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Abstract

The paper contains a discussion about the nullespassociated to linear prediction
models for the particular case of Partial Leastabegiregression models. The
discussion separately considers the two existiigspaces: the one in the input space
related to the projection onto the latent spacethadhull space, coming from the
projection space, corresponding to the mapping®ftores onto the predicted
responses.

The paper also explores the impact of such nultepa the definition of the design
space around some feasible solutions obtainedvayting the prediction model, via
several cases with simulated and real data frortitdrature. The case-studies serve to
illustrate the discussion and the need of considegpbints in the two null spaces, rather
than just take into account the null space withmlatent space.

They also serve to show how to address the udeeaksulting vectors in the design
space to maintain the desired quality by modifytimg tunable (maneuverable) process
variables to compensate for variations due to sottner feature variables not so easy to
control.

Keywords

Partial Least Squares; Process Analytical Technyol@gality by Design; linear
application; null space; model inversion.

1. Introduction

In the context of process control, prediction medeke commonly used to estimate the
expected quality of a product as a function ofdharacteristics of the process and/or
some feature variables, such as raw material ptiepar environmental factors. Given
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the frequently large number of process or feataréables and quality characteristics
and their correlation (in both spaces), these ptedti models are usually Latent
Variables Models (LVM).

Besides their standard use to predict the expepiatity characteristics (the response
when fitting the model), these models are alsoulsefien the focus is on maintaining a
given quality, like in the framework of Quality Besign (QbD) established for
pharmaceutical processes. In the latter situatieprediction model must be inverted
to find the settings of the input variables necesgaguarantee this given or desired
quality.

The linear LVM selected is a Partial Least SquéresS) regression model. Briefly, a
PLS model can be seen as the mathematical congosittwo linear maps: first a
reduction of dimensionality by projecting the psionto a space of lower dimension
(the latent or projection space spanned by thetseldatent variables) and then
regressing the scores onto the response space.

The present work focuses on the variability in bibihinput and latent spaces due to the
linear structure of the PLS model being used, rathen on the variability of the
predicted response itself. The reader interestéaestatistical uncertainty of the
predictions can consult Refs. [1, 2] where somdidence intervals are computed for
the response predicted with PLS models.

The use of subspaces to solve linear problemsuigl s engineering and signal
processing. In control system, which is area dyeefated to PAT (Process Analytical
Technology) and QbD, first principles models (based on physical or chemical

laws) have been traditionally of use to descrileeltdhavior of a system to subsequently
control it. However, in the last years, the ideaisihg data driven models even if they
have no direct physical meaning gained interestr@n@mgineers, ending up in so called
'subspace’ methods. Their name reflects the fattlthear models can be computed
from row and column (sub)spaces of certain matrietéch are obtained from input-
output data of the system under observation. TYgidae column space of such data
matrices contains information about the model, thle row spaces are somehow
representative of the state sequence, and thegstneated directly from input-output
data without ‘a priori’ knowledge of any first pdiples models. The decomposition
based on canonical classical models has some atitezs. For example, in the book in
ref. [3], the use of QR decomposition is propos®dtie projection (orthogonal or
oblique) and generalized singular value decompusith determine finite dimensional
subspace and, then, least squares to obtain tre lialations. Least Squares Regression
(LSR) method is introduced for subspace segmemtatioef. [4], but multivariate
analysis with principal component analysis (PCAJ partial least squares (PLS) are
somehow representative methods [5] among sevetaldieven techniques for process
monitoring, thanks to their simplicity and effic@nin processing huge amount of
process data. As stated in ref. [6], a more impoddjective of process monitoring is to
provide assurance of good product quality thatigacted by the process conditions,
and quality variables are better taken into acceutit PLS than with PCA.



Techniques of searching for subspaces appropaatetel the system response are
extended to non-linear models by using KPCA (KeRrahcipal Component Analysis)
to model nonlinear dependences between variableptoduce nonlinear dynamic
behavior [7]. Regarding decompositions, ref. [8msintroduction that shows the utility
of Krylov subspaces to solve linear systelixs= b, whereA is a square matrix ariis

a vector. Wher is invertible, the solution is jugt’b but the calculation of the inverse
of A for large matrices can be computationally inefitiand space consuming. On this
subject, the book by Liesen and Strakos [9] costaimery complete mathematical and
computational foundation, along with some intereghistorical notes. The
development of efficient algorithms to solve linegstem of equations with sparse
matrices is a matter of constant research, seextample the recent paper in [10].

Since the Krylov subspace methods are projecticthogls onto a subspace, its use as
the projection techniques to solve large-scalerobptoblems is a natural ‘extension’
of its use in numerical linear algebra for matneldems. Basically, it consists of
projecting the original large control problem oatm-dimensional Krylov subspacen(
‘small’) by constructing a basis of the subspaoé, then use a standard well-
established technique to solve the projected smaltdlem. In that way, an
approximate solution of the original large problesnobtained from the solution of the
projected problem [11,12].

PLS was initially developed as a heuristic techaifiB] to solve least squares
problems in multilinear regression, with no optiityaproperties and criticized for a
long time as a somewhat ‘ad-hoc’ solution. Latiewas shown that it is equivalent to
some of the most sophisticated numerical algorittondate for solving systems of
linear equations, such as the Lanczos bidiagonalizar the conjugate gradient
methods [14]. The property that the vecfoconsisting of the values predicted by a

PLS model witha latent variables is the projection of the data@eg onto a subspace
spanned by the predictor variables<irfwhich is a subspace that can be described as the
span of a certain Krylov sequence), is used in[i&f. to characterize several regression
methods (ridge regression, continuum power regras§iLS and principal components
regression, PCR) that attempt to reduce the vagiahthe OLS (ordinary least squares)
regressoboLs=(X "X) X"y by replacing the ill-conditioned matriX{X)™* by a more

stable alternative.

The interpretation of PLS in terms of Krylov subspsiis also used in ref. [16] to show
that various latent variables regression methodseskh common structure, called
Multilayer Basic Sequence (MBS), which is a patacwcase of a Krylov sequence. It
allows unifying several algorithms used to estintaPLS coefficients and studying
the relation between Martens’ PLS [17] (orthogdW@S) and Wold’s PLS [18,19]
(oblique MBS). For any orthogonal-MBS model, theran equivalent oblique-MBS
model so that they share the same regression §makkeylov spanned space), leading
to equivalent predictive performance. That meaas $hmilar regression results can be
obtained via multiple linear regressions onto #eponse variable. Martens' PLS and
Wold's PLS are a special case of this situatioms €kplains the identical regression
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coefficients and prediction results. The mappingireaof orthogonal-MBS and
obligue-MBS from latent scorg-space to the origina{-space reflects the
corresponding deflation techniques.

Although, conceptually, the interpretation of tageht variables is irrelevant in the
methods of least squares based on subspace deabompasbecomes ‘relevant’ during
the stage of using the model, where the practititouks for this interpretation. This is
especially true in Chemometrics where PLS useckta imethod to predict
concentrations of samples with known multivariagmals, that is, as a calibration
method. It is worth mentioning that, in this cortteath, usually, more variables than
samples, the solution by using standard lineaessjon models does not exist.

When exploring the possible interpretation of th&Ralibration models, it turned out
that the subspace spanned byalselected latent variables included information not
directly related to the respongeThis issue was addressed with two methodologies:
pretreating the signals to eliminate ‘artifactstlo¢ signal (usually physical) not related
to the response or ii) modifying the search forgbkition limiting it to subspaces
correlated with the response. The first approachliéto several pretreatment methods
of the predictor variables, which greatly impaa subsequent PLS calibration model
[20,21]. On the second methodology mentioned, thstrgeneralizable contribution is
possibly the Orthogonal Signal Correction (OSCWyid et al. [22], an appropriate
modification of the PLS algorithm to eliminate sysiaticy-orthogonal parts of the
matrix X. The Net Analyte Preprocessing (NAP) approach §21f] its exactly
equivalent Direct Orthogonalization (DO)[24] propaome loading weights (not
necessarily contained in the row spacXpfepresenting phenomena considered to be
irrelevant to the modelling of. Other proposals, as Orthogonal-PLS (O-PLS)[25], the
alternative way of computing O-PLS [26] and theresgion procedure based on the
Orthogonal Signal Correction by Fearn [27], aredssed by Indhal [28], clarifying the
way these OSC methods work and giving a rigoroyéaeation of the reason why the
entire OSC concept may be both confusing and dupes. Yu and MacGregor [29]
point out that ‘the subspace ¥funcorrelated t& is often high dimensional and it is
not at all clear what part of this subspace is nddy different OSC algorithms with
different number of OSC components. As a result,iaterpretation of the OSC
components may be different’ and propose the agjpdic of a canonical correlation
analysis as post-processing of a PLS model (PLS)CTiis approach to define the
subspace most related to the quality variablesesl in ref. [30] to model a batch
process by looking for the subspace common to ifferent slices defined with the
processing time.

Therefore, activity in the field of least-squaregnession on subspaces is focused on
modeling the subspace of the predictar®st related to the response. In general, the
orthogonal subspace,Sis only considered for defining a limit, usuallgdwn as the
squared prediction error (SPE), to decide if a nbyect is compatible with the fitted
PLS (or PCR) model. This index is essential whetdimg multivariate calibration
models or multivariate control charts based omlatariables [31]. Its use has even
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been generalized to the non-linear case of muléitacontrol in the industry using
KPCA [7]. Besides the definition of SPE, the nyiase of the $ regression model has
been used, for example, for early diagnosis otcttiral damages or machinery
malfunctions resulting in reduction of the maintececost and increasing reliability
and safety [32,33,34].

This subsidiary use of the null space has beerasaga in the field of QbD and PAT,
because the null space is part of the design spaieis consequence of the own
definition of null space: when adding any vectothad null space (of the regression
betweenX -containing process variables, raw material or @mrirental properties, and
Y -with the quality characteristics) to any vectbthe space spanned iy the
predicted quality characteristics do not changendtleeless, the analyses on the null
space are limited to the one related to regreséing the latent variables. The QbD
context requires to define the values of procesablkes, raw material or environmental
properties that result in the same (or similar gmywalue of the measured quality
characteristics and, if only the referred null specused, the resulting estimates are
‘indirect’ because the range of admissible valugd® original variables is computed
from their range on the latent variables.

Therefore, in what follows, the predicted value aams invariant. In fact, we set a
desired value of the respongg (the target quality) and look for the correspodin
settings of the input variables whose predictedea exactlyqe. Additionally,

around these settings, when they exist, it is athesto determine the corresponding
design space, that is, the region in the inputespdere the predicted response is the
same and thus the expected target quality is maeda

When working with linear models, this design spactudes the kernel of the mapping,
also known as the null space, which we have alreadthat is the vector subspace
that contains the points mapped onto zero, i.evéietors that do not modify the
predictions when added to any other.

To our knowledge, Jaeckle and MacGregor [35] intoadl for the first time the idea of
a null space associated to the inversion of a Pb8em but its effect is only considered
in the latent space. This null space is also takEnaccount in ref. [36] when
backpropagating the confidence interval in ref.\jith different procedures to calculate
a kind of confidence regions to bracket the desjuarce.

However, focusing on the fitted PLS model, parthaf variability reflected in the
design space comes from what we can call the wesidpace related to the input
variables. The term ‘residual’ refers to the fa&etttit is discarded when selecting the
number of latent variables because it is suppasée the part that is not related to the
predicted quality characteristics. In particul&ie variability in the residual space
related to the input variables (the part of thecpss or feature variables space that is
discarded after the decomposition) does not hayemapact on the predicted quality.
Therefore, it reflects the part of the space whieegnput variables can be modified



without altering the quality of the resulting praduthat is, it is necessarily part of the
design space.

The present paper intends to describe the ‘shdpkisopart of the design space
throughout some production processes with a cepradefined quality. Technically,
this requires the inversion of the regression mbéehuse the quality characteristics of
the product are the ones kept fixed. Given that BL&Slinear model, under certain
conditions (relation among the dimensions of thecep —input variables, latent, and
quality characteristics), this inversion can bealatgebraically by solving matrix
systems [37]. There are also some computatioreinatives [38] that do not depend on
the mentioned dimensions. Regardless of the piskkdion, the null spaces related to
the linear models being used play an importantirotee subsequent design space.

Certainly, this ‘division into two parts’ of the lhgpace can be ignored and use directly
its algebraic characterization by using the regoassoefficients of the fitted PLS

model. However, not all points in this null spaetong to the design space, because
they also must be adequate for the process beiigliad, i.e., feasible settings for the
process/feature variables that, in addition, aogepted onto the latent space defined by
the PLS model.

The basic notation and some theoretical backgrawmagresented in section 2 and
different small sample sized case-studies are aedlin section 3 to illustrate the
properties and practical applicability. The papsiewith some conclusions.

2. Theoretical properties and definitions

Let X (n x p) andY (n x q) be the matrices qf (predictor) input variables and the
corresponding] (response) quality characteristics, respectivielgquently these are
historical data of a process, arranged in two medrused to fit, in our case, a PLS
model to predict quality characteristics given sa@attings of the process/feature
variables. These data are assumed to be repraegerfathe process because the
information they contain is the only one used tahfe model and to make decisions, in
a completely data-driven approach.

In what follows, we are assuming theé&ndq are less than, that up tg new
orthogonal variables can be obtained in the inpats, and that botk andY are
autoscaled (that is, each column is centered blyailng the mean, and has variance
one after dividing by the standard deviation).

In addition, in any process under control, the psséfeature variables are bounded. To
emulate this situation, the admissible domain efgredictor variables will be defined
by the range of the observed valueXirirhe design space we are looking for must be
inside this domain and with the settings of thauinyariables that define feasible
solutions.



A PLS prediction model is fitted witk andY by computinga orthogonal new
variables (the latent variables) with a common esanatrixT , (n x a) such that

X=TP' = TP +R, (1)
Y= TQ +R, (2)

MatricesP (p x p) andQ (g x a) are the loadings, ariRlk andRy the matrices
containing the residuals of the decomposition. sal, uppeil means transposing the
corresponding matrix or vector. Finally, sub-indedenotes that we are only
considering the firsh columns of the corresponding matrix, so for insegficis then x

p matrix of X scores, whose firgt columns form the common scores maifrix The
subspace spanned by the columns asRhe latent variables space or projection
subspace (for now on, latent space).

Once a PLS model in equations (1) and (2) is fittedre are also some constraints to
adequately apply the model. We will use the 95 #fidence limits for the usu&) and
T? statistics to define the proper region where #ssible predictor variables are
projected.

The value of thd? statistic for a given sample is the Hotelling’stdince from the
projection to the origin of the latent space (iad. scores equal to zero) and indicates
the position of the projected sample. On the ofla&d,Q-residuals are calculated as the
sum of squares of each rowRy, eq. (1), the residuals after projecting the sampl
trough the model. It is then a measure of the desgtdrom the sample to the orthogonal
projection onto the latent space. Imposing limitboth statistics is to impose a
threshold value for the variation of points botlthin and outside the latent space.

Accordingly, the fitted model must incorporate botnstraints, so that the PLS model
is properly applied only to thosewith values ofQ andT? below the threshold values
imposed in both statistics. In other words, wede#ning a bounded domain for the
application of the PLS model. Geometrically, thisrchin can be viewed as a “PLS-
box” that includes the part of the latent space aedotlrt of the residual space bounded
with, in our case, the 95 % confidence level@andT? statistics.

In that sense, the feasible solutions are thogebtang simultaneously to the domain
of the input variables and to what we have namedPitS-box.

For vector calculations, we will respect their stare in matrix form. For example, a
set ofp predictor variables is written as a vectbbecause these variables are rows in
matrix X. Similarly,y" is a row vector containing quality characteristics

With this notation, vectax containing some settings for the input variabéegrojected
onto the PLS-latent space by using some weightg {p x a matrix such that



P'W=1,), so that the-dimensional vector of scoresti§ =X'"W. Then, to obtain the

expected (predicted) characteristigs, it suffices to comput§’T ZtZQT. In short,
given values op input variables irx, the vector ofj predicted quality characteristics

y Is computed as:
9T — TWQT :XTb (3)

It is clear from equation (3) that the fitted PL®dmel is a linear mapping, between
thep-dimensional input space to thelimensional quality characteristics space defined
by the matrix of estimated coefficiertt§ (q x p).

As any other linear map, it has a null space aagegtito it, that is, the subspace that
contains all the vectors that are mapped onto ilevactor. Becausa < p, the
dimension of such subspace (the kerndl,dfer(L)) isd =p—rank®) = max {p—a, p
—q} and it is easy to compute a baBig (p x d matrix) to characterize ker). That
means that for ang-dimensional vectov, the corresponding vect@% =VTBL|

belongs to kel(). In other words, if the null space does not rediacthe null vector, it
contains the set of vectoxs that can be added to any otken that space without
modifying the predicted response, that is,

v :be:L(x ):L(x +x0):(xT+xZ)b [Ox, Oker(L) (4)

This null space is relevant when defining the desigace for a given set of quality
characteristics, because it is part of the allowathtion in the process/feature variables
that does not modify the predicted response. Caresdty, the set of points

{x +X,, X, O ker(L)} is contained in the design space aroxnd

On the other hand, the interest now is focusedernrtversion of the PLS prediction
model for a desired or givenes(values of the target quality characteristics).slibsue

is usually tackled in the latent space by detemgrihea scoresfa, equation (2), such
that

Ve = 12Q" 5)

Then, to obtain the corresponding predictor vadapit suffices to use the loadings

in equation (1) to ‘transformf&1 to ap-dimensionak irrespective of the values that the

discarded dimensions could have, thaig, =t P! .



However, the solutiorfa1 of equation (5) may not be unique. Wteen q, there is a null

space as defined in [35], which is a subspaceénbid latent space that contains the
vectorst, for which the predicted response is zero, that is,

tsQ" =0, (6)

Equation (6) shows th#g belongs to the null space related to the linegy defined by
matrix Q in equation (2), provided > q (otherwise, the kernel is reduced to the null
vector). To avoid confusion, we will denote thissp afQ-null space.

Therefore, for anyp in Q-null space,fa +1, is also solution of equation (5) and is

mapped ty/qes, and thus, the inversion problem has infinitelynyaolutions in the
latent space. When multiplying by the loadifyswe have infinitely many settings for
the input variables with the same expected respaomsgthat predict the same quality
characteristics, namely

~

X =(00 415 Py =TT +OP =50, 4G (7)

for any fa solution of equation (5) artd in Q-null space, henc#, Dker( L) and all the

points in matrix)A(da; has the same predicted response,

Nevertheless, this procedure for computing diffesattings of input variables to obtain
the desired quality characteristics does not ctwemhole set of possible points in
ker(L) because there is another null subspace, orthbgwiize latent space, which is
ignored when re-constructing the predictor varialale in equation (7).

This subspace is precisely the one spanned by#uings of the discarded latent
variables. For the training set in equation (1),0&a write

X=TPR +TP' ®)

where sub-index means the lastcolumns of the corresponding scores or loadings
matrices ( = p —a). For anyr-dimensional poins,

X' =s'P' (9)
is ap-dimensional vector in the input space such Dﬂh=0 , l.e. it belongs to keky(.

In fact, is

X'W =0, (10)



meaning that any of the is in fact projected onto the origin of the latepace (null
scores).

Therefore, ifp latent variables can be computed for phdimensionalX, the loadings of
the discarded latent variables are a basis ofé¢heek of the projection from the input
space onto the latent space. Now, we will denategiace agv-null space, related to
the residual space, to distinguish it from the presQ-null space inside the latent
space.

With this notation, and always in the global kgrfwe will differentiate between points
Xr in W-null space, solution of equation (10) computethasquation (9), and pointg

that will correspond tc)(g :tI,P;, that is, points reconstructed from apyn Q-null

space defined in equation (6). These two ‘typeseamitors have additional
distinguishing properties: any will have null value for th@? statistic since it is
always projected onto the origin of the latent spand anyo will have Q-residual
equal to 0 because it is computed directly fromlétent space.

In any case, as we are trying to estimate the despgce around a givéﬁhs to achieve

Ydes, the variability due to thé/-null space must be taken into account togethdr thi¢
one due to th&-null space.

Aside from the residual variability iRy in equation (2) (which will be reflected in the
statistical uncertainty when estimating a givempogsey ), we are focusing on the one

in Ry, equation (1), which will exert an impact on thput variables but not on the
predicted response nor even in the latent spaaghbr words, this variability will be
reflected only in the design space.

According to equations (6) and (10), the first gadp to notice is that, in all the
discussed cases, the variation around any potheimput space due to the null space
does not depend on the actual values, neitherathablesx nor the predicted (or
desired) quality characteristics in the correspoggli However, this property, in
practice, can be useless.

In fact, all the properties in the previous parabsaare theoretical properties. They help
in understanding the spaces we are exploring lluhfthe precise description of the
design space. This is so because the points thaawebtain with the bases computed
for the different null spaces, indeed, do not mptlie predicted response since they
always add zero, but we have no guarantee th&ltBemodel is properly applied to
them, nor even that the calculated input variahtesnside the allowed domain. Put
differently, any point in ket() is not necessarily a feasible solution, insidéhlibe

input domain and the PLS-box.
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Therefore, besides the theoretical property of dp@irker(), we also need to
characterize which points are not only within tleenéin where the predictor variables
can vary, but also have projections inside thentagpace delimited by the fitted PLS
model. BothQ andT? statistics are then the parameters to be useedidelthat a
process is in-control when this control is based. M.

3. Results and discussion

Different case-studies are discussed, illustradiiffgrent properties or approaches. If

the data correspond to a process, tKewill contain some values of process variables or
features with some other characteristics (raw natemvironmental factors, etc.) and

Y will be then some quantitative measure(s) of dityueharacteristic of the product.

In a general context, the data sets consist oftexa with predictor or input variables
and, a vectoy (in all the section ig = 1) with the response to be modelled. Béthnd
y are supposed to be autoscaled before fitting theem

Irrespective of the type of data at hand, the dismn is related to the properties of the
PLS model fitted, together with some suggestion® ase these properties in practice,
for example, in process control.

For each datX-y, the procedure has the following steps:

Step 1. Set the domain with the allowed range of variatd the input variables. We
have defined it as the rectangular parallelepipecténgular box) formed with
the variation range of.

Step 2. Set the domain for the PLS model (the PLS-box) woefficients vectob. To
do it,
a) fit a PLS model with autoscalet-y
b) remove any point with values of bafhandT? statistics above the
threshold (critical values at 95 % confidence Igvel
c) remove any point with standardized residual (défere betweey and y

) outside the interval [-2.5, 2.5]
d) re-scale the remaining points and repeat untilampde is outside the box

Step 3. Define a target or desired valueygs; (target response or desired quality
characteristic).

Step4. Look for score(sfa1 , solution of eq. (5), and inside the latent sp#ca > q,

generatan pointst,in Q-null space, eq. (6), and add thenf;o

Step 5. By using the loadings, as in eq. (7), compfi[;g (m settings of predictor

variables, all of them with the property &desb = Vi )-
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Step 6. Generate points belonging\Wé-null space, following eq. (10), and add them to

all the computedX , (the matrix is, in fact, a single point whar q).

Step 7. Remove those settings outside the PLS-box ordruthe input domain defined
in step 1, that is, retain only the feasible solugi.

The last steps of the procedure are summarized.id.fThey correspond to the
algebraic inversion of the PLS model plus the adsi#dtions taking into account the
two null spaces we have introduced in section 2.

Figure 1 around here

After finishing the steps explained, all the renmagnpoints and their convex
combinations (line segments between points in ¢heage part of the design space
corresponding to the inversion of the PLS fittegbtedictyqes due to the linear nature of
the PLS model. Remember that a set of points étedbe convex [39] if the line
segment between any two of its points is entirelytained in the set, and the convex
hull of a set of points is the smallest convex pgoly that encloses all the points in the
set.

3.1 Case 1. Simulated linear relation between X and y

The first case study consists of a simulated limekation with data in low dimension to
allow the usual Cartesian representations to ihtistmore easily the different spaces

explained in section 2 and their effect on theglesipace, or the part of the domain of
the input variables where they can be modified auitraltering the predicted response.

Therefore, let us consider three input variablegtis case, three predictor variables or
regressorsXi, Xz, X3 and a single respon¥e The linear relation is defined in eq. (11),
just the sum of the variables plus an offset term.

Y =X, +X,+X,~15 (11)

To fit a PLS model in order to recover this linealation, we need some data. The
following subsections show the effect of the ava@#adata and the selected number of
latent variables on the PLS model fitted and, tlomsthe part of the design space
estimated with the corresponding model.

In all three cases, we simulate a predictor ma¢rixith 50 samples and 3 variables and
compute response vectpaccording to eq. (11) with the actual valueXinA
comparative summary of the three situations i@ieind of the present section.
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3.1.1 PLS model with a single latent variable. Uncorrelated predictor variables

In this case, the three variables are generatgdlass independently chosen with a
uniform distribution in [0, 1]. That means thatithés neither correlation among the
predictor variables nor experimental error, only thlation between predictor and
response, which is a linear relation that we wamhbodel via PLS.

Table 1 contains the characteristics of the decaitipa when fitting the PLS
models. A single latent variable (LV) suffices tptain 98.96 % of the variance of
the responsg with 36.84 % of the variance K.

Table 1. Characteristics of the PLS model fitted to the simulated data with
uncorrelated predictors.

Variance explained in X Variance explained iny

Number of LV (%) (%) RMSECV
1 36.84 98.96 0.104
2 71.96 99.99 0.015

RMSECV: Root Mean Squared Error in Cross-Validation

With this single latent variable for the PLS modelterms of the notation
established in section 2, we hgve 3,a=1,q= 1. Sincea =q, if we need to find
values for the regressors to predict, gay= 0.31 (an intermediate quantity among
the autoscaled values of response), there is alarsglution for determining the

corresponding score in eq. (5), step 4 in fig.dmaly fa such thatfaQ=O.31

Applying the loadings iP5 in eq. (1), step 5 in fig. 1, there is then a umeiq
X4 =(0.12,0.22,0.2) that will predict the desired characteristiss

It is necessary to check that this solution beldngbe PLS-box as well as to the
domain of the input variables. The latter conditi®ulirectly examined with the
coordinates. For the former step, in fact, aQx®sidual is always null, we only
have to check if itd2 value is less than the threshold limit, which .i@44for the
fitted PLS model with one latent variable.

In this case)A(des meets all the constraints, defining thus a feassblution. Fig. 2 is
the Cartesian representation of the three-dimeatiaoput space. The range Xf

green diamonds, defines the domain. We can seef(ggatthe red filled circle, is
well inside it.

Figure 2 around here
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However, there are two dimensions discarded whandithe PLS model that
impact the predictor variables space but not ttentaspace. Because of the
projection, there is a plane in the three-dimerdiamput space where we can move
without modifying the predicted response. This pl&consequence of the space
that we have called th&-null space, related to the residual space, whidhrin is
orthogonal to the latent space.

To explore the effect of th&/-null space associated yg.s we generaten= 1000
points uniformly distributed inside the range defirby the discarded scorés
equation (8), and multiply them W, the discarded loadings that are a basis of the
W-null space. As we have already indicated, allgbiaits thus generated have null
value ofT2.

Next, we add all of them t&d&;, step 6 in fig. 1, which does not modify the

predicted response according to eq. (10) althoudbas modify the values §f and
T2, Therefore, the final step (step 7 in fig. 1)dsémove those resulting points
outside either the domain of the input variabletherlatent space (in this case, only
if their Q-residuals are larger than the critical value 5.68)

The remaining 726 settings are plotted as smadikbdts in fig. 2. To facilitate
visualization of the plane they all lie on, the eex hull of the points is depicted in

light gray and it is clear that it bounds the whpliene (containingA(de;) to the points
inside the defined domain for the input variabled the PLS-box.

3.1.2 PLS model with two latent variables. Uncorrelated predictor variables

For the sake of illustration, for the same data Xey, let us suppose that we had
chosen two LV for the PLS prediction model. As va@ see in table 1, this new
model explains 99.99 % of the varianceyiand 71.96 % of the variance Xf Due
to the uncorrelated predictor variables, this sddatent variable only explains
variance inX, in a percentage similar to the first one.

Figure 3 shows the scores (green diamondX) iofthe two-dimensional latent
space. Nova = 2, so there is a one-dimensional null spachendtent space, what
we have called th@-null space, resulting from the infinitely many stbns of
equation (5). One of its valid solution has scamzn the second LV and, thus,

with the samd, on the first LV as in 3.1.1. This solution is &t the solution in the

least squares sense to the system in equatioh {&yepresented in figure 3 by a red
filled circle.

The remaining scores, solution of equation (5)ptbatcally follow a straight line,
the one depicted in fig. 3 with blue filled squarelstained by taking points equally
spaced along it, step 4 in fig. 1 wih> 1 =q.
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This line is in fact limited to the segment made up withpihiats inside the PLS-box
in the latent space, graphically, the segment bounded by theeallgpicted in fig. 3
with black dashed line. The points enclosed by the ellipseTf values less than
the critical value established when fitting the model, namely &35 % confidence
level. Notice that the ellipse is almost a circumference due to thefackrelation
among the predictor variables.

Figure 3 around here

By using the loadings d?, in equation (1), thi®-null space is expressed (step 5 in
fig. 1) in the input space also as a line in the three-diloealspace. This line is the
one defined by the 18 blue filled squares in fig. 4 that correstmotine blue filled
squares in fig. 3 whose re-constructed predictor variables are feadililerss (i.e.,
belong to both the PLS-box and the input domain). Sireg dihe computed directly
from the latent space by using the loadings, tQeiresiduals are always null. Notice
that the central position is occupied by the red filled circle wlatdg in this space,

IS exactly)A(dS, the same as in section 3.1.1.

As in the previous section, there is some additional variatiowed in the input
space which is not being considered by only taking into ace¢ba@-null space
defined in the latent space. The possibilities that are missimg from théN/-null
space, which in this case is the one-dimensional null space reddteziprojection
onto the latent space, and orthogonal to it.

With eq. (10) we generate 50 points/irnull space and, following step 6 in fig. 1,
add them to each of the 19 solutions already found (the 18 hlaeesoplus the red
circle in fig. 3). Finally, step 7 in fig. 1, we keep the 760 felassolutions.

Figure 4 around here

These feasible solutions are the small black dots defining @ldmaéls in figure 4
where they clearly show that the direction determined by the blastspoW-null
space is orthogonal to the aforementioned line defined by théossleioming from
the Q-null space, blue squares.

These two directions, together, define a plane, but only agbattcontains the
settings of the predictor variables for which the problem makes,sensenly the

convex hull depicted in fig. 4 in light gray is part oéttlesign space arourfq,EB for
predictingyges.

In any case, the bounded regions in gray in fig. 2 anasije the theoretical planes
with equal predicted response, illustrate that if only the partrdf keoming from
Q-null space is considered, the design space would be underestimstegcessary
to add points i'W-null space as well.
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3.1.3 Correlated predictor variables

It might appear that the constraints imposed for defining L& Bdx have a certain
degree of arbitrariness, but in fact they are the key of the contagbmfcess by
using the fitted model.

To illustrate this, in the same established situation, leblisct new data for fitting
the model, this time with variables highly correlated. Then, B@wamples with
three correlated variables are simulated and, again, the true value of theseesygo
is computed as in eq. (11).

Table 2 contains the new structure of the PLS models fitteth, Wviand 2 latent
variables. One of the points was well beyond the 95 %diofiQ-residuals and™
statistics and it was removed.

Table 2. Characteristics of the PLS model fitted to the simulated data with
correlated predictor variables.

Variance explained in X  Variance explained iny RMSECY

Number of LV (%) (%)
1 95.08 81.85 0.429
2 98.80 98.64 0.127

RMSECV: Root Mean Squared Error in Cross-Validation

Compared to the models in table 1 for uncorrelated variabkésimthe present

case, the first latent variable is mostly related to the correlatimng variables iX
(95.08 % of variance iX) and the second latent variable is needed to better predict
the response ip, up to 98.64 % of explained variance.

Figure 5 shows the new latent space, with the same coding as 3ig@reen
diamonds are the projection of the data points,ithe red circle is the least squares
solution of eq. (5) foy4es=0.28 (an intermediate non-null value of autoscgleadnd
the blue squares are along the segment consequence®htiiespace, inside the
latent space, related to the red point. The subspace is agagnsadiment but with a
very different slope, compared to the one in figure 3. Finalgyethipse in fig. 5 is

the boundary of the region of the latent space belonging LiBebox. We see that,
now, is far from circular.

Fig.5 around here
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The region of feasible settings of the predictor variables withéndibsign space
related toyqes is depicted in fig. 6 as the convex hull of the solutioosputed
following the procedure of fig. 1.

Figure 6 around here

The orthogonal position of the lines defined with the bluatsand the ones defined
with the black points is still evident, but the yellow mginside the theoretical plane

is now very different from those in fig. 2 or fig. 4. In tlugse it is a kind of narrow
band that extends in the direction defined by @aull space (blue squares), with
width due to théV-null space (black dots) and controlled, precisely, by the threshold
on theQ statistic. The small variation allowed is not surprising tgkimto account
that selecting two latent variables, there is only near 1 % ofahance inX left in

the residual space.

Summing up, even though the functional relation betwéandy is the same in all the
cases, the estimated regions inside the design space, consedubacaitl space, are
not. In fact, the whole kernel subspaces are different. To pravelytically, we use
directly the corresponding regression coefficients to obtain thalimvensional null
space ‘at once’ without making distinction for the source of saciability (Q- or W-
null spaces).

With a single response, the kernel of the linear map defined by tlesseamn
coefficientsb can be interpreted as the set of points orthogortals$ee for instance
page 137 in [39]), so that the regression veltisrthe normal vector of the plane we
are looking for. With this property, the analytical equationefglanes in figures 2, 4
and 6 are, respectively:

77:045¢,+ 0.6X,+ 0.68,~ 0.33
75:0.54X + 0.5%,+ 0.6~ 0.32 12)
75068, + 0.4K,+ 1.1%,~ 0.28

The first two planes in eq. (12} andrg, are very similar to each other, and correspond
to the situation with uncorrelated predictor variables. The reasonddlifference is the
addition of the second latent variable, which hardly modifies théigtions computed
with the PLS model with a single latent variable (due taridependent variables ),

but thatmodifies the residual and latent spaces. These spaces are comjifietedgtdn

the case of the third plamg obtained with a PLS model with 2 LV fitted with

correlated input variables.

Therefore, it is clear that the model decomposition is drivendavhilable
information, that is, depends on the data at hand. The corretdttbe input variables
in the available data forces the shape and orientation of the PLS-thatkhas, also the
‘inherited’ structure imposed in the input space (where the desige Bpagt
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In any case, we have already pointed out that the expressiong 2 eglone are
useless unless we impose the constraints of the model. Howesecan be useful to
make decisions in some practical situations. For example, suthaddbere was a
limitation in the availability of -sayXs (a very expensive reactive or shortage in some
material). The corresponding equation gives the conditiobe tmposed in the other
two variables to maintain the predicted response, providing altezadb find feasible
solutions after applying the constraints.

The main conclusion is that the design space for a giyeshould be defined taking
into account all the possible variations around a computedaohitthe inversion. The
situation in figures 2, 4 and 6 illustrates that if only plaet of ker() coming fromQ-
null space is considered, the design space would be underestitnigtegcessary to
add points inV-null space as well.

Besides, as expected, the design space is dependent not ¢iné/\aiue of the desired
response but also on the structureXadndy, provided they are properly ‘collected’ via
the prediction model. The limits i® and T? statistics when using a PLS model help
defining the domain of applicability and controlling the process

In particular, ‘how much’ of the residual space is, in fact, affectingrtbéel (i.e., it is
inside the PLS-box) is mostly controlled by the threshold evatoposed in theQ
statistic. In the cases discussed in this section, if ol\pthdiction ability of the PLS
model is taken into account, tables 1 and 2 show that weldsiselect one latent
variable for the case of uncorrelated predictor variables (that explains 98036H#
variance iny with less than 37 % iX), and two for the case of correlated variables
(explaining 98.62 % oy and 98.8 % o). In that case, there is almost a 65 % of the
variance ofX unaccounted for in the first case, which is ‘reflected’ in the largemagio
figure 2, whereas the residual space will account for less thanf2lé wariance irX

in the second case, with a narrow region related to the inversfaure 6.

3.2 Byproduct in Alumina production

Table 2 in [40] contain data from a study to optimize the teldgical conditions in a
process, data that we will use as representative of the process. Acdortiaguthors,
the process of an alumina production line consists of separaitirigeoaluminum
hydroxide Al(OH} from a saturated solution of sodium aluminate NaAd®a result of
reaction with carbon dioxide, GOUnfortunately, the silicon dioxide Si@resent in
the sodium aluminate also separates out and mixes with the Al¢@brading the
quality of the extracted aluminum hydroxide

The SiQ content in AI(OHj} is the characteristic recorded in the dataset. It consists of
31 samples of the production process characterized by seven featureesatiaide
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listed in table 3, where we can see that there are proper procestegaamwell as
some features measured in the raw materials.

Table 3. Process and feature variables for the Alumina production process

Notation Description
X the total alkaline concentration of the original solution
X, the aluminum concentration of the original solution
X3 the ratio of SiO, and Al,O; concentrations
X, the total1l a!kaline concentr.ation of the solution after
discontinuing the connection of CO,
X the decomposition rate
Xs the rest time of the solution before connecting the CO,
X5 the time connecting the CO,

The seven feature variables work as the predictor variables to modekthtgof the
byproduct SiQ that should be as low as possible. In the experimental datgquantity
varies in [0.0302, 0.0653].

After autoscaling data to obtain matric€$31x 7) andy (31x 1), a PLS model is
fitted with the characteristics in table 4. Looking at the pergenté variance explained
by adding latent variables, it is observed that, although filhdient variable captures
more than 10 % of variance ¥y this is not related to the Si@ontent we are fitting
(which is not surprising since the process is for alumina pramyatiot SiQ). Besides,
cross validation with venetian blinds shows a sustained decreR84SECV (Root
Mean Squared Error in Cross Validation) up until the fourth latenable, then no
improvement is observed by adding more latent variables.

Table 4. Variance captured by PLS when adding latent variables and the corresponding Root
Mean Squared Error in Cross-Validation (RMSECV).

Number of Variance C:g:il;lizze Variance C:g:il;lizze
latent captured in . capturedinyY . RMSECV
variables X (%) captured in X (%) capturedinY
(%) (%)
1 36.77 36.77 74.20 74.20 0.548
2 17.16 53.93 14.18 88.38 0.408
3 13.14 67.07 5.36 93.74 0.295
4 5.72 72.79 3.64 97.38 0.223
5 11.43 84.23 0.23 97.61 0.200
6 8.59 92.81 0.05 97.66 0.200
7 7.19 100.00 0.00 97.66 0.201
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Therefore, the PLS predicting model has 4 latent variables explaiiri§ % of the
variance in the predictor variables related to 97.38 % of the variatice responsg.
The critical values at 95 % confidence level @andT? statistics are 5.26 and 12.12
respectively.

With the notation established in section 2, we hawe7,a = 4,q = 1, so both th&V-
null space related to the ‘residual’ space discarded with the projestabtheQ-null
space inside the latent space are three-dimensional subspaces.

In this case, we explore deeper the scope of knowing the ‘shape’ altdived
variations around any given point, as consequence of the null sppgcehether it can
be useful for a general description of the design space. We have alesgadytisat the
variability around a given point due to the different null spaces not depend on the

values ofygesor the computecia or X, . That means that we can explore the points that

belong to the different null spaces without the need of defiaitagget quality, or
equivalently, considering that the target value is zero (the meae ghthe response
when it is seen in the raw scales of the feature variables).

With this aim and starting witi/-null space (step 6 in fig. 1), we take 100 points,
uniformly distributed, within the hypercube defined by the scorethe three discarded
latent variablesT, in eq. (8),and then reconstruct the corresponding predictor variables,
Xr in eq. (9), by multiplying by the loading’. All the rows inX; are points of ket(),

in other words, represent variations that added to any settingutfvariables do not
modify the response predicted with those settings.

On the other hand, f@-null space, we can apply the steps in fig. lyfgr= 0, and
compute scores to predigks by using the loading® of eq. (2). Irrespective of the
value of Ve, when mathematically inverting the model, there is not uniqugico but
infinitely many vectors that belong to the three-dimensi@raull space inside the
four-dimensional latent space. To explore this spaed,00 points are also generated
in it, limiting their range to the range of the actual scadrem eq. (8). The predictor
variables are then computed by using the loadifage haveXo.

For bothXo andX,, the prevention of using the range of values within the
corresponding scores does not guarantee that the solutionsedbialinbe directly
valid. So, by discarding those objects outside the inputagdoor outside the PLS-box,
Xo still contain 88 vectors (points) coming fraganull space, an&, another 71
belonging toW-null space.

Figure 7 is the parallel coordinates plot of the computed pamtee scale used with
the PLS model (i.e., autoscaled values). In the plot, each pagpresented by one
broken line that intersects each coordinate at the height correspomdegvalue of
the point in this coordinate. The red dashed lines in figriéspond to samples K as
a reference of the domain of the process/feature variables. The contruelises are
for Xo, computed fronQ-null space, in fig. 7a); and fof;, the settings iW-null
space, in fig. 7b).
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Figure 7 around here

Figure 7 shows that, in both cases, the points are aroumdlthesctor (that always
belongs to the null space) but affect differently depending ®wvahable we look at,
and to different variables depending on the null space in question.

The lines in fig. 7a), related @-null space inside the latent space, show that there is a
shorter range of allowed variation & andX, than for the rest, especialkg.

However, in fig. 7b), related t/-null space, we see less variation permissibletor

Xs, practically no variations aroun(, but a larger variation id4 than in fig. 7a).
Comparing fig. 7a) and 7b) it is clear that the two types otisolsi with null prediction
are different and, thus, will exert a different impact on the degigoes

In addition to the points represented, any linear combinafitmem also belongs to the
kernel, that is, any of them can be added to any settings of leariatthout affecting
the intended response, though the addition does modify thesvafQ andT? statistics
and even the new points may have moved outside the domainu®écwe can reduce
somehow the magnitude of the valueXyandX; so that the region covered by the
points with null prediction would be smaller, i.e., a bettanesion of the part of

ker(L) related to the definition of the corresponding design space.

Regardless, once the solutions<inandX, are available, and inside both the domain
and the PLS-box, it is important to remember that, althoughirmegr combination of
points in ker() also belongs to kdrf, only the convex combinations of points{p or
X, are part of the valid variations that can be added to a feasibleosaltien defining
the design space.

To illustrate the practical meaning of having such a descriptiomwillvdefine a target
response, say 0.0302 (the actual minimum in the domain) akddothe settings of
feature variables to obtain this small quantity of the subpraxfube reaction, as
predicted with the PLS model.

For the algebraic inversion, fig. 1, we have to solve eq. (5) Igd’minscoresfa such

that Ve =faQT , Whereyqesis the autoscaled value (using the mean and standard

deviation of the original responses) of the desired response 0880ihg the equation
by least squares provides a unique solutipf, (0, 0), the one with only one score non-
null. The reconstructed settings define an unfeasible solution because it is outside the

domain defined by the range Xf although it has nulD-residual and the value for the
T? statistic is less than the threshold value. Therefore, anothuiosof eq. (5) is
needed related to a feasible solution when reconstructing the comdasppredictor

variables. We denote this solutionfég?s.

Undoing the scaling, their corresponding process/feature variablesitiem \wn the
second row in table 5. For comparative purposes, row 1 cott@restual values of the
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variables with which 0.0302 of Sy@ontent in AL(OH) was obtained. We see that the
settings in row 1 (experimental) and row 2 (calculated) are not viéeyatit.

In addition, the last two rows in table 5 describe the domstiablished for the problem,
that is, the range of each process variable in the training setaridasdata.

Provided that we follow the rows of the matrices depicted in figuveet,an add any of
them to)A(das without modifying the predictegies However, again, even in this case
that we made sure that both matridgsandX, are in the domain and in the PLS-box,
we still do not have any guarantee that the addition of thestso an actuaf(das (no
null) will provide feasible solutions. It only means that lgelition of such points does

not alter the predicted response.
In other words, the theoretical property of being inkgrjy itself, does not give any

'hint" about the feasibility of the solutions obtained whdding )A(o,as to one of these
points, irrespective of whether it belongsftenull space or comes fro@-null space.

Table 5. Settings for the seven features to obtain SiO, content of 0.0302. The first row
contains, in fact, the experimental conditions in the training set.

# X1 X2 X3 X4 XS X6 X7
1 108.8 89.6 627 1176 776 2.00 1.60
2 1101 8.3 626 1171 81.8 237 2.33
3 1070 83.8 577 1185 817 160 1.52
4 109.2 879 623 1182 793 2.06 1.62
5 106.7 810 570 116.8 83.9 177 2.38
6 1115 86.8 636 1199 81.2 232 1.34
7 110.7 834 623 117.8 837 2.44 232
8 113.7 90.8 645 1206 77.4 1.48 2.27
9 107.8 89.8 640 1174 779 204 1.54
10 1034 89.2 611 1183 774 245 134
11 1171 90.2 635 117.8 774 132 212
12 115.2 90.0 645 116.3 77.8 147 1.85
13 113.8 88.6 611 113.3 775 177 1.36
14 114.6 90.0 632 117.7 77.4 153 1.96
Minimum 103.4 81.0 570 113.3 774 132 1.34
Maximum 1171 90.8 645 1206 839 245 2.38

Minimum in domain 94.5 78.8 193 104.6 77.3 020 1.31
Maximum in domain 1194 101.4 647 123.1 91.8 2.77 4.14

In fact, after imposing the constrains for the vectors obtained bygétiments oKy

andX; and sums of them tgdes, rows 3 to 14 in table 5 show some of the resulting

feasible settings for the variables that are expected to givwecBi@ent of 0.0302. Rows
15 and 16 summarize the range of these solutions.
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Comparing the range in rows 15 and 16 with the allowed raaget{o rows), we can
see that the design space related to the minimum content of bgpi®dusubregion of
the hypercube we have defined as the domain to work inside. Ithigategion is also
a hypercube because any convex combination of rows 2-14 in talsie pravides a
feasible solution of the inversion problem we are tackling.

In terms of the process analytical technology (PAT), table hea®een as the
possibilities to use the process itself to correct deviatiorenme process variables (or
in some feature variables) above all those which are not directly cabteoll

For example, say that for some reason, the ratio of @ ALO3; concentrationsXs)
decreases from 623 to 570, as from row 4 to row 5. Then, foltpthie mentioned

rows, we can compensate this decrease by reducing both the toiakatiasicentration

of the original solution){) until 106.7 and the aluminum concentration of the original
solution, Xy, to 81; together with a slight reductionXy, the total alkaline concentration
of the solution after discontinuing the connection o, CAd less waiting time before
connecting the C@ Xs. At the same tim&s, the decomposition rate, should increase up
to 83.9 and longer time connecting the LK, up to 2.38.

Besides, not necessarily the selected values of the variablesaraisidily one of those
written in table 5. We have already said that any convex connaso provides a
feasible solution. In the process, that means that we can uséottmeation in table 5

for any value foixs between 570 (minimum) and 645 (maximum), provided we
maintain the relation among rows. For examples 615 is not in table 5 but it is the
result of the convex combination 54 + 64%0.6 (values in rows 5 and 8). Then,
with the same convex combination, the remaining process varialolelsl $feX; =
110.9,X; = 86.9,X, = 119.1 X5 = 80.0,Xs = 1.60 andX; = 2.31, and we use the
controllable process variables to compensate the variability in theneaerial.

3.3 Supercritical Carbon Dioxide Extraction

Zhang et al. [41] describe the optimization of a process of aghen using
supercritical carbon dioxide. Table 1 in [41] shows the setthtfsree process
variables and the corresponding responses (experimental results) obdagred
conducting a Box-Behnken design in a cubic domain to fit a semaied polynomial
model, in the context of the well-known experimental strategiéddrke so-called
Response Surface Methodology (for details about RSM, see for exadfijje, [

The process depends on three factors (process variables) that are des¢hibdust
three rows of table 6 along with the minimum and maximum valtieach process
variable, which define the experimental domain.

The last row in table 6 corresponds to the response, namegigrtentage of oil yield
of N. glandulifera seed. Table 6 also shows the range of the percentage of oil yield
obtained with the experiments, as reported in the original paper.
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Table 6. Experimental domain, response and optimal conditions determined in ref.
[41] for the process to obtain oil yield of N. glandulifera

Conditions and

Variable Factor/Response Minimum Maximum expected
maximum of Y
X1 Pressure (MPa) 22 35 30.84
X5 Temperature (2C) 35 45 40.57
X3 CO, flow rate (Lh™) 18 22 22.00
Y Oil yield (%) 319 37.1 38.19

The maximum oil yield obtained experimentally is 37.1 %. Havewith the aid of the
fitted model, the authors report a maximum yield attainable 0838. With the settings
shown in the last column of table 6. We see that theflo@ rate is 22 L H, the
maximum allowed value, thus, the settings computed are at tineldyuof the
experimental domain.

For comparative purposes but to avoid working at the boundang @omain, we will
set our target valug; equal to 38 %, which still would be an increase compared to the
best oil yield obtained experimentally.

To look for the corresponding process variables, we will inveti@arRodel fitted with
the same data (available in the paper itself). The model will begvéd 2, which
means that there is not a linear relationship between the three pradabtes and the
oil yield. It also means that the algebraic inversion is natl@ve. We will develop this
idea in the following paragraphs.

To fit a second order modeYy using a linear method like PLS, it is not enough to
consider just the three process variables. Predictor mé&isxn fact made by 9
columns corresponding to the settings of the process variabléseaadditional
columns with cross products and squares, according to the saddewd that appears
in the model in eq. (13). Botk andy are autoscaled so no need to consider an
independent term for the prediction model.

y=ZﬂiXi+ZZﬁijxij (13)

With these matriceX-y, a PLS model was fitted with 3 latent variables that explain
33.95 % of the variance of the predictor variables and 99.04 % wvétlace of the
response. Figure 8 is the three-dimensional latent space with ties sf& depicted,
like in the remaining case-studies, by green filled diamonds.

Figure 8 around here
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In terms of the PLS modegh,= 9,a = 3 andq = 1, so th&)-null space inside the latent
space is two dimensional (i.e., a plane in the three-dimensaipat space).

3.3.1 Algebraic inversion

We start by algebraically inverting the model following the procedatailed at the
beginning of section 3 and summarized in fig. 1, with theilgmdofy and the desired
valuey;. Then, adding vectors of tlg@-null space (step 4 when> 1) we obtain the
scores depicted also in figure 8 as red points, where onlydhgertones belong to the
PLS-box.

In any case, all the red points share the property of hgvexgtheir predicted response,
thus, the plane they all lie on is the 2-dimensi@adull space already mentioned
corresponding tg:.

We also see that there are no scores bying on this plane. This is so because the
selected desired valygis not among the values alreadyyirin fact, we are primarily
trying to determine whether there are values of the process variabletay; and, in
this case, to describe the design space around them.

This design space is inside the three-dimensional experimemilid depicted in
figure 9, where, again, the green filled diamonds are the settirthe experimental
factors in the design conducted.

With eq. (7), step 5in fig. 1, the settings of the experimdatabrs corresponding to
the computed scores in fig. 8 that belong both to the expe@irdomnain and the PLS-
box are depicted in fig. 9 as red filled circles. The already mentioneshexposition
of scores in the latent space places their corresponding process varéssldse
boundary of the domain, which explains the few values obtained.

The next step is to explore the variability due to the residdidleeqrojection onto the

latent space, which was not taken into account during the inmer@his is described by
considering points in the/ null space defined by the projection, for instance, by using
the basis of the discarded loadings. Then, step 6 in figdin@dp these points to the
computed values during the inversion does not change the predispeshse, but they

add spreading in thé-space, therefore, better describing the design space associated to
the yield ofy; = 38 %. These new conditions are depicted with small blatskiddigure

9, after removing the solutions outside the experimental doonaire PLS-box, step 7

in the procedure.

Figure 9 around here

As we can see, the points\ivi-null space (black dots) extend in lines parallel to the one
defined by the points coming fro@-null space (red filled circles) in a wider region of
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the experimental domain. In any case, the most distinguishable@omroperty is that
the third factor (CQ@flow rate is at high level).

3.3.2 Computational inversion for thetarget 38 %

The calculations made in section 3.3.1 are not completely reglatuse the algebraic
inversion of the PLS model provides in fact values for nine coatels) computed
without taking into account the precise relation that existagrtite nine columns that
made up the predictor matr¥, relation defined from the first three columns following
the model in eq. (13). Therefore, this precise relation among th&ixasiordinates of
rows inX with the first three is not maintained in any way when inmgrthe linear
application.

Actually, the points depicted in fig. 9 are the first three coordmat the computed
solutions, dismissing the remaining six. To get an ideatdheumeaning of the
comments in the previous paragraph, let us take the black andiméslipdig. 9 and
apply the PLS model to these values as if there were settings pfabess variables.
The predicted oil yield varies from 33.6 to 38.1 %, some of tlaerfrom the expected
38 % and, besides, with almost the same range of variation aspgéemental values
themselves, from 31.9 to 37.1 % (table 6).

The conclusion is that, if we should preserve the relation athenignal columns
(which is mandatory), then the mathematical inversion in thedeagribed in fig. 1 is
not possible.

Nevertheless, the inversion as proposed in [38] is still videgleause it works
maintaining the search space defined with the problem. In thes ttés domain is the
three dimensional experimental domain where the factors (the processes) ey .
Once the domain is set, the procedure consists of an elitist gelgetithm that always
search for experimental conditions inside the domain defined by fimlpesing the
restrictions about th® andT? statistics. In that way, the algorithm evolves always
using feasible settings for the process at hand.

Briefly (for details consult the referenced paper), the algorithm stétsaw initial
population of several different settings randomly selected in thmithoof the three
process variables and inside the PLS-box (i.e., valu€sresiduals less than 12.45 and
values ofT? less than 11.47, which are the corresponding limits at 95rfitdence

level). Then, it evolves for a determined number of generatioosaagying new

potential solutions, always in both the domain and the Rix&-dnd with increasing
percentages of the predicted oil yield.

Additionally, the initial population can be seeded to incladg potential solution that
we want (solutions already known due to previous runs, ardhditions of the design
conducted, or some points generated from the algebraic solution(6) eetc.). At the
end, the better ones will survive the evolution process.
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For the process at hand, and the scaled value correspondingotasgrget value, we
run the algorithm with a population size of 100. The inpiabulation is randomly
chosen inside the experimental domain. In each subsequent generanai00
offsprings are computed by sequentially selecting (at random wiftbrianprobability)
pairs of solutions in the actual population and single crossmtereen each pair,
forcing the offsprings to be different from the parents. Ten perceheatsulting
offsprings are mutated inside the domain.

The new solutions are then evaluated in terms of the PLS modei.tRose solutions
inside the domain and the PLS-box, the next population i€ mady the 100 solutions
with predicted values closest to the desired value. The evolutips after 300
generations, with all the solutions in the final populaticedrting the target value.

The different settings for the process variables of this final papnlate depicted as
magenta filled squares in fig. 9, and now they are discrete estiofaekitions in the
design space for the targeted response.

Fig. 9 shows that these settings spread not far from the mescfcoming from the
theoretical Q-null space) and near the region of possible spread dis®ldue to the
W-null space related to the residual space of the PLS model (blexk idotvever,
besides predicting the same yield, the magenta points (trueosslof the inversion) do
not define any recognizable mathematical relation, they do dowftthe direction
marked by the red points, neither the direction defined by the plzioks.

3.3.3 Computational inversion for maximizing oil yield

The computational procedure just explained evolves by searchimgsenside the
experimental domain with the goal of improving a given propémtgection 3.3.2 the
criterion was to approach 38 % of yield. However, the goal wasddlie best possible
percentage of yield inside the experimental domain.

Therefore, by defining a new criterion to drive the evolution, wgwstrinvert the
same PLS model but not necessarily to predict a given valudrbatly looking for the
maximum oil yield achievable in the domain. The modificatbthe criterion implies a
slight modification with respect to the evolution process alrexgjained: the updating
of the population in each generation is made by selecting thes pathtlargest
predictions to survive to the next generation.

When using the criterion of maximizing oil yield in thisndain, the population
converges to a single solution with an estimated oil yYoél88.19 % with the same
process variables as the one in the last column of table 6. ThEseneantal conditions
are depicted in fig. 9 by a blue filled triangle, which is arotnedmagenta squares,
farther from the filled circles.
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3.4 Vapor pressure of adistillation tower (larger data set)

The data are available at https://openmv.net/info/distillatioretpwhere it is stated
that they come from an unspecified industrial source. They corrés¢paneasurements
on 26 variables from a distillation column, measured over twadralf years. It is also
explained that variable names are coded so that details of the paoe@sd disclosed.
The names provided are in table 7 where we can only identify pleeofyvariables:
there are temperatures, flow, different pressures, etc., the processoosnaiten each
of the 253 samples were taken. The range of these variablesiiis &lbte 7 to see the
defined domain for the process variables. The last row, Vapour Rreissa quality
variable measured in the laboratory. Therefpre,26,q = 1.

Table 7. Process variables as well as their range for the distillation tower case-study. The last
row contains the quality (response) variable Y.

Number Variable Minimum Maximum
X1 Templ 111.03 168.04
X, FlowC1 174.74 505.67
X3 Temp2 318.45 406.74
Xa TempCl 75.59 132.20
X5 Temp3 420.78 528.08
Xs TempC2 419.02 526.39
X5 TempC3 119.21 229.41
Xg Temp4 124.60 235.62
Xo PressureC1 199.82 254.59
X0 Temp5 418.62 524.79
X1 Temp6 419.30 525.31
X1 oc1 1.86 8.50
X3 Temp7 890.11 1179.20
X1a Temp8 421.45 557.36
Xis TempC9 34.51 99.98
Xis FlowC2 61.14 83.59
X7 Temp9 400.32 507.31
Xig Temp10 432.45 547.13
X19 FlowC3 4.62 8.85
X0 FlowC4 5.85 10.76
X1 Templl 12.89 35.53
X Templ2 419.43 526.14
X3 InvTempl 1.90 2.38
Xoa InvTemp?2 2.46 3.14
X35 InvTemp3 1.97 2.50
X6 InvPressurel 3.71 4.66

Y Vapour Pressure 25.16 64.31

Process variables are correlated, a few of them highly, approximatelyol 7%
correlation coefficients are, in absolute value, greater than 0.9. ldoyév% are less
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than 0.5 (again, in absolute value). When taking into accoaneponse quality
variable to be predicted with PLS, RMSECV (Root Mean Square Erfross
Validation) maintains a slow decrease up until seven latent vari&botes.the third
latent variable the variance explained by the latent variables is nrastiyX. In any
case, the selected PLS model requires seven latent variabi&y,(after removing 18
samples because of their standardized residuals (outside the inter@3l p13because

of their high values of-residual or/and? statistics. The resulting model explains 95.7
% of the variance aX with 97.3 % of the variance f, with crossvalidated coefficient
of determination of 96.9 %, estimated extracting random sampled&iplits and 5
iterations.

TheQ-null space is thus a six-dimensional space in the latent spaceastiea/N-null
space is in the 19-dimensional space. By directly estimatimgsovom the null spaces,
without a target quality value, figure 10 is the parallel coordinatagor the points
already inside the input space (26 dimensions) for matKig&s blue continuous line
andX; in dotted red linesX, comes from th&-null space following equation (7) with
null target scores, whil¥, contains points iNV-null space, computed with equation
(9). In both cases, the points outside the domain or outsdeltS-box were removed.

Figure 10 around here

It is clear that there are much more variation allowed around theatué of any
variable when taking points of the null space coming from the lapade, blue lines,
than when the points correspond to the null space in the resjghuzd, in red, which is
consistent with the few variance Xfin the residual space, despite the fact of being a
subspace of dimension 19.

Still, there is some variables around which the variation allow#tbwi modifying the
predicted response is larger duéVenull space in red, such as variablesXg Xi0, X11,
Xi7, X22, X23 andXas.

4. Conclusions

When working with linear models, such as PLS, part of the attohhdesign space is
related to the kernel defined by the linear mapping. Through soreetales, the
present work shows the need to consider the part of the kernel theeddhogonal
residual space, along with the one resulting from the projecti@n{laariables) space.

Case 3.1 highlights the need to take into account what we hded theW-null space,
and the close relationship between the training data and theHli®dnodel.

The a-priori description of the kernel associated to the PLS maocksdtlgd with the
regression coefficients or in two steps exploring i@ttandwW-null spaces, does not
help in constructing feasible solutions. This is explorechse 3.2 that focuses on the
fact that, although the kernel is a characteristic of the linear mapsngpact on the
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design space depends on the desired quality characteristic. Begididsafework
includes the use of the process to compensate for deviations énvsdures of the
process or feature variables (above all for the variables that cannot bly direct
modified). Case 3.2 exemplifies how to do it with the inforgrabbtained from the
points in the kernel of the corresponding PLS model to fittdmtent of a byproduct in
a step of a production process of Al(QH)

In Case 3.3 with a process for extracting oil yieldNoflandulifera, PLS is used to
describe a nonlinear relation between process or features variables and quality
characteristics. Therefore, there is not algebraic solution for the imweasd the
exploration of the design space is based on a computational imzersio

Case 3.4 illustrates the situation for larger dimensions, theat®n procedure is the
same, but the visualization of the convex space defined insidiesign space where
the predicted response does not change is not viable in Cartesidimates.
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Figure captions

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Diagram that summarizes the procedure of adding jpoimi#l spaces to the
inversion of a PLS model to predict a given vajueg.

Three-dimensional input space in Case 3.1.1. Greenrtlamepresent the
samples irX, the red filled circle is)A(deS , black points belong to th&/-null
space. The convex hull of the black points is in gray.

Latent variables space in Case 3.1.2. Green diamortts soores oX, the
red filled circle is the LS solution of eq. (5) and the blue filgdares follow
the line along which the predicted response is the same. The ellgoks the
limit of the T statistic (95 % confidence level).

Three-dimensional input space in Case 3.1.2. Greenrdlamepresent the
samples irX, the red filled circle i§(des, blue filled squares are the predictor

variables that correspond to tQenull space, black points are in té-null
space. In gray, their convex hull.

Latent variables space in Case 3.1.3. Green diamonts aootes oX, blue
squares are points in tiienull space and the red circle is the LS solution of
eq. (5). The ellipse marks the limit of th&statistic at 95 % confidence level.

Three-dimensional input space in Case 3.1.3. Inwyehe region of feasible
solutions inside the design spaceyas Green diamonds represent the points
in X. Blue squares come from tlRenull space. Black points come from the
W-null space.

Case 3.2. Parallel coordinates plof afi red dashed lines. In blue some
settings: (a) coming fror@-null space, and (b) belonging ¥é-null space.

Three-dimensional scores space in Case 3.3. Green dsaaneride scores of
X, red points are insid®@-null space, with those bigger (filled circles) also
inside the PLS-box (with values ®f below the 95 % confidence limit).

Experimental domain in Case 3.3. Green diamonds are #mneputs
conducted. Red circles correspond to the red circles in f@-18u(l space),
and black points are W-null space. Magenta squares are the points found
with the computational inversion in section 3.2.2. The hiaagle marks the
settings obtained with the computational inversion for maxirgigield in
section 3.2.3.

Figure 10. Process variables space for case 3.4. Parallel coordinafes pbints in

the kernel of the fitted PLS model. Blue continuous lines are fiotpfyom
Q-null space, dotted red lines are from point8Mmull space.
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Inversion of PLS models to keep a target quality in process control
Definition of design space from the null spaces defined by PLS

Explicit consideration of the variability due to the discarded latent variables
Computational inversion when a second-order polynomial is fitted with PLS

The design space to compensate uncontrollable with controllable process variables
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