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Abstract 

The amount of qualitative and quantitative information provided by a UV−vis 

absorption spectroelectrochemistry (SEC) experiment is sometimes wasted. However, 

almost all electrochemical and spectroscopic data can provide valuable information. In 

this spirit, the main objective proposed in this work is the quantitative resolution of 

catechol/dopamine (CAT/DA) and dopamine/epinephrine (DA/EP) mixtures, using 

spectroelectrochemical sensors in long optical path length arrangement based on bare 

optical fibers in parallel configuration with respect to carbon nanotubes or screen-
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printed electrodes. These compounds show extremely similar electrochemical and 

spectroscopic responses at high acidic pH, being impossible to determine their 

concentrations in the mixtures just using univariate regression models. To our 

knowledge, the SEC ability to resolve complex mixtures has never been demonstrated 

before with signals with this degree of overlapping. The quantitative analysis of these 

mixtures is possible using multivariate regression analysis of a set of time-resolved 

spectroelectrochemical data with a powerful statistical tool such as parallel factor 

analysis (PARAFAC). PARAFAC enables us to extract all the information from the 

experiments, allowing us to quantify the different analytes in mixtures of varying 

concentrations with excellent results. This milestone for spectroelectroanalysis 

illustrates the expected capabilities of SEC and demonstrates experimentally the 

potential of this technique for sensing of biomolecules. 

 

Graphical abstract 
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1. Introduction 

Separately, electrochemistry and UV−vis absorption spectroscopy are not particularly 

selective techniques to identify the different organic compounds present in a complex 

mixture. Both electrochemical and spectroscopic signals commonly show broad peaks 

and bands, which often include information about more than one process or compound. 
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Nevertheless, it should be noted that finding two compounds that exhibit the same 

electrochemical behaviour and identical spectroscopic properties is practically 

impossible. For this reason, UV−vis absorption spectroelectrochemistry (SEC), the 

result of coupling electrochemistry and UV−vis absorption spectroscopy [1,2], should 

be a powerful hybrid technique for analysis. 

UV−vis absorption SEC can be defined as a multi-response technique that enables the 

simultaneous monitoring of the electrochemical and the spectroscopic evolution of an 

electron-transfer process, all in a single experiment [3–8]. Therefore, signals of different 

nature are obtained at the same time, giving an overview about the changes that take 

place in solution, in the electrode surface, or in both of them, during the course of a 

reaction [9]. In accordance to the numerous advantages of UV−vis absorption SEC, the 

use of this technique, which has been established in multiple and diverse research fields 

[10], raises interest in the study of compounds of biological significance.  

The use of UV−vis absorption SEC in the field of quantitative analysis is becoming 

increasingly important [11–21]. Anyway, when this technique is compared to other 

analytical techniques such as typical electrochemical, spectroscopic or chromatographic 

techniques, for example, there are very few papers dealing with quantitative analysis. 

Probably, SEC is not yet a benchmark reference in this field due to the difficulty of 

obtaining reproducible results with appropriate analytical quality until a few years ago. 

In the field of analytical chemistry, most researchers are developing new methods and 

applications for consolidated techniques. However, SEC still needs to demonstrate 

experimentally its extraordinary capabilities. Therefore, the development of novel 

techniques, devices and methodologies is necessary for its use in a near future for 

industrial, pharmaceutical or food analysis. Undoubtedly, the potential of the set of 

techniques on this topic could be much higher, especially if we take into account that 

the large amount of data obtained in a single UV−vis absorption SEC experiment is not 

always exploited. It is noteworthy that the electrochemical signal can be recorded 

almost continuously and that a full spectrum is often registered every tens or hundreds 

of milliseconds. Moreover, the spectra can be obtained in different optical 

configurations depending on the analytical problem. As the system evolves during the 

experiment, the high amount of electrochemical and spectroscopic data contains 

essential information, not only to explain the electron-transfer processes but also to 

determine the amount of the compounds present in a complex mixture. Thus, the 
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recording of both electrochemical and spectroscopic responses during an experiment, 

and the use of multivariate analysis such as partial least squares regression (PLSR) or 

parallel factor analysis (PARAFAC), can provide us with valuable information for 

quantitative purposes.  

PARAFAC is a generalization of Principal Component Analysis (PCA) to higher order 

arrays. As for bilinear PCA, the outcome of a PARAFAC model can be used as input to 

other models, often for regression. PARAFAC has an important property not possessed 

by the two-way model: if the latent factors show adequately distinct patterns of three-

way variation, the model is fully identified [22,23]. Herein, the quantitative resolution 

of mixtures by UV−vis absorption SEC using PARAFAC is based on the fact that SEC 

contains the trilinear character required [16,24]. 

The SEC devices used in the present work have been previously developed by our 

group [11,25]. They consist of two bare optical fibers, fixed in parallel configuration, 

that sample the solution adjacent to a single-walled carbon nanotubes (SWCNTs) 

electrode or a commercial carbon screen-printed electrode, allowing us to work with a 

high temporal/potential and spectral resolution and in semi-infinite diffusion regime. 

The use of optical fibers in SEC attracts great attention due to their multiple advantages 

to guide the light beam [17,26,27]. In the same way, carbon nanotubes present excellent 

properties, particularly interesting for electrochemistry [28,29] and SEC [3]. 

Meanwhile, SEC measurements are greatly simplified by using screen-printed 

electrodes. 

As is known, catechol (CAT), dopamine (DA) and epinephrine (EP, also called 

adrenaline) are three compounds of high biological interest. CAT, and its 

dihydroxybenzene isomers resorcinol and hydroquinone, are commonly used in 

cosmetics, pesticides, flavouring agents or medicines; however, according to their 

toxicity and low degradability, they are considered pollutants [30]. Meanwhile, DA is a 

catecholamine neurotransmitter with key roles in cognition, attention, behaviour, 

movement and motivation [31]. Finally, EP is a neurotransmitter that can regulate 

smooth muscle contraction and relaxation in skin, lungs, and heart, and vasoconstriction 

in blood vessels, among other functions [32].  

The study and determination of mixtures of catecholamines, such as DA and EP [33–

35], and CAT [36–38], is interesting for the scientific community. Although their 
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biological importance is very high, the novelty of this paper is not just the use of these 

analytes. As shown below, they constitute model compounds to experimentally 

demonstrate the usefulness of SEC for quantitative analysis. It should be noted that the 

parallel configuration selected for this work is related to a higher sensitivity for soluble 

compounds than the normal arrangement due to the longer optical path length (in this 

case, the distance between the bare optical fibers). After the initial quantification of DA 

using univariate analysis, the main purpose of this work is the resolution of complex 

mixtures of compounds of biological interest, CAT/DA and DA/EP, without fixing the 

concentration of any of them and using PARAFAC as chemometric tool. The 

experimental acidic conditions have been intentionally selected for this work to 

illustrate and demonstrate experimentally that SEC can resolve quantitatively even 

mixtures that show an almost full overlap of both electrochemical and spectroscopic 

signals, greatly increasing the difficulty in the resolution of these mixtures and thus 

requiring a creative solution. To the best of our knowledge, UV−vis absorption SEC in 

long optical path length arrangement combined with PARAFAC is employed here for 

the first time, enabling researchers to resolve these complex mixtures without the need 

to perform any previous separation step. 

 

2. Experimental 

 

2.1. Reagents and materials 

SWCNTs (Sigma-Aldrich), 1,2-dichloroethane (DCE, 99.8% for HPLC, Acros 

Organics), polytetrafluoroethylene membranes (filter pore size 0.1 µm, Millipore 

Omnipore), polyethylene terephthalate (PET, 175 µm thick, HiFi Industrial Film), silver 

conductive paint (Electrolube), transparent polish (Essence), and two bare optical fibers 

(100 µm in diameter, Ocean Optics, Inc.) were used to fabricate the UV−vis absorption 

SEC device [11] employed for the study of DA and for the resolution of the CAT/DA 

mixture. A commercial carbon screen-printed electrode (DRP-110, Metrohm 

DropSens), two bare optical fibers (100 µm in diameter, Ocean Optics, Inc.), and 

transparent polish (Essence) were used to make the device [25] employed for the 

resolution of the DA/EP mixture. Catechol (CAT, 99+%, Acros Organics), dopamine 
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(DA, dopamine hydrochloride, 99%, Acros Organics), epinephrine (EP, L(-)-

Epinephrine, 99%, Acros Organics), and HCl (37%, VWR) were used to prepare the 

solutions. 

All reagents were used as received without further purification. All chemicals were of 

analytical grade. Solutions were prepared using ultrapure water (18.2 MΩ cm resistivity 

at 25 ºC, Milli-Q, Millipore). All handling and processing were performed carefully, 

particularly when DCE was used. 

 

2.2. Instrumentation 

For the study of DA and for the resolution of the CAT/DA mixture, the SEC setup 

included a potentiostat/galvanostat (PGSTAT302N, Metrohm Autolab, Utrecht, The 

Netherlands), a halogen-deuterium light source (AvaLight-DH-S-BAL, Avantes BV, 

Apeldoorn, The Netherlands), and a spectrometer (QE65000 198−1006 nm, Ocean 

Optics, Inc., Florida, USA). SWCNTs were dispersed in DCE using a tip-sonicator 

(CY-500, Optic ivymen System, Spain). Stencils were made of polymethyl methacrylate 

(Maniplastic, S.L., Burgos, Spain). A laboratory hydraulic press (SpectroPress, 

Chemplex Industries, Inc., Florida, USA) was also used to transfer the SWCNTs film on 

the PET support. For the DA/EP mixture, SEC was performed using a customized 

SPELEC instrument controlled by DropView SPELEC software (Metrohm DropSens, 

S.L., Llanera, Spain). 

 

2.3. Fabrication of the UV−vis absorption SEC devices and experimental setup 

The SEC sensor based on SWCNTs and bare optical fibers employed for the DA and for 

the resolution of the CAT/DA mixture was developed and validated in one of our 

previous works [11]. It presents a working and a counter electrode made of SWCNTs 

and a silver reference electrode, all of them flat on the PET support where the bare 

optical fibers are fixed (Fig. S1a). For the DA/EP mixture, and in order to demonstrate 

the availability of our methodology for any laboratory (Fig. S1b), the two bare optical 

fibers were directly attached with polish to a commercial carbon screen-printed 

electrode in parallel configuration [25]. In the two cases, the UV−vis light beam passes 
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parallel to the working electrode surface through the first 100 µm of the solution 

adjacent to the working electrode surface, collecting the spectral changes that take place 

in this part of the solution during the electrochemical reaction and allowing us to have a 

good reproducibility and to achieve successful SEC results in the field of quantitative 

resolution of complex mixtures. 

In order to work in a semi-infinite diffusion regime, a solution drop of 200 µL (in the 

case of the SWCNTs electrode) or of 100 µL (in the case of the commercial carbon 

screen-printed electrode) was placed on the cell, covering the three electrodes and the 

ends of the bare optical fibers. The integration time for the spectrometer was 200 ms. 

The initial solution was taken as reference spectrum for every measurement.  

Data analysis was performed using MATLAB and R. We must emphasize that, in order 

to resolve the mixtures, the measurements should be performed with a high temporal 

and spectral resolution, data features that are critical in achieving this objective. As will 

be seen below, in the examples selected to illustrate the performance of SEC in parallel 

configuration, the voltammograms are separated less than 10 mV and the spectra less 

than 5 nm. In most studies, spectra are registered at different pulse or fixed potentials, 

employing long times, or recording only one wavelength, so the optical evolution of the 

electrochemical process is not obtained with a high temporal and spectral resolution. 

Under those conditions, the resolution of the mixtures should be extremely difficult, 

almost impossible. Therefore, the spectroelectrochemical setup used in this work plays a 

key role to meet the objective proposed herein. In this way, it should be highlighted the 

importance of the screen-printed electrodes and the SPELEC instrument that make it as 

easy as possible the resolution of this type of mixtures for researchers not necessarily 

experts in the field of SEC. 

More information about the fabrication of the SEC devices and the experimental setup 

can be found in Section S1. 

 

3. Results and discussion 

To the best of our knowledge, this work shows, for the first time, calibration curves, 

limits of detection [39–41], prediction of the concentration of the test samples and so on 

for the quantification of DA in these conditions of pH and SEC configuration (section 



8 

 

3.1). In sections 3.2 and 3.3, we demonstrate that, when high quality trilinear responses 

are obtained, random mixtures of the analytes (without fixing the concentration of any 

of them) can be easily resolved even when both the electrochemical and the 

spectroscopic signals are completely overlapped. 

 

3.1. Determination of dopamine by potentiodynamic UV−vis absorption SEC 

The oxidation of DA, as other catecholamines, is related to a complex two-electron two-

proton electrochemical reaction; however, the oxidation of DA in this acidic medium 

(all experiments are performed in 1 M HCl) is much simpler because only 

dopaminequinone is electrogenerated [42,43]. A SEC experiment of 7.5 × 10
−4

 M DA in 

1 M HCl between +0.30 and +0.80 V at 0.01 V s
−1

 is shown in Fig. 1. Fig. 1a represents 

the cyclic voltammogram, where the anodic and the cathodic peaks can be observed at 

+0.664 and +0.445 V, respectively. The 3D plot of the spectra evolution with 

time/potential recorded during the cyclic voltammetry is displayed in Fig. 1b, showing 

the evolution of three bands at 250, 283, and 391 nm. These bands are associated to the 

electrochemical oxidation of DA to generate dopaminequinone [7,27], particularly the 

band at 391 nm which is only related to this last compound [43,44]. Finally, the 

evolution of these three bands is shown in Fig. 1c. The corresponding cyclic 

voltabsorptograms indicate that, according to the cyclic voltammogram, the oxidation of 

DA takes place from +0.50 V onwards. 

Besides information about the electrochemical reaction mechanism, SEC allows us to 

perform quantitative analysis. A set of calibration samples between 1 × 10
−5

 and 1 × 

10
−3

 M was analysed. Cyclic voltammograms and cyclic voltabsorptograms at 250 nm 

are plotted in Fig. S2a and Fig. S2b, respectively. As can be observed, the higher the 

DA concentration, the higher the current intensity and the higher the absorbance. Two 

univariate calibration curves were obtained using ordinary least squares (OLS) models, 

one for the current intensity at the anodic peak potential and the other for the 

absorbance at 250 nm at +0.80 V, versus DA concentration (Fig. S2c and Fig. S2d, 

respectively). These parameters were selected with the aim of obtaining good 

sensitivities for these methods. Taking into account the concentration values equal or 

less than 1 × 10
−4

 M, the limits of detection obtained were 6 µM and 19 µM for the 

electrochemical and the spectroscopic calibration curves, respectively. The 
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autovalidated character of SEC was demonstrated by plotting the predicted 

concentrations obtained with the electrochemical calibration curve versus the predicted 

concentrations obtained with the spectroscopic calibration curve. A slope of 1.00 ± 0.02 

and an intercept of [−0.03 ± 9.59] × 10
−6

 were obtained, demonstrating that both 

responses determine the DA concentration without distinction. Finally, the DA 

concentration in a test sample 2.5 × 10
−4

 M was estimated using both calibration curves. 

The figures of merit obtained are shown in Table 1. 

 

3.2. Quantitative resolution of mixtures of catechol and dopamine by SEC 

As has been stated, extremely adverse conditions have been selected to show the 

potential of SEC for the quantitative resolution of mixtures. Fig. 2 illustrates the 

difficulty of resolving the mixture of CAT and DA in acidic media. This figure is 

related to solutions 5 × 10
−4

 M CAT or 5 × 10
−4

 M DA in 1 M HCl. First, Fig. 2a shows 

the cyclic voltammograms between +0.30 and +0.80 V at 0.01 V s
−1

, where it can be 

observed that the difference between the anodic peak potentials of both compounds is 

only 0.008 V. Secondly, Fig. 2b represents the initial spectra (taking a 1 M HCl solution 

as reference spectrum), where the difference in the position of the spectral band is 4 nm, 

a really small value for UV−vis absorption spectroscopy. In third place, Fig. 2c displays 

the spectra (taking the initial solution as reference spectrum) at +0.80 V during the SEC 

experiments between +0.30 and +0.80 V at 0.01 V s
−1

, where it can be observed that the 

maximum separation between the spectral bands is only 6 nm. Therefore, the overlap 

between the electrochemical and the spectroscopic responses of CAT and DA is 

remarkably high. In fact, Fig. S3 is analogous to Fig. 2 but using a solution mixture of 5 

× 10
−4

 M CAT 5 × 10
−4

 M DA in 1 M HCl. As can be noticed, there seems to be a 

single compound. In conclusion, electrochemistry, spectroscopy, and SEC at fixed 

potentials are not able to resolve this mixture for themselves, even less using univariate 

regression. Thus, time-resolved UV−vis absorption SEC and powerful multivariate 

analytical tools are required to solve this issue. A first resolution of the CAT/DA 

mixture at pH = 7 was previously performed using a reflection probe in normal 

arrangement to obtain the optical response [16]; however, the overlap between the 

spectroscopic responses of CAT and DA at pH = 7 is much less pronounced than in the 

present case (pH around 0). Moreover, in the previous work a product was deposited on 
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the electrode surface and in the present case the oxidation product is soluble. Therefore, 

in that work, a new electrode was needed for each sample calibration, instead of the 

same electrode for the whole calibration procedure that is only required in the present 

work using, moreover, the long optical path length configuration which is the most 

sensitive optical arrangement for soluble compounds. These facts are important 

advantages of the present work with respect to the previous one. 

Two major reasons led us to perform this work: (i) some analyses need to be performed 

in acidic media and (ii) the resolution of this mixture in acid solution is much more 

complicated due to the high overlap between the electrochemical and the spectroscopic 

responses of CAT and DA, allowing us to demonstrate all the advantages offered by 

UV−vis absorption SEC for solving complex problems like this one. It should be noted 

that the most remarkable feature of this technique is its ability to observe a 

physicochemical process simultaneously from two different points of view, recording 

kinetic information that can be analysed using multivariate statistical tools to obtain not 

only quantitative information but also a whole picture of the electrode process. 

In this work, a full spectrum between 198 and 1006 nm is recorded every 200 ms during 

the whole electrochemical experiment, resulting in a huge amount of data. Thus, the 

selection of about 10 values to construct univariate calibration curves is enough for 

relatively simple problems, but, for complex systems such as the mixture of CAT and 

DA, it makes more sense to use the large amount of data obtained by SEC with the aim 

of addressing the problem and providing a solution. As shown below, multivariate 

analysis using PARAFAC gives good results.  

For this purpose, a three-dimensional data matrix containing the absorbance values 

between +0.50 and +0.80 V and between 225 and 600 nm for the 16 experiments with 

different concentrations of CAT and DA was constructed to develop the PARAFAC 

model. Table S1 lists the experiments conducted to accomplish this goal. As can be 

seen, the set of calibration samples includes concentrations between 1 × 10
−5

 and 1 × 

10
−3

 M for both CAT and DA. Potentiodynamic measurements were selected, instead of 

potentiostatic experiments, attempting to obtain a better resolution in terms of 

potential/time dependency. Therefore, SEC experiments were carried out in 1 M HCl 

between +0.30 and +0.80 V at 0.01 V s
−1

. For PARAFAC analysis, data in a limited 

potential window (absorbance values between +0.50 and +0.80 V) and in a limited 
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range of wavelengths (absorbance values between 225 and 600 nm) were selected 

according to the regions where the significant changes of absorbance take place, 

avoiding potential and wavelength regions without analytical information that would 

only introduce noise to the mathematical model. It should be highlighted that the matrix 

dimensions (151 potentials × 473 wavelengths × 16 concentrations) indicate that up to 

1142768 values of absorbance were considered to build the PARAFAC model, selecting 

two components according to the two compounds present in the mixture (CAT and 

DA), a convergence criterion of 1 × 10
−25

, no constraint and no scaling. The outputs of 

the PARAFAC model were the three factors (dimensions of 151 × 2, 473 × 2, and 16 × 

2) shown in Fig. 3, obtained after 299 iterations and with a corcondia value of 100%. 

Loadings and scores of CAT and DA obtained from PARAFAC are plotted in Fig. 3. 

Fig. 3a represents the loadings with respect to potential. As expected, the loadings with 

respect to the wavelengths (Fig. 3b) show a very similar behaviour with respect to the 

spectra displayed in Fig. 2c. The most striking results are shown in Fig. 3c and Fig. 3d, 

where the scores of CAT and DA corresponding to the concentration of CAT and DA, 

respectively, are plotted. Clearly, the higher the CAT and the DA concentrations, the 

higher the scores obtained from PARAFAC for each molecule. The coefficients of 

determination of the scores versus CAT and DA concentrations obtained from the raw 

data using OLS models (see Fig. S4) demonstrate the complete deconvolution of the 

mixture with respect to each analyte. 

At first sight, it seems that UV−vis absorption SEC enables us to perform quantitative 

analysis using the scores obtained from PARAFAC. In order to construct the calibration 

curves of CAT and DA, two test samples (see Table S1), which were obviously 

included to build the PARAFAC model to obtain their corresponding scores, were 

excluded. Afterwards, detection of outliers was performed with least median of squares 

(LMS) regression. Fig. S5 represents the two calibration curves of scores of CAT and 

DA versus CAT and DA concentration, respectively, obtained using OLS regression 

models after removal of outliers. The detection limits obtained were 46 µM and 41 µM 

for the determination of CAT and DA, respectively. Obviously, this limit of detection is 

higher than the obtained for the DA alone due to the complexity of the mixture that 

makes more difficult to achieve a lower value. The last step was the evaluation of the 

prediction capability of these calibration curves. For this purpose, the concentrations of 

CAT and DA of two very different test samples of 2.2 × 10
−4

 M CAT 3.4 × 10
−4

 M DA 
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and 1.2 × 10
−4

 M CAT 9 × 10
−5

 M DA were estimated, obtaining satisfactory values for 

all the predicted concentrations. All data are listed in Table 2, where the figures of merit 

obtained can be observed. 

 

3.3. Quantitative resolution of mixtures of dopamine and epinephrine by SEC 

The successful procedure shown in the CAT/DA system was applied in a similar way to 

the resolution of the DA/EP mixture. To demonstrate that these experiments can be 

easily done in any laboratory, the device based on a carbon screen-printed electrode was 

used, with an optical path length around 0.13 cm. Table S2 indicates the experiments 

carried out. For a good understanding of the resolution of the DA/EP mixture, Figures 

S6 to S10 are analogous to Fig. 2, Fig. S3, Fig. 3, Fig. S4 and Fig. S5, respectively. The 

set of calibration samples includes concentrations between 1 × 10
−5

 and 1 × 10
−3

 M for 

both DA and EP. SEC measurements were carried out in 1 M HCl between +0.30 and 

+0.80 V at 0.01 V s
−1

. For PARAFAC analysis, a three-dimensional data matrix was 

constructed containing the absorbance values in a limited potential window (between 

+0.50 V of the forward scan and +0.70 V of the backward) and in a limited range of 

wavelengths (between 225 and 600 nm) for the 16 experiments with different 

concentrations of DA and EP. The matrix dimensions (201 potentials × 480 

wavelengths × 16 concentrations) indicate that 1543680 absorbance values were 

considered to build the PARAFAC model, selecting two components according to the 

two compounds present in the mixture (DA and EP), a convergence criterion of 1 × 

10
−25

, no constraint and no scaling. The outputs of the PARAFAC model were the three 

factors (dimensions of 201 × 2, 480 × 2, and 16 × 2) obtained after 291 iterations and 

with a corcondia value of 100%. Limits of detection for determination of DA and EP 

were 121 µM and 216 µM, respectively. To evaluate the prediction capability, the 

concentrations of DA and EP of a test sample of 2.2 × 10
−4

 M DA 3.4 × 10
−4

 M EP were 

estimated. All data are listed in Table 3, summarizing the figures of merit obtained. 

It should be noted that, although there are many works related to the quantification of an 

analyte in presence of interfering species (usually at constant concentration when a 

separation technique is not used), our work shows the importance of SEC to 

simultaneously determine the concentration of all compounds (even of the interfering 
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species) present in mixtures of varying concentrations, bringing quantitative analysis a 

step closer to reality. 

 

4. Conclusions and future perspectives 

SEC is very useful if compounds (i) are oxidized at different potentials and/or (ii) 

absorb electromagnetic radiation at different wavelengths, but also when all signals are 

highly overlapped, as is demonstrated experimentally in this work. The capabilities of 

resolving mixtures using SEC have been mentioned many times; however, to the best of 

our knowledge, they have never been experimentally demonstrated before with signals 

with this high degree of overlapping where the highest reproducibility of the 

measurements is required. Therefore, the new and most important concept that we show 

in this paper is the combined use of PARAFAC and UV−vis absorption SEC in parallel 

arrangement to quantitatively determine the concentration of different analytes in 

mixtures (CAT/DA and DA/EP) of varying concentrations of both molecules and at 

acidic pH, which is related to a high overlap of the electrical and optical signals. 

Our spectroelectrochemical sensors provide the high-quality and reproducible responses 

required. Bare optical fibers in long optical path length configuration with SWCNTs 

electrodes or carbon screen-printed electrodes offer an excellent potential/temporal and 

spectral resolution, allowing disposability, versatility, fast analysis times, low cost and 

simple measurements and requiring a very small volume of solution. Although 

obtaining low detection limits was not the objective of the present work, we are aware 

that the values obtained here are still not comparable to others reported in literature 

using other techniques. However, this is just due to technical reasons and should be 

solved in the future with the development and use of better light sources, 

monochromators and detectors and the related improvement of the signal-to-noise ratio. 

Detection limits are expected to be improved.  

In summary, this paper constitutes the basis for future works. It is devoted to showing 

the methodology, the path for other researchers to develop real spectroelectroanalysis 

methods. Moreover, it experimentally demonstrates the advantages of UV−vis 

absorption SEC and the promising possibilities of obtaining not only the understanding 

of electrochemical processes but also quantitative information for the analysis of 
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complex mixtures without the need to separate their components. In our opinion, it 

represents definitively a breakthrough for the SEC to receive the attention it deserves in 

quantitative analysis. This work, accompanied by the fact that companies have begun to 

commercialize SEC instruments during the last years, opens interesting perspectives for 

spectroelectroanalysis. 
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Fig. 1. SEC experiment of 7.5 × 10
−4

 M DA in 1 M HCl between +0.30 and +0.80 V at 

a potential scan rate of 0.010 V s
−1

. (a) Cyclic voltammogram, (b) 3D plot of the spectra 

evolution with time/potential recorded concomitantly with the cyclic voltammogram, 

and (c) cyclic voltabsorptograms at 250, 283, and 391 nm. 
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Fig. 2. This figure is related to solutions 5 × 10
−4

 M CAT or 5 × 10
−4

 M DA in 1 M 

HCl. (a) Cyclic voltammograms between +0.30 and +0.80 V at 0.01 V s
−1

. (b) Initial 

spectra (taking a 1 M HCl solution as reference spectrum). (c) Spectra (taking the initial 

solution as reference spectrum) at +0.80 V during the SEC experiments between +0.30 

and +0.80 V at 0.01 V s
−1

. 
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Fig. 3. (a) Loadings of CAT and DA with respect to potential. (b) Loadings of CAT and 

DA with respect to the wavelengths. Raw scores of (c) CAT and (d) DA with respect to 

the concentration of CAT and DA, respectively. 
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Table 1. Regression parameters obtained for the determination of DA in 1 M HCl in the 

1 × 10
−5

 − 1 × 10
−3

 M concentration range and concentration estimated from univariate 

(OLS) calibration curves for a test sample of DA. 

 

 CDopamine = 2.5 × 10
−4

 M 

Analysis Method R
2
 Syx CI (M) %RSD 

Iap 0.99996 3.9 × 10
−8

 [2.52 ± 0.06] × 10
−4

 1.03 

A250 nm, +0.80 V 0.9992 1.4 × 10
−3

 [2.56 ± 0.29] × 10
−4

 4.81 

 

Analysis methods correlate current intensity at the anodic peak (Iap) and absorbance at 

250 nm and at +0.80 V (A250 nm, +0.80 V) for potentiodynamic SEC measurements, versus 

DA concentration. R
2
, coefficient of determination; Syx, residual standard deviation; 

CDopamine, concentration of dopamine in the test sample; CI, confidence interval; and 

%RSD, relative standard deviation (n = 9, α = 0.05). 
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Table 2. Regression parameters of the calibration curves constructed after PARAFAC 

analysis (Fig. S5) for the determination of CAT and DA in 1 M HCl by UV−vis 

absorption SEC in the concentration ranges of 1 × 10
−5

 − 1 × 10
−3

 M and 1 × 10
−5

 − 7.5 

× 10
−4

 M, respectively, and estimated concentrations for two test samples. 

 

 

CCatechol = 2.2 × 10
−4

 M 

CDopamine = 3.4 × 10
−4

 M 

CCatechol = 1.2 × 10
−4

 M 

CDopamine = 9 × 10
−5

 M 

C R
2
 Syx CI (M) %RSD CI (M) %RSD 

C1 0.9989 1.1 × 10
−1

 [1.94 ± 0.33] × 10
−4

 6.88 [1.21 ± 0.33] × 10
−4

 11.12 

C2 0.9985 7.8 × 10
−2

 [3.34 ± 0.26] × 10
−4

 3.22 [9.4 ± 2.6] × 10
−5

 11.39 

 

C1, related to catechol, and C2, related to dopamine, correlate the scores of catechol and 

dopamine versus CAT and DA concentration, respectively. C, component; R
2
, 

coefficient of determination; Syx, residual standard deviation; CCatechol, concentration of 

catechol in the test sample; CDopamine, concentration of dopamine in the test sample; CI, 

confidence interval; and %RSD, relative standard deviation (n = 12, α = 0.05). 
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Table 3. Regression parameters of the calibration curves constructed after PARAFAC 

analysis (Fig. S10) for the determination of DA and EP in 1 M HCl by UV−vis 

absorption SEC in the concentration range of 1 × 10
−5

 − 1 × 10
−3

 M and estimated 

concentrations for a test sample. 

 

 

CDopamine = 2.2 × 10
−4

 M 

CEpinephrine = 3.4 × 10
−4

 M 

C R
2
 Syx CI (M) %RSD 

C1 0.9906 3.0 × 10
−1

 [2.16 ± 0.71] × 10
−4

 13.94 

C2 0.9735 3.4 × 10
−1

 [2.98 ± 1.01] × 10
−4

 14.64 

 

C1, related to dopamine, and C2, related to epinephrine, correlate the scores of 

dopamine and epinephrine versus DA and EP concentration, respectively. C, 

component; R
2
, coefficient of determination; Syx, residual standard deviation; CDopamine, 

concentration of dopamine in the test sample; CEpinephrine, concentration of epinephrine in 

the test sample; CI, confidence interval; and %RSD, relative standard deviation (n = 12 

(Dopamine), n = 13 (Epinephrine), α = 0.05). 
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Highlights 

 

 Homemade carbon nanotube electrodes or commercial screen-printed electrodes 

are used. 

 Bare optical fibers in parallel configuration offer excellent quantitative results. 

 Catechol/dopamine and dopamine/epinephrine mixtures in varying amounts are 

resolved. 

 These compounds show very similar electrochemical and optical signals at 

acidic pH. 

 Spectroelectrochemistry combined with PARAFAC is very useful for analysis. 

 




