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Abstract 

The paper contains a discussion about the null spaces associated to linear prediction 
models for the particular case of Partial Least Squares regression models. The 
discussion separately considers the two existing null spaces: the one in the input space 
related to the projection onto the latent space and the null space, coming from the 
projection space, corresponding to the mapping of the scores onto the predicted 
responses.  

The paper also explores the impact of such null spaces in the definition of the design 
space around some feasible solutions obtained by inverting the prediction model, via 
several cases with simulated and real data from the literature. The case-studies serve to 
illustrate the discussion and the need of considering points in the two null spaces, rather 
than just take into account the null space within the latent space.  

They also serve to show how to address the use of the resulting vectors in the design 
space to maintain the desired quality by modifying the tunable (maneuverable) process 
variables to compensate for variations due to some other feature variables not so easy to 
control.  
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1. Introduction 

In the context of process control, prediction models are commonly used to estimate the 
expected quality of a product as a function of the characteristics of the process and/or 
some feature variables, such as raw material properties or environmental factors. Given 
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the frequently large number of process or feature variables and quality characteristics 
and their correlation (in both spaces), these prediction models are usually Latent 
Variables Models (LVM).  

Besides their standard use to predict the expected quality characteristics (the response 
when fitting the model), these models are also useful when the focus is on maintaining a 
given quality, like in the framework of Quality by Design (QbD) established for 
pharmaceutical processes. In the latter situation, the prediction model must be inverted 
to find the settings of the input variables necessary to guarantee this given or desired 
quality. 

The linear LVM selected is a Partial Least Squares (PLS) regression model. Briefly, a 
PLS model can be seen as the mathematical composition of two linear maps: first a 
reduction of dimensionality by projecting the points onto a space of lower dimension 
(the latent or projection space spanned by the selected latent variables) and then 
regressing the scores onto the response space. 

The present work focuses on the variability in both the input and latent spaces due to the 
linear structure of the PLS model being used, rather than on the variability of the 
predicted response itself. The reader interested in the statistical uncertainty of the 
predictions can consult Refs. [1, 2] where some confidence intervals are computed for 
the response predicted with PLS models.  

The use of subspaces to solve linear problems is usual in engineering and signal 
processing. In control system, which is area directly related to PAT (Process Analytical 
Technology) and QbD, first principles models (i.e. based on physical or chemical 
laws) have been traditionally of use to describe the behavior of a system to subsequently 
control it. However, in the last years, the idea of using data driven models even if they 
have no direct physical meaning gained interest among engineers, ending up in so called 
’subspace’ methods. Their name reflects the fact that linear models can be computed 
from row and column (sub)spaces of certain matrices, which are obtained from input-
output data of the system under observation. Typically, the column space of such data 
matrices contains information about the model, while the row spaces are somehow 
representative of the state sequence, and they are estimated directly from input-output 
data without ‘a priori’ knowledge of any first principles models. The decomposition 
based on canonical classical models has some alternatives. For example, in the book in 
ref. [3], the use of QR decomposition is proposed for the projection (orthogonal or 
oblique) and generalized singular value decomposition to determine finite dimensional 
subspace and, then, least squares to obtain the linear relations. Least Squares Regression 
(LSR) method is introduced for subspace segmentation in ref. [4], but multivariate 
analysis with principal component analysis (PCA) and partial least squares (PLS) are 
somehow representative methods [5] among several data-driven techniques for process 
monitoring, thanks to their simplicity and efficiency in processing huge amount of 
process data. As stated in ref. [6], a more important objective of process monitoring is to 
provide assurance of good product quality that is impacted by the process conditions, 
and quality variables are better taken into account with PLS than with PCA.  
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Techniques of searching for subspaces appropriate to model the system response are 
extended to non-linear models by using KPCA (Kernel Principal Component Analysis) 
to model nonlinear dependences between variables to reproduce nonlinear dynamic 
behavior [7]. Regarding decompositions, ref. [8] is an introduction that shows the utility 
of Krylov subspaces to solve linear systems Ax = b, where A is a square matrix and b is 
a vector. When A is invertible, the solution is just A-1b but the calculation of the inverse 
of A for large matrices can be computationally inefficient and space consuming. On this 
subject, the book by Liesen and Strakos [9] contains a very complete mathematical and 
computational foundation, along with some interesting historical notes. The 
development of efficient algorithms to solve linear system of equations with sparse 
matrices is a matter of constant research, see for example the recent paper in [10]. 

Since the Krylov subspace methods are projection methods onto a subspace, its use as 
the projection techniques to solve large-scale control problems is a natural ‘extension’ 
of its use in numerical linear algebra for matrix problems. Basically, it consists of 
projecting the original large control problem onto a m-dimensional Krylov subspace (m 
‘small’) by constructing a basis of the subspace, and then use a standard well-
established technique to solve the projected smaller problem. In that way, an 
approximate solution of the original large problem is obtained from the solution of the 
projected problem [11,12]. 

PLS was initially developed as a heuristic technique [13] to solve least squares 
problems in multilinear regression, with no optimality properties and criticized for a 
long time as a somewhat ‘ad-hoc’ solution. Later, it was shown that it is equivalent to 
some of the most sophisticated numerical algorithms to date for solving systems of 
linear equations, such as the Lanczos bidiagonalization or the conjugate gradient 
methods [14]. The property that the vector ŷ  consisting of the values predicted by a 

PLS model with a latent variables is the projection of the data vector y onto a subspace 
spanned by the predictor variables in X (which is a subspace that can be described as the 
span of a certain Krylov sequence), is used in ref. [15] to characterize several regression 
methods (ridge regression, continuum power regression, PLS and principal components 
regression, PCR) that attempt to reduce the variance of the OLS (ordinary least squares) 
regressor bOLS=(XTX)−1XTy by replacing the ill-conditioned matrix (XTX)−1 by a more 
stable alternative. 

The interpretation of PLS in terms of Krylov subspaces is also used in ref. [16] to show 
that various latent variables regression methods share a common structure, called 
Multilayer Basic Sequence (MBS), which is a particular case of a Krylov sequence. It 
allows unifying several algorithms used to estimate the PLS coefficients and studying 
the relation between Martens’ PLS [17] (orthogonal MBS) and Wold’s PLS [18,19] 
(oblique MBS). For any orthogonal-MBS model, there is an equivalent oblique-MBS 
model so that they share the same regression space (or Krylov spanned space), leading 
to equivalent predictive performance. That means that similar regression results can be 
obtained via multiple linear regressions onto the response variable. Martens' PLS and 
Wold's PLS are a special case of this situation. This explains the identical regression 
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coefficients and prediction results. The mapping nature of orthogonal-MBS and 
oblique-MBS from latent score T-space to the original X-space reflects the 
corresponding deflation techniques.  

Although, conceptually, the interpretation of the latent variables is irrelevant in the 
methods of least squares based on subspace decomposition, it becomes ‘relevant’ during 
the stage of using the model, where the practitioner looks for this interpretation. This is 
especially true in Chemometrics where PLS used to be a method to predict 
concentrations of samples with known multivariate signals, that is, as a calibration 
method. It is worth mentioning that, in this context with, usually, more variables than 
samples, the solution by using standard linear regression models does not exist. 

When exploring the possible interpretation of the PLS calibration models, it turned out 
that the subspace spanned by the a selected latent variables included information not 
directly related to the response y. This issue was addressed with two methodologies: i) 
pretreating the signals to eliminate ‘artifacts’ of the signal (usually physical) not related 
to the response or ii) modifying the search for the solution limiting it to subspaces 
correlated with the response. The first approach has led to several pretreatment methods 
of the predictor variables, which greatly impact the subsequent PLS calibration model 
[20,21]. On the second methodology mentioned, the most generalizable contribution is 
possibly the Orthogonal Signal Correction (OSC) by Wold et al. [22], an appropriate 
modification of the PLS algorithm to eliminate systematic y-orthogonal parts of the 
matrix X. The Net Analyte Preprocessing (NAP) approach [23] and its exactly 
equivalent Direct Orthogonalization (DO)[24] propose some loading weights (not 
necessarily contained in the row space of X) representing phenomena considered to be 
irrelevant to the modelling of y. Other proposals, as Orthogonal-PLS (O-PLS)[25], the 
alternative way of computing O-PLS [26] and the regression procedure based on the 
Orthogonal Signal Correction by Fearn [27], are discussed by Indhal [28], clarifying the 
way these OSC methods work and giving a rigorous explanation of the reason why the 
entire OSC concept may be both confusing and superfluous. Yu and MacGregor [29] 
point out that ‘the subspace of X uncorrelated to Y is often high dimensional and it is 
not at all clear what part of this subspace is removed by different OSC algorithms with 
different number of OSC components. As a result, any interpretation of the OSC 
components may be different’ and propose the application of a canonical correlation 
analysis as post-processing of a PLS model (PLS-CCA). This approach to define the 
subspace most related to the quality variables is used in ref. [30] to model a batch 
process by looking for the subspace common to the different slices defined with the 
processing time.  

Therefore, activity in the field of least-squares regression on subspaces is focused on 
modeling the subspace of the predictors Sm most related to the response. In general, the 
orthogonal subspace Sm

⊥ is only considered for defining a limit, usually known as the 
squared prediction error (SPE), to decide if a new object is compatible with the fitted 
PLS (or PCR) model. This index is essential when building multivariate calibration 
models or multivariate control charts based on latent variables [31]. Its use has even 
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been generalized to the non-linear case of multivariate control in the industry using 
KPCA [7]. Besides the definition of SPE, the null space of the Sm

⊥ regression model has 
been used, for example, for early diagnosis of structural damages or machinery 
malfunctions resulting in reduction of the maintenance cost and increasing reliability 
and safety [32,33,34]. 

This subsidiary use of the null space has been surpassed in the field of QbD and PAT, 
because the null space is part of the design space. This is consequence of the own 
definition of null space: when adding any vector of the null space (of the regression 
between X -containing process variables, raw material or environmental properties, and 
Y -with the quality characteristics) to any vector of the space spanned by X, the 
predicted quality characteristics do not change. Nonetheless, the analyses on the null 
space are limited to the one related to regressing Y on the latent variables. The QbD 
context requires to define the values of process variables, raw material or environmental 
properties that result in the same (or similar enough) value of the measured quality 
characteristics and, if only the referred null space is used, the resulting estimates are 
‘indirect’ because the range of admissible values of the original variables is computed 
from their range on the latent variables.  

Therefore, in what follows, the predicted value remains invariant. In fact, we set a 
desired value of the response ydes (the target quality) and look for the corresponding 
settings of the input variables whose predicted value is exactly ydes. Additionally, 
around these settings, when they exist, it is advisable to determine the corresponding 
design space, that is, the region in the input space where the predicted response is the 
same and thus the expected target quality is maintained.  

When working with linear models, this design space includes the kernel of the mapping, 
also known as the null space, which we have already said that is the vector subspace 
that contains the points mapped onto zero, i.e. the vectors that do not modify the 
predictions when added to any other.  

To our knowledge, Jaeckle and MacGregor [35] introduced for the first time the idea of 
a null space associated to the inversion of a PLS model, but its effect is only considered 
in the latent space. This null space is also taken into account in ref. [36] when 
backpropagating the confidence interval in ref. [1] with different procedures to calculate 
a kind of confidence regions to bracket the design space. 

However, focusing on the fitted PLS model, part of the variability reflected in the 
design space comes from what we can call the ‘residual’ space related to the input 
variables. The term ‘residual’ refers to the fact that it is discarded when selecting the 
number of latent variables because it is supposed to be the part that is not related to the 
predicted quality characteristics. In particular, the variability in the residual space 
related to the input variables (the part of the process or feature variables space that is 
discarded after the decomposition) does not have any impact on the predicted quality. 
Therefore, it reflects the part of the space where the input variables can be modified 
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without altering the quality of the resulting product, that is, it is necessarily part of the 
design space. 

The present paper intends to describe the ‘shape’ of this part of the design space 
throughout some production processes with a certain predefined quality. Technically, 
this requires the inversion of the regression model because the quality characteristics of 
the product are the ones kept fixed. Given that PLS is a linear model, under certain 
conditions (relation among the dimensions of the spaces –input variables, latent, and 
quality characteristics), this inversion can be done algebraically by solving matrix 
systems [37]. There are also some computational alternatives [38] that do not depend on 
the mentioned dimensions. Regardless of the picked solution, the null spaces related to 
the linear models being used play an important role in the subsequent design space. 

Certainly, this ‘division into two parts’ of the null space can be ignored and use directly 
its algebraic characterization by using the regression coefficients of the fitted PLS 
model. However, not all points in this null space belong to the design space, because 
they also must be adequate for the process being modelled, i.e., feasible settings for the 
process/feature variables that, in addition, are projected onto the latent space defined by 
the PLS model. 

The basic notation and some theoretical background are presented in section 2 and 
different small sample sized case-studies are analyzed in section 3 to illustrate the 
properties and practical applicability. The paper ends with some conclusions. 

 

2. Theoretical properties and definitions 

Let X (n × p) and Y (n × q) be the matrices of p (predictor) input variables and the 
corresponding q (response) quality characteristics, respectively. Frequently these are 
historical data of a process, arranged in two matrices used to fit, in our case, a PLS 
model to predict quality characteristics given some settings of the process/feature 
variables. These data are assumed to be representative of the process because the 
information they contain is the only one used to fit the model and to make decisions, in 
a completely data-driven approach. 

In what follows, we are assuming that p and q are less than n, that up to p new 
orthogonal variables can be obtained in the input space, and that both X and Y are 
autoscaled (that is, each column is centered by subtracting the mean, and has variance 
one after dividing by the standard deviation).  

In addition, in any process under control, the process/feature variables are bounded. To 
emulate this situation, the admissible domain of the predictor variables will be defined 
by the range of the observed values in X. The design space we are looking for must be 
inside this domain and with the settings of the input variables that define feasible 
solutions. 
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A PLS prediction model is fitted with X and Y by computing a orthogonal new 

variables (the latent variables) with a common scores matrix Ta (n × a) such that  

T T
a a XX=TP = TP +R       (1) 

T
a YY= TQ +R       (2) 

Matrices P (p × p) and Q (q × a) are the loadings, and RX and RY the matrices 
containing the residuals of the decomposition. As usual, upper T means transposing the 
corresponding matrix or vector. Finally, sub-index a denotes that we are only 

considering the first a columns of the corresponding matrix, so for instance, T is the n × 
p matrix of X scores, whose first a columns form the common scores matrix Ta. The 
subspace spanned by the columns of Pa is the latent variables space or projection 
subspace (for now on, latent space).  

 

Once a PLS model in equations (1) and (2) is fitted, there are also some constraints to 
adequately apply the model. We will use the 95 % confidence limits for the usual Q and 
T2 statistics to define the proper region where the feasible predictor variables are 
projected.  

The value of the T2 statistic for a given sample is the Hotelling’s distance from the 
projection to the origin of the latent space (i.e., all scores equal to zero) and indicates 
the position of the projected sample. On the other hand, Q-residuals are calculated as the 
sum of squares of each row in Rx, eq. (1), the residuals after projecting the sample 
trough the model. It is then a measure of the distance from the sample to the orthogonal 
projection onto the latent space. Imposing limits in both statistics is to impose a 
threshold value for the variation of points both within and outside the latent space.  

Accordingly, the fitted model must incorporate both constraints, so that the PLS model 
is properly applied only to those x with values of Q and T2 below the threshold values 
imposed in both statistics. In other words, we are defining a bounded domain for the 
application of the PLS model. Geometrically, this domain can be viewed as a “PLS-
box” that includes the part of the latent space and the part of the residual space bounded 
with, in our case, the 95 % confidence level for Q and T2 statistics. 

In that sense, the feasible solutions are those that belong simultaneously to the domain 
of the input variables and to what we have named the PLS-box. 

 

For vector calculations, we will respect their structure in matrix form. For example, a 
set of p predictor variables is written as a vector xT because these variables are rows in 
matrix X. Similarly, yT is a row vector containing quality characteristics. 

With this notation, vector x containing some settings for the input variables is projected 
onto the PLS-latent space by using some weights in W (p × a matrix such that 



8 

 

T
a aP W=I ), so that the a-dimensional vector of scores is 

T T
a =t x W. Then, to obtain the 

expected (predicted) characteristics,ŷ , it suffices to compute ̂
T T T

ay =t Q . In short, 

given values of p input variables in x, the vector of q predicted quality characteristics 

ŷ  is computed as: 

ˆT T T T=y =x WQ x b       (3) 

It is clear from equation (3) that the fitted PLS model is a linear mapping, L, between 
the p-dimensional input space to the q-dimensional quality characteristics space defined 

by the matrix of estimated coefficients bT (q × p).  

As any other linear map, it has a null space associated to it, that is, the subspace that 
contains all the vectors that are mapped onto the null vector. Because a < p, the 
dimension of such subspace (the kernel of L, ker(L)) is d = p – rank(b) = max {p – a, p 
– q} and it is easy to compute a basis Bnull (p × d matrix) to characterize ker(L). That 

means that for any d-dimensional vector v, the corresponding vector 0
T T T

null=x v B

belongs to ker(L). In other words, if the null space does not reduce to the null vector, it 
contains the set of vectors x0 that can be added to any other x in that space without 
modifying the predicted response, that is, 

( ) ( ) ( ) ( )0ˆ kerT T T T
o oL L L= = = + = + ∀ ∈y x b x x x x x b x   (4) 

This null space is relevant when defining the design space for a given set of quality 
characteristics, because it is part of the allowed variation in the process/feature variables 
that does not modify the predicted response. Consequently, the set of points 

( ){ }0 0, ker L+ ∈x x x  is contained in the design space around x. 

 

On the other hand, the interest now is focused on the inversion of the PLS prediction 
model for a desired or given ydes (values of the target quality characteristics). This issue 

is usually tackled in the latent space by determining the a scores ̂ at , equation (2), such 

that  

ˆT T T
des ay = t Q        (5) 

Then, to obtain the corresponding predictor variables, it suffices to use the loadings Pa 

in equation (1) to ‘transform’ ̂at  to a p-dimensional x irrespective of the values that the 

discarded dimensions could have, that is, ˆˆT T T
des a a=x t P . 
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However, the solution ̂at  of equation (5) may not be unique. When a > q, there is a null 

space as defined in [35], which is a subspace inside the latent space that contains the 
vectors t0 for which the predicted response is zero, that is,  

0
T T

q=t Q 0        (6) 

Equation (6) shows that t0 belongs to the null space related to the linear map defined by 
matrix Q in equation (2), provided a > q (otherwise, the kernel is reduced to the null 
vector). To avoid confusion, we will denote this space as Q-null space. 

Therefore, for any t0 in Q-null space, 0
ˆ

a +t t  is also solution of equation (5) and is 

mapped to ydes, and thus, the inversion problem has infinitely many solutions in the 
latent space. When multiplying by the loadings Pa, we have infinitely many settings for 
the input variables with the same expected response, i.e., that predict the same quality 
characteristics, namely 

( )0 0 0
ˆ ˆ ˆ ˆT T T T T T T T T

des a a a a a des= + = + = +X t t P t P t P x x    (7) 

for any ˆat  solution of equation (5) and t0 in Q-null space, hence ( )0 ker L∈x  and all the 

points in matrix ̂ desX  has the same predicted response, ydes.  

 

Nevertheless, this procedure for computing different settings of input variables to obtain 
the desired quality characteristics does not cover the whole set of possible points in 
ker(L) because there is another null subspace, orthogonal to the latent space, which is 
ignored when re-constructing the predictor variables as in equation (7).  

This subspace is precisely the one spanned by the loadings of the discarded latent 
variables. For the training set in equation (1), we can write  

T T
a a r rX = T P +TP        (8) 

where sub-index r means the last r columns of the corresponding scores or loadings 
matrices (r = p – a). For any r-dimensional point s,  

T T T
r r=x s P         (9) 

is a p-dimensional vector in the input space such that T
r q=x b 0 , i.e. it belongs to ker(L). 

In fact, is  

T
r a=x W 0         (10) 
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meaning that any of the xr is in fact projected onto the origin of the latent space (null 
scores).  

Therefore, if p latent variables can be computed for the p-dimensional X, the loadings of 
the discarded latent variables are a basis of the kernel of the projection from the input 
space onto the latent space. Now, we will denote this space as W-null space, related to 
the residual space, to distinguish it from the previous Q-null space inside the latent 
space.  

 

With this notation, and always in the global ker(L), we will differentiate between points 
xr in W-null space, solution of equation (10) computed as in equation (9), and points x0 

that will correspond to 0 0
T T T

a=x t P , that is, points reconstructed from any t0 in Q-null 

space defined in equation (6). These two ‘types’ of vectors have additional 
distinguishing properties: any xr will have null value for the T2 statistic since it is 
always projected onto the origin of the latent space, and any x0 will have Q-residual 
equal to 0 because it is computed directly from the latent space. 

In any case, as we are trying to estimate the design space around a given ˆ desx  to achieve 

ydes, the variability due to the W-null space must be taken into account together with the 
one due to the Q-null space.  

Aside from the residual variability in RY in equation (2) (which will be reflected in the 
statistical uncertainty when estimating a given response ̂y ), we are focusing on the one 

in RX, equation (1), which will exert an impact on the input variables but not on the 
predicted response nor even in the latent space. In other words, this variability will be 
reflected only in the design space. 

 

According to equations (6) and (10), the first property to notice is that, in all the 
discussed cases, the variation around any point in the input space due to the null space 
does not depend on the actual values, neither the variables x nor the predicted (or 
desired) quality characteristics in the corresponding y. However, this property, in 
practice, can be useless.  

In fact, all the properties in the previous paragraphs are theoretical properties. They help 
in understanding the spaces we are exploring but fail in the precise description of the 
design space. This is so because the points that we can obtain with the bases computed 
for the different null spaces, indeed, do not modify the predicted response since they 
always add zero, but we have no guarantee that the PLS model is properly applied to 
them, nor even that the calculated input variables are inside the allowed domain. Put 
differently, any point in ker(L) is not necessarily a feasible solution, inside both the 
input domain and the PLS-box.  
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Therefore, besides the theoretical property of being in ker(L), we also need to 
characterize which points are not only within the domain where the predictor variables 
can vary, but also have projections inside the latent space delimited by the fitted PLS 
model. Both Q and T2 statistics are then the parameters to be used to decide that a 
process is in-control when this control is based on LVM.  

 

3. Results and discussion 

Different case-studies are discussed, illustrating different properties or approaches. If 
the data correspond to a process, then X will contain some values of process variables or 
features with some other characteristics (raw material, environmental factors, etc.) and 
Y will be then some quantitative measure(s) of a quality characteristic of the product.  

In a general context, the data sets consist of a matrix X with predictor or input variables 
and, a vector y (in all the section is q = 1) with the response to be modelled. Both X and 
y are supposed to be autoscaled before fitting the model. 

Irrespective of the type of data at hand, the discussion is related to the properties of the 
PLS model fitted, together with some suggestions as to use these properties in practice, 
for example, in process control.  

For each data X-y, the procedure has the following steps: 

Step 1. Set the domain with the allowed range of variation of the input variables. We 
have defined it as the rectangular parallelepiped (rectangular box) formed with 
the variation range of X. 

Step 2. Set the domain for the PLS model (the PLS-box), with coefficients vector b. To 
do it, 

a) fit a PLS model with autoscaled X-y  
b) remove any point with values of both Q and T2 statistics above the 

threshold (critical values at 95 % confidence level)  
c) remove any point with standardized residual (difference between y and ŷ

) outside the interval [-2.5, 2.5] 
d) re-scale the remaining points and repeat until no sample is outside the box 

Step 3. Define a target or desired value of ydes (target response or desired quality 
characteristic). 

Step4. Look for score(s) ̂at  , solution of eq. (5), and inside the latent space. If a > q, 

generate m points 0t in Q-null space, eq. (6), and add them to ˆ
at .  

Step 5. By using the loadings, as in eq. (7), compute ˆ
desX (m settings of predictor 

variables, all of them with the property of ˆ
des desy=X b ). 
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Step 6. Generate points belonging to W-null space, following eq. (10), and add them to 

all the computed ̂ desX  (the matrix is, in fact, a single point when a = q). 

Step 7. Remove those settings outside the PLS-box or outside the input domain defined 
in step 1, that is, retain only the feasible solutions. 

 

The last steps of the procedure are summarized in fig. 1. They correspond to the 
algebraic inversion of the PLS model plus the added solutions taking into account the 
two null spaces we have introduced in section 2.  

Figure 1 around here 

After finishing the steps explained, all the remaining points and their convex 
combinations (line segments between points in the set) are part of the design space 
corresponding to the inversion of the PLS fitted to predict ydes due to the linear nature of 
the PLS model. Remember that a set of points is said to be convex [39] if the line 
segment between any two of its points is entirely contained in the set, and the convex 
hull of a set of points is the smallest convex polygon that encloses all the points in the 
set.  

 

3.1 Case 1. Simulated linear relation between X and y 

The first case study consists of a simulated linear relation with data in low dimension to 
allow the usual Cartesian representations to illustrate more easily the different spaces 
explained in section 2 and their effect on the design space, or the part of the domain of 
the input variables where they can be modified without altering the predicted response.  

Therefore, let us consider three input variables (in this case, three predictor variables or 
regressors) X1, X2, X3 and a single response Y. The linear relation is defined in eq. (11), 
just the sum of the variables plus an offset term.  

1 2 3 1.5Y X X X= + + −         (11) 

To fit a PLS model in order to recover this linear relation, we need some data. The 
following subsections show the effect of the available data and the selected number of 
latent variables on the PLS model fitted and, thus, on the part of the design space 
estimated with the corresponding model.  

In all three cases, we simulate a predictor matrix X with 50 samples and 3 variables and 
compute response vector y according to eq. (11) with the actual values in X. A 
comparative summary of the three situations is at the end of the present section.  
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3.1.1 PLS model with a single latent variable. Uncorrelated predictor variables 

In this case, the three variables are generated as values independently chosen with a 
uniform distribution in [0, 1]. That means that there is neither correlation among the 
predictor variables nor experimental error, only the relation between predictor and 
response, which is a linear relation that we want to model via PLS.  

Table 1 contains the characteristics of the decomposition when fitting the PLS 
models. A single latent variable (LV) suffices to explain 98.96 % of the variance of 
the response y with 36.84 % of the variance in X.  

 

Table 1. Characteristics of the PLS model fitted to the simulated data with 

uncorrelated predictors. 

 

Number of LV 
Variance explained in X 

(%) 

Variance explained in y 

(%) 
RMSECV 

1 36.84 98.96 0.104 

2 71.96 99.99 0.015 

RMSECV: Root Mean Squared Error in Cross-Validation 

 

With this single latent variable for the PLS model, in terms of the notation 
established in section 2, we have p = 3, a = 1, q = 1. Since a = q, if we need to find 
values for the regressors to predict, say ydes = 0.31 (an intermediate quantity among 
the autoscaled values of response), there is a unique solution for determining the 

corresponding score in eq. (5), step 4 in fig. 1, namely ât  such that ̂ 0.31at =Q . 

Applying the loadings in Pa in eq. (1), step 5 in fig. 1, there is then a unique 

( )ˆ 0.12,0.22,0.21des =x  that will predict the desired characteristic ydes.  

It is necessary to check that this solution belongs to the PLS-box as well as to the 
domain of the input variables. The latter condition is directly examined with the 
coordinates. For the former step, in fact, as its Q-residual is always null, we only 
have to check if its T2 value is less than the threshold limit, which is 4.04 for the 
fitted PLS model with one latent variable.  

In this case, ̂ desx  meets all the constraints, defining thus a feasible solution. Fig. 2 is 

the Cartesian representation of the three-dimensional input space. The range of X, 

green diamonds, defines the domain. We can see that ˆ desx , the red filled circle, is 

well inside it.  

Figure 2 around here 
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However, there are two dimensions discarded when fitting the PLS model that 
impact the predictor variables space but not the latent space. Because of the 
projection, there is a plane in the three-dimensional input space where we can move 
without modifying the predicted response. This plane is consequence of the space 
that we have called the W-null space, related to the residual space, which in turn is 
orthogonal to the latent space. 

To explore the effect of the W-null space associated to ydes, we generate m = 1000 
points uniformly distributed inside the range defined by the discarded scores Tr, 
equation (8), and multiply them by Pr, the discarded loadings that are a basis of the 
W-null space. As we have already indicated, all the points thus generated have null 
value of T2.  

Next, we add all of them to ˆ desx , step 6 in fig. 1, which does not modify the 

predicted response according to eq. (10) although it does modify the values of Q and 
T2. Therefore, the final step (step 7 in fig. 1) is to remove those resulting points 
outside either the domain of the input variables or the latent space (in this case, only 
if their Q-residuals are larger than the critical value 5.68). 

The remaining 726 settings are plotted as small black dots in fig. 2. To facilitate 
visualization of the plane they all lie on, the convex hull of the points is depicted in 

light gray and it is clear that it bounds the whole plane (containing ̂desx ) to the points 

inside the defined domain for the input variables and the PLS-box.  

 

3.1.2 PLS model with two latent variables. Uncorrelated predictor variables 

For the sake of illustration, for the same data sets X-y, let us suppose that we had 
chosen two LV for the PLS prediction model. As we can see in table 1, this new 
model explains 99.99 % of the variance in y and 71.96 % of the variance of X. Due 
to the uncorrelated predictor variables, this second latent variable only explains 
variance in X, in a percentage similar to the first one.  

Figure 3 shows the scores (green diamonds) of X in the two-dimensional latent 
space. Now a = 2, so there is a one-dimensional null space in the latent space, what 
we have called the Q-null space, resulting from the infinitely many solutions of 
equation (5). One of its valid solution has score zero on the second LV and, thus, 

with the same 1̂t  on the first LV as in 3.1.1. This solution is in fact the solution in the 

least squares sense to the system in equation (5). It is represented in figure 3 by a red 
filled circle.  

The remaining scores, solution of equation (5), theoretically follow a straight line, 
the one depicted in fig. 3 with blue filled squares, obtained by taking points equally 
spaced along it, step 4 in fig. 1 with a > 1 = q.  
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This line is in fact limited to the segment made up with the points inside the PLS-box 
in the latent space, graphically, the segment bounded by the ellipse depicted in fig. 3 
with black dashed line. The points enclosed by the ellipse have T2 values less than 
the critical value established when fitting the model, namely 6.51 at 95 % confidence 
level. Notice that the ellipse is almost a circumference due to the lack of correlation 
among the predictor variables. 

Figure 3 around here 
 

By using the loadings of Pa in equation (1), this Q-null space is expressed (step 5 in 
fig. 1) in the input space also as a line in the three-dimensional space. This line is the 
one defined by the 18 blue filled squares in fig. 4 that correspond to the blue filled 
squares in fig. 3 whose re-constructed predictor variables are feasible solutions (i.e., 
belong to both the PLS-box and the input domain). Since they are computed directly 
from the latent space by using the loadings, their Q- residuals are always null. Notice 
that the central position is occupied by the red filled circle which, also in this space, 

is exactly ̂ desx , the same as in section 3.1.1.  

As in the previous section, there is some additional variation allowed in the input 
space which is not being considered by only taking into account the Q-null space 
defined in the latent space. The possibilities that are missing come from the W-null 
space, which in this case is the one-dimensional null space related to the projection 
onto the latent space, and orthogonal to it.  

With eq. (10) we generate 50 points in W-null space and, following step 6 in fig. 1, 
add them to each of the 19 solutions already found (the 18 blue squares plus the red 
circle in fig. 3). Finally, step 7 in fig. 1, we keep the 760 feasible solutions.  

Figure 4 around here 

These feasible solutions are the small black dots defining parallel lines in figure 4 
where they clearly show that the direction determined by the black points in W-null 
space is orthogonal to the aforementioned line defined by the solutions coming from 
the Q-null space, blue squares.  

These two directions, together, define a plane, but only a part of it contains the 
settings of the predictor variables for which the problem makes sense, i.e., only the 

convex hull depicted in fig. 4 in light gray is part of the design space around ˆ desx for 

predicting ydes.  

 

In any case, the bounded regions in gray in fig. 2 and 4, inside the theoretical planes 
with equal predicted response, illustrate that if only the part of ker(L) coming from 
Q-null space is considered, the design space would be underestimated, it is necessary 
to add points in W-null space as well. 
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3.1.3 Correlated predictor variables  

It might appear that the constraints imposed for defining the PLS-box have a certain 
degree of arbitrariness, but in fact they are the key of the control of a process by 
using the fitted model.  

To illustrate this, in the same established situation, let us collect new data for fitting 
the model, this time with variables highly correlated. Then, new 50 samples with 
three correlated variables are simulated and, again, the true value of the response in y 
is computed as in eq. (11). 

Table 2 contains the new structure of the PLS models fitted, with 1 and 2 latent 
variables. One of the points was well beyond the 95 % limits of Q-residuals and T2 
statistics and it was removed.  

 

Table 2. Characteristics of the PLS model fitted to the simulated data with 

correlated predictor variables.  

Number of LV 
Variance explained in X  

(%) 

Variance explained in y  

(%) 
RMSECV 

1 95.08 81.85 0.429 

2 98.80 98.64 0.127 

RMSECV: Root Mean Squared Error in Cross-Validation 

  

Compared to the models in table 1 for uncorrelated variables in X, in the present 
case, the first latent variable is mostly related to the correlation among variables in X 
(95.08 % of variance in X) and the second latent variable is needed to better predict 
the response in y, up to 98.64 % of explained variance. 

Figure 5 shows the new latent space, with the same coding as figure 3: Green 
diamonds are the projection of the data points in X, the red circle is the least squares 
solution of eq. (5) for ydes =0.28 (an intermediate non-null value of autoscaled y), and 
the blue squares are along the segment consequence of the Q-null space, inside the 
latent space, related to the red point. The subspace is again a line segment but with a 
very different slope, compared to the one in figure 3. Finally, the ellipse in fig. 5 is 
the boundary of the region of the latent space belonging to the PLS–box. We see that, 
now, is far from circular. 

Fig.5 around here 
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The region of feasible settings of the predictor variables within the design space 
related to ydes is depicted in fig. 6 as the convex hull of the solutions computed 
following the procedure of fig. 1.  

Figure 6 around here 

The orthogonal position of the lines defined with the blue points and the ones defined 
with the black points is still evident, but the yellow region inside the theoretical plane 
is now very different from those in fig. 2 or fig. 4. In this case it is a kind of narrow 
band that extends in the direction defined by the Q-null space (blue squares), with 
width due to the W-null space (black dots) and controlled, precisely, by the threshold 
on the Q statistic. The small variation allowed is not surprising taking into account 
that selecting two latent variables, there is only near 1 % of the variance in X left in 
the residual space.  

 

Summing up, even though the functional relation between X and y is the same in all the 
cases, the estimated regions inside the design space, consequence of the null space, are 
not. In fact, the whole kernel subspaces are different. To prove it analytically, we use 
directly the corresponding regression coefficients to obtain the two-dimensional null 
space ‘at once’ without making distinction for the source of such variability (Q- or W- 
null spaces).  

With a single response, the kernel of the linear map defined by the regression 
coefficients b can be interpreted as the set of points orthogonal to b (see for instance 
page 137 in [39]), so that the regression vector b is the normal vector of the plane we 
are looking for. With this property, the analytical equations of the planes in figures 2, 4 
and 6 are, respectively:  

1 1 2 3

2 1 2 3

3 1 2 3

:0.45 0.63 0.63 0.33 0

:0.54 0.58 0.61 0.32 0

:0.68 0.47 1.13 0.28 0

X X X

X X X

X X X

π
π
π

+ + − =
+ + − =
+ + − =

     (12) 

The first two planes in eq. (12), π1 and π2, are very similar to each other, and correspond 
to the situation with uncorrelated predictor variables. The reason for the difference is the 
addition of the second latent variable, which hardly modifies the predictions computed 
with the PLS model with a single latent variable (due to the independent variables in X), 
but that modifies the residual and latent spaces. These spaces are completely different in 

the case of the third plane π3 obtained with a PLS model with 2 LV fitted with 
correlated input variables.  

Therefore, it is clear that the model decomposition is driven by the available 
information, that is, depends on the data at hand. The correlation of the input variables 
in the available data forces the shape and orientation of the PLS-box and, thus, also the 
‘inherited’ structure imposed in the input space (where the design space lies). 
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In any case, we have already pointed out that the expressions in eq. (12) alone are 
useless unless we impose the constraints of the model. However, they can be useful to 
make decisions in some practical situations. For example, suppose that there was a 
limitation in the availability of -say, X3 (a very expensive reactive or shortage in some 
material). The corresponding equation gives the conditions to be imposed in the other 
two variables to maintain the predicted response, providing alternatives to find feasible 
solutions after applying the constraints.  

 

The main conclusion is that the design space for a given ydes should be defined taking 
into account all the possible variations around a computed solution of the inversion. The 
situation in figures 2, 4 and 6 illustrates that if only the part of ker(L) coming from Q-
null space is considered, the design space would be underestimated, it is necessary to 
add points in W-null space as well.  

Besides, as expected, the design space is dependent not only on the value of the desired 
response but also on the structure of X and y, provided they are properly ‘collected’ via 
the prediction model. The limits in Q and T2 statistics when using a PLS model help 
defining the domain of applicability and controlling the process.  

In particular, ‘how much’ of the residual space is, in fact, affecting the model (i.e., it is 
inside the PLS-box) is mostly controlled by the threshold value imposed in the Q 
statistic. In the cases discussed in this section, if only the prediction ability of the PLS 
model is taken into account, tables 1 and 2 show that we should select one latent 
variable for the case of uncorrelated predictor variables (that explains 98.96 % of the 
variance in y with less than 37 % in X), and two for the case of correlated variables 
(explaining 98.62 % of y and 98.8 % of X). In that case, there is almost a 65 % of the 
variance of X unaccounted for in the first case, which is ‘reflected’ in the large region in 
figure 2, whereas the residual space will account for less than 2 % of the variance in X 
in the second case, with a narrow region related to the inversion in figure 6.  

 

3.2 Byproduct in Alumina production 

Table 2 in [40] contain data from a study to optimize the technological conditions in a 
process, data that we will use as representative of the process. According to the authors, 
the process of an alumina production line consists of separating out the aluminum 
hydroxide Al(OH)3 from a saturated solution of sodium aluminate NaAlO2 as a result of 
reaction with carbon dioxide, CO2. Unfortunately, the silicon dioxide SiO2 present in 
the sodium aluminate also separates out and mixes with the Al(OH)3 degrading the 
quality of the extracted aluminum hydroxide. 

The SiO2 content in Al(OH)3 is the characteristic recorded in the dataset. It consists of 
31 samples of the production process characterized by seven feature variables, those 



19 

 

listed in table 3, where we can see that there are proper process variables as well as 
some features measured in the raw materials.  

 

Table 3. Process and feature variables for the Alumina production process 

Notation Description 

Xl the total alkaline concentration of the original solution 

X2 the aluminum concentration of the original solution 

X3 the ratio of SiO2 and Al2O3 concentrations 

X4 
the total alkaline concentration of the solution after 

discontinuing the connection of CO2 

X5 the decomposition rate 

X6 the rest time of the solution before connecting the CO2 

X7 the time connecting the CO2 

 

The seven feature variables work as the predictor variables to model the quantity of the 
byproduct SiO2 that should be as low as possible. In the experimental data this quantity 
varies in [0.0302, 0.0653]. 

After autoscaling data to obtain matrices X (31 × 7) and y (31 × 1), a PLS model is 
fitted with the characteristics in table 4. Looking at the percentage of variance explained 
by adding latent variables, it is observed that, although the fifth latent variable captures 
more than 10 % of variance in X, this is not related to the SiO2 content we are fitting 
(which is not surprising since the process is for alumina production, not SiO2). Besides, 
cross validation with venetian blinds shows a sustained decrease of RMSECV (Root 
Mean Squared Error in Cross Validation) up until the fourth latent variable, then no 
improvement is observed by adding more latent variables.  

 

Table 4. Variance captured by PLS when adding latent variables and the corresponding Root 

Mean Squared Error in Cross-Validation (RMSECV). 

Number of 

latent 

variables 

Variance 

captured in 

X (%) 

Cumulative 

variance 

captured in X 

(%) 

Variance 

captured in Y 

(%) 

Cumulative 

variance 

captured in Y 

(%) 

RMSECV 

1 36.77 36.77 74.20 74.20 0.548 

2 17.16 53.93 14.18 88.38 0.408 

3 13.14 67.07 5.36 93.74 0.295 

4 5.72 72.79 3.64 97.38 0.223 

5 11.43 84.23 0.23 97.61 0.200 

6 8.59 92.81 0.05 97.66 0.200 

7 7.19 100.00 0.00 97.66 0.201 
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Therefore, the PLS predicting model has 4 latent variables explaining 72.79 % of the 
variance in the predictor variables related to 97.38 % of the variance in the response y. 
The critical values at 95 % confidence level for Q and T2 statistics are 5.26 and 12.12 
respectively.  

With the notation established in section 2, we have p = 7, a = 4, q = 1, so both the W-
null space related to the ‘residual’ space discarded with the projection and the Q-null 
space inside the latent space are three-dimensional subspaces.  

In this case, we explore deeper the scope of knowing the ‘shape’ of the allowed 
variations around any given point, as consequence of the null space, and whether it can 
be useful for a general description of the design space. We have already stated that the 
variability around a given point due to the different null spaces does not depend on the 

values of ydes or the computed ˆat  or ˆ desx . That means that we can explore the points that 

belong to the different null spaces without the need of defining a target quality, or 
equivalently, considering that the target value is zero (the mean value of the response 
when it is seen in the raw scales of the feature variables). 

With this aim and starting with W-null space (step 6 in fig. 1), we take 100 points, 
uniformly distributed, within the hypercube defined by the scores on the three discarded 
latent variables, Tr in eq. (8), and then reconstruct the corresponding predictor variables, 
Xr in eq. (9), by multiplying by the loadings Pr. All the rows in Xr are points of ker(L), 
in other words, represent variations that added to any setting of input variables do not 
modify the response predicted with those settings.  

On the other hand, for Q-null space, we can apply the steps in fig. 1 for ydes = 0, and 
compute scores to predict ydes by using the loadings Q of eq. (2). Irrespective of the 
value of ydes, when mathematically inverting the model, there is not unique solution but 
infinitely many vectors that belong to the three-dimensional Q-null space inside the 
four-dimensional latent space. To explore this space, m=100 points are also generated 
in it, limiting their range to the range of the actual scores Ta in eq. (8). The predictor 
variables are then computed by using the loadings Pa to have X0.  

For both X0 and Xr, the prevention of using the range of values within the 
corresponding scores does not guarantee that the solutions obtained will be directly 
valid. So, by discarding those objects outside the input domain or outside the PLS-box, 
X0 still contain 88 vectors (points) coming from Q-null space, and Xr another 71 
belonging to W-null space.  

Figure 7 is the parallel coordinates plot of the computed points, in the scale used with 
the PLS model (i.e., autoscaled values). In the plot, each point is represented by one 
broken line that intersects each coordinate at the height corresponding to the value of 
the point in this coordinate. The red dashed lines in fig. 7 correspond to samples in X as 
a reference of the domain of the process/feature variables. The continuous blue lines are 
for X0, computed from Q-null space, in fig. 7a); and for Xr, the settings in W-null 
space, in fig. 7b).  
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Figure 7 around here 

Figure 7 shows that, in both cases, the points are around the null vector (that always 
belongs to the null space) but affect differently depending on the variable we look at, 
and to different variables depending on the null space in question.  

The lines in fig. 7a), related to Q-null space inside the latent space, show that there is a 
shorter range of allowed variation for X3 and X4 than for the rest, especially X5. 
However, in fig. 7b), related to W-null space, we see less variation permissible for X2, 
X3, practically no variations around X5, but a larger variation in X4 than in fig. 7a). 
Comparing fig. 7a) and 7b) it is clear that the two types of solutions with null prediction 
are different and, thus, will exert a different impact on the design space.  

In addition to the points represented, any linear combination of them also belongs to the 
kernel, that is, any of them can be added to any settings of variables without affecting 
the intended response, though the addition does modify the values of Q and T2 statistics 
and even the new points may have moved outside the domain. Of course, we can reduce 
somehow the magnitude of the values in X0 and Xr so that the region covered by the 
points with null prediction would be smaller, i.e., a better estimation of the part of 
ker(L) related to the definition of the corresponding design space.  

Regardless, once the solutions in X0 and Xr are available, and inside both the domain 
and the PLS-box, it is important to remember that, although any linear combination of 
points in ker(L) also belongs to ker(L), only the convex combinations of points in X0 or 
Xr are part of the valid variations that can be added to a feasible solution when defining 
the design space.  

To illustrate the practical meaning of having such a description, we will define a target 
response, say 0.0302 (the actual minimum in the domain) and look for the settings of 
feature variables to obtain this small quantity of the subproduct of the reaction, as 
predicted with the PLS model.  

For the algebraic inversion, fig. 1, we have to solve eq. (5) looking for scores ̂at  such 

that ˆ T
des ay = t Q , where ydes is the autoscaled value (using the mean and standard 

deviation of the original responses) of the desired response 0.0302. Solving the equation 
by least squares provides a unique solution (t, 0, 0, 0), the one with only one score non-

null. The reconstructed settings ˆ tx  define an unfeasible solution because it is outside the 

domain defined by the range of X, although it has null Q-residual and the value for the 
T2 statistic is less than the threshold value. Therefore, another solution of eq. (5) is 
needed related to a feasible solution when reconstructing the corresponding predictor 

variables. We denote this solution as ˆdesx .  

Undoing the scaling, their corresponding process/feature variables are written in the 
second row in table 5. For comparative purposes, row 1 contains the actual values of the 
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variables with which 0.0302 of SiO2 content in AL(OH)3 was obtained. We see that the 
settings in row 1 (experimental) and row 2 (calculated) are not very different. 

In addition, the last two rows in table 5 describe the domain established for the problem, 
that is, the range of each process variable in the training set of historical data. 

Provided that we follow the rows of the matrices depicted in figure 7, we can add any of 

them to ̂ desx  without modifying the predicted ydes. However, again, even in this case 

that we made sure that both matrices X0 and Xr are in the domain and in the PLS-box, 

we still do not have any guarantee that the addition of these points to an actual ̂desx  (no 

null) will provide feasible solutions. It only means that the addition of such points does 
not alter the predicted response.  

In other words, the theoretical property of being in ker(L), by itself, does not give any 

'hint' about the feasibility of the solutions obtained when adding ̂ desx  to one of these 

points, irrespective of whether it belongs to W-null space or comes from Q-null space.  

 

Table 5. Settings for the seven features to obtain SiO2 content of 0.0302. The first row 

contains, in fact, the experimental conditions in the training set. 

# X1 X2 X3 X4 X5 X6 X7 

1 108.8 89.6 627 117.6 77.6 2.00 1.60 

2 110.1 85.3 626 117.1 81.8 2.37 2.33 

3 107.0 83.8 577 118.5 81.7 1.60 1.52 

4 109.2 87.9 623 118.2 79.3 2.06 1.62 

5 106.7 81.0 570 116.8 83.9 1.77 2.38 

6 111.5 86.8 636 119.9 81.2 2.32 1.34 

7 110.7 83.4 623 117.8 83.7 2.44 2.32 

8 113.7 90.8 645 120.6 77.4 1.48 2.27 

9 107.8 89.8 640 117.4 77.9 2.04 1.54 

10 103.4 89.2 611 118.3 77.4 2.45 1.34 

11 117.1 90.2 635 117.8 77.4 1.32 2.12 

12 115.2 90.0 645 116.3 77.8 1.47 1.85 

13 113.8 88.6 611 113.3 77.5 1.77 1.36 

14 114.6 90.0 632 117.7 77.4 1.53 1.96 

Minimum 103.4 81.0 570 113.3 77.4 1.32 1.34 

Maximum 117.1 90.8 645 120.6 83.9 2.45 2.38 

Minimum in domain 94.5 78.8 193 104.6 77.3 0.20 1.31 

Maximum in domain 119.4 101.4 647 123.1 91.8 2.77 4.14 

 

In fact, after imposing the constrains for the vectors obtained by adding elements of X0 

and Xr and sums of them to ˆdesx , rows 3 to 14 in table 5 show some of the resulting 

feasible settings for the variables that are expected to give SiO2 content of 0.0302. Rows 
15 and 16 summarize the range of these solutions. 
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Comparing the range in rows 15 and 16 with the allowed range (last two rows), we can 
see that the design space related to the minimum content of byproduct is a subregion of 
the hypercube we have defined as the domain to work inside. In fact, this region is also 
a hypercube because any convex combination of rows 2-14 in table 5 also provides a 
feasible solution of the inversion problem we are tackling. 

In terms of the process analytical technology (PAT), table 5 can be seen as the 
possibilities to use the process itself to correct deviations in some process variables (or 
in some feature variables) above all those which are not directly controllable.  

For example, say that for some reason, the ratio of SiO2 and Al2O3 concentrations (X3) 
decreases from 623 to 570, as from row 4 to row 5. Then, following the mentioned 
rows, we can compensate this decrease by reducing both the total alkaline concentration 
of the original solution (Xl) until 106.7 and the aluminum concentration of the original 
solution, X2, to 81; together with a slight reduction of X4, the total alkaline concentration 
of the solution after discontinuing the connection of CO2, and less waiting time before 
connecting the CO2, X6. At the same time X5, the decomposition rate, should increase up 
to 83.9 and longer time connecting the CO2, X7, up to 2.38. 

Besides, not necessarily the selected values of the variables must be exactly one of those 
written in table 5. We have already said that any convex combination also provides a 
feasible solution. In the process, that means that we can use the information in table 5 
for any value for X3 between 570 (minimum) and 645 (maximum), provided we 
maintain the relation among rows. For example, X3 = 615 is not in table 5 but it is the 

result of the convex combination 570×0.4 + 645×0.6 (values in rows 5 and 8). Then, 
with the same convex combination, the remaining process variables should be X1 = 
110.9, X2 = 86.9, X4 = 119.1, X5 = 80.0, X6 = 1.60 and X7 = 2.31, and we use the 
controllable process variables to compensate the variability in the raw material. 

 

3.3 Supercritical Carbon Dioxide Extraction 

Zhang et al. [41] describe the optimization of a process of oil extraction using 
supercritical carbon dioxide. Table 1 in [41] shows the settings of three process 
variables and the corresponding responses (experimental results) obtained when 
conducting a Box-Behnken design in a cubic domain to fit a second order polynomial 
model, in the context of the well-known experimental strategies inside the so-called 
Response Surface Methodology (for details about RSM, see for example, [42]).  

The process depends on three factors (process variables) that are described in the first 
three rows of table 6 along with the minimum and maximum values of each process 
variable, which define the experimental domain.  

The last row in table 6 corresponds to the response, namely the percentage of oil yield 
of N. glandulifera seed. Table 6 also shows the range of the percentage of oil yield 
obtained with the experiments, as reported in the original paper.  
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Table 6. Experimental domain, response and optimal conditions determined in ref. 

[41] for the process to obtain oil yield of N. glandulifera 

Variable Factor/Response Minimum Maximum 

Conditions and 

expected 

maximum of Y 

X1 Pressure (MPa) 22 35 30.84 

X2 Temperature (ºC) 35 45 40.57 

X3 CO2 flow rate (L h
-1

) 18 22 22.00 

Y Oil yield (%) 31.9 37.1 38.19 

 

The maximum oil yield obtained experimentally is 37.1 %. However, with the aid of the 
fitted model, the authors report a maximum yield attainable of 38.19 % with the settings 
shown in the last column of table 6. We see that the CO2 flow rate is 22 L h-1, the 
maximum allowed value, thus, the settings computed are at the boundary of the 
experimental domain.  

For comparative purposes but to avoid working at the boundary of the domain, we will 
set our target value, yt equal to 38 %, which still would be an increase compared to the 
best oil yield obtained experimentally.  

To look for the corresponding process variables, we will invert a PLS model fitted with 
the same data (available in the paper itself). The model will be of degree 2, which 
means that there is not a linear relationship between the three process variables and the 
oil yield. It also means that the algebraic inversion is not available. We will develop this 
idea in the following paragraphs.  

To fit a second order model by using a linear method like PLS, it is not enough to 
consider just the three process variables. Predictor matrix X is in fact made by 9 
columns corresponding to the settings of the process variables and the additional 
columns with cross products and squares, according to the second addend that appears 
in the model in eq. (13). Both X and y are autoscaled so no need to consider an 
independent term for the prediction model.  

3 3 3

1 1
i i ij ij

i i j i

y X Xβ β
= = =

= +∑ ∑∑       (13) 

With these matrices X-y, a PLS model was fitted with 3 latent variables that explain 
33.95 % of the variance of the predictor variables and 99.04 % of the variance of the 
response. Figure 8 is the three-dimensional latent space with the scores of X depicted, 
like in the remaining case-studies, by green filled diamonds.  

Figure 8 around here 
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In terms of the PLS model, p = 9, a = 3 and q = 1, so the Q-null space inside the latent 
space is two dimensional (i.e., a plane in the three-dimensional latent space).  

 

3.3.1 Algebraic inversion 

We start by algebraically inverting the model following the procedure detailed at the 
beginning of section 3 and summarized in fig. 1, with the loadings of y and the desired 
value yt. Then, adding vectors of the Q-null space (step 4 when a > 1) we obtain the 
scores depicted also in figure 8 as red points, where only the bigger ones belong to the 
PLS-box.  

In any case, all the red points share the property of having yt as their predicted response, 
thus, the plane they all lie on is the 2-dimensional Q-null space already mentioned 
corresponding to yt.  

We also see that there are no scores of X lying on this plane. This is so because the 
selected desired value yt is not among the values already in y. In fact, we are primarily 
trying to determine whether there are values of the process variables to obtain yt and, in 
this case, to describe the design space around them.  

This design space is inside the three-dimensional experimental domain depicted in 
figure 9, where, again, the green filled diamonds are the settings of the experimental 
factors in the design conducted.  

With eq. (7), step 5 in fig. 1, the settings of the experimental factors corresponding to 
the computed scores in fig. 8 that belong both to the experimental domain and the PLS-
box are depicted in fig. 9 as red filled circles. The already mentioned extreme position 
of scores in the latent space places their corresponding process variables near the 
boundary of the domain, which explains the few values obtained.  

The next step is to explore the variability due to the residuals of the projection onto the 
latent space, which was not taken into account during the inversion. This is described by 
considering points in the W null space defined by the projection, for instance, by using 
the basis of the discarded loadings. Then, step 6 in fig. 1, adding up these points to the 
computed values during the inversion does not change the predicted response, but they 
add spreading in the X-space, therefore, better describing the design space associated to 
the yield of yt = 38 %. These new conditions are depicted with small black dots in figure 
9, after removing the solutions outside the experimental domain or the PLS-box, step 7 
in the procedure.  

Figure 9 around here 

 

As we can see, the points in W-null space (black dots) extend in lines parallel to the one 
defined by the points coming from Q-null space (red filled circles) in a wider region of 
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the experimental domain. In any case, the most distinguishable common property is that 
the third factor (CO2 flow rate is at high level).  

 

3.3.2 Computational inversion for the target 38 %  

The calculations made in section 3.3.1 are not completely right because the algebraic 
inversion of the PLS model provides in fact values for nine coordinates, computed 
without taking into account the precise relation that exists among the nine columns that 
made up the predictor matrix X, relation defined from the first three columns following 
the model in eq. (13). Therefore, this precise relation among the last six coordinates of 
rows in X with the first three is not maintained in any way when inverting the linear 
application.  

Actually, the points depicted in fig. 9 are the first three coordinates of the computed 
solutions, dismissing the remaining six. To get an idea about the meaning of the 
comments in the previous paragraph, let us take the black and red points in fig. 9 and 
apply the PLS model to these values as if there were settings of the process variables. 
The predicted oil yield varies from 33.6 to 38.1 %, some of them far from the expected 
38 % and, besides, with almost the same range of variation as the experimental values 
themselves, from 31.9 to 37.1 % (table 6).  

The conclusion is that, if we should preserve the relation among the final columns 
(which is mandatory), then the mathematical inversion in the way described in fig. 1 is 
not possible.  

Nevertheless, the inversion as proposed in [38] is still viable, because it works 
maintaining the search space defined with the problem. In this case, this domain is the 
three dimensional experimental domain where the factors (the process variables) vary. 
Once the domain is set, the procedure consists of an elitist genetic algorithm that always 
search for experimental conditions inside the domain defined by further imposing the 
restrictions about the Q and T2 statistics. In that way, the algorithm evolves always 
using feasible settings for the process at hand.  

Briefly (for details consult the referenced paper), the algorithm starts with an initial 
population of several different settings randomly selected in the domain of the three 
process variables and inside the PLS-box (i.e., values of Q-residuals less than 12.45 and 
values of T2 less than 11.47, which are the corresponding limits at 95 % confidence 
level). Then, it evolves for a determined number of generations by creating new 
potential solutions, always in both the domain and the PLS-box, and with increasing 
percentages of the predicted oil yield.  

Additionally, the initial population can be seeded to include any potential solution that 
we want (solutions already known due to previous runs, or the conditions of the design 
conducted, or some points generated from the algebraic solution of eq. (5), etc.). At the 
end, the better ones will survive the evolution process. 
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For the process at hand, and the scaled value corresponding to 38 % as target value, we 
run the algorithm with a population size of 100. The initial population is randomly 
chosen inside the experimental domain. In each subsequent generation, new 100 
offsprings are computed by sequentially selecting (at random with uniform probability) 
pairs of solutions in the actual population and single crossover between each pair, 
forcing the offsprings to be different from the parents. Ten percent of the resulting 
offsprings are mutated inside the domain.  

The new solutions are then evaluated in terms of the PLS model. From those solutions 
inside the domain and the PLS-box, the next population is made up by the 100 solutions 
with predicted values closest to the desired value. The evolution stops after 300 
generations, with all the solutions in the final population predicting the target value. 

The different settings for the process variables of this final population are depicted as 
magenta filled squares in fig. 9, and now they are discrete estimates of solutions in the 
design space for the targeted response.  

Fig. 9 shows that these settings spread not far from the red circles (coming from the 
theoretical Q-null space) and near the region of possible spread of solutions due to the 
W-null space related to the residual space of the PLS model (black dots). However, 
besides predicting the same yield, the magenta points (true solutions of the inversion) do 
not define any recognizable mathematical relation, they do not follow the direction 
marked by the red points, neither the direction defined by the black points. 

 

3.3.3 Computational inversion for maximizing oil yield  

The computational procedure just explained evolves by searching settings inside the 
experimental domain with the goal of improving a given property. In section 3.3.2 the 
criterion was to approach 38 % of yield. However, the goal was to find the best possible 
percentage of yield inside the experimental domain. 

Therefore, by defining a new criterion to drive the evolution, we can just invert the 
same PLS model but not necessarily to predict a given value but directly looking for the 
maximum oil yield achievable in the domain. The modification of the criterion implies a 
slight modification with respect to the evolution process already explained: the updating 
of the population in each generation is made by selecting the points with largest 
predictions to survive to the next generation.  

When using the criterion of maximizing oil yield in this domain, the population 
converges to a single solution with an estimated oil yield of 38.19 % with the same 
process variables as the one in the last column of table 6. These experimental conditions 
are depicted in fig. 9 by a blue filled triangle, which is around the magenta squares, 
farther from the filled circles. 
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3.4 Vapor pressure of a distillation tower (larger data set) 

The data are available at https://openmv.net/info/distillation-tower, where it is stated 
that they come from an unspecified industrial source. They correspond to measurements 
on 26 variables from a distillation column, measured over two and a half years. It is also 
explained that variable names are coded so that details of the process are not disclosed. 
The names provided are in table 7 where we can only identify the type of variables: 
there are temperatures, flow, different pressures, etc., the process conditions when each 
of the 253 samples were taken. The range of these variables is also in table 7 to see the 
defined domain for the process variables. The last row, Vapour Pressure, is a quality 
variable measured in the laboratory. Therefore, p = 26, q = 1. 

 
Table 7. Process variables as well as their range for the distillation tower case-study. The last 

row contains the quality (response) variable Y. 

Number Variable Minimum Maximum 

X1 Temp1 111.03 168.04 

X2 FlowC1 174.74 505.67 

X3 Temp2 318.45 406.74 

X4 TempC1 75.59 132.20 

X5 Temp3 420.78 528.08 

X6 TempC2 419.02 526.39 

X7 TempC3 119.21 229.41 

X8 Temp4 124.60 235.62 

X9 PressureC1 199.82 254.59 

X10 Temp5 418.62 524.79 

X11 Temp6 419.30 525.31 

X12 OC1 1.86 8.50 

X13 Temp7 890.11 1179.20 

X14 Temp8 421.45 557.36 

X15 TempC9 34.51 99.98 

X16 FlowC2 61.14 83.59 

X17 Temp9 400.32 507.31 

X18 Temp10 432.45 547.13 

X19 FlowC3 4.62 8.85 

X20 FlowC4 5.85 10.76 

X21 Temp11 12.89 35.53 

X22 Temp12 419.43 526.14 

X23 InvTemp1 1.90 2.38 

X24 InvTemp2 2.46 3.14 

X25 InvTemp3 1.97 2.50 

X26 InvPressure1 3.71 4.66 

Y Vapour Pressure 25.16 64.31 

 

Process variables are correlated, a few of them highly, approximately 13 % of the 
correlation coefficients are, in absolute value, greater than 0.9. However, 61 % are less 
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than 0.5 (again, in absolute value). When taking into account the response quality 
variable to be predicted with PLS, RMSECV (Root Mean Square Error in Cross 
Validation) maintains a slow decrease up until seven latent variables. From the third 
latent variable the variance explained by the latent variables is mostly from X. In any 
case, the selected PLS model requires seven latent variables (a = 7), after removing 18 
samples because of their standardized residuals (outside the interval [-3, 3]) or because 
of their high values of Q-residual or/and T2 statistics. The resulting model explains 95.7 
% of the variance of X with 97.3 % of the variance of Y, with crossvalidated coefficient 
of determination of 96.9 %, estimated extracting random samples with 15 splits and 5 
iterations. 

The Q-null space is thus a six-dimensional space in the latent space, whereas the W-null 
space is in the 19-dimensional space. By directly estimating points from the null spaces, 
without a target quality value, figure 10 is the parallel coordinates plot for the points 
already inside the input space (26 dimensions) for matrices X0 in blue continuous line 
and Xr in dotted red lines. X0 comes from the Q-null space following equation (7) with 
null target scores, while Xr contains points in W-null space, computed with equation 
(9). In both cases, the points outside the domain or outside the PLS-box were removed. 

Figure 10 around here 

It is clear that there are much more variation allowed around the null value of any 
variable when taking points of the null space coming from the latent space, blue lines, 
than when the points correspond to the null space in the residual space, in red, which is 
consistent with the few variance of X in the residual space, despite the fact of being a 
subspace of dimension 19.  

Still, there is some variables around which the variation allowed without modifying the 
predicted response is larger due to W-null space in red, such as variables X5, X6, X10, X11, 
X17, X22, X23 and X25. 

 

4. Conclusions 

When working with linear models, such as PLS, part of the estimated design space is 
related to the kernel defined by the linear mapping. Through some case studies, the 
present work shows the need to consider the part of the kernel due to the orthogonal 
residual space, along with the one resulting from the projection (latent variables) space. 

Case 3.1 highlights the need to take into account what we have called the W-null space, 
and the close relationship between the training data and the fitted PLS model.  

The a-priori description of the kernel associated to the PLS model, directly with the 
regression coefficients or in two steps exploring both Q- and W-null spaces, does not 
help in constructing feasible solutions. This is explored in case 3.2 that focuses on the 
fact that, although the kernel is a characteristic of the linear mapping, its impact on the 
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design space depends on the desired quality characteristic. Besides, PAT framework 
includes the use of the process to compensate for deviations in some values of the 
process or feature variables (above all for the variables that cannot be directly 
modified). Case 3.2 exemplifies how to do it with the information obtained from the 
points in the kernel of the corresponding PLS model to fit the content of a byproduct in 
a step of a production process of Al(OH)3.  

In Case 3.3 with a process for extracting oil yield of N. glandulifera, PLS is used to 
describe a nonlinear relation between process or features variables and quality 
characteristics. Therefore, there is not algebraic solution for the inversion, and the 
exploration of the design space is based on a computational inversion. 

Case 3.4 illustrates the situation for larger dimensions, the estimation procedure is the 
same, but the visualization of the convex space defined inside the design space where 
the predicted response does not change is not viable in Cartesian coordinates. 
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Figure captions 

Figure 1. Diagram that summarizes the procedure of adding points in null spaces to the 
inversion of a PLS model to predict a given value ydes. 

Figure 2. Three-dimensional input space in Case 3.1.1. Green diamonds represent the 

samples in X, the red filled circle is ̂ desx  , black points belong to the W-null 

space. The convex hull of the black points is in gray. 

Figure 3. Latent variables space in Case 3.1.2. Green diamonds are the scores of X, the 
red filled circle is the LS solution of eq. (5) and the blue filled squares follow 
the line along which the predicted response is the same. The ellipse marks the 
limit of the T2 statistic (95 % confidence level).  

Figure 4. Three-dimensional input space in Case 3.1.2. Green diamonds represent the 

samples in X, the red filled circle is ̂ desx , blue filled squares are the predictor 

variables that correspond to the Q-null space, black points are in the W-null 
space. In gray, their convex hull. 

Figure 5. Latent variables space in Case 3.1.3. Green diamonds are the scores of X, blue 
squares are points in the Q-null space and the red circle is the LS solution of 
eq. (5). The ellipse marks the limit of the T2 statistic at 95 % confidence level. 

Figure 6. Three-dimensional input space in Case 3.1.3. In yellow, the region of feasible 
solutions inside the design space for ydes. Green diamonds represent the points 
in X. Blue squares come from the Q-null space. Black points come from the 
W-null space. 

Figure 7. Case 3.2. Parallel coordinates plot of X in red dashed lines. In blue some 
settings: (a) coming from Q-null space, and (b) belonging to W-null space. 

Figure 8. Three-dimensional scores space in Case 3.3. Green diamonds are the scores of 
X, red points are inside Q-null space, with those bigger (filled circles) also 
inside the PLS-box (with values of T2 below the 95 % confidence limit).  

Figure 9. Experimental domain in Case 3.3. Green diamonds are the experiments 
conducted. Red circles correspond to the red circles in fig. 8 (Q-null space), 
and black points are in W-null space. Magenta squares are the points found 
with the computational inversion in section 3.2.2. The blue triangle marks the 
settings obtained with the computational inversion for maximizing yield in 
section 3.2.3. 

Figure 10. Process variables space for case 3.4. Parallel coordinates plot for points in 
the kernel of the fitted PLS model. Blue continuous lines are for points from 
Q-null space, dotted red lines are from points in W-null space. 
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