

MICROENCAPSULATION OF SUPERCRITICAL CO, EXTRACTED RICE **BRAN OIL IN PEA PROTEINS**

Oscar Benito-Román, Maria Teresa Sanz, Sagrario Beltrán

Research group INDUSTRIAL AND ENVIRONMENTAL BIOTECHNOLOGY (www.ubu.es/bioind)

Department of Biotechnology and Food Science (Chemical Engineering Division). University of Burgos, 09001 Burgos, Spain. beltran@ubu.es

INTRODUCTION

Rice bran oil is source of bioactive molecules such as sterols, tocols, γ -oryzanols and unsaturated fatty acids [1,2] which show strong antioxidant activity. In order to preserve it, rice bran oil must be encapsulated.

Among the different encapsulation materials, vegetable proteins are trendy, due to their properties (emulsifying easiness, high nutritional value and nonallergenic characteristics) and the possibility to be used in pharma, cosmetics and food industries.

The aim of this work is to study the microencapsulation process of rice bran oil (extracted using supercritical CO_2 (SC- CO_2), according to Benito-Román et al. [3]) using mixtures of pea protein and maltodextrin as wall material in two steps:

AIM

- 1. using RSM–Box Behnken to study and optimize the emulsion formation process by high pressure homogenization
- 2. studying the particle formation when drying the emulsion obtained in the optimal conditions using three different drying methods

EXPERIMENTAL APPROACH: 2 STEPS

1. EMULSION FORMATION

HIGH PRESSURE HOMOGENEIZATION

Advantages

- Industrial application due to flexibility to control the emulsion droplet size (EDS)
- Ability to produce emulsions from a variety of materials

Experimental device

- Microfluidics LM-20 (interaction chamber F20Y)
- Maximum working pressure: 200 MPa

• Aim:

To find the combination of the experimental parameters that minimize the EDS

EXPERIMENTAL FACTORS

- **Pressure**: from 60 to 150MPa
- **<u>Carrier material</u>**: mixtures of pea protein (PPI) & maltodextrin (MD); 50-90% of PPI
- Carrier to oil ratio: from 2 to 4
- 15% of solids in the emulsion
- 7 homogenization cycles
- Box-Behnken experimental design (15 runs)

OPTIMAL CONDITIONS AND RESULTS

Figure 1. Effect of the working pressure and protein content in the carrier material on the EDS

OPTIMAL CONDITIONS

114 MPa; 60% of PPI; ratio carrier to oil of 3.2 EDS: 180±5 nm

2. OPTIMAL EMULSION DRYING

SPRAY DRYING

- Buchi B-290 mini
- T: inlet, 155°C; outlet, 92-96°C
- Emulsion flow rate: 3 g/min

PGSS DRYING

- SC-CO₂; P: 10MPa
- T: outlet, 55°C; Static mixer, 105 °C
- GPR: $30 \text{ g CO}_2/\text{g emulsion}$

FREEZE DRYING

- Labconco freeze drier
- 0.15 mbar

Encapsulation Efficiency: 73% Average particle size: $18 \mu m$ Dented particles

Encapsulation Efficiency: 52% Average particle size: $11 \, \mu m$ Spherical particles

Encapsulation Efficiency: 99 %

Amorphous particles

Figure 2. SEM pictures of the obtained particles

CONCLUSIONS

- **EMULSION FORMATION:** in order to minimize the EDS, moderate pressures (114 MPa), a carrier composed mainly by PPI (60%) and carrier to oil ratios equal to 3.2 are required. Important interactions between the experimental factors were also observed.
- **EMULSION DRYING:** All the drying techniques yielded dry powders, which resulted in different morphologies and encapsulation efficiencies. Freeze drying yielded the higher encapsulation efficiencies and more stable powders when stored at 4 °C, whereas spraydried and PGSS-dried powders increased the amount of free oil after two weeks of storage.

Figure 4. Particles obtained from PGSS drying

REFERENCES

[1] M. Friedman, J. Agric. Food Chem. 61, 10626– 10641, 2013.

[2] K. Gul, B. Yousuf, A.K. Singh, P. Singh, A.A. Wani, Bioact. Carbohydrates Diet. Fibre. 6, 24–30, 2015

[3] O. Benito-Román, S. Varona, M.T. Sanz, S. Beltrán, J. Ind. Eng. Chem. 80, 273-282, 2019.

ACKNOWLEDGEMENTS

To JCyL and ERDF for financial support of project BU301P18 and O. Benito-Román's post-doctoral contract. To Campofrío Food Group - SIGMA through project ref. 10/16/BU/0017, funded by ERDF of the EU and JCyL, through ICE To JCyL and ESF for the contracts of D.M. Aymara-Caiza trough the YEI program

EUROPEAN REGIONAL DEVELOPMENT FUND EUROPEAN SOCIAL FUND

– – – Spray Drying