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Abstract
Industrial threading processes that use cutting taps are in high demand. However, industrial conditions differ 
markedly from laboratory conditions. In this study, a machine-learning solution is presented for the correct 
classification of threads, based on industrial requirements, to avoid expensive manual measurement of quality 
indicators. First, quality states are categorized. Second, process inputs are extracted from the torque signals 
including statistical parameters. Third, different machine-learning algorithms are tested: from base classifiers, 
such as decision trees and multilayer perceptrons, to complex ensembles of classifiers especially designed for 
imbalanced datasets, such as boosting and bagging decision-tree ensembles combined with SMOTE and under-
sampling balancing techniques. Ensembles demonstrated the lowest sensitivity to window sizes, the highest 
accuracy for smaller window sizes, and the greatest learning ability with small datasets. Fourth, the combination 
of models with both high Recall and high Precision resulted in a reliable industrial tool, tested on an extensive 
experimental dataset. 

Keywords: Bagging, imbalanced datasets, threading, cutting taps, quality assessment.

1. Introduction

Tapping is a widely used thread cutting operation in industrial applications, such as the manufacture of 
automotive components, domestic appliances, energy production, and ship building. Industrial tapping uses a 
Computer Numerical Control (CNC) machine equipped with a cylindrical tool tapered to a conical head. The 
use of CNC machines is crucial, due to the complex synchronization that is necessary between the feed-in and 
rotational tool trajectories, which is aggravated at high speeds [2].  The tapping process is performed in a blind 
hole (perforation on only one side of a piece) or in a hole that pierces a piece on both sides. Both cutting taps 
and spiral taps can be used, to obtain the thread profile in the pre-drilled hole. 

The complexity of the operation is due to the large number of cutting edges [3] and can mean that some threads 
are outside tolerance margins. Those errors can be classified by the following causes: (a) wear of the tapping 
tool; (b) misalignment between axis (hole/tap) and poor hole preparation; (c) under/oversized predrilled hole 
diameters. A sample tap will usually be inspected by the operator, to prevent the batch production of reject 
threads. Several competitive-cost solutions have been developed, so that an on-line monitoring and diagnosis 
system could complete the same task as the operator. There are three possible model-based strategies for tapping 
classification: mechanical-based models, statistical models extracted from experimental data, and machine-
learning-based models. The work of Oeskaya and Biermann [37] belongs to the first strategy, in which a Finite 
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Element Method (FEM) software module is developed, to determine relative torque values for tapping processes 
with various tapping tools and diameters. Following the same FEM strategy, Hsia et al. [23] evaluated the 
quality of sheet metal tapping. The work of Monka et al. [35] studied screw quality following tap failure in 
machining C45. Finally, an example of the third strategy was found in the work of Gil Del Val et al. [19], who 
proposed a monitoring and diagnosis strategy for tapping processes based on torque parameters using statistical 
process control and Principal Component Analysis (PCA). More recently, Bustillo et al. [9] proposed a 
combination of Rotation Forest with unpruned Regression Trees for the prediction of form tap wear.

However, in comparison with other machining processes, such as milling [41] ) and turning [34], tapping 
presents evident over-dispersion in relation to non-deterministic patterns of tool wear, reminiscent of burr 
formation patterns in drilling [17]. The high variety of behaviors between tools means that the application of 
machine-learning algorithms plus statistical analysis is, therefore, a more common solution for quality 
prediction of the threading process. The most common strategy is based on a monitoring analysis of the torque 
and force signals. In the three-pioneering works, a diagnosis of three common tapping faults was based on 
conditional probability functions [13], on diagnostic feedback neuronal system [30] and on neural networks 
[31], respectively. The outputs of all the studies were the level of tool wear, a measure of the misalignment and 
a measure of the under/oversized pre-drilled diameters of the holes. Taking into account the acquired knowledge 
of these three studies, Liu et al. [32] evaluated the same faults using an adaptive neuro-fuzzy interface system 
to classify thread quality. Currently, Ying Chao Ma et al. [46] are developing a dynamic model with lateral and 
torsional/axial vibration inputs from tapping operations. Moreira et al. [36] have recently proposed the use of 
new neural network families, such as convolutional neural networks, for online prediction of threading quality. 
Teti et al. [45] proposed a machine-learning system based on an artificial neural network to make smart 
decisions such as tool change time during a drilling automation process. Finally, some approaches based on 
failure modes and effects analysis and a hybridized genetic algorithm have studied certain machining systems 
including tapping operations, to improve risk factors and scalability during those manufacturing processes 
[10][42].

This research forms part of the third approach. It a new strategy based on experimental tests and machine-
learning modeling, to overcome the strong dispersion of the experimental data for tapping processes. It takes 
an extensive list of statistical measures into account as extra-inputs to the experimental data for different 
windows of previous tapping processes. It likewise searches for the optimal machine-learning model for 
different industrial strategies (from total accuracy to minimization of false positives). This strategy, based on 
considering different windows of previous tapping processes, has a clear advantage: knowing that past windows 
will help to classify the present behavior of the tool; but it has also one important limitation: the first threads of 
each tool cannot be used in the dataset, because the sliding window is not available, and those instances must 
therefore be removed from the dataset, reducing its size. In this study, window size and its effect on the accuracy 
of the prediction model is therefore analyzed.

Some clear novelties in relation to previous studies will be presented in this research. First, only non-intrusive 
measurements, such as torque measurements, easily extracted from existing tapping machines will be 
considered. Second, a broad variety of up to 5 tapping tool coatings will be included in an extensive dataset of 
35 tapping tools, to show the wide range of tool behaviors between tools from the same manufacturers. Third, 
an extensive number of different types of machine-learning algorithms will likewise be evaluated, in order to 
identify the most suitable family and the advantages and disadvantages of each family of algorithms, 
considering datasets measured under industrial conditions. As this industrial task is clearly imbalanced (there 
will be a small number of faulty taps in any tapping process), special machine-learning algorithms for 
imbalanced datasets will also be taken into account, such as SMOTE and under-sampling. Finally, to bring this 
research closer to its real application in manufacturing, different applications for the prediction models of 
industrial interest will be considered: such as improvements to traceability in the use of tapping tools and an 
extensive analysis of the effects of tapping tool behavior and its high dispersion on algorithmic prediction 
capabilities.

The paper will be organized as follows. In Section 2, the experimental procedure will be presented for the 
tapping tests, including torque signals and thread-quality evaluation. Then, the dataset extracted from the 
tapping tests will be presented with the machine-learning techniques to model the dataset for testing. Special 
attention will be paid to techniques designed exclusively for imbalanced datasets. The results of such modelling 
and the industrial use of the best model will be presented in Section 4. Finally, the most relevant results will be 
summarized in the Conclusions, pointing to future lines of research.



 

2. Experimental set up

A CNC machining center was used to perform the tapping process at High-Speed Cutting (HSC). The plate 
material of nodular cast iron (GGG50) measured 250x450mm, with a drilled thickness of 20 mm, as illustrated 
in Figure 1. The holes were of the appropriate diameter, measured to a micrometric resolution of 0.01mm. The 
tapping tool was equipped with three flutes for metric threads of M10x1.5mm with different coatings.

Fig. 1. Set-up configuration, tap tool and geometry of tap coated with TiN.

The tapping process was performed under high-speed cutting (HSC) conditions (65 m/min), without a coolant. 
Table 1 summarizes the tapping cutting process conditions and the GGG50 chemical composition of plates.

Table 1. Tapping cutting process conditions and chemical composition of GGG50.

Tapping Cutting conditions
Tool diameter (mm) 10
Number of flutes 3
Cutting velocity (m/min) 65
Thread pitch (mm) 1.5
Plate thickness (mm) 20
No coolant used
Chemical composition GGG50 (in wt.%)
C 3.76
Si 2.4
Mn 0.14
P 0.021
S 0.007
Mg 0.063
Cu 0.76
Ni 1.9
Mo 0.24



 

Balance iron
In this study, five coatings were employed: TiN, TiCN, Steam, AlCrN and TiN plus Steam. Titanium Nitride 
(TiN), the first PVD protection against wear, provided effective reduction of abrasion and adhesion wear at low 
temperatures. Titanium carbonitride leaves a hard and smooth finish, which offers improved wear and built up 
edge resistance. Steam refers to the metal-originating hydroxide and oxide film on metal substrates. The goal 
of this thermal treatment process is to improve resistance to corrosion and oxidation. In comparison with TiN-
based coatings, AlCrN (Aluminum Chromium Nitride) coating has been reported to show higher oxidation 
resistance, because both chromium and aluminum can form protective oxides, which suppress the diffusion of 
oxygen, yielding an extremely wear resistant coating with excellent hot hardness and thermal shock stability at 
high cutting speeds. Bilayer TiN+Steam tap coatings were also tested.

The thread quality is assessed by a “go–nogo” gauge inspection. Thread quality is considered faulty when nogo 
passes through the hole or when the go side cannot pass through.  Table 2 shows the number of tap tools for 
each coating and the total number of threads and the threads that correctly passed the quality inspection (OK 
threads). As can be seen from the mean and standard deviation values of the sample, considering either the 
different coatings independently or the total number of specimens, there is a case of over-dispersion related to 
the non-deterministic wear behavior of the tools. Besides, the percentage of faulty threads oscillates between 8 
and 23%, the mean value of which is 15%, knowing that the tool has a complex geometry (see Fig. 1) and the 
process works under high speed conditions to reduce the time costs. The variety of behaviors between tools 
means that the application of the machine learning strategy for the prediction of insufficient quality in the 
threading process is of great interest. 

Table 2. Summary of the tapping process test conditions.

Coating Number 
of tap 
tools

Total number of 
threads

Total OK 
threads

% Faulty 
threads

Mean OK 
threads

Standard 
Deviation 

(SD)
TiN 15 2290 1763 23% 117.53 85.92

Steam 7 1751 1509 14% 215.57 58.37

TiCN 5 1148 1047 9% 209.40 110.57

AlCrN 5 1519 1359 11% 271.80 111.73

TiN+Steam 4 407 374 8% 93.50 42.98

TOTAL 36 7115 6052 15% 182.75 116.38

In this paper, the torque signal was measured directly from the electrical cabinet of the CNC machine in the I/O 
module of the spindle motor drive, in order to monitor thread quality as can be seen in Figure 1. The proposed 
tap monitoring system was therefore a non-intrusive solution. The current signal was compared with the torque 
measured with a rotating multicomponent dynamometer (type 9123C1111; sensitivity: 54.03 mV/N m [0–200 
N m]) (Gil Del Val A. et al. 2013). Once measured, the signal was transformed into the torque signal and the 
current signals were fitted to the torque signals, to find the sensitivity value. Fig. 1 illustrates the tapping process 
and, as an example, the first thread was selected. The tap starts its rotatory movement on a Reference Plane 
(RP), then it goes through the hole to a Stop Plane (SP) where the thread is finished. The reverse movement is 
done from the SP to the RP where both movements stop, and the machine moves to the next hole position for 
tapping. 

Focusing on the calculation of the area values, the procedure derives the rotational velocity of the spindle motor, 
by calculating spindle acceleration. Figure 2 illustrates the spindle speed and acceleration of a single thread. 

The second stage of the procedure is to find the integrated points (eight points; t1, t2…,t8) using the change of 
gradient in the acceleration signal, as can be seen in Fig. 2.



 

Fig. 2. Torque, rotational velocity, acceleration signals and integrated points in a tapping cycle. 

Having estimated the eight integrated points, the area parameter is calculated in the torque signal, according to 
the following formula:

𝐴𝑖 = ∫
𝑡𝑖 + 1

𝑡𝑖

𝑇𝑜𝑟𝑞𝑢𝑒(𝑡) ∙ 𝑑𝑡;𝑏𝑒𝑖𝑛𝑔 𝑖 = 1, 2,…7 (1)

The indicators selected for monitoring are the areas under the curve of the torque signal in the seven phases 
which define the tap process. Table 3 describes the definition of the areas. The first area, A1, is the area of 
spindle rotation acceleration on the RP. A2 is the area during the cutting of the thread when the tap and the RP 
rotation both stop (A3) and the angular and the travel positions are synchronized (A4). Finally, spindle 
acceleration begins again on the RP (A5), and both feed and rotation continue while traveling back to the SP 
(A6), once the tap tool is on the SP, the rotation stops (A7).

Table 3. Definition of areas calculated from the torque signal.

Monitoring 
parameter

Name Definition

Area A1 Acceleration Torque A1 parameter represents the motor torque evolution 
area required for accelerating the spindle from zero 
speed to the tapping angular speed while the tap 
bottom moves in the acceleration period

Area A2 Cutting torque area Cutting torque area during the tapping operation itself 
when the chamfer teeth

Area A3 Deceleration torque area on the 
stop plane (SP)

Deceleration torque area required for stopping the 
main spindle. While the spindle motor decelerates, 
there is contact between some full teeth

Area A4 Dwelling torque area Feedback signals to both motor regulators and, 
because the CNC attempts to maintain synchronicity 
between both, there are minute movements (at small 
angles)

     A1    A2   A3    A4                  A5     A6   A7

1   2      3   4                       5    6        7   8



 

Area A5 Acceleration torque area on the 
stop plane (SP)

Changes to torque during the tap acceleration, to 
invert the spindle rotation and to begin to exit the hole

Area A6 Torque tap reverse area Tap torque evolution area during tap reverse

Area A7 Deceleration torque area on the 
reference plane (RP)

When the tap base is close to the RP, the spindle 
motor decelerates to arrive at the RP at zero speed.

3. Modeling

3.1 Dataset description
From the experimental tests described in Section 2, a dataset was extracted considering mainly the torque 
information related to each tapping process. The dataset included, in a first instance, for each thread, the seven 
areas of the torque signal previously presented in Table 3 (A1-A7). Besides, each thread was identified with 
another three attributes: 1) the coating of the tap tool (coating); 2) a numerical identifier of each tap tool 
(ToolID); and, 3) the thread number for the corresponding tap tool (number). The coating attribute can take 5 
different nominal values (from 1 to 5 for TiN, TiCN, Steam, AlCrN and TiN+Steam coatings, respectively), 
because 5 different tap tool coatings were tested, as previously summarized in Table 2. The numerical identifier 
of each tap tool can take 36 possible values (from 1 to 36), because 36 different tap tools were used in the 
experimental tests (15 TiN; 7 Steam; 5 TiCN; 5 AlCrN, and 4 TiN+Steam). These two attributes, coating and 
ToolID, were considered nominal, because ordering their possible values made little or no industrial sense. 
Finally, the thread number takes a value of 1 for the first thread drilled with a certain tap tool, 2 for the second 
thread, and so on. The thread number was considered a numeric attribute. Although the original dataset included 
the tool identifier and the thread number, neither attribute was used for training and validation of the prediction 
model. The reason is due to the cross-validation structure and will be discussed in Section 3.4. The dataset 
output was the thread quality, a class with only two possible quality-inspection values (0: thread pass and 1: 
thread non-pass). Table 4 summarizes the inputs and output, their units and the range of values presented in the 
dataset; the output variable is shown in bold. The dataset has been included as supplementary material.

Table 4. Dataset attributes and output with their variation range

Variable Abbreviation Range
Coating Coating 1-5

Tool identifier ToolID 1-36

Thread number Number 1-519

Torque signal areas (A1-A7) A1-A7 0.0-17.3

Thread quality inspection Pass, not pass 1, 2

As the dataset includes 1053 non-pass threads and 6063 correct threads, the minority class represents only 
14.8% of the instances in the dataset. This low rate can clearly define the dataset as strongly imbalanced. A 
more detailed analysis of the imbalanced nature of the dataset is included in Section 3.3.

Finally, as will be presented in Section 3.3, a sliding window approach was considered to take into account the 
previous behavior of the tap tool. For this sliding window, a statistical feature can be extracted for each torque 
signal area (A1-A7): the slope of the regression fit, the standard error of the regression fit, and the True Strength 
Index (STI). These new features will be used to extend the number of attributes in the dataset.

3.2 Machine-learning techniques
While artificial intelligence aims to develop systems that have intelligent behavior, machine learning is the area 
within artificial intelligence that studies the creation of systems that learn by themselves, directly from the data. 



 

In a classification problem, after the training stage in which the classifier has been fed with data, it receives 
both the inputs and the expected output (or class), the classifier is then able to generalize and to predict the 
category/class to which new data should be assigned. Ensembles of classifiers are combinations of classifiers, 
that use different techniques to obtain better predictive performance than could be obtained from any of the 
individual classifiers that form the ensemble [38]. It sometimes happens that the number of examples belonging 
to one class is much greater than the number of examples belonging to another. Problems of that sort are known 
as imbalanced problems. In this context the minority class is called “Positive” and the majority class is called 
“Negative”. Imbalanced problems are common in engineering and manufacturing, for example defect 
identification and diagnosis [48], automatic visual inspection [29][15], and fault detection [33].

Imbalanced problems are, for several reasons, more difficult than standard problems [44]: a) standard classifiers 
are driven by accuracy, implying that any examples belonging to the minority class will be ignored; b) the 
training data of standard classifiers is assumed to be a faithful representation of the data distribution of the 
problem to be modelled (not always the case); and, c) in imbalanced problems, not all errors are of the same 
importance, having to distinguish between false positives and false negatives.

Thousands of methods exist to work with imbalanced sets. In Galar et al. [18] these methods are categorized 
into four groups:

1. Algorithm level approaches. Groups composed of standard algorithms that are modified to have a bias 
towards accurate learning of the minority class. 

2. Data-level approaches. Groups composed of pre-processing techniques that transform the data. The 
alternatives are to increase the size of the minority class creating artificial examples or to decrease the 
size of the majority class or to do both pre-processing at the same time. A common technique to 
decrease the size of the majority class is random under-sampling [4]. Some of the techniques used 
most often to increase the size of the minority class are as follows:

o Random Oversampling [5], consisting of adding copies of some of the examples of the 
minority class, in order to reduce the imbalance between classes.

o SMOTE [11] -Synthetic Minority Over-sampling Technique- is a technique that generates 
artificial instances from other existing data. To generate an example from an instance i, first 
the nearest k neighbors belonging to the same class as i are selected, then one of those 
neighbors is randomly chosen (called instance j) and finally an artificial instance is generated 
at a random point in the segment that joins instance i with instance j. 

o Borderline-SMOTE [21] or ADASYN [22], which are variants of the method described 
above.

3. Cost-sensitive learning approaches. A group formed by cost-sensitive versions of existing algorithms. 
A cost-sensitive algorithm assigns a different error cost to each class. 

4. Ensemble learning approaches. An ensemble is a combination of multiple classifiers or regressors. An 
ensemble usually provides a better result than any of its individual members. One common strategy 
for building ensembles for imbalanced learning is to combine conventional ensembles, such as 
Bagging or Boosting, with data level approaches. Some examples that use this strategy are 
SMOTEBoost [12] and RUSBoost [43]. This approach is more versatile than approaches 1 and 3. The 
capability of ensembles to obtain better results than any of their constituent classifiers means that the 
algorithms in this category are the most recommendable.

From among all these families of techniques, individual classifiers, classical ensembles and ensembles for 
imbalanced datasets were used in this study. First, the following algorithms were used as individual classifiers: 

 K-Nearest neighbors [1]: a classical Instance-based learning algorithm. It returns the most frequent 
class in the group formed by the k-nearest instances of the instance to be predicted. This algorithm was 
selected, because it is often used as a baseline due to its simplicity, however the algorithm produces 
poor results when the number of attributes is very high or several of them are irrelevant. The k value 
was set at 3 for the experiments. In the results tables, the method is identified as KNN3.

 Sequential minimal optimization (SMO) [26] is a Multi-class implementation of the well-known SVM 
classifier. This method is appropriate when it has a large number of attributes and is one of the most 



 

widely used baseline methods, however it can yield poor results in the presence of noise or overlapping 
between classes.

 The Multilayer Perceptron is a feedforward artificial neural network, composed of at least 3 layers of 
artificial neurons: an input layer, a hidden layer and an output layer. This algorithm can approximate 
any nonlinear function and is robust in the presence of noisy data, although it can be slow in big 
datasets, and its performance is dependent on the chosen parameters [25]. It is a tried and tested method 
in any study that uses industrial data, due to its robustness to noise. In the results tables, this method 
is identified as MLP.

 Decision Trees. Due to the problem of class imbalance, decision trees were used without pruning and 
collapsing, but with Laplace smoothing at the leaves. A C4.5 tree with these options is called C4.4 
[39]. In the results tables, this method is identified as TREE U.

As decision trees are fast to compute and are unstable (small changes in the data produce large changes in the 
classifier and different predictions), they function ideally as the base classifier of the ensemble. Decision Trees 
were therefore used as base classifiers in all the ensembles. The following algorithm was used as an example 
of a typical ensemble:

 Bagging [6] is one of the most common ensemble methods. This algorithm builds a set of base 
classifiers, each one trained from a random sample of the original training data. In the results tables, 
this method is identified as BAG. The foremost advantages of this method are as follows: it reduces 
overfitting and it performs well with a high-dimensional dataset (it is easily parallelizable). The 
negative aspects are that it is not in any way designed to deal with the imbalance. This algorithm is 
interesting because several imbalanced ensembles are based on bagging.

 Random Forest [20] is a fast and robust ensemble method based on Bagging. In this algorithm the 
diversity of the ensemble is increased using a random selection of subsets of attributes at each tree 
node; it can be seen as a combination of Bagging with Random Trees. This method is capable of 
working with data sets with a large number of attributes, without the need to perform a previous 
selection of attributes and it is very resistant to overfitting [8]. However, it is not designed for 
imbalanced data sets. In the results tables, this method is identified as RF.

Finally, the following ensemble algorithms especially adapted for imbalanced datasets were tested:

 Bagging+SMOTE. Bagging combined with SMOTE in each iteration. Several configurations were 
tested. 

o BAG100 means that the number of instances generated with SMOTE in each iteration is equal 
to the number of instances of the minority class.

o BAG300, BAG500. The number of instances generated with SMOTE in each iteration is 
equal to 3 or 5 times the number of instances of the minority class.

o BAGSM. Generating as many instances as needed to match the size of the majority class.

 Bagging+Random Under-sampling. Bagging combined with random under-sampling, in which 
random under-sampling is applied in each iteration, until the size of the two classes (correct/fault) are 
the same.

 Bagging+Random Balance. Bagging combined with Random Balance [16] in each iteration. The 
optimal amount of SMOTE or under-sampling is dependent on each problem. In Random Balance, 
that problem is avoided by relying on randomness and repetition. Each base classifier of the ensemble 
is constructed with a different data set, with the same size as the original, but with a random ratio 
between classes, resulting from applying SMOTE and Undersampling with random proportions. In the 
results tables, this method is identified as BAG-RB.

 SMOTEBoost. In boosting-based ensembles, each base classifier is trained with a weighted sample of 
instances that over-represents those instances failed by the previous base classifier. SMOTEBoos [12] 
is a modification of AdaBoost.M2, which combines the change of weights of the instances, performed 
by boosting, with the creation of instances of the minority class performed by SMOTE. In the results 
tables, this method is identified as SMB. 



 

 RAMOBoost [14]. A variant of SMOTEBoost, it uses the ADASYN oversampling technique instead 
of SMOTE. ADASYN adaptively shifts the decision boundary to difficult-to-learn and majority 
instances. In the results tables, this method is identified as RAMOB.

 RUSBoost. Another boosting-based ensemble, RUSBoost [43] combines boosting with random 
undersampling. In the results tables, this method is identified as RUSB.

 RB-Boost [16]. A Random Balance modification on AdaBoost.M2. In each iteration, first the weights 
of the instances are modified according to their difficulty for the previous classifier, and then the ratio 
between the classes is altered, in a random way, using SMOTE and Random Undersampling. In the 
results tables, this method is identified as RB-B.

Table 5 summarizes the machine-learning methods tested in this research and their main parameters.

Table 5. Summary of machine learning techniques used in this study and their optimized parameters.

Individual classifiers 

KNN3 K-Nearest Neighbors Parameter k value was set at 3

MLP Multilayer Perceptron Number of neurons = (nº attribs. + nº classes) / 2
Momentum = 0.3
Learning Rates values tested = 0.1, 0.3, 0.5

SMO Sequential minimal optimization Polynomial Kernel and C values ranging from 0.1 to 1

TREE U Decision Tree Weka default parameters except: 
Unpruned = False, Collapsing = True, Laplace Smoothing = 
True

Classical Ensembles

BAG Bagging Number of base classifiers set to 100

RF Random Forest Number of base classifiers set to 100

Ensembles for imbalanced data

BAGSM100 Bagging+SMOTE 100% Number of base classifiers set to 100. SMOTE using k = 5 
Number of synthetic instances equal to number of minority 
instances

BAGSM300 Bagging+SMOTE 300% Number of base classifiers set to 100. SMOTE using k = 5
Number of synthetic instances equal to 3 times the number of 
minority instances

BAGSM500 Bagging+SMOTE 500% Number of base classifiers set to 100. SMOTE using k = 5
Number of synthetic instances equal to 5 times the number of 
minority instances

BAGSM Bagging+SMOTE Number of base classifiers set to 100. SMOTE using k = 5
As many synthetic instances as necessary to reach majority 
class size

BAGRUS Bagging+Random Undersampling Number of base classifiers set to 100

BAGRB Bagging+Random Balance Number of base classifiers set to 100

SMB SMOTEBoost Number of base classifiers set to 100. SMOTE using k = 5

RAMOB RAMOBoost Number of base classifiers set to 100. ADASYN using k= 5

RUSB RUSBoost Number of base classifiers set to 100



 

RB-B RB-Boost Number of base classifiers set to 100. SMOTE using k = 5

3.3 Sliding window approach for feature extraction
The dataset presented in Section 3.1 was expanded with additional attributes that are the result of processing a 
sliding window with data on tool behavior in the previous threads. Sliding window-based approaches are widely 
used to detect errors in data streams from sensors. In this strategy, a set of features are extracted from a dataset 
consisting of the most recent data; as time passes, old samples are discarded, and new samples are inserted into 
the window [49]. In this way, if a sliding window of 7 threads is considered, the areas of the 7 threads that have 
been tapped immediately before the thread that is under consideration are used to calculate some new statistical 
features that help to provide a comparison between tool behavior in the immediate-past and its subsequent 
behavior. This strategy has a clear advantage: knowing the past behavior will help to classify the present 
behavior of the tool. But it has also one important disadvantage: the first threads of each tool cannot be used in 
the dataset because the sliding window is not available, therefore these instances must be removed from the 
dataset, reducing its size (e.g. in the previous example the first 7 threads of each tool should be removed from 
the dataset).

Several features can be extracted from the sliding window, one for each torque signal area (A1-A7):

1. Slope: slope of the regression line computed over the values of the sliding window. Wear usually plays 
a principal role in manufacturing processes, so torque or motor consumption will tend to grow as wear 
increases.

2. Error: Standard error of the regression line. This attribute is useful for discriminating whether the value 
of the slope is reliable, as very noisy slopes might not be a reliable indicator of real wear.

3. True Strength Index (TSI). The analysis of trends is a very frequent problem in forecasting the behavior 
of the stock market. Technical analysis forecasts price fluctuations through the study of past market 
data. A series of features based on technical analysis led to TSI, a measure that represents how much 
and how fast the area has changed. The TSI output is bound between +100 and −100.

The first two sets of sliding window attributes (Slope, Standard error of the regression line) were obtained using 
the Scipy Python Library. The third set of attributes was obtained using the Python wrapper for TA-Lib 
(http://ta-lib.org/).

An important parameter in the calculation of these attributes was the size of the sliding window. In the 
experimental study, 5 different sliding window sizes were evaluated. Table 6 summarizes the number of 
attributes in each dataset used in this research. Attribute numbers increased after the three kinds of statistical 
parameters had been added and a sliding window had been introduced. Thus, the number of attributes rose from 
8 in the original dataset to 29 after the three kinds of statistical parameters had been added.

Table 6: Number of dataset attributes

Datasets Number of Attributes
Original (Coating + Areas) 8
Original + S (Slopes) 15
Original + S + E (Errors) 22
Original + S + E + TSI 29

Finally, the imbalance ratio should be evaluated, because it might have a considerable effect on the performance 
of the machine-learning algorithms and their suitability for this industrial task. Table 7 summarizes the 
imbalance ratio and the dataset size of each dataset used in this research. The dataset size changes, as previously 
explained, because, for each tapping tool, as many of the first experiments should be deleted from the dataset 
as from the sliding window size. Table 7 shows that the imbalance ratio is quite stable between the different 
datasets (varying from 0.1479 to 0.1567), although the sliding window varies from 0 to 11 threads. In all cases, 
the dataset can be considered partially imbalanced and special techniques for imbalanced datasets might be 
tested, to identify the most accurate technique from the industrial point of view.

http://ta-lib.org/


 

Table 7: Number of instances of the datasets, W: windows size, NC: number of correct samples, NF: number 
of fault samples, IR: imbalance ratio.

Datasets W NC NF IR
Original (Coating + A1-A7) - 6063 1053 0.1479
Original + Sliding Window 5 5883 1053 0.1518
Original + Sliding Window 7 5811 1053 0.1534
Original + Sliding Window 9 5739 1053 0.1550
Original + Sliding Window 11 5667 1053 0.1567

3.4 Training/validation methodology
Two principal decisions should be taken, before the prediction models can be evaluated. First, the decision over 
which is the most suitable training/validation scheme. In this case, as the datasets are quite large, but not too 
large, a 10x10 cross validation scheme appeared to be the best option. In this scheme the dataset was randomly 
divided into 10 folds of equal size; then a first model was built using a training set composed of 90% of the 
instances (9 of the 10 folds) and the quality indicators of the instances included in the remaining fold were 
evaluated. The construction of the prediction model was done 10 times; in each of them, the validation set 
included a different fold and the averaged quality indicators were calculated. In this way, the prediction model 
was not over-optimistic, as it might otherwise have been, had the model been tested with the same instances 
used in the training stage. So, the generalization capabilities of the prediction model to deal with new instances 
can be properly evaluated. The process was repeated 10 times with different divisions in the folds and the mean 
values of the quality indicators were the quality indicators under consideration, to ensure that the dataset split 
into folds had no influence. 

However, as already outlined in Section 3.1, this scheme uses, on average, 90% of the threads performed with 
each tapping tool to evaluate the performance of the other 10%. In the 90% of instances used in the training 
process, the prediction model is expected to find some threads that took place before each thread of the 
evaluation fold and some threads that took place after it. By doing so, the prediction model will predict the 
complete wear process of the tapping tool during the training step and will predict any thread in the validation 
step to a very high degree of accuracy. The thread number and the tool identifier should be deleted from the 
dataset, to blind the model to the temporal evolution of the wear process. In that way, the prediction model will 
be unable to classify the instances by their link to any well-identified tapping tool, and learning will be 
generalized. Besides, this reality will be the prevailing reality in most small workshops, where a tapping tool is 
used during a certain time and then stored before it is needed again, losing any traceability with regard to the 
previously drilled threads.

Both SMOTE and Random Undersampling were used on the training sets, rather than on the entire data set 
prior to cross validation, to ensure that there was no overfitting in the model’s training procedure, Besides, these 
preprocessing techniques were combined with bagging and boosting strategies, so the amount of randomness 
introduced into the data sets with which the base classifiers were trained was quite high. The data sets used by 
the base classifiers were quite different from each other, and the bias introduced by each preprocessing 
technique was also very different.

Second, the quality indicators of the prediction model should be selected. Basically, accuracy is firstly 
considered when evaluating a classifier. Accuracy is the number of correctly labeled instances divided by the 
total number of instances. However, when working on binary (two class) and imbalanced problems, it is 
necessary to analyze the type of error. In an extreme case, if 99% of the instances belonged to the majority class 
and a classifier completely ignored the minority class, its accuracy would be around 99%, but it would be 
completely useless from an industrial point of view. Therefore, in binary and imbalanced problems there are 
four possible outcomes: 1) the instance is positive and it is predicted as positive; 2) the instance is negative and 
it is predicted as positive; 3) the instance is negative and it is predicted as negative; and, 4) it is positive and it 
is predicted as negative. These outcomes are summarized in Table 8.

Table 8: Measures derived from the confusion matrix



 

Positive prediction Negative prediction

Positive class True Positive (TP) False Negative (FN)

Negative class False Positive (FP) True Negative (TN)

From the previous outcomes, other additional measures can be evaluated:

Recall = TP / (TP+FN).

Precision = TP / (TP+FP)

Recall, also called a True Positive Rate, is a measure of the sensitivity of the system at detecting a certain event. 
It is the metric to maximize, if the priority is to detect system failure. However, by examining only the recall, 
an algorithm with many false positives (which Recall will not register) might be selected, so it would also be 
necessary to evaluate precision. All these metrics were considered for the evaluation of the prediction models 
in this study.

Finally, Weka only provided the option for parametrical optimization for each fold, in terms of model Accuracy 
to optimize the parameters of the model, the quality of which will depend strongly on their parameters such as 
MLP and SMO (SVM). As accuracy might be a quality measure of low interest in imbalanced datasets, a 
different strategy was followed to optimize the parameters of the model: the testing of many different 
combinations of different parametrical values of the model and the selection of the model with the best 
performance in the averaged validation subsets of the cross validation.

4. Results and industrial implementation
Firstly, this section discusses the results of the prediction models generated from the experimental dataset and, 
then, the best way to extract information from those models of use to industry. 

4.1 Machine-Learning Modeling results
The results were obtained with Weka [20], using the default parameters unless otherwise specified. The size of 
all ensembles was set at 100. First, the prediction models were built for the base classifiers under consideration, 
taking the original dataset, the datasets with the different sliding windows, and the slope attributes. Table 9 
summarizes the results for the different base classifiers using the Recall metric; the most accurate models are 
highlighted in bold. Decision Trees and MLPs were the most accurate models depending on the sliding window. 
Table 9 also shows the effect of adding the slope of the torque areas to the dataset and the effect of the different 
window sizes. There was no increased accuracy for K-Nearest neighbors and Decision Trees following the 
addition of the slope attributes. Besides, only decision trees improved their accuracy (around 10%) as the 
window size increased. Finally, as MLPs and decision trees have similar accuracy, both classifiers can be 
considered as base classifiers for the ensemble models. Decision trees are the preferred option for such tasks, 
as they are easily tuned and are simpler than MLPs. In the case on MLPs and SMOs, multiple configurations 
were tested using cross-validation, the values shown in Table 9 are the recall values for the best configurations.

Table 9: Recall of the base classifiers with different sliding window sizes. Decision Tree (DT), K-Nearest 
neighbors (KNN3), Support Vector Machine (SMO), and Multilayer Perceptron (MLP)

Dataset Window Size DT KNN3 SMO MLP

Original (Coating + Area) - 0.654 0.618 0.495 0.636

Original + Slope 5 0.653 0.583 0.540 0.771

Original + Slope 7 0.680 0.579 0.571 0.742

Original + Slope 9 0.699 0.552 0.587 0.730

Original + Slope 11 0.714 0.578 0.580 0.714



 

Subsequently, the prediction models based on ensemble techniques were built. Table 10 shows the recall of 
different ensembles of decision trees trained with different sets of attributes (using a sliding window size 11). 
Standard ensembles, those that are not specially designed for imbalanced problems, are marked in Table 10 
with an asterisk. Bagging was the only ensemble not specially designed for imbalanced problems that is clearly 
better than decision trees for almost all the datasets under consideration. Besides, the ensembles for imbalanced 
datasets greatly improved on the best results obtained by the best single classifiers (MLP and decision trees) 
that have previously been presented. Table 10 shows that the recall model is improved, by adding the adjustment 
error of the linear regression and the RSI as attributes (last columns of Table 10). Taking recall as the quality 
indicator, the best ensemble was bagging combined with random undersampling (in bold in Table 10) for all 
the datasets considered alongside a sliding windows size of 11.

Table 10: Recall of decision-tree ensembles and MLPs with a sliding window size of 11.

Dataset Original Original + Slope O + S + Error O+S+E+TSI Average

Decision Tree 0.654 0.714 0.796 0.852 0.754

MLP 0.636 0.714 0.829 0.867 0.762

BAG* 0.681 0.725 0.836 0.886 0.782

RF* 0.671 0.717 0.806 0.833 0.757

BAGSM100 0.777 0.823 0.896 0.922 0.854

BAGSM300 0.833 0.876 0.921 0.941 0.893

BAGSM500 0.864 0.899 0.930 0.948 0.910

BAGSM 0.866 0.899 0.930 0.946 0.910

BAGRUS 0.930 0.935 0.955 0.960 0.945

BAG-RB 0.889 0.873 0.916 0.935 0.903

SMB 0.728 0.790 0.903 0.940 0.840

RUSB 0.857 0.863 0.933 0.954 0.901

RB-B 0.733 0.799 0.890 0.925 0.837

RAMO 0.782 0.830 0.922 0.948 0.870

Average 0.779 0.818 0.890 0.918

Third, as the recall model will not compute the number of False Positives and, therefore, an algorithm with a 
high recall will minimize False Negatives, but will predict multiple correct instances as faulty, an evaluation of 
precision is required. Table 11 shows the precision of the previous ensembles of decision trees trained with 
different sets of attributes (once again using a sliding window of 11). The ensembles for imbalanced datasets 
obtained better results than the classic ensembles. In this case, the best results were obtained by SMOTEBoost 
(in bold). Besides, the inclusion of the new attributes (the adjustment error of the linear regression and the RSI) 
in all cases improved the Recall model.

Table 11: Precision of the ensembles of decision trees and MLPs with a sliding window of 11.

Dataset Original Original + Slope O + S + Error O+S+E+TSI Average



 

Decision Tree 0.701 0.767 0.819 0.867 0.788

MLP 0.617 0.672 0.829 0.867 0.746

BAG* 0.768 0.800 0.874 0.892 0.834

RF* 0.758 0.785 0.859 0.863 0.816

BAGSM100 0.698 0.738 0.819 0.847 0.775

BAGSM300 0.647 0.672 0.763 0.812 0.724

BAGSM500 0.621 0.649 0.736 0.788 0.698

BAGSM 0.628 0.664 0.749 0.794 0.709

BAGRUS 0.548 0.596 0.673 0.709 0.632

BAG-RB 0.603 0.672 0.764 0.790 0.707

SMB 0.711 0.760 0.866 0.893 0.808

RUSB 0.627 0.689 0.792 0.825 0.733

RB-B 0.705 0.786 0.866 0.879 0.809

RAMO 0.670 0.721 0.844 0.879 0.779

Average 0.670 0.715 0.800 0.833

Having analyzed recall and precision, the accuracy metric was taken also into account, although this metric 
plays a limited role in the problem, due to the significant imbalance level. Table 12 shows the results of the 
different ensembles using accuracy as a metric. It may be concluded from the table that all the machine learning 
algorithms under consideration achieved high levels of accuracy, which is a major industrial requirement. With 
this metric, the best results were obtained by SMOTEBoost (in bold) for most of the datasets and the average 
of the four datasets. Besides, the inclusion of the new attributes (the adjustment error of the linear regression 
and the RSI) in all cases improved the accuracy of the model.

Table 12: Decision-tree ensemble accuracy and MLPs with a sliding window size of 11.

Dataset Original Original + Slope O + S + Error O+S+E+TSI Average

Tree U 90.683 90.833 93.214 94.821 92.388

MLP 91.667 91.994 94.092 95.685 93.360

BAG 92.229 92.827 95.521 96.518 94.274

RF 91.948 92.470 94.866 95.298 93.646

BAGSM100 91.709 92.634 95.253 96.146 93.935

BAGSM300 90.767 91.310 94.271 95.640 92.997

BAGSM500 90.149 90.744 93.646 95.164 92.426

BAGSM 90.388 91.250 93.988 95.283 92.727



 

BAGRUS 87.605 89.018 91.979 93.199 90.450

BAG-RB 89.685 91.265 94.226 95.074 92.563

SMB 91.596 92.768 96.280 97.277 94.480

RUSB 90.289 91.696 95.060 96.071 93.279

RB-B 91.484 93.408 96.101 96.801 94.448

RAMO 91.062 92.277 96.086 97.128 94.138

Average 90.804 91.750 94.613 95.722

The last quality indicator of high interest in imbalanced datasets is AUC (Area under the ROC curve). Table 13 
shows the results of the different algorithms using AUC. This metric is insensitive to changes in class 
distribution and is very popular for tasks relating to extremely imbalanced data. According to this metric, the 
best results were obtained (in general) by SMOTEBoost and RAMOBoost (in bold). The inclusion of the new 
attributes also improved the models according to this metric.

Table 13: Decision-tree ensemble and MLPs AUC with a sliding window size of 11.

Dataset Original Original + Slope O + S + Error O+S+E+TSI Average

Tree U 0.949 0.952 0.966 0.976 0.961

BAG* 0.962 0.969 0.985 0.991 0.977

RF* 0.957 0.968 0.983 0.988 0.974

BAGSM100 0.962 0.97 0.985 0.99 0.977

BAGSM300 0.962 0.968 0.983 0.989 0.976

BAGSM500 0.961 0.967 0.982 0.989 0.975

BAGSM 0.961 0.968 0.983 0.989 0.975

BAGRUS 0.961 0.965 0.979 0.985 0.973

BAG-RB 0.963 0.969 0.984 0.989 0.976

SMB 0.96 0.972 0.991 0.995 0.980

RUSB 0.962 0.971 0.989 0.992 0.978

RB-B 0.96 0.974 0.99 0.993 0.979

RAMO 0.961 0.972 0.991 0.995 0.980

Average 0.960 0.968 0.983 0.989



 

Finally, Figure 3 is presented below, as the information in Tables 10 to 13 cannot be used to evaluate the effect 
of the sliding window size on model performance. The figure shows the progressive performance of the recall 
metric for the best two basic classifiers: MLPs (unlike in the tables, which show the result of the best 
combination of parameters, which may be different for each case, the figure shows the configuration with a 
learning rate = 0.3, which is the best average configuration) and decision trees, and the two best ensembles: 
Bagging+Random Undersampling (BAGRUS) and SMOTEBoost. Higher window sizes could not be tested, 
due to the small size of some of the experimental tests performed with some tools (the extension of the window 
size reduced the size of the dataset and the level of imbalance in the dataset, because, as the first instances were 
non-fault instances for any tool, the use of a window deleted as many non-fault instances as fitted in the window 
size and none of the fault instances from the dataset). It may be appreciated from this figure that the ensembles 
were less sensitive to the window size, while obtaining, in any case, better performance than the basic classifiers. 
Besides, MLPs performed poorly with small dataset sizes (and therefore a small number of training instances) 
and were unable to achieve stable behavior, due to the small dataset sizes of each tool, as the window sizes were 
extended. This argument also supports the use of decision trees as base classifiers for the ensembles, because 
the high sensitivity of MLPs to the training dataset might otherwise reduce the accuracy of the ensemble models.

Fig. 3. Evolution of the recall metric with the sliding window size for different machine-learning models.

4.2 Industrial implementation
The identification of the most accurate prediction model might close the research from the computer science 
point of view, but the process engineer in the factory would expect a visual implementation of the prediction 
model for direct use [27]. From the industrial point of view, the recall model should be maximized, as false 
negatives are in every way undesirable. However, an algorithm with a high false positive rate is also undesirable 
and the precision indicator can help to maximize the sensitivity to false positive cases. Therefore, both precision 
and recall should be simultaneously considered as indicators. 

Considering both quality indicators, the best prediction model in terms of recall, bagging combined with random 
undersampling (light blue), and the best prediction model in terms of precision, SMOTEBoost (dark red), are 
represented in Figure 4. All the experiments for a sliding window of 11 for the 35 tapping tools are shown (Tap 
Tool 1 to Tap Tool 35 in the figure labels). Each figure in Figure 4 refers to one of the tapping tools. Appendix 
I of this article shows high-quality images of the 35 figures for a detailed analysis. The X-axis refers to the 
threads for the corresponding tap tool in a random order, but locating all the positive (pass) threads first and 
then all the negative (non-pass) threads, in such a way that, ideally, a perfect model would generate a step 
function graph for each tap tool (0 at the left side and 1 at the right side). The prediction for each thread by both 
prediction models, shown on the Y-axis, was expressed as the probability of a thread quality inspection: positive 
(pass: 0) or negative class (no pass: 1). The prediction for each thread was computed for cases where the thread 
belonged to the validation fold in the cross-validation scheme. The models could not therefore have any 
information on thread behavior during the training stage. The thin black horizontal line can be considered a 
threshold between pass and no pass states. It was fixed at a probability of 50%, the standard value in 



 

classification tasks. The thick black line shows the real value of the output in the Y-axis: the 0 value represents 
a pass-thread and the value of 1 represents a non-pass thread. In summary, if a model provides a probability 
higher than 50% (0.5 in Figure 4), the engineer will expect a non-pass thread; therefore, although the figures 
look very noisy, because each instance has a different prediction probability, the process engineer can consider 
them only as binary values (0 or 1), taking into account the 50%-threshold. 



 

Fig. 4. Probability of pass and non-pass quality of all the threads in the dataset predicted with bagging 
combined with random undersampling (light blue) and SMOTEBoost (dark red).

This figure requires close analysis to extract all the information that may be of use to the process engineer. 
Firstly, both algorithms were only capable of classifying all the threads of a few tapping tools (numbers 1, 11 
and 24). In other cases (tools number 7, 10, 19, 21, 26, 28, 29, and 34), one of the algorithms was able to classify 
almost all the threads correctly (over 99.5% of the cases). Besides, it was clear from the differences in their 
behavior that Bagging+Random Undersampling detected all the faults and could anticipate failure (although it 
can commit false positives) and SmoteBoost made much more conservative predictions, committing far fewer 
false positives at the expense of not detecting all the failures. This result can clearly be seen in tapping tool 
number 15, where the orange line shows probabilities under 50% for all the failures and the green line provides 
probabilities over 50% for all the right threads. Besides, Figure 4 shows that the tapping process is a noisy 
process and, although with good results, the analysis of the torque signals might not be enough to predict the 
quality of the threads that are produced with 100% certainty. Some clear cases are tool numbers 3, 4, 8, 12, 22, 
23, 26, 31, and 32. But in all cases the proposed strategy, mixing the predictions of a model with high Recall 
and a model with high Precision, helps to take a decision on the changes to the tool.

5. Conclusions
An extensive experimental stage of internal thread production has been conducted in this study using cutting 
taps under high-speed cutting conditions with no coolants. Secondly, different machine-learning strategies have 
been tested to build a reliable prediction model for thread quality. The following conclusions can be extracted 
from this study:

 If only easy-to-measure process variables under industrial conditions, such as tool coating and torque 
signals were considered, immense effort would be required to achieve accurate prediction models, 
although these conditions are basic requirements in small workshops where no traceability of tapping 
tools is implemented.

 The torque signal is a key parameter, because it describes the essential information in the tapping 
operation independent of the coatings. The huge dispersion between similar tools is due to high-speed 
cutting under dry conditions. 

 Despite the highly different coatings tested in this research, the thread-quality classification system 
managed to work independently of the coatings. Therefore, this approach could work in an automated 
manufacturing production line with tools from different providers.

 The effect of adding some statistical variables to the dataset, such as the slope of the regression line, 
the standard error of the regression fit and the true strength index in all cases improved the accuracy 
of the machine-learning models.

 Bagging+Random Undersampling provided the best model when searching to detect all non-pass 
threads although it can classify pass threads as non-passes. The following quality indicators were 
achieved by the best model (the original dataset plus the statistical inputs): Recall 0.960; Precision 
0.709; Accuracy 93.2%; and, AUC, 0.985.

 The SMOTEBoost provided the best model when searching to detect all pass threads although it can 
classify non-pass threads as passes. The following quality indicators were achieved by the best model 
(the original dataset plus the statistical inputs): Recall 0.940; Precision 0.893; Accuracy 97.3%; and, 
AUC 0.995.

 Both ensemble-based models showed a lower sensitivity than base classifiers to the window size with 
higher accuracy for smaller window sizes, demonstrating their higher learning ability with small 
datasets. Besides, even when the traceability of tapping tool was available (equivalently a 0-size 
window can be used), ensembles continued to show high prediction accuracy. 



 

 The graphic combination of the predictions of both models, Bagging+Random Undersampling and 
SMOTEBoost, provided a reliable industrial tool for proper classification of thread quality, although 
a conservative decision might be taken, considering the highly dispersed behavior between similar 
tapping tools, a natural limitation in tapping modeling. In any one study of a tap tool, this strategy will 
help to take decisions on changes to the tool, providing reliable visual information on tap tool behavior.

Future lines of work will focus on the extension of this classification strategy to different workpiece materials, 
tap diameters, and cutting conditions, to extend the final use of the prediction models. In addition, it will be 
tested in manufacturing cells, to assess thread quality during the tapping processes. The combination of these 
classification models with automatic image-processing systems can improve system reliability and reduce the 
true negatives as previous works have outlined for other solutions [27], so that risky tool wear may be detected. 
Finally, this classification strategy will be customized to warn when thread quality is out of control or requires 
manual evaluation, because the tapping tool is close to the non-pass thread area.
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