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Abstract: The development of complex real-time platforms for the Internet of Things (IoT) opens
up a promising future for the diagnosis and the optimization of machining processes. Many issues
have still to be solved before IoT platforms can be profitable for small workshops with very flexible
workloads and workflows. The main obstacles refer to sensor implementation, IoT architecture,
and data processing, and analysis. In this research, the use of different machine-learning techniques is
proposed, for the extraction of different information from an IoT platform connected to a machining
center, working under real industrial conditions in a workshop. The aim is to evaluate which
algorithmic technique might be the best to build accurate prediction models for one of the main
demands of workshops: the optimization of machining processes. This evaluation, completed under
real industrial conditions, includes very limited information on the machining workload of the
machining center and unbalanced datasets. The strategy is validated for the classification of the state
of a machining center, its working mode, and the prediction of the thermal evolution of the main
machine-tool motors: the axis motors and the milling head motor. The results show the superiority
of the ensembles for both classification problems under analysis and all four regression problems.
In particular, Rotation Forest-based ensembles turned out to have the best performance in the
experiments for all the metrics under study. The models are accurate enough to provide useful
conclusions applicable to current industrial practice, such as improvements in machine programming
to avoid cutting conditions that might greatly reduce tool lifetime and damage machine components.

Keywords: ensembles; unbalanced datasets; internet of things; rotation forests; milling

1. Introduction

Over the past 10 years, different technologies have boosted data-acquisition, communications,
and processing capabilities. This strong development has led to the inauguration of a new concept:
the Internet of Things (IoT). Although this concept might have direct applications in the daily life
of the public, its successful implementation in industrial environments seems to be a more complex
issue, as recent reviews have outlined [1]. This is the case of machining workshops, where many
factors limit the range of IoT solutions. First, the integration of new sensors in existing machines is not
easy, as durable machine-tools are usually designed for a long life and most existing machines were
built before the development of the IoT or the Industry 4.0 paradigms [2]. Therefore, communication
capabilities and integrated sensors built into machine-tools are very limited. In those cases, the only
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way to extract information from them would be through the machine’s CNC (Computer Numerical
Control). However, the CNC is not often available, given that its primary function is to control
the machine-tool. Therefore, the most common solution is to access the PLC (Programmable Logic
Controller) of the machine. Reading the PLC parameters is one way of extracting many parametric
values from the CNC. This solution has been widely used during the last decade; i.e., for developing
adaptive remote controllers for milling machines through an internet connection [3].

The first element for suitable IoT solutions in small workshops should therefore be a Data
Acquisition Platform (DAP) connected to the PLC of the machine. The first DAP for manufacturing
tasks was demonstrated over 20 years ago [4] for tool condition monitoring. However, the opportunity
of setting up a real implementation was never demonstrated, due mainly to the very limited access to
commercial CNCs at that time. To overcome this limitation, open architecture CNCs, once very rare
in industrial workshops, were used in most studies over the past twenty years. In very recent years,
some studies have described the new communication capabilities incorporated in commercial CNCs.

Having established reliable solutions for data communication, the research focus moved on
towards the definition of the best Key Performance Indicators extracted from the IoT platforms for
manufacturing optimization.

However, the data-acquisition stage is, however, not the only challenge for machine-workshop
IoT solutions. Data processing and analysis are also subject to very restricted conditions and data
features. As will be explained, the analysis of workshop machining processes will often have to
contend with incomplete and unbalanced datasets. Besides, the data will have too many inputs,
lessening its reliability. It will therefore be necessary to reduce the number of inputs and to eliminate
repeated instances without losing information.

Machine-learning techniques have many capabilities that are especially suitable to overcome
these limitations. First, they generalize models to new conditions, thereby reducing the number
of expensive experimental tests to be performed. Second, machine-learning techniques can extract
useful information for unbalanced datasets. Third, machine-learning techniques reduce the number of
features without losing information. Fourth, machine-learning techniques are able to complete missing
attributes, due to sensor malfunctions and data-transmission errors.

Nevertheless, the studies on machine-learning algorithm applications to predict machining-process
performance have been demonstrated in laboratory datasets. Datasets generated under laboratory
conditions have some extremely different features to those generated in real workshops.
Under laboratory conditions, a very small number of inputs are varied from one experiment to
the next, there is almost no experimental repetition, the experimental conditions are carefully selected,
mainly by factorial or Taguchi experimental design, and all inputs and outputs are carefully measured,
and validated before the next experiment is performed, as outlined by the most exemplary reviews [5,6].
However, as Bustillo et al. demonstrated [7], under industrial conditions, most of the experiments
refer to the same cutting conditions, a very broad range of parameters are at the same time varied,
and the data present many empty values and values of limited confidence.

Most of these features can be joined in one dataset property: artificially balanced datasets.
Balance means that there is a similar proportion of all the tested conditions and the values of the
outputs in the dataset. This condition is however far from the industrial reality, where most of the
instances in the acquired dataset will show a normal behavior and very few will show an abnormal
behavior, independent of the considered machining process or output that is to be predicted.

The starting point of this study is completely unlike previous works: the aim is to design a reliable
data-acquisition system and to connect it to a machining center in a workshop, acquiring data almost
under blind conditions. The machine will be monitored over a sufficient period of time to gain a
general overview of its operation, in this case 3 months. The machine has a commercial, non-open
architecture CNC that will ensure a suitable IoT solution for all other machine-tools. Then, different
machine-learning algorithms will be used to model continuous features, such as motor temperatures,
and some discretized features, such as machine state and working mode.
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The novelty of this approach is not that it develops a breakthrough approach for data acquisition
and IoT implementation, nor is it in the design of new machine-learning algorithms. It refers to both the
design and the validation of a reliable IoT solution for its immediate implementation in real workshops.
The solution is based on the most suitable machine-learning algorithms for each of the proposed
industrial tasks (identification of temperature patterns and machine working states). This suitability
will be proven with a real and extensive dataset, where different machining processes are mixed with
no clear identification: milling, drilling, etc. Our solution, as previously outlined, is different to the
previously presented proposals, because it is not built up from laboratory datasets and specifically
designed machining tests (i.e., only face-milling tests at different cutting speeds), but from real datasets
with many repetitions, different cutting conditions and processes, etc. Besides, no pre-processing
techniques are applied to the dataset, to assure that the selected machine-learning algorithms will be
ready to process real information later on without the intervention of a human expert.

The existing bibliography, summarized in Section 2, proposes solutions for certain industrial
problems (e.g., tool breakage or wear monitoring in drilling, milling or turning, surface quality or
dimensional accuracy prediction in machined workpieces, etc.). However, in this case, the solution
is open to extract any useful information, merely by changing the inputs and outputs of the trained
model and without any previous classification of the cutting process that took place. This feature is
assured through continuous and discretized outputs of industrial interest. Therefore, the novelty of
this research, rather than a solution for a specific manufacturing task, proves a more generic solution
and a suitable approach to extract useful information from real manufacturing data.

The paper will be organized as follows. A brief state of the art of IoT platforms for machining
workshops and some examples of the most common machine-learning algorithms used on those
platforms will be included in Section 2. In Section 3, the IoT data-acquisition platform and the
machine connected to it will be presented. Then, in Section 4, the dataset extracted from the
data-acquisition platform will be presented with the machine-learning techniques to model the two
datasets. Special attention will be paid to the most suitable metrics to evaluate model performance.
The results of such modeling and the industrial use of the best model will be presented in Section 5.
Finally, the most relevant results will be summarized in the conclusions (Section 6) and pointers will
be given for future lines of research.

2. State of the Art

2.1. Data Acquisition Platforms in IoT Solutions

After the first attempt to build a DAP applied to the manufacturing tasks by Ebrahimi [4],
the first solutions based on open architecture CNCs were developed. Ferraz et al. [8] proposed the
connection of an open architecture CNC to a lathe machine with an intelligent system, to overcome the
tool-wear effect in workpiece quality. To do so, they installed a linear variable differential transformer
and acoustic emission sensors on the lathe machine, demonstrating that on-line workpiece quality
monitoring and control can be performed with Ethernet and Internet connections. Along the same
lines, Frumusanu et al. [9] presented a stability control system for in-process modification, to avoid
chatter vibrations and to achieve the highest process performance in turning operations on an open
CNC transversal lathe. By doing so, they were able to maintain performance and to avoid chatter
vibrations for a fixed turning process.

As presented in Section 1, commercial CNCs have only recently included communication
capabilities that have been studied in very recent works. Mourtzis et al. [10], proposed an approach
for machine-tool energy consumption estimation, based on real-time monitoring measurements using
wireless sensor networks. This solution overcomes the lack of data acquisition and transmission in
machine-tools previously installed in real workshops. Within the same research area, Zhong et al. [11]
developed a Radio Frequency Identification framework to overcome communication limitations
in mass-production workshops, thereby assuring component traceability. Finally, Schafer et al. [1]
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reviewed the most recent publications in IoT solutions for workshops, concluding that most of the
existing solutions have limited capabilities and real-time monitoring, due to the low sensorized rate of
existing machine-tools.

Now that reliable solutions for data communication have been developed, the research emphasis
has shifted towards defining the best key performance indicators extracted from IoT platforms
for optimal manufacturing [12]. Chen et al. [13] proposed a combination of machine state,
energy consumption, and cutting tool identifier. Their solution reduced energy consumption and
energy cost by effectively managing the defined machining process, though it is very dependent on
reliable identification and supervision of cutting processes. In a more advanced work, Chen et al. [14]
tested this general strategy in a real workshops with 25 machine tools, 24 LED lamps, 10 ventilation
fans, 5 air conditioners, 2 transport devices, and 2 air compressors. They demonstrated that energy
indicators can be improved by considering efficiency indicators, although once again, these indicators
require an extensive knowledge of the cutting processes under execution.

2.2. Machine Learning Techniques Applied to Machining Optimization

The following works explore the suitability of machine-learning techniques in depth, to alleviate
the limitations of machining-datasets:

• Regarding the reduction of the number of expensive experimental tests, Oleaga et al. [15]
demonstrated that some machine-learning algorithms, for example, Random Forest ensembles,
can provide accurate prediction models for critical depth of cut-and-chatter frequency in milling
operations with a smaller number of experimental tests than experimental or analytical models.

• With respect to the extraction of useful information from imbalanced datasets, Bustillo and
Rodriguez [16] demonstrated that some of those techniques, such as ensembles, can overcome
unbalanced data in an extensive experimental dataset. They validated this approach to
unbalanced data through industrial breakage detection of multitooth tools in real industrial
datasets, showing successful detection of 59 insert breakages from a total dataset of 30,000
mechanized crankshafts.

• As for the reduction of the number of features without losing information, Grzenda et al. [17]
demonstrated that Multilayer Perceptrons can make reliable predictions of surface roughness for
face-milling operations, following dataset dimensionality reduction. They reduced the number
of accelerometers needed in this case for reliable machine process monitoring. Grzenda and
Bustillo [18] proposed the use of a genetic algorithm with neural networks to identify the best set
of inputs to provide accurate prediction models for surface quality in high-torque face milling
operations, reducing the data-acquisition costs within industrial environments.

• The capability of machine-learning techniques to complete missing attributes, due to sensor
malfunction or data-transmission error has also been studied in a few works. Grzenda et al. [19]
demonstrated that Genetic Algorithms and Multilayer Perceptrons can complete damaged
datasets in deep drilling operations of steel components to predict borehole roughness. Besides,
machine-learning techniques have proved their capability to create especially designed visual
models for real-time visual processing of many manufacturing processes. Teixidor et al. [20] used
different machine-learning algorithms, among which k-Nearest Neighbors, neural networks and
decision trees, to model some outputs of industrial interest in pulsed laser micromachining of
micro geometries, such as dimensional accuracy, surface roughness and material removal rate.
They demonstrated reliable models of immediate industrial application by means of decision
trees, which can process direct rules or 3D-Charts that optimize process parameters.

• The suitability of machine-learning techniques to build reliable prediction models for different
machining-process cutting outcomes has been widely demonstrated. Bustillo et al. [21] proposed
the use of Bayesian Networks for breakage detection of cutting tools in crankshafts machining.
They showed the flexibility of these types of networks to extract process information of direct
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industrial use by means of inquiries forwarded to the Bayesian Network when evaluating
tool wear in a discretized way: broken or normal. Karandikar et al. [22] proposed a Bayesian
inference method to evaluate tool life for end milling of AISI 1018 in a continuous way, instead of
with a discretized number of levels. Along the same lines, but using Multilayer Perceptrons,
Mikołajczyk et al. [23] described the use of MLP-based automatic image analysis for assessing
tool wear. Their results promised a good correlation between the new methods and the commonly
used optically measured VB index for the entire life range of the tools.

The same two strategies (continuous or discretized output) have been proposed for the
two main workpiece-related quality indicators: surface roughness and dimensional accuracy.
Grzenda et al. [17] built accurate Multilayer-Perceptron models for surface roughness prediction
in cast-iron face-milling operations. Facing the same task, Rodríguez et al. [24] proposed surface
roughness prediction in face milling, through the use of decision trees for their immediate
implementation by process engineers in workshops, instead of black box models such as
Multilayer Perceptrons (MLPs). Bustillo et al. [25] defended the advantages of Bayesian Networks
to predict surface roughness in deep drilling operations with steel components, in this case,
by discretizing surface roughness using an industrial standard: the ISO 4288:1996.

Workpiece dimensional accuracy as a continuous output has been also modeled with neural
networks and decision trees in pulsed laser micromachining of Hardened AISI H13 tool steel by
Teixidor et al. [20]. In contrast, Ferreiro et al. [26] demonstrated that machine-learning algorithms,
especially Bayesian Networks and Decision trees, were more accurate than mathematical models
for the detection of burr during high-speed drilling in dry conditions on aluminum Al 7075-T6.
Detection is classified, in this case, as admissible and non-admissible burr, considering industrial
tolerances for this process.

2.3. Machine Learning Techniques and Unbalanced Industrial Data

As mentioned in Section 1, the datasets extracted from real workshops use to be strongly
unbalanced. There are very few works that take into account this fact. Bustillo and Rodríguez [16] showed
that pre-processing techniques should be applied to industrial datasets, such as Synthetic Minority
Over-Sampling Technique (SMOTE) [27] or undersampling, before a standard machine-learning
algorithm can properly model the breakage detection of multitooth tools in real crankshaft machining
lines. Martin-Diaz et al. [28] identified a similar limitation of machine-learning algorithms when
modeling early fault detection in induction motors. They proposed the use of optimized sampling
techniques in the industrial dataset before applying AdaBoost ensembles to model this process.

3. Data-Acquisition Set Up

The IoT solution developed in this investigation was, at the machine level, composed of a
data-acquisition system connected to the machine control, in this case, a five-axis machining center
equipped with Heidenhain 640 CNC. The machining center milling head was equipped with a Pt100
temperature sensor. It had two continuous rotatory axes specially designed for machining aeronautical
components. The other three axes were the transversal longitudinal ones X, Y, Z. It can perform
multiple operations through a CNC with very little human intervention. These operations use cutting
and rotating tools, such as mills and drills. This data-acquisition system transfers the collected data
to a database through an accessible Internet connection in the workshop. The database will oversee
automatic and periodic analysis of data collected in real-time. Figure 1 schematically shows the
operation of the IoT design solution. Note that only read operations are performed, so the process will
never alter the operation of the machine.
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Figure 1. Outline of the design of the IoT solution. This schematic diagram shows the operation
of the IoT solution. Note that only read operations are performed, so the process will never alter
machine operation.

Communication between the acquisition system and the machining center is carried out through
an automatic CNC variable reading process. Developed in Python 2.7, information may be captured
with this process, using the internal variable name (mnemonic) used in the PLC. The Python library
“pyjh” [29] (which is a proprietary software from Heidenhain 640 CNC) was used to read the CNC
variables. The equipment can monitor all the parameters of the CNC of the machining center at variable
sampling frequencies with which data can be compiled on the general dynamics of the machine, its
consumption, its thermal evolution, significant averages of vibrations and shocks and the entire alarm
table that occurs.

The output of the reading process of the CNC variables was performed using the “Internet
of Things” protocol, MQTT (Message Queue Telemetry Transport), establishing communication
between the system and any IoT platform that supports the MQTT protocol. The controller of the
machining center must be on the same network as the IIoT Gateway (i.e., Industrial IoT Gateway).
According to [30] an IoT Gateway “is a connecting link between the sensor network and the traditional
communication network”. Nowadays, IIoT Gateways can perform many other tasks, besides their
function as a mere protocol converter, such as for example encrypting, buffering, and preprocessing
the information. In our case, this device (1) reads the information from the CNC using TCP/IP
sockets, and (2) “monitors” it (i.e., builds a JSON (JavaScript Object Notation) object with this
information to be published by an MQTT client). There are another two main MQTT clients in
this architecture: one to store these JSON objects in a database, and another open to further uses
(e.g., plotting graphical information).

The acquired data were recorded in real-time on a private MQTT Mosquitto server in the
machining workshop. This server was operated through the publication and subscription system.
Each monitoring device has a publication topic within a hierarchical structure that can be used to
subscribe to one or more information topics. The MQTT Broker is the server where all requests from
MQTT Clients are received. In addition to the three above-mentioned clients that publish information,
other clients preprocess and structure the published data.

The preprocessed data is grouped into different categories: consumption, axes, cutters,
mandrel, temperature, etc. for future data analysis using data-mining techniques. The MQTT
normalization clients republish the information in the MQTT Broker, to which they are subscribed,
but already normalized and structured in another topic. Then, the MQTT Client subscribed to those
pre-processed data topics will obtain the data and store it persistently in a local non-relational database
(NoSQL) (Figure 1). The use of an NoSQL database is required, because of the large data volumes
collected per unit of time. It avoids potential scalability problems and improves the speed of querying
and writing to the database. These data volumes are temporarily stored in the control server itself.
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Twice a day, the information is sent to the Fiware Internet of Things (FIoT) data-processing
platform through a communication interface with REST software architecture. The data volumes
included in this work that were collected on the FIoT platform exceeded 1,500,000 datums grouped by
category, over 3 months of machining center operations, although the specific study described in the
following sections only analyzed a very limited part of this information. In this process, another data
filtering operation was performed: eliminating possible captures of erroneous measures and adding
extra information for later use. This captured information is tagged with machine identifiers, company,
location, date, and origin of the data. JSON annotation was also used for the correct management of
this information.

4. Modeling

4.1. Dataset Description

A dataset was extracted from the data-acquisition platform described in Section 3, considering
different sorts of information: from axis position to motor temperature. The dataset therefore included:
5 inputs of the machine programmed position (X, Y, Z, B, and C-axis); 5 inputs of the measured cutting
tool position (X, Y, Z, B, and C-axis); 5 inputs of the machine programmed speed (X, Y, Z, B and C-axis);
and, 4 motor-temperature inputs (X, Y, Z motors, and milling head H). Besides, two machine labels
were also extracted from the PLC: the machining mode and the machine state. The machining state
can take four different values depending on whether the machine is in Idle state (i.e, ready to work but
without any programed order) (1) ; working (2); on stand-by (3); or stopped (4). The machining mode
can take five different values depending whether the machine is: following a machining program or
automatic mode (1); controlled manually by means of the machine carriage (2); running a program
line by line, controlled by an operator in Manual Data Input or MDI mode (3); in Pass Reference Mode
to fix new machine references (4); or, running in Single Block Mode (5). While the modes are standard
modes predefined by any machine-tool, the machine states have been classified according to standard
proposals [12].

While all position, speed, and temperature-related inputs were considered to be continuous
attributes, both machine labels were considered as nominal attributes, because ordering their possible
values made little or no industrial sense. Although the original dataset also included a timestamp for
each measurement, this attribute was not used for training and validation of the prediction model.
From this dataset, machine temperature and machine label were considered as the outputs. In the case
of temperatures, as they can take any value within a continuous range, the prediction task is called
regression; while in the case of machine labels, as these outputs can only take a very limited number of
values, the prediction task is called classification (Table 1).

Table 1. Dataset attributes and output with their variation range. The inputs and outputs and their
abbreviations in the dataset are summarized; the output variables are outlined in bold.

Variable Abbreviation

Axis Machine programmed position (X, Y, Z, B and C-axis) AxisX,Y,Z,B,C
Cutting tool measured position (X, Y, Z, B and C-axis) ToolX,Y,Z,B,C

Machine speed (X, Y, Z, B and C-axis) SpeedX,Y,Z,B,C
Motor temperature (X, Y, Z motors and milling head H) TX,Y,Z,H

Machining mode Mode
Machine state State

The dataset included 52,592 instances recorded over a period of 3 months. But, as previously
outlined in the Introduction, real workshop conditions mean that the datasets are often unbalanced.
In this case, the instances distribution between the four different states was as follows (as summarized
in Table 2): 34.75% in an idle state; 55.40% in a working state; 0.89% in a stand-by state; and, 8.95% in
the stop state. The instance distribution between the four different machine modes was as follows:
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74.00% in automatic mode; 13.37% in manual mode; 10.38% in MDI mode; 1.33% in Pass mode;
and, 0.93% in Single Block Mode. These proportions seem to be reasonable, considering the daily
workload of the workshop: the machine is mainly run in automatic mode in a working state, but the
allocation and fixation of the workpieces and their final validation is also in manual mode on the
machine (usually measuring the workpiece dimension and allocation with probes) when in the idle
state or the stand-by mode. Although the instance distribution might be reasonable from an industrial
point of view, it is strongly unbalanced in terms of its data analysis and this fact will affect the
accuracy of the machine-learning techniques and the selection of the most suitable metrics to evaluate
the performance of the model, as will be discussed in Section 4.2. The temperature distribution,
although continuous variables, showed a similar behavior: most of the measured values (around
75%) were close to the programed temperature (25–27 ◦C), while fewer than 25% of the measurements
belonged either to the warming-up stage (23–24 ◦C) or to the hot temperatures outside the controlled
range (28–54 ◦C).

Table 2. Distribution of class values in the two classification problems.

State No. of Instances % Mode No. of Instances %

1 18.288 34.75% 1 38,938 74.00%
2 29.124 55.40% 2 7,034 13.37%
3 468 0.89% 3 5,463 10.38%
4 4.712 8.95% 4 700 1.33%

5 487 0.93%

4.2. Machine-Learning Techniques and Best Metrics

4.2.1. Classification

The metric usually used for classification problems is the percentage of test instances in which
the trained model correctly predicts the class. However, in unbalanced problems this metric will not
properly evaluate the models that are obtained, since, for example, a classifier that always predicts
mode 1 would always achieve a 74% success rate.

There are several metrics for unbalanced classification, but many of them are targeted at two-class
problems. For multi-class problems, it is usual to use the Matthews correlation coefficient (i.e., MCC),
and the F-measure in both its micro version (i.e., F-micro) and its macro version (i.e., F-macro).

The Matthews Correlation Coefficient, or MCC, is a state-of-the-art metric for unbalanced
problems that has a multi-class variant [31]. To compute it, the confusion matrix must be previously
calculated. This is a square matrix in which the number of rows and columns correspond to the
number of classes in the problem. Therefore, the elements in the diagonal of the matrix represent the
cases in which the classifier predicts the correct class. Once the matrix is obtained, the MCC can be
calculated as:

MCC =
∑k ∑l ∑m Ck,kCl,m − Ck,lCm,k√

∑k(∑l Ck,l)(∑k′ |k′ 6=k ∑l′ Ck′ ,l′))
√
(∑k(∑l Cl,k))(∑k′ |k′ 6=k ∑l′ Cl′ ,k′)

(1)

The F-Measure metric, for the binary case was calculated from the Precision (Pr) and Recall
(Re) metrics.

Pr :=
TP

TP + FP
(2)

Re :=
TP

TP + FN
(3)

where:

• TP (i.e., true positives): number of times the classifier correctly predicts the minority class.
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• FP (i.e., false positives): number of times the classifier incorrectly predicts instances of the majority
class as instances of the minority class.

• FN (i.e., false negatives): number of times the classifier is wrong when predicting minority class
instances as majority class instances.

Precision is therefore the ratio of the number of instances of the minority class to the instances
predicted as belonging to the minority class; while recall is the ratio of the number of instances
predicted as belonging to the minority class to the size of that class.

The F-measure metric combines both measures according to the following equation:

Fmeasure = 2 ∗ Pr ∗ Re

Pr + Re
(4)

Hence, the F-Measure is the harmonic mean of both magnitudes. By expanding Equation (4),
another expression can be found for the F-measure.

Fmeasure =
2 ∗ TP

(2 ∗ TP + FP + FN)
(5)

There are two variants to fit this metric to the multi-class case: F-Macro average and
F-Micro average.

The F-Macro computation sets up a binary classification problem for each class, where each
class acts as a minority class versus an artificial class consisting of the union of all the other classes
(i.e., OVA = One vs. All). Then, for each of these problems the F-measure is calculated, and by
averaging all these F-measures the F-Macro is finally obtained.

In the case of the F-Micro, we obtain for each class the values of TP, FP, and FN. All the
TPs are added up to obtain a global TP. A global FP and FN could be obtained in the same way.
Then, Equation (5) is applied with the three global values, and the F-measure then obtained is
the F-Micro.

Forman et al. [32] reported some situations where a division by zero can be achieved in the
F-Macro calculation using cross validation. Namely:

1. When using Equation (2) and TP + FP = 0, resulting in no definition of precision.
2. When also using equation Equation (3) and TP + FN = 0, resulting in no definition of recall.
3. When using equation Equation (5), TP + FN = 0 (i.e., no positive instances on the test partition)

and also TP + FP = 0 (i.e., the classifier predicts no instance as positive).

Because the experiments were conducted using WEKA [33], cases 2 and 3 are impossible as,
by default, it uses a stratified cross-validation. Not so with case 1, where WEKA returns a NaN,
causing these partitions to be ignored when analyzing the results.

It is recommended that in all these cases the resulting F-macro be considered zero [32], otherwise the
F-macro obtained by ignoring these situations would be too optimistic. In the experiments, WEKA was
reprogrammed to adopt the latter behavior, since situations of this type were present in the datasets
under evaluation.

The follow methods were used in the experiment over classification problems :

1. Naïve Bayes [34] which classifies by assigning probabilities to each class using Bayes theorem. It is
taken as a baseline to compare with the other classifier methods, due to its simplicity, so methods
with worse results than Naïve Bayes would not be acceptable.

2. kNN [35] calculates the distance to all instances from the instance to predict (Euclidean distance
was used in the experiments). The majority class of the closest k instances is predicted. The value
of k is a parameter of this algorithm. For each cross-validation partition in the experiments,
the optimal k value from the integers 1 to 10 was used.
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3. Decision trees. J48 was used, which is the WEKA implementation of the C4.5 decision tree [36].
The branching criterion of C4.5 is the information gain.

4. Function-based methods, such as Support Vector Machines (SVM) and Neural Networks:

(a) The Multilayer Perceptron [37] is a neural network that has a number of hidden layers
of neurons. The connections between the neurons have a weight which is obtained
from a backpropagation algorithm. In the experiments, only one hidden layer was used.
The number of neurons in this layer was given by the heuristics (number of independent
variables +1)/2.

In the Multilayer Perceptron, the learning rate and momentum parameters were optimized
through internal cross validation, in order to maximize the F-Macro. The WEKA
Multisearch package was modified for this purpose, as it is not prepared for optimization
by F-Macro.

(b) Support vector machines or SVMs [38] are actually classifiers for binary problems.
They calculate a hyperplane that separates the regions of space corresponding to two
classes. This hyperplane is said to maximize the margin, which intuitively means that it
is as far as possible from the points on the border of both regions. These points are the
so-called support vectors.

Therefore, for the SVM to work properly, the regions corresponding to both classes need to
be linearly separable, which is not too often the case. There are two strategies to adapt the
algorithm to problems that are not linearly separable :

i. A parameter C is introduced in the algorithm. It represents how much the incorrect
classification of training instances (i.e., the ones falling on the wrong side of the
hyperplane) are penalized by the margin optimization procedure.

ii. A transformation of the classification problem from the original features space to
another space by means of a non-linear transformation. In that new space, it is
expected that the problem will be linearly separable, or at least, the number of
instances that can cause that lack of linear separability will be reduced. To reach
this goal, the concept of kernel is introduced. A kernel is a special type of function
that computes the scalar products between instances in the new space. This scalar
product is necessary for the calculation of the hyperplane. The most popular kernel
is the Radial Basis Function kernel (SVM-RBF), which is given by Equation (6).

K(xi, xj) = e
−‖x−xi‖2

γ2 (6)

The letter γ represents the bandwidth, and it is a parameter of the method.

When an SVM does not use a kernel, it is said to be an SVM with a linear kernel.
Whether or not a linear kernel is used, the C parameter is present and must
be specified.

Adapting SVM to multi-class problems is done using the 1 vs. 1 strategy, whereby a problem
of n classes becomes (n−1)! binary problems. These problems result from confronting
each class with all the rest. For each binary problem, an SVM is then trained, and the final
prediction comes from the majority vote of all those SVMs.

Two implementations of SVM were used in the experiments:

• LibSVM [39]: used to build Radial Basis Function kernel SVMs.
• LibLinear [40]: used to compute linear kernel SVMs.
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For LibLinear, the C parameter was optimized, and in the case of LibSVM, the γ parameter
was also optimized. In all cases, cross validation was used on the training set. The aim
of both optimizations was to maximize the F-macro, using the same modification of the
WEKA Multisearch package described above for the Multilayer Perceptron.

5. Bagging-based methods [41] in which several decision trees are created. These trees are different
because they are trained by resampling the training set. The final prediction in these ensembles is
the one obtained by the majority vote of each of these trees. The trees used for the ensemble are
commonly referred to as base classifiers.

The Bagging variants used in the experiment were:

(a) Bagging using C4.5 trees as base classifiers
(b) Bagging using Random Balance of C4.5 trees [42]. Random Balance changes the number

of instances of each class before they are used by each C4.5. Rather than balancing the
number of instances of each class, this technique assigns a random number of instances to
each. To do so, it both resamples the training set when it needs less instances, and it also
creates synthetic instances as and when it needs. To create these synthetic instances, it uses
SMOTE [27]. Random Balance is oriented towards unbalanced multiclass datasets, so it is
a priori an approach that fits the nature of the problem under analysis very well.

(c) Random Forest [43] can be considered a Bagging technique in which the base classifiers
are “Random Trees”. In these decision trees, each time a branching node is to be built,
the possible attributes to be considered are randomly restricted. In WEKA, Random Trees
are implemented as a modification of REP-Trees (i.e., Reduced Error Pruning trees),
which have a fast building process.

(d) Rotation Forest [44]. In this method, before building each tree, and once the training set
has been resampled, the features are grouped randomly. These groups are disjointed from
each other; and the union of all the groups contains all the attributes. All groups have
the same number of attributes n, except perhaps one of the groups, when the dataset
number of attributes is not divisible by n. In each group, the PCA projection is computed,
taking only a number of principal components (i.e., n in most cases) to keep the size of the
groups unchanged.

In the experiments, Rotation Forest of C 4.5 was used, as was Rotation Forest of Random
Forest, because its training time is significantly shorter with the same number of trees.

All Bagging configurations have been computed using 100 trees. For this reason, Rotation Forest
of Random Forest calculates 10 Random Forests, each containing 10 trees.

6. Finally, two Boosting based ensembles were included for classification:

(a) AdaBoost.M1 [45], because it is the most popular Boosting ensemble for classification.
In this ensemble each base classifier is derived from the previous one, so that it gives more
weight to the instances that the base classifier of the immediately preceding iteration has
incorrectly classified. Unlike Bagging, the final prediction is not made by a majority vote
of the base classifiers, but by a vote weighted by the individual error of each one. In the
experiments, 100 C4.5 trees were taken as the base classifiers.

(b) LogitBoost [46], because it is more suitable than AdaBoost.M1 for working with multi-class
problems. This method makes a logistic transformation to convert the classification
problem into a regression problem that predicts the probability of the instance belonging
to each class. Therefore, LogitBoost uses regressors (i.e., continuous value predictors),
instead of classifiers, as base predictors. LogitBoost uses an additive regression in each
iteration by appending regressors that learn the residues of the probability predictions
(i.e., they learn the differences between the predicted values and the values of the training
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set). In each iteration, the probabilities of each training instance can be estimated by
adding the predictions of the residuals. With that estimation, weights may be given to
the instances, to add more importance to those where a higher prediction error occurs.
The base regressors used in the experiments were REPTree regression trees. The size of the
ensemble is 100 iterations as in the other cases.

4.2.2. Regression

The metric used for regression problems is the Root Relative Squared Error (RRSE). Let yi be each
of the values to be predicted in the test set, let pi be the predictions that a regression method outputs
for those values, and let y be the mean value of yi in the test set. RRSE is then defined as follows:√

∑(yi − pi)2)

∑(yi − y)2 (7)

Therefore, the values of this metric are always greater than, or equal to, zero. In the ideal case
of a regressor predicting without error, the RRSE would be zero. In a naive regressor that would
always predict the mean y, both the numerator and the denominator of Equation (7) would be equal,
then the resulting RRSE value will be 1 (or 100% if expressed as a percentage). The reason for having
chosen RRSE as a metric is precisely because it provides a figure that takes this naive regressor as a
baseline. A regressor could have an RRSE greater than one, although it would obviously be of no
practical interest.

The regression methods used in the experiment were:

1. Function-based methods such as Linear Regression, Support Vector Machines (SVM),
and Neural Networks:

(a) Linear Regression creates a function that is a linear combination of the input variables,
which minimizes the quadratic error of the training set. The Akaike criterion, as the WEKA
implementation default, is used to select the attributes of the model.

(b) The simplest version of SVM for regression is the linear SVM [47]. As in the case of
linear regression, we also have a model that is a linear combination of the input variables
(i.e., a hyperplane), but this time the optimization process ignores the instances that are less
than ε away from that hyperplane (i.e., they are within the “margin”). The distance, ε, is a
parameter to specify that is denoted by C in most implementations. The implementation
used in the experiment was LibLinear [40], for which the C parameter was optimized by
cross validation, to minimize RRSE, using WEKA’s Multisearch package.

The SVM for regression, like its version for classification, can use a kernel, and generate the
hyperplane in a different space, leading to a more complex geometry than in the original
space, which is more appropriate if the behavior of the variable to be predicted is not
linear. Therefore, in the experiment we have also used an SVM regressor with a Radial
Basis Function kernel (SVM-RBF). In the case of this kernel, besides optimizing C, it is
necessary to optimize the bandwidth parameter. As in other methods, Multisearch was also
used, using internal cross validation and aiming at minimizing the RRSE. The SVM-RBF
implementation used in the experiment is the regression version of LibSVM [39].

(c) The neural network method used is the same as that described for classification
(i.e., a Multilayer Perceptron [37]). As in the classification, only an intermediate layer
was used. The number of neurons in this layer is also given by the heuristics (number
of independent variables + 1)/2. Likewise, the learning rate and momentum parameters
were optimized with Multisearch, again through internal cross validation, to minimize
the RRSE.
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2. kNN [48] works similarly to kNN for classification. The difference is that, once the k instances
closest to the test instance are found, the class mean for those k instances is predicted. As for
classification, the value of k was also optimized in the experiments for each cross-validation
partition with the best value obtained for k ranging between 1 and 10.

3. Regression trees. Two types of decision trees for regression were used:

(a) M5P [49] which is a type of tree in which a linear regression is created with the instances in
each leaf, so the prediction that is returned is the one of the linear regression corresponding
to the leaf in which the test instance falls.

(b) REP-Tree [33] is WEKA’s “native” decision tree for both classification and regression.
When used as a regressor, it returns the mean value of the feature to be predicted for
the instances of the leaf with the test instance. REP-Tree uses variance reduction as a
criterion for finding split points for each node. The tree is pruned using the Reduced Error
Pruning technique.

M5P is not in the results tables of the next section, because values higher than 1 were always
obtained for RRSE, both when it was used alone and when it was tested within some variants of
ensembles for regression.

4. Methods based on ensembles [50], which combine the prediction of other simpler regressors
called base regressors. The base regressors used in the experiments were REPTrees, since M5Ps
always led to RRSE greater than 1. The ensembles used in the experiment were:

(a) Bagging [41]. In this ensemble each base classifier is trained with a sample of the training
set with replacement. The sample is the same size as the training set. The prediction is the
average of the predictions of the base regressors.

(b) Iterated Bagging [51]. In this method the first iteration applies Bagging over the original
training set. The differences (i.e., residuals) between the training values predicted by that
initial Bagging and the actual values are then computed. In the next iteration, Bagging is
done again, but this time predicting the residuals. At this point the ensemble prediction
would be obtained from the sum of the predictions of both Baggings. With this prediction,
a new set of residuals are calculated, which are used to train another new Bagging, and so
on during n iterations. In the experiments 10 iterations of Baggings of 10 regression trees
were used.

(c) Rotation Forest for regression [52] is a variant of Bagging in which the base regressors are
transformed in the same way as in the Rotation Forest variant for classification. That is,
random and discrete groups of features are created and the PCA projection is applied to
each group.

All the ensembles have 100 base regressors. That is the reason why Iterated Bagging was
configured with 10 iterations of Baggings of 10 trees.

5. Results and Industrial Interpretation

A dataset has been created for each of the six variables to be predicted. All these sets have the
same input variables, and have a single output variable, which is different in each of them.

For both classification and regression problems, the methods described in the previous section
were applied to each of the datasets using 10 × 10 stratified cross-validation. For each of the metrics,
the average values were found in the 10 repetitions× 10 partitions. The corrected re-sampled t-test was
used [53] at a confidence level of 95%, in order to determine whether there were significant differences
in the results for each metric between two methods applied to the same data set.
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5.1. Classification: State and Mode Prediction

Table 3 shows the 13 classification methods tested in the experiment. Each method is compared
with the other 12 methods for the 2 classification problems State and Mode (i.e., 12 × 2 = 24
comparisons). One method for each one of these 24 comparisons can receive a significantly better
result than the other method. So, in this case, we say that the method “wins”. The method can
also get a significantly worse result than the other method, and then we say that it “loses”. Finally,
the comparison may return no significant differences.

In Table 3, columns V and D respectively represent the number of these significant wins and
losses in the two classification problems for the method in that row versus all other methods.
Then, the difference “∆” is computed by subtracting D from V. This difference is taken as an indicator
of what the best method is. In Table 3, the methods are ordered by ∆. We can see from the table that
the two best positioned methods are tied with ∆ equal to 16. They win 16 times from the 24 matches,
and they never lose.

The two rightmost columns of Table 3 contain the average F-Macro values for each method and
predicted variable. These average values are computed from the 100 experiments from the 10× 10CV.
When these values are followed by “*”, they are significantly worse than the one achieved by the first
∆ ranked method (i.e., Rotation Forest of Random Forest in the table, but we also tested that “*”s
keep unchanged, if the best method was considered Random Forest). The best F-Macros for each
predicted variable are highlighted in bold (i.e., LogitBoost for State and Bagging of Random Balance of
C4.5 for Mode). We also tested that “*”s in the State column keep unchanged, if the methods were
compared to LogitBoost, as well as in the Mode column, if the methods were compared to Bagging of
Random Balance.

Table 3. Ranking of F-Macro in the classification problems. V is the number of times the method
has a better statistically significant F-Macro when compared with the other 12 methods through the
2 predicted variables. D is the number of times the method has a worse statistically significant F-Macro
when compared with the other 12 methods through the 2 predicted variables. The ordering criteria ∆,
is equal to V – D. The columns State and Mode have the average F-Macro figures for the method using
10× 10CV. (*) represents this method has an average F-Macro that is significantly worse than the one
for the best-ranked method. The best F-Macros for State and Mode are highlighted in bold.

∆ V D Method State Mode

16 16 0 Rotation Forest of Random Forest 0.99342 0.92407
16 16 0 Random Forest 0.99283 0.92444
15 16 1 LogitBoost of REPTree 0.99370 0.92056
14 15 1 AdaBoost.M1 of C4.5 0.99297 0.92297
10 15 5 Bagging of Random Balance of C4.5 0.98857 * 0.92785
8 13 5 Rotation Forest of C4.5 0.99298 0.91275 *
2 11 9 Bagging of C4.5 0.99115 * 0.91359 *
−3 9 12 C 4.5 0.99056 * 0.90944 *
−6 8 14 kNN 0.98119 * 0.90899 *
−13 5 18 Radial Basis Function SVM 0.82836 * 0.77250 *
−15 4 19 Multilayer Perceptron 0.79272 * 0.66775 *
−21 1 22 Naïve Bayes 0.64369 * 0.44891 *
−23 0 23 Linear SVM 0.64819 * 0.39074 *

The following conclusions may be identified from Table 3:

1. Very good results may be found with just one single C4.5 decision tree. It could, on the one hand,
mean that the input variables adequately describe the output variables and, on the other hand,
that the number of instances is also sufficient.

2. Both problems are not suitable for a linear classification in view of the results of the linear SVM.
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3. Classifiers based on the optimization of a complex function, such as Neural Networks or Radial
Basis Function SVM, do not obtain competitive results despite the computational cost involved in
the parameter optimization process.

4. All the top ranked methods are ensembles, which hardly vary from each other in their performance.
5. kNN is the best of the non-ensemble methods. It is once again due to the low number of

characteristics (i.e., there is no curse of dimensionality) and the high number of instances.

Conclusions 2 and 3 point out the complexity of the decision boundaries for both problems.
Tables 4 and 5 repeat the same structure as Table 3, but using F-Micro and MCC. In Table 4,

the best F-Micro for State is achieved by LogitBoost (i.e., not by the best ranked method), although we
checked that “*”s remained the same in the State column, if the methods were compared to LogitBoost.
However, in Table 5, the best MCC value for the Mode variable is achieved by the second ranked
method (Bagging of Random Balance of C4.5). In this case, when the methods were compared to
this Bagging variant, every other method would be tagged with “*”. So, when MCC was chosen as a
metric, Bagging of Random Balance of C4.5 was significantly better than all the other methods for the
Mode variable.

Table 4. Ranking of F-Micro in the classification problems. V is the number of times the method
has a better statistically significant F-Micro when compared with the other 12 methods through the
2 predicted variables. D is the number of times the method has a worse statistically significant F-Micro
when compared with the other 12 methods through the 2 predicted variables. The ordering criteria ∆,
is equal to V – D. The columns State and Mode have the average F-Micro figures for the method using
10× 10CV. (*) represents this method has an average F-Micro that is significantly worse than the one
for the best-ranked method. The best F-Micros for State and Mode are highlighted in bold.

∆ V D Method State Mode

20 20 0 Rotation Forest of C4.5 0.99756 0.94374
13 16 3 Bagging of C4.5 0.99711 * 0.94292
12 15 3 LogitBoost of REPTree 0.99759 0.94125 *
11 14 3 AdaBoost.M1 of C4.5 0.99755 0.93946 *
10 15 5 C 4.5 0.99696 * 0.94307 *
10 13 3 Rotation Forest of Random Forest 0.99752 0.94007 *
3 10 7 Random Forest 0.99710 * 0.94029 *
1 10 9 Bagging de Random Balance of C4.5 0.99664 * 0.93855 *
−8 8 16 kNN 0.99198 * 0.93582 *
−12 6 18 Multilayer Perceptron 0.93112 * 0.90334 *
−16 4 20 Radial Basis Function SVM 0.88398 * 0.88322 *
−22 1 23 Linear SVM 0.80947 * 0.71559 *
−22 1 23 Naïve Bayes 0.81845 * 0.51293 *

Some additional conclusions that could be drawn from these two tables are:

1. The C4.5 tree reached very similar values to those of some ensembles. Usually, it is expected that
the variance component of the classification error decreases as the training dataset increases [54].
It is known that Bagging-based ensembles reduced this error component, as Boosting-based
ensembles also do in their later iterations [55]. Hence, these similar results of C4.5 vs. ensembles
can be explained, at least in part, by the dataset size and the superiority of decision trees over the
other non-ensemble methods.

2. It is also interesting to note that the F-Micro and MCC for State variable prediction almost reaches
one (i.e., the maximum possible value) in many of the classifiers that were tested, and in nearly all
in the case of F-Micro. This points out again that the State is well characterized by the attributes
of this data set.

3. However, the Mode variable figures are worse. For both F-Macro and MCC metrics, Random Balance
Bagging, which is a specific method for imbalanced datasets, is the best choice. The “+” sign in



Appl. Sci. 2020, 10, 4606 16 of 23

this method in Table 5 indicates that the MCC obtained is significantly better than the first method
in the ranking.

These last 2 conclusions can be explained by the fact that the Mode variable has a much clearer
majority class (i.e., Mode = 1 has 74% of the instances); while the State variable is distributed between
states 1 and 2 in a quite balanced way for 90% of the instances.

Table 5. Ranking of MCC in the classification problems. V is the number of times the method
has a better statistically significant MCC when compared with the other 12 methods through the 2
predicted variables. D is the number of times the method has a worse statistically significant MCC
when compared with the other 12 methods through the 2 predicted variables. The ordering criteria ∆,
is equal to V – D. The columns State and Mode have the average MCC figures for the method using
10× 10CV. (*) represents this method has an average MCC that is significantly worse than the one for
the best-ranked method. (+) represents this method has an average MCC that is significantly better
than the one for the best-ranked method. The best MCC for State and Mode are highlighted in bold.

∆ V D Method State Mode

17 18 1 Rotation Forest of C4.5 0.99596 0.85325
12 17 5 Bagging of Random Balance of C4.5 0.99406 * 0.86118+
12 14 2 Bagging of C4.5 0.99504 * 0.85069
10 14 4 C 4.5 0.99475 * 0.85193
10 13 3 LogitBoost of REPTree 0.99591 0.84690 *
9 13 4 AdaBoost.M1 of C4.5 0.99579 0.84381 *
8 12 4 Rotation Forest of Random Forest 0.99569 0.84476 *
2 10 8 Random Forest 0.99483 * 0.84530 *
−8 8 16 kNN 0.98624 * 0.83288 *
−12 6 18 Multilayer Perceptron 0.87607 * 0.76677 *
−16 4 20 Radial Basis Function SVM 0.81216 * 0.68454 *
−21 2 22 Naïve Bayes 0.64746 * 0.29481 *
−23 0 23 Linear SVM 0.62066 * 0.26261 *

The computation of confusion matrices for some of the methods can provide deeper insight into
their accuracy. In a confusion matrix, the element in row i and column j represents the number of
times the class in row i is predicted by the method as the class in column j.

In an ideal classifier that is correct 100% of the time, the elements of the diagonal will achieve
100% values (i.e., the elements of class i will always be correctly predicted as belonging to class i).
Also, the rest of the cells within that ideal classifier that lie outside the diagonal will have a value of 0%
(i.e., the elements of class i would never be predicted as belonging to a different class j).

A 5× 2 CV was performed (i.e., 5 repetitions of 2 folds cross validation), to produce reliable
confusion-matrix values. Hence, the data set for a 5 × 2 CV was randomly divided into 2 parts
at 50%. One part was used to train the classifier and the other, to validate the model by counting
which class it rightly or wrongly predicted for each test instance. Then, the partitions were swapped
(i.e., The partition that was previously used for training was then used for validation and vice-versa).
The 50% random split differed for each of the 5 repetitions. Once that procedure had finished,
5× 2 = 10 values for each cell of the matrix were obtained. The figures on the following page represent
the average values of those 10 results. The data are shown as percentages instead of absolute values,
so that minority classes are not underrepresented.

Figure 2 shows the confusion matrices for the Mode classification problem. The two upper
matrices represent the best methods in that problem (i.e., Bagging of Random Balance, because it
has the highest values for F-Macro and MCC, and Rotation Forest of C4.5, because it has the highest
value for F-Micro). The two lower matrices represent the two best non-ensemble methods (i.e., a C4.5
decision tree and k-NN). All the classifiers show diagonal values above 90%, except for Prog Line
class, which is confused half the time with Automatic class. This confusion can be explained, as the
first time that a new machining program is executed, the machine operator will usually run it line by
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line, so that its performance can be closely controlled. In this way, the operator can quickly stop the
program execution, if a program error is detected that might damage the workpiece or the cutting tool.
Once the program has been validated by machining a first workpiece, automatic mode will be used
to run this program in the future. Therefore, the machine-learning algorithm will find no difference
between automatic mode and line by line mode in those cases. However, Bagging of Random Balance
performs well even for that fuzzy case.

In contrast, Figure 3 showed high performance in all scenarios with any of the classifiers of
the figures.
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(a) Bagging of Random Balance of C4.5.
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(b) Rotation Forest of C4.5.
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(c) C4.5.
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(d) kNN.

Figure 2. Confusion matrix over Mode.
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(a) LogitBoost of RepTree.
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(b) Rotation Forest of C4.5
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In short, the high performance that Bagging of Random Balance achieved for Mode prediction,
and LogitBoost for State, will guarantee that this model can identify these two process parameters.
The combination of both can surely identify the main production activity of the machining center.
Some examples of these combinations are: (1) reference fixation of a new workpiece (idle state and
manual mode); (2) workpiece milling operation (working state and automatic mode), test of a new
milling program (idle state and MDI mode), and load/unload of a workpiece (stopped state and Pass
mode). Therefore, the prediction model can extract useful information on how the machining time is
distributed, not from an Engineering Department planning report, but from the real workshop reports
on the daily situation.

5.2. Regression

As for regression experiments (Table 6), there is one method that significantly beats all others in
all the variables to be predicted, which is Rotation Forest of REP-Trees.

Table 6. Ranking of RRSE in the regression problems. V is the number of times the method has a
better statistically significant RRSE when compared with the other 9 methods through the 4 predicted
variables. D is the number of times the method has a worse statistically significant RRSE when
compared with the other 9 methods through the 4 predicted variables. The ordering criteria ∆, is equal
to V – D. The columns TH , Tx, Ty and Tz have the average RRSE figures for the method using 10× 10CV.
(*) represents this method has an average RRSE that is significantly worse than the one for the best
ranked method. The best RRSEs for each predicted variable are highlighted in bold.

∆ V D Method TH Tx Ty Tz

36 36 0 Rotation Forest of REP-Tree 55.072 61.526 60.957 64.021
28 32 4 Bagging of REP-Tree 55.582 * 62.668 * 62.208 * 65.121 *
20 28 8 Iterated Bagging of REP-Tree 56.124 * 63.446 * 62.892 * 65.952 *
11 23 12 REP-Tree 58.935 * 67.659 * 67.012 * 70.949 *
5 20 15 k-NN 64.560 * 68.794 * 67.817 * 71.014 *
−7 13 20 Radial Basis Function SVM 78.018 * 85.287 * 85.299 * 88.811 *
−9 12 21 Multilayer Perceptron 79.858 * 87.524 * 87.074 * 90.586 *
−22 6 28 Linear Regression 93.251 * 95.243 * 94.902 * 95.927 *
−26 4 30 Linear SVM 94.522 * 95.681 * 95.800 * 97.122 *
−36 0 36 ZeroR (i.e., always predict the average) 100.000 * 100.000 * 100.000 * 100.000 *

Again, the ensembles are in the lead. Linear regressors (i.e., Linear Regression and Linear SVM)
are left in the tail positions, which suggests that these are not linear problems. As with classification
problems, a single decision tree is still the best performing non-ensemble method.

WEKA gives the name ZeroR to the naive regressor that always predicts the average. For that
reason, it is at the end, since by definition RRS will always take a value of 100%. ZeroR is taken as
the baseline.

The average of the absolute error was calculated for the best method (i.e., Rotation Forest
of REP-Tree) and for ZeroR (Table 7), to compute the physical magnitude of the error committed.
The absolute error is defined as the absolute value of the difference between the actual value and the
predicted value. The table shows average absolute errors ranging from 0.68 ◦C for TH , to 1.99 ◦C to Tz.

Table 7. Average of the absolute error for the best method, and the error that would be committed if
the average of TH , Tx, Ty, Tz were always predicted (i.e., if ZeroR is used).

Variable Rotation Forest of REP-Tree ZeroR

TH 0.68 1.43
Tx 1.40 2.49
TY 1.47 2.63
TZ 1.99 3.31
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For a deeper understanding of temperature behavior, Figure 4 was plotted. Figure 4 shows the
box-plot diagram for the four motor temperatures. In the box-plot diagrams the data are split into four
quartiles depending on their value: the lower, second, third and upper quartiles, each of them with
25% of the data. The box-plot diagrams show: (1) the median of the variable with a green line; (2) the
area with 50% of the middle data (data in the second and third quartiles) with a blue box; (3) two black
lines or whiskers; and, (4) the data outside the whiskers with black circles. The whiskers are calculated
as 1.5 times the interquartile range (distance between the upper and the lower quartile). Whiskers are
a fundamental measure because any data outside the whisker should be considered as abnormal data
or outliers [56]. Figure 4 shows that the temperatures do not deviate by more than 2.5 ◦C from the
temperature of the median for any motor. The temperature dispersion, evaluated from the whiskers
distance, is approximately the same for the linear axes: those that are most stressed during a machining
operation). In the case of the milling head, the temperature dispersion is smaller, as expected in a
thermalized milling head. However, Figure 4 also shows:

1. Many outliers at low temperatures for TX, TY and TZ, which may be due to the latency in the
system’s heating curves at start-up.

2. Some outliers for the Z-axis at high temperatures. These points may indicate that this axis has
been over-worked and strained at certain points during machining, and their identification may
be important to avoid damage to the spindle motor or to increase the average life of the tool.

3. Some outliers for the milling head temperature TH at high temperatures, but not far away from
the median temperature. These values may indicate some rotating efforts of the milling head
during 5-axis machining, but not too high to overcome the limit of 35 ◦C.

Figure 4. Box plots for temperature variables.

The comparison of the errors for ensemble models are shown in Table 7 and the 2.5 ◦C deviations
around the median, in Figure 4, point out that these predictors are useful to detect the outliers,
which are of greater interest, because they can refer to overly demanding cutting conditions or
abnormal programming of the machine. Moreover, those absolute error values may seem a little high
for data close to the median. However, these data instances are the ones with the lowest industrial
value, as they are corrected by the continuous action of the cooling system.
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6. Conclusions

The main contribution of this work may be summarized as follows:

1. A real data-extraction architecture connected to an IoT platform for small workshops has
been described.

2. The data that are extracted can be useful for solving industrial problems. High performance results
can be achieved for industrial problems related to both imbalanced classification and regression.

3. The best performance was obtained by machine-learning ensemble methods, which require no
method optimizations, yielding a straight-forward and simple way for optimal exploitation of the
data that were gathered for this study.

The IoT platform with which we have experimented was able to extract many useful inputs
from the CNC of the machine without interfering with the production process. In the present work
it collected a dataset consisting of measurements of real machining operation during lengthy time
periods (3 months, which means 52,592 instances) and the different conditions included in it: milling
and drilling processes of many different workpieces, many warm-up cycles, tools with strong wear
effects and new tools, etc. Within this period, the machine state and operation mode, the position
and speed of its axis and of the cutting tool and the temperature of 4 different components were
all measured.

As for the use of the dataset that was obtained with machine-learning models, the present work
represents an attempt to see whether these machine-learning techniques will also work properly
with real data from machining workshops, to extract useful information on production planning and
performance. Two types of industrial problems have been addressed by applying several classification
and regression algorithms.

• The prediction of two discrete variables: State and Mode (i.e., two classification problems).
• The prediction of four continuous variables: TX , TY, TZ, TH (i.e., four regression problems).

IoT in small workshops will usually have to negotiate with unbalanced and not very reliable
data. However, prediction tasks are performed with high accuracy, despite the strongly unbalanced
nature of the acquired data. State prediction performed well even with a single decision tree, although,
in general, ensembles improved these results. In fact, there are several methods that are close to reach
the maximum value of “1” for F-Macro, F-Micro and MCC metrics. On the other hand, Mode prediction
is more problematic, and the best results have been obtained with an unbalanced problem-oriented
ensemble, such as Random Balance’s Bagging.

In the four regression (i.e., temperature prediction) problems, however, there is a clearly better
method, as Rotation Forest always outperforms all other methods significantly. This algorithm is of
limited accuracy when predicting the favorable temperature operating conditions of the spindles,
but under these conditions its predictions are not useful, as the supervision of operating temperatures
is done properly by the machine’s cooling system. In contrast, this method has proved to be sufficiently
accurate at identifying atypical temperature behaviors, which can permit early correction and,
more interestingly, the programming of new machining conditions to avoid temperature malfunctions,
and thereby, ensure a longer average life of the machine tool and its most critical elements that
are monitored.

A common feature to all six problems is that competitive results were not produced by the
methods that entailed higher computational costs due to the tuning of some of their parameters
(i.e., SVMs and neural networks). Therefore, there is an easy and computationally low-cost way to
leverage the extracted data.

The results suggest that the ensembles might be more suitable, as they predict from a voting
scheme of their base classifiers. These base classifiers differ between each other, as they are trained
by resampling the data set, and/or by giving more weight to some instances and input features than



Appl. Sci. 2020, 10, 4606 21 of 23

others. In this way, they do not work with a single version of the data set, but with as many as there
are base predictors (100 in the experiments), which will somehow generalize patterns that might not
have been identified.

Finally, three future works are proposed. The first one will be the exploration of multi-label
methods [57] to try to improve the results for the mode classification and the four regression problems.
Secondly, the identification of the programmer’s footprint will be on the research focus; that is,
the subtle characteristics of each machine programmer that can optimize machining programs. Thirdly,
the implementation of these methods will be in a cloud service connected to the IoT FIoT platform,
as described in this paper. An innovative development that will integrate the entire process on one
system: from data acquisition to the extraction of useful information for the end user.
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