 and 

100.0 ng g-1 while QC were prepared at three different levels: low: 5.0 ng g-1 (LQC), 

medium: 25.0 ng g-1 (MQC); and high: 75 ng g-1 (HQC) concentrations. 

 



 

Statistical analysis 

Experimental design was performed using Statgraphics Centurion XVII software 

(StatPoint Technologies, Inc. USA). After determining the range of extraction variables 

on the basis of preliminary single-factor test, a multilevel factorial design was used to 

find the optimal values for three independent variables: amount of DES (designed as 

A), amount of oil sample (designed as B), and extraction time (designed as C). Whole 

complete design included 21 experiments, 18 different combinations of the variables 

and 3 more as replications of some of them.  The experiments were performed in a 

random manner at different combinations of these parameters using statistically 

designed experiments. The extraction efficiency (recovery %) was taken as the 

response of the design experiments. Regression analysis was carried out according to 

the experimental data. A 95% confidence level was used for the statistical analysis of 

the data.   

 

RESULTS AND DISCUSSION 

Optimization of the Extraction Conditions 

Initially, several DESs were prepared by mixing ChCl with different HBD at a proper 

molar ratio, and the respective performance as VALLME extractors was evaluated in 

duplicate under the same conditions: 500 mg of extra-virgin olive oil samples (blank 

sample) spiked with PBDEs and OCPs at 100 ng mL-1 each was extracted with 100 µL 

of DESs during 5 min, using the action of vortex to promote the cloud formation. Figure 

1 shows the chromatograms obtained from nine different DESs mixtures that were 

assayed. A significant difference in the extractability of both PBDEs and OCPs with the 

tested DESs were reflected in the analytical signal obtained for each analyte in the GC-

MS/MS. The best results were obtained with ChCl-Ph-2 followed by ChCl-Gly and 

ChCl-Lac-1. In general, all the mixtures tested can be considered hydrophilic, although 

they presented great differences in terms of viscosity, density and polarity, among 

other features. In LLME techniques is convenient to select extractant with low viscosity 

to facilitate droplets formation and consequently to enhance the surface of contact 

between the extractant and the matrix, along with a density quite different from the 

density of the matrix, to allow a good separation between the two phases at the final 

step. For example, the tested mixture of ChCl-Ur is very dense and viscous (1.25 g cm-

3 and 449 mPa·s at 303.2 K[28]) when compared to the other synthesized DESs (Table 

S2).In fact, ChCl-Ur was not able to extract most of analytes as it can be observed in 



 

the chromatogram E) of Figure 1. Additionally, the high polarity of some mixtures, such 

as ChCl-Eg, ChCl-Ph-3 or ChCl-Ph-4, can explain the poor extraction yields obtained 

when compared with ChCl-Ph-2 [24]. Therefore, further experiments were performed 

with ChCl-Ph-2 due to its best analytical signal for all the analytes.  

 
Despite the good extraction efficiency exhibited by ChCl-Ph-2 as extractant some 

issues came across GC-MS/MS injection. The extract obtained was unable to provide 

the reproducibility of the autosampler injection of 1 µL due to its high viscosity. To 

overcome this drawback two different solvents namely methanol and ethanol were 

mixed with ChCl-Ph-2 in an equal proportion (1:1, v/v), previous to the VALLME. As 

presented in Figure 2 as lightly higher extraction efficiency was observed with ChCl-

Ph-2/ethanol, additionally with a good intermediate precision relative standard deviation 

(RDS%, N=5) lower than 15% for all the analytes. Thus, based on the above described 

results, the mixture of ChCl-Ph-2 (choline chloride:phenol; 1:2 molar ratio) plus ethanol 

at 1:1 (v/v) was applied in further experiments. 

 

 
Effect of DES volume, sample amount and extraction time. Experimental design 

The extraction efficiency in VALLME is affected by other parameters besides the type 

of extraction solvent, such as volume of extractor, volume of sample and extraction 

time. To evaluate and optimize some VALLME conditions a statistics-based design was 

performed, with overall scope from fewer experiments. The factors and levels selected 

were the following: volume of DES (A) at three levels (80, 130 and 180 µL); amount of 

oil sample (B) at three levels (300, 500 and 700 mg); and extraction time (C) at two 

levels (10 and 30 min). In order to evaluate the efficiency of the proposed procedure, 

the extraction recovery of POPs was considered as the response. The experiments 

were performed in random order to avoid systematic error. The design matrix including 

all the experiments and the related responses is shown in Table S3.  

The model quality was evaluated in terms of the square of the correlation coefficient 

(R2) and the lack-of-fit was evaluated by analysis of variance (ANOVA) at the 95% 

confidence level. The resulting R2 value were 0.8351, indicating that the experimental 

data were in relatively good agreement with predicted extraction yields for the model.  

As it can be seen in Table 2, A, B and the interaction AB resulted to be statistically 

significant at the 95% confidence level, having P-values < 0.05. The significance of 

interaction between A and B means that the amount of extractant and sample are 



 

dependent on each other. On other hand time (C) in the range considered was not an 

important factor. 

 

For graphical interpretation of the significant interactions between the variables, a 

contour of estimated response surface of the model was considered. Figure 3 presents 

the contour plot showing the effect of DES volume (µL) and amount of oil (mg) on 

extraction efficiency (%), without considering the extraction time, the third effect 

evaluated, and its interactions, AC and BC, as not statistically significant factors. As it 

can be observed, when the DES volume increases with lesser amount of oil, the 

extraction efficiency increases. Recoveries reached a maximum when 300 mg of oil 

and 180 µL are used.  

 

Method validation  

To evaluate the analytical performance of the developed method, a series of 

experiments were designed to assess matrix effect, linearity, precision, accuracy, limit 

of detection (LOD), and limit of quantification (LOQ), following the guidelines Sante 

2017 [29]. 

The matrix effect is caused by the presence of interferents in the sample that could 

lead to a suppression or enhancement of the analytical signal. Taking into 

consideration the chemical diversity of analytes that we intended to analyzed and the 

high lipid content of the samples, matrix effect was tested before all the other 

parameters. By comparing calibration curves in matrix and solution (toluene) a 

significant matrix effect was observed, all the analytes presenting lower slope in matrix 

than in solution. Therefore, linearity response was performed by analyzing matrix-

matched standards (olive oil sample free of POPs in study) at eight concentration 

levels in the range of 1−100 ng g-1, and employing TPP as surrogate standard and 

FBDE-126 as internal standard. For all the analytes, the obtained calibration functions 

were linear with r values in the range of 0.9903−0.9979 (Table 3).  

Precision was expressed as percentage of the relative standard deviation (%RSD) of 

repeatability and intermediate precision (Table 3). Both parameters were determined 

by analysing in sextuplicate samples spiked at three concentration levels (5, 25 and 75 

ng g-1) in the same day (repeatability) or in five days (intermediate precision), according 

with European Commission (EC) guidelines [30]). The RSD repeatability were <16% 

and the intermediate precision  repeatability was <21%, which are satisfactory since 

RSD never exceeded 20% with the exception of 4,4-DDT.  



 

For the evaluation of the efficiency of the extraction and the accuracy of the analytical 

procedure developed, 300 mg of Sardine_AF and Tuna_AF were spiked at three 

different levels - 5, 25 and 75 ng g-1 - of a standard mixture (PBDEs and OCPs) and 

analyzed in triplicate. The relative recoveries calculated as the ratio between added 

and found analyte concentrations are presented in Table S4. Average recovery values 

at each fortification level were within the range of 76 ±11, 84 ±12 and 90 ±9 for 5, 25 

and 75 ng mL-1, the measured values are within the control limits established by 

SANTE (recoveries should be between 70% and 120%, with RSD ≤ 20%) [29]. 

Calculation of a reasonable estimate of the total uncertainty for a measurement result 

obtained with the method under study fish oil samples was accomplished considering 

the data from measurement performance characteristics. The target standard 

combined uncertainty (u´c 
tg ), reflecting the combination of precision (u´ra 

tg) and 

uncertainty on bias (u´sy 
tg) was calculated with the showed formula (1), where ura 

tg was 

estimated from the defined target value for the coefficient of variation (CV), and usy 
tg 

was estimated from the maximun/minimum permissible mean error (of R max = 120% 

and R min = 70%) [30]:  

    √     
  

        
      

   

 

u´sy
tg = (Rmax – Rmin)/2*61/2 

 
The target standard bias uncertainty component (usy

tg) on measurements not corrected  

for mean error was calculated by reducing the confidence level of the half error range 

by a factor of 61/2 (triangular distribution for the mean error range with 100% confidence 

level). As can be observed in Table S4 a measurement uncertainty value under than 

18.4% was obtained, which is lower than the target value of 25% setting from the 

evaluation criteria European Union proficiency tests. 

 

The limit of quantification (LOQ) was determined based on the criteria given by the 

guidelines Sante 2017 [29] as the minimum concentration that can be quantified with 

acceptable accuracy and precision, which was the lowest calibration level of the 

calibration curve. The limit of detection (LOD) of the method was determined from the 

analyses of a zero sample spiked at 1 μg kg-1 for each analyte. The LODs for the POPs 

based on a signal-to-noise (S/N) ratio of 3 ranged from 0.2 to 0.7 ng g-1 (Table 3). The 

results of LODs obtained by the proposed procedure were comparable with those of 

several previously reported SPE procedures for the determination of POPs [31], 

although slightly higher than those obtained by a QuEChERS based method combined 

with comprehensive two-dimensional gas chromatography with time-of-flight mass 

(1) 



 

spectrometry [32]. Compared to other published methods, the outstanding features and 

advantages of the procedure here presented are the use of a green extractant as well 

as the fully exploitation of the benefits of VALLME technique (speed, simplicity, 

efficiency, and high enrichment factor). The “greenness” of the present method was 

ascertained trough an Eco-scale as proposed by Gałuszka et al [33]. Therefore, for 

each parameter of the analytical method (amount of reagents, hazards, energy and 

wastes), penalty points are assigned if it departs from the 12 principles of green 

chemistry. As a result, the proposed method can be classified as “an excellent green 

analysis” since it scored more than 85 on the analytical Eco-scale (Table S5). 

Additionally, the developed method easily allows the handling of 12 replicates at the 

same time taking around 20 min. of manual effort to finish a whole batch ready to 

inject. Overall, the current method allows reliable monitoring studies without 

compromising environmental health. 

 

Real samples analysis 

Aiming to demonstrate the applicability of the optimized DES-VALLME-GC-MS/MS 

method two fish oil samples for animal feed and three fish oil supplements for human 

consumption, rich in omega-3 fatty acids were analyzed as previous described. The 

levels found of the analytes studied are showed in Table 4. 

Total levels of POPs were higher in fish oils for animal feed than those aimed to 

humans, with average levels of 21.1 and 8.9 ng g-1, respectively. This can be explained 

by the more rigorous process applied to refined fat foodstuffs (neutralization, bleaching, 

and deodorization steps), that can probably reduce the levels of these kind of pollutants 

[17]. Despite the higher levels found in fish oils for animals, it should be stressed that 

also in fish oils for human consumption most of the contaminants (4,4 DDT, BDE47, 

BDE99, BDE153, BDE154) were found. This can be explained by the fact that removal 

rates are too much lower for some contaminants, such as 4,4 DDT or PBDEs [8,34]. 

It was also observed that both fish oils intended for animal consumption (Sardine_AF 

and Tuna_AF) had similar levels of OCPs and both were higher than those found on 

fish oil pills for human consumption (n3-HF1, n3-HF2 and n3-HF3), which is consistent 

with a previous 17]. In fish oil pills, only 4,4 DDT was quantified in one sample. The 

total levels of OCPs in the two samples for animal feed were 5.9 and 13 ng g-1, with 4,4 

DDT representing over 65% of this content in sardine fish oil. The levels of HCB and α-

HCH in fish oil for animal feed were very similar, with averages of 6 ng g-1 and <LOQ, 

respectively. Similar results are reported by Nevado et al. [2] with 4,4 DDT showing 



 

higher levels than HCH and HCB in all three fish oil pills (omega-3 fatty acids 

supplements) analyzed.  

Concerning to PBDEs, total levels were slightly higher in fish oils for animals than in 

human supplements. In both type of fish oils the PBDEs levels ranged from 1 to 6 ng g-

1, being BDE28 the less frequently detected. BDE153 levels were lower than BDE154 

levels in all cases, ranging the ratio BDE153/BDE154 from 0.4 to 0.7 ng g-1, which is in 

agreement with profiles reported in literature by other authors [1,9,17,32]. 

 

CONCLUSIONS 

In the present study, a VALLME based on the use of a DES mixture as extractant 

followed by GC-MS/MS was developed for determination of the most relevant OCPs 

and PBDEs in fish oils used in human and animal supplements. Choline chloride –

phenol (1:2 molar ratio) as DES showed good potential for extraction of different 

classes of POPs. A significant advantage of the proposed procedure is that only 180 

µL of DES: EtOH (1:1 v/v) solution was used for each extraction, demonstrating to be 

an economical and environmentally friendly method with the elimination of both use 

and generation of hazardous substances, allowing to achieve an excellent ranking on 

the analytical Eco-Scale. Under the optimized conditions, the developed method 

provides a sub ng g-1 level of detection for all the analytes. The linearity was good in 

the range from 1 to 100 ng g-1. The overall recoveries ranged from 76 to 90% with RSD 

values <20% and a measurement uncertainty value lower than 18.4%. The developed 

method was applied to analyze POPs in fish oil samples and it was demonstrated to be 

a practical and reliable method for monitoring studies. 
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Figure 1. Total ion Chromatograms of the POPs extracted of a spiked olive oil (100ng 
g-1) using different DESs (same scale) as solvent extractor in DLLME. Legend: A- 
ChCl-Gly, B- ChCl-Lac-1, C -ChCl-Lac-2, D- ChCl-Ur, E- ChCl-Ph-2, F- ChCl-Ph-3, G- 
ChCl-Ph-4, H- ChCl-Eg-2 and I- ChCl-Eg-3. Legend: Chromatogram of the five PBDE 
congeners and the three OCPs studied in this work at concentration 100 ppb. Also the 
internal standards, TPP and FBDE-12 are presented. (a) HCB and HCH, (b) 4,4.DDT 
(c) BDE-28 and TPP, (d) BDE-47, (d) BDE-99, (f) FBDE-126, (g) BDE-153, (h) BDE-
154. 
 
Figure 2- Total ion Chromatograms of the BDE47 extracted of a spiked olive oil (100ng 
g-1) using A- ChCl-Ph-2 with methanol (1:1), B- ChCl-Ph-2 with ethanol (1:1) , A- ChCl-
Ph-2  

  
Figure 3- Response contour plot for DES volume (µL) and amount of oil (mg). 
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Table 1- Different composition of DESs applied in this work. 

 

 

 

 

 

 

 

 

 

 

 

 

HBA HBD Mole ratio Abbreviation 

Choline chloride 
Phenol 

 

1:2 ChCl-Ph-2 
1:3 ChCl-Ph-3 
1:4 ChCl-Ph-4 

Glycerol 1:2 ChCl-Gly 
Urea 1:2 ChCl-Ur 

DL-lactic acid 
1:1 ChCl-Lac-1 
1:2 ChCl-Lac-2 

Ethylene glycol 
 

1:2 ChCl-Eg-2 
1:3 ChCl-Eg-3 



 

Table 2- ANOVA table of varieties. 

Sourcea Sum of squares df Main square F value p-valueb 

A 1103.3 1 1103.3 17.59 0.0009 

B 1924.6 1 1924.6 30.68 0.0001 

C 5.97 1 5.97 0.1 0.7623 

AB 359.3 1 359.3 5.73 0.0313 

AC 118.6 1 118.6 1.89 0.1908 

BC 2.16 1 2.16 0.03 0.8556 

Total error 878.2 14 62.7   

Total (corr.) 5325.8 20    

a 
DES volume (A), amount of oil (B), extraction time (C). 

b
 p < 0.05 indicates statistical significance



 

Table 3-  Summary of calibration curve, correlation coefficient, LOD and precision at 
three levels of ng/g 

Analyte Regression equation 
Determination 

coefficient (r) 

LOD 

ng/g    

%RSD repeatability (%RSD 

intermediate precision) 

5 ng/g 25 ng/g 75 ng/g 

α-HCH y = 0.0167x - 0.082 0.9970 0.5 11 (13) 6 (10) 2 (5) 

HCB y = 0.3135x - 0.8396 0.9968 0.4 1 (2) 3 (8) 18 (11) 

4,4-DDT y = 0.2085x - 0.031 0.9943 0.4 20 (14) 17 (12) 12 (16) 

BDE-28 y = 0.1888x + 0.3926 0.9903 0.2 7 (5) 5 (5) 2 (4) 

BDE-47 y = 0.1278x - 0.0963 0.9979 0.3 7 (10) 4 (7) 3 (9) 

BDE-99 y = 0.0529x - 0.0443 0.9967 0.5 7 (15) 4 (11) 1 (9) 

BDE-153 y = 0.0861x - 0.0617 0.9930 0.5 14 (15) 8 (10) 2 (8) 

BDE-154 y = 0.0573x - 0.0453 0.9947 0.7 16 (12) 5 (11) 2 (9) 

 

 

 



 

Table 4. Concentration (in ng/g) of the PBDEs and OCPs in the five fish oils studied in 

this work. ND represents not detected 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Analyte Sardine_AF Tuna_AF n3-HF1 n3-HF2 n3-HF3 

α-HCH <LOQ <LOQ ND ND ND 

HCB 5.9 ± 0.3 6.3 ± 0.4 ND ND ND 

4,4-DDT 13.0 5.3 ± 2 8 ± 0.5 ND ND 

Total OCPs 18.86 11.6 8 N ND 

BDE28 ND <LOQ <LOQ ND ND 

BDE47 1.1 ± 0.1 <LOQ 1.5 ± 0.2 ND ND 

BDE99 2.1± 0.4 2.3 ± 0.3 1.6 ± 0.2 ND ND 

BDE153 2.8 ± 0.2 2.9 ± 0.4 < LOQ 1.9 ± 0.04 2.8 ± 0.3 

BDE154 1.6 ± 0.3 4.7 ± 0.2 < LOQ 4.6 ± 0.4 5.9 ± 0.3 

Total PBDEs 7.6 9.9 3.1 6.48 8.7 

Total POPs 13.46 21.5 11.1 6.48 8.7 



 

HIGHLIGHTS 

- A green analytical method based on VALLME-GC-MS/MS was developed for POPs 

analysis 

- DES (choline chloride:phenol) was used on VALLME as extractor solvent  

- PBDES and OCPs were simultaneous analysed by GC-MS/MS  

- The novel method was successfully applied to determine PBDEs and OCPs in fish 

oils 

 

 




