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Highlights: 

-  New rhodium Nps-based sensitive sensor for bromide determination. 

-  Rhodium nanoparticles and chloride improve the detection limit of the method. 

-  Bromide cathodic voltammetric peaks generated after an anodic stripping step. 

-  Rh/SPCE sensor shows ~ 100% bromide recovery in real samples analysis. 
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Abstract 

The  demand  for  bromide  determination  has  increased  over  recent  years.  Sources  of  bromide 

contamination  can  be  found    brines  from  hydraulic  fracturing,  pesticides  and  brominated in

polymers. dely used in different applications, the bromide anion is present in the composition of Wi

several compounds. In this paper, we present a new selective voltammetric method for bromide 

determination,  based  on  a  screen-printed  carbon  electrode  (SPCE)  modified  with  rhodium 

nanoparticles (Rh-Nps), that is used a sensing platform. The modification of the electrode surface as 

with -Nps and the presence of chloride in the sample, improved device performance, increasing Rh

the sensitivity of the Rh/SPCE-based sensor for bromide determination. The proposed sensor is 

simple to manufacture, easy to operate, and it offers a fast and accurate analysis. A single drop of 

the sample on the sensor is sufficient for the determination of bromide through measurement of 

voltammetric  cathodic  peaks,  generated  after  a  previous  anodic  stripping  step.  is  disposablTh e 

sensor offers a detection limit of 39 µM, with a calibration range up to 40 mM, and a sensitivity of 

23.28  µA/mM.  Its  application  to  real-life  samples  evidenced  recovery  values  close  to  100%, 

demonstrating the powerful analytical performance of the proposed method. 

 

 

Keywords:  Bromide;  Rhodium  nanoparticles;  Cathodic  stripping  voltammetry;  Screen-printed 

electrode. 
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1.  Introduction 

Bromide has  been extensively applied  in several fields and  is present  in pesticides, medicines, 

industrial solvents, gasoline additives, and water purification compounds [1]. Th  halide anion was is

first used in medicine as potassium bromide in the 19th century, when applied in the treatment of 

epilepsy, and as both sedative and an anxiolytic [2]. It remains in use in clinical veterinary, due to a 

its  antiepileptic  properties  [3,4]. Several  other  pharmaceuticals  contain  bromide  concentrations, 

which make this anion an important parameter to control in formulations ].  [ 52

Bromide properties have also been applied to polymeric materials, particularly for fireproofing. 

Brominated flame retardants consist of polymer additives, employed in the production of electronic 

devices,  clothing,  furniture,  and  electrical  appliances.  Issues  relating  to  brominated  polymers 

emerged from the weakly bond characteristic of  additive, making it highly susceptible to be this

released into the environment. Actually, current regulations restrict the use of organobrominated 

compounds, categorizing them as persistent pollutants, due to their potential bioaccumulation in 

ecosystems and their toxic effects on wildlife [6]. 

Widely applied in hydrogeology, bromide can occur naturally or can be artificially introduced as a 

tracer to track subsurface water flows. Wastes and unused residues from the use of this halide have 

resulted  in  widespread  ground  water  contamination  [1] Additional  sources  of  bromide .  

contamination are the brines generated from oil and natural gas production. Flowback and produced 

waters from  hydraulic fracturing  of  shale gas  are recognized  to contain  high  concentrations  of 

bromides (~12 mM). A major concern with these brines is the formation of brominated disinfection 

byproducts, especially problematic for the treatment of potable water [7,8]. 

Bromide as an analyte was not of great interest until the last decade and there are very few papers 

on its determination. Approaches based on volumetric techniques [9], spectrophotometry [10,11], 

colorimetry [12],  ion-exchange  chromatography [13,14],  molecular  absorption spectrometry  [6], 

and neutron activated analysis [11], have been used to determine bromide content in several types 
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of samples. Despite the fragility of the electrodes and the need for sample preparation, bromide-ion 

selective electrodes have proven their simplicity and selectivity in the potentiometric determination 

of bromide [15 17]. 

The  need  to  control  brominated  species  led  to  the  development  of  alternative  electrochemical 

approaches. Benett . [18] performed an electrochemical study of the voltammetric behavior of 

the redox pair Br-/Br2 in non-aqueous solvents. Other approaches such as wastewater treatment, , 

were designed to allow the selective oxidation of bromide in brines from hydraulic fracturing [7]. 

Also, the use of silver electrodes has permitted the study of halide reactions on  the electrode to

surface [19]. 

More  recently,  the  great  advantages  of  screen-printed  electrodes  (SPE)  have  been  recognized, 

mainly due to the great adaptability of these traducers, their portability for  analysis, as well 

as  their  low  cost,  disposability  and  reproducibility.  The  easy  handling  and  the  wide  range  of 

possibilities  for  SPE  modifications,  contributes  as  significant  improvements  to  this  sensing 

platforms [20]. Silver SPE [21] and the modification of SPEs with silver nanoparticles [22] have 

proved to be suitable for bromide quantification in real samples.  

Electrodeposition of metallic nanostructures has been successfully accomplished in numerous SPE 

systems,  offering  unique  advantages  in  terms  of  sensitivity,  selectivity,  working  stability  and  

electroactive  surface  area  increase  [22 27] Rhodium  nanoparticles  (Rh-Nps)  are  the  least .  

represented among the nanoparticle-based electrochemical sensors. Nevertheless, the utility of this 

nanosized Rh has improved the performances of various electrochemical devices [28 31]. 

Only few works regarding the electrochemical determination of bromide were found, revealing a 

research gap in the determination of  anion. The increased interest in determining bromide led us this

to develop a new, sensitive, selective, rapid, disposable, low cost, and - -use method for  easy to

analysis of this halide.  

Thus, the direct reduction of bromine to bromide, oxidized in a previous anodic step,  investigated is

in this manuscript. The working carbon SPE modification with Rh-Nps, together with the presence 
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of a chloride supporting electrolyte, allowed to achieve an efficient method for the determination of 

a wide concentration range of the interest halide. Hence, the successful application of the sensor  to

seawater, used to simulate the brines from hydraulic fracturing, showed suitable recovery values 

(~100%).  Additionally,  the  satisfactory  application  of  the  method  to  a 

hexadecyltrimethylammonium bromide (CTAB) surfactant synthetic solution, provide a method for 

this tensioactive determination. Also, the bromide content of pharmaceutical formulations, such as 

dextromethorphan hydrobromide and ipratropium bromide, was correctly determined matching the 

sensor results with the labeled concentrations. 

 

2. Materials and methods 

 

Rhodium (III) chloride hydrate, potassium bromide, sodium chloride, potassium sulfate, sodium 

phosphate dibasic  dihydrate, sodium  phosphate monobasic  dihydrate,  potassium  nitrate,  sodium 

carbonate, methanol, and sulfuric acid, were obtained from Merck (Darmstadt, Germany  Sodium ).

nitrite,  potassium  iodide,  and  cetyltrimethylammonium  bromide  (CTAB)  were  purchased  from 

Sigma-Aldrich (Steinheim, Germany).  

All reagents were of analytical grade and all solutions were prepared with Milli-Q water (Millipore, 

Bedford, USA). 

Seawater samples were collected from Pontevedra coast, in the northwest of Spain. The samples   

were  subsequently  stored  in  high  density  polyethylene  bottles  in  a  freezer  until  the  analysis. 

Dextromethorphan hydrobromide and ipratropium bromide commercial formulations were obtained 

from a local pharmacy. 

The inks used for the fabrication of the screen-printed carbon electrodes ( CE), Electrodag PF-407 SP

A (carbon ink), Electrodag 6037 SS (silver/silver chloride ink), Electrodag 418 (silver ink)  and 
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Electrodag 452 SS (dielectric ink), were supplied by Achenson Colloiden (Scheemda, Netherlands). 

Polyester films (PET) of 0.5 mm thickness (HIFI Industrial Film, Dardily, France), were used as the 

printing substrates. The SPEs were fabricated as recently described elsewhere [26]. 

 

Voltammetric  measurements  were  performed  using  a  PalmSens®  portable  electrochemical 

potentiostat with the PS Trace 4.2 program (PalmSens® Instruments BV, Houten, The Netherlands). 

Microscopy  imaging  was  performed  using  a  scanning  electron  microscope  (SEM) JEOL JSM-

6460LV (Abingdon-on-Thames, UK).  

 

 

Electrodeposition of rhodium nanoparticles (Rh-Nps)  was performed using  chronoamperometr  ic

technique, by drop-casting 150 µL of a solution of rhodium (III) chloride (0.1 mM) in sulfuric acid 

(0.5 M) onto the SPCE, and applying a potential of -0.25 for 480 s. The electrode was then rinsed V 

with water to prepare it for use in the experiment. 

 

 

Cyclic  voltammetric  (CV)  experiments  for  the  electrochemical  screening  of  bromide  were 

performed, by drop-casting 150 µL of phosphate buffer saline (PBS) (0.05 M, pH 7 and 0.05 M of 

NaCl), containing 0.5, 1, 2.5, 5, 10, 20, 40 and 60 mM of KBr. Voltammograms were recorded 

between 0.00 and 1.80 V (vs Ag/AgCl) at 0.10 V s-1. 

 

 

For bromide determination, 150 µL of problem solution was drop-cast onto the sensor working 

area, and an anodic step of 1.25 V was applied over 20 seconds. Immediately after, a cathodic linear 

sweep voltammetry scan, from 1.11 to -0.25 V at a scan rate of 0.10 V s-1 was performed, returning 
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a  reduction  peak  at  0.50  V.  The  sensor  was  rinsed  with  mili-Q  water  prior  to  subsequent 

measurements.  

 

The pharmaceutical formulation of dextromethorphan hydrobromide, due to the high viscosity of 

the  matrix,  required  an  additional  step  before  the  electrochemical  measurement.  A  mixture  of 

dextromethorphan  hydrobromide  and  methanol  (1:1)  was  stirred  for  30  minut   at  room es

temperature. The methanolic mixture was then diluted in supporting electrolyte (1:1) and measured 

following the indications in the previous section. 

3. Results and discussion 

 

The cyclic voltammograms of different potassium bromide concentrations are shown in fig. 1. The 

voltammograms reveal  quasi-reversible redox process, developing the corresponding oxidation ed a 

and reduction peaks,  1.35 V and 0.50 V (vs Ag/AgCl), respectively. The observed behavior is at

described in equations 1 and 2. 

  

  (1) 

   (2) 

 

Considering  both  processes,  the  oxidation  of  bromide  requires  very  positive  potentials  for  the 

reaction to take place, growing a peak in the buffer discharge zone. Thus,  oxidation process  this is

more suscepti to peak deformation,    develop  from a non-stable base line, which difficult ble as it is ed

the  correct  quantification  of  the  electrochemical  signals.  In  contrast,  the  reduction  peak  was 
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developed at lower potentials (0.50 V), demonstrating stable behavior and good correlation with a a 

bromide concentrations. Accordingly, the cathodic process was selected for bromide determination. 

 

 

 

Once checked the electrochemical behavior of bromide, cathodic stripping voltammetry (CSV) was 

selected  as  the  technique  for  the  study  of  the  anion,  since  quick  analysis can  be performed a  

achieving well defined and stable peaks. In fact, the anodic step of CSV increased the bromide 

oxidation process (equation 1) thereby favoring bromine reduction (equation 2) in the cathodic ,  

step. However, the high potential required in the anodic step can be problematic  a real sample in

analysis,  because  several  species  can  be  oxidized  that  might  interfere  later  with  the  bromide 

cathodic peaks. The potential and time of anodic stripping were therefore optimized, setting the 

CSV measurement at 1.25 V during 20 s (fig.  S1 in Supplementary data). 
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The reduction of high bromide concentrations on the carbon working electrode originated well-

defined peaks. However, the sensi vity required for several samples, where bromide can be found ti

in  the  µM  concentration  range,  s  not  achieved.  Regarding  th ,  it  was  found  that  smaller wa at

concentrations  of  bromide  could  be  detected,  by  modifying  the  carbon  surface  with  rhodium 

nanoparticles ( -Nps). Rh

The -Nps were generated by chronoamperometric measurements of a Rh solution drop-cast onto Rh

the SPCE. For that, deposition potentials of -0.80, -0.50, -0.25, -0.1, 0.18 and 0.25 V were applied 

during 480 s, and the cathodic peak of bromide concentrations (lower than 1 mM), were compared 

with the one obtained in an unmodified SPCE (fig.  S2 in Supplementary data   ).

Deposition of Rh-NPS  -0.25 V yield  a linear slope for the tested bromide concentrations and at ed

was selected as the deposition potential for Rh-Nps. The time required for -Rh Nps deposition was 

also optimized and the SPCE surface was characterized by SEM analysis. The chronoamperometry 

at -0.25 V, was performed during 0, 30, 120 and 480 s, and the effect on bromide detection was 

evaluated. In Fig. 2, the SEM image shows rhodium nanostructures on the carbon surface, following 

an electrodeposition time of 480 s. ese data agree with the electrochemical determination of low Th

bromide  concentrations,  which  was  only  possible  when  480  for    electrodeposition  are s  Rh

performed, showing the extent to which this nano-deposit favor  the bromide redox process. ed

 

ACCEPTED M
ANUSCRIPT



10 

 

 

Chloride is a ubiquitous anion, frequently found in samples that also contain bromide. Hence, it was 

considered of interest to evaluate the effect of chloride in the Rh/SPCE-based sensor performance, 

as bromide detection can be altered in its presence. The chloride effect in the bromide CSV peaks 

was checked when using SPCE and Rh/SPCE Moreover, the anodic stripping effect was verified . 

under those same conditions.  

Electrode  modification  with  Rh-Nps  proves  to  be  essential  in  the  determination  of  lower 

concentrations of  bromide Further, this  effect is  greatly improved in  the  presence of  chloride. , 

demonstrating  that  this  ubiquitous  halide  take  part  in  the  detection  of  low  concentrations  of 

bromide.  When  the  supporting  electrolyte  s  formulated  with  different  amounts  of  NaCl,  an wa
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increase  in  the  signal  for  bromide  concentrations  (<  1  mM)  s  observed.  Additionally,  this wa

increase more noticeable when the SPCE s modified with Rh-Nps, showing the synergetic was wa

effect of both elements (fig.  S3 in Supplementary data). 

The electrodeposited nanostructures of rhodium and the presence of chloride are both evidencing 

smaller  concentrations  of  bromide,  increasing  the  sensitivity  of  the  device  and  improving  the 

method limit of detection. In fact, this could be explained by the oxidative effect of the chlorine, 

also generated in the primary anodic stage. , a 0.05 M PBS solution, supplemented with 0.05 M So

NaCl, was used as the supporting electrolyte, to avoid changes  the bromidein  peaks obtained in the 

real sample analysis, which  contain chloride concentrations. can

The  accuracy  of  the  proposed  method  was  establish   in  terms  of  reproducibility.  Using  the ed

optimum voltammetric conditions, and P  0.05 M with 0.05 M of NaCl as supporting electrolyteBS , 

several calibration curves for a bromide concentration range from 0 to 40 mM were performed. In 

table 1, the parameters of the calibration curves obtained for five replicas of different Rh/SPCE 

bromide sensors are shown. The sensor reproducibility value, determined in terms of the residual 

standard deviation (RSD %) associated with th e calibration curves slopes, was 2.58 % (fig.  3). A es

limit of detection (LOD) of 39 µM was obtained for the Rh/SPCE-based sensor, using the LOD 

=3 equation, where,  is the estimated standard deviation of the blank, and  is the average 

slope of the five calibration curves [32,33]. 

Despite the disposable characteristics of the SPEs, repeatability studies were also performed using 

the same Rh/SPCE-based sensor. Over simultaneous measurements, the sensor displays a lack of 

stability of bromide determination, observabl in the variation of the calibration slopes and  their e in

linearity  (fig.  S4  in  Supplementary  data).  Moreover,  these  repeated  measurements  led  to  peak 

deformation,  increasing  the  blank  signal,  which  affect   the  performance  of  the  device  when ed

determining lower concentrations of bromide.  
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Rh/SPCE sensor Slope (µA/mM) R2 Slopes average 
(µA/mM) Deviation RSD (%) LOD (µM) 

I -23.09 0.996 

-23.18 0.60 2.58 39 
II -23.57 0.999 
III -24.08 0.998 
IV -22.33 0.992 
V -22.87 0.993 

 

 

The device selectivity in detecting bromide anions against the halides, F- and I-, and other anions, 

such as NO3-, CO32- and SO42-, was evaluated for 1 mM of bromide (table S1 in Supplementary 

data). Chloride, used in excess in the supporting electrolyte, was not considered in the interference 

study,  the presence of this anion improved bromide detection. as
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The current variation show  very low interference effect for Fed a -, NO3-, CO32- and SO42-, with 

small variations in the bromide cathodic peak current, even for 10-fold excess of the interfering a 

anions. In contrast, the I- effect was more noticeable, affecting the cathodic current of 1 mM of 

bromide. A variation in peak current was noted when the halides, I- and Br-, re both  the same we in

concentration, since I-  cathodic peaks starts to rise, hindering the bromide process. The tested I- 

concentrations  of  0.20,  0.50  and  1  mM  affect   the  sensor  response  for  bromide  at  low ed

concentrations. Even so,  the sensor proved its capability to  overpass this  interference at  higher 

bromide  concentrations.  Yet,  the  amount  of  I-  in  the  samples    often  low  and  interference  iis s 

negligible Brines from hydraulic fracturing and oil and gas wastewaters were found to contain . 

iodide at concentrations of 2.2 x 10-4 [34], and at even smaller concentrations in seawater (4.7 x M 

10-7 M) [35]. Hence, the selectivity of the Rh/SPCE-based sensor is still suitable in real sample 

analysis, as discussed later. 

The effectiveness of the Rh/SPCE-based sensor for bromide determination was verified with several 

real-life samples. The analysis of bromide in seawater is first presented in this study. This matrix is 

of interest, as the brines from hydraulic fracturing contain higher amounts of dissolved salts than 

seawater [8]. No bromide content was detected in the raw sea-water sample. Thus, this sample was 

spiked with 2.5 and 5 mM of KBr, and evaluated by the standard addition method. The sensor 

demonstrated suitable correlations with the added amounts, determining 2.50 ± 0.08 mM and 5.07 ± 

0.12 mM of bromide, recovering respectively 99.33 % and 100.45 % from the matrix (fig. 4).  

Cetyltrimethylammonium bromide (CTAB), a quaternary ammonium surfactant and component a 

of a broad-spectrum antiseptic [5], was also analyzed to determine the amount of this halide present 

in a 6 mM synthetic solution, prepared on the supporting electrolyte. The Rh/SPCE-based sensor 

proved its capability to determine the expected bromide concentration (5.82 ± 0.18 mM), which can 

be related to the amount of tensioactive present in the solution. 
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The  Rh/SPCE  sensor  was  also  applied  to  two  commercial  pharmaceutical  formulations, 

dextromethorphan hydrobromide and ipratropium bromide, detecting 3.80 ± 0.08 mM and 0.66± 

0.02  mM,  respectively.  The  concentration  determined  in  these  samples  closely  correlated  the 

bromide value, measured by the standard addition method, with the labeled values of 4.00 mM and 

0.60 mM for dextromethorphan hydrobromide and for ipratropium bromide, respectively. 

The  results,  summarized  in  table  2,  demonstrate  that  the  proposed sensor  is  applicable  to  real 

sample analysis, achieving high accuracy, as indicated by the RSD values. 
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4. Conclusions 

A  simple  method,  capable of  determining  bromide  in  several  real-life  samples,  by  single  drop 

analysis, has been developed. The proposed voltammetric Rh/SPCE-based sensor has proven its 

highly selective, precise and fast capability to determine bromide in different matri , offering a ces

very short analysis time (33 s for each measurement  Moreover, this disposable device, presents ). a 

low limit of detection of 39 µM, and highly accurate bromide determination (RSD % = 2.58). The 

linear range up to 40 mM is ideal for the detection of bromide concentrations that can be found in 

several types of samples, making this sensor a versatile analytical tool. The real-life samples were 

      

2.50 2.50 
2.39 

2.50 ± 0.08 
95.56 

2.84 2.50 100.04 
2.56 102.40 

      

5.00 5.00 
5.07 

5.07 ± 0.12 
101.48 

2.09 4.88 97.50 
5.12 102.38 

      

- 6.00 
5.82 

5.82 ± 0.18 - 2.80 6.13 
5.75 

      

- 4.00 b 
3.90 

3.80 ± 0.08 - 1.80 3.73 
3.80 

      

- 0.60 b 
0.66 

0.66 ± 0.02 - 2.11 0.63 
0.66 
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analyzed  with  no  pretreatment,  except  for  the  dextromethorphan  hydrobromide  formulation, 

resulting in an easy- -use method for the evaluation of bromide in a broad range of samples. to
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