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Self-consistent description of spin-phonon dynamics in ferromagnets
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Several recently reported exciting phenomena such as spin caloritronics or ultrafast laser-induced spin dynamics
involve the action of temperature on spin dynamics. However, the inverse effect of magnetization dynamics on
temperature change is very frequently ignored. Based on the density matrix approach, in this work we derive
a self-consistent model for describing the magnetization and phonon temperature dynamics in ferromagnets
in the framework of the quantum Landau-Lifshitz-Bloch equation. We explore potential applicability of our
approach for two cases, inspired by magnetocaloric effect and magnetic fluid hyperthermia. In the first case, the
spin-phonon dynamics is governed by the longitudinal relaxation in bulk systems close to the Curie temperature;
while in the second case it is described by the transverse relaxation during the hysteresis cycle of individual
nanoparticles well below the Curie temperature.
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I. INTRODUCTION

In the last decade, the number of technological applications
involving magnetism and heat has increased. In the data
storage industry, for example, new technologies such as
heat-assisted magnetic recording (HAMR) [1] and thermally
assisted magnetic random access memory (MRAMs) [2] have
been developed. Similarly, recently discovered phenomena
such as ultrafast all-optically induced magnetization dynamics
[3,4] and the spin-Seebeck effect [5] are very appealing
from technological perspectives that range from increasing
the speed of the magnetization switching to the production
of spin-voltage generators. On the other hand, well-known
phenomenon such as the magnetocaloric effect [6] has recently
been the focus of intensive research due to its possible
application for new generation of efficient refrigeration devices
near room temperature. Finally, another important effect which
uses magnetism and heat is magnetic hyperthermia for cancer
treatment [7–9].

Modeling of magnetic and heat dynamics in magnetic
materials is a complex task since it involves several differ-
ent microscopic interactions between spins, electrons, and
phonons with many degrees of freedom. Very frequently this is
done through the phenomenological rate equations such as the
three-temperature or two-temperature models [10]. Recently,
Ma et al. [11] developed a self-consistent phenomenological
atomistic model for the description of the spin-lattice-electron
dynamics which can be applied to simulate ultrafast magnetism
experiments, among other thermomagnetic phenomena. The
self-consistent spin-lattice-electron dynamics, based on the
rate approach, was also introduced by Dvornik et al. [12]
for the phenomenological macroscopic Baryakhtar equation
for the magnetization dynamics. However, the true quantum
mechanical theory for these dynamics is still missing.

At the macroscopic level, the so-called Landau-Lifshitz-
Bloch equation [13] (LLB) has been also successfully used to
model the magnetization switching dynamics in HAMR [14],
domain-wall motion induced by the spin-Seebeck effect [15],

and ultrafast magnetism [16–21]. Typically, the LLB models
used in these works take into account the dependence of the
magnetization dynamics on the bath temperature, however,
they do not include the inverse effect, i.e., the change of
temperature due to the magnetization relaxation. In this work,
we derive a self-consistent model of the spin-phonon dynamics
starting from the quantum mechanics and consequently based
on the quantum version of the LLB equation [22,23] (qLLB).
Our approach includes magnetization dynamics effects on
phonon bath temperature. Finally, we give some simple
examples of its possible applicability to magnetic refrigeration
and magnetic hyperthermia.

In Sec. II, we present the theoretical framework of the
spin-phonon dynamics, which we use to obtain the time
evolution of the phonon temperature self-consistently with
the magnetization dynamics. In Sec. III, we present some
results for the model applied to the longitudinal and transverse
relaxations of the magnetic system. The concrete examples
are inspired by the magnetic refrigeration and magnetic
hyperthermia phenomena. In Sec. IV, the conclusions of this
work are presented. In order to facilitate the understanding
of Sec. II, we included four Appendices. In Appendix A, we
introduce the general theory of a spin system interacting with a
thermal bath, in which this work is based on, while in Appendix
B we show some technical details of the application of this
general theory to a simple spin-phonon model used by Garanin
in Ref. [22] to derive the qLLB equation. In Appendix C,
we proof theoretically the energy conservation of spins and
phonons in our model via the first law of thermodynamics.
Finally, in Appendix D we also present a self-consistent
description of the spin and electron bath coupled dynamics
for an electron-“impurity” model.

II. THEORY

The self-consistent description of spin-phonon dynamics
presented in this work is based on the general theory of a spin
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system interacting with a thermal bath [24]. A summary of
this approach is showed in Appendix A. The calculation of
the magnetization and temperature bath dynamics from this
approach could be a hard task depending on the chosen spin-
bath model [see Eqs. (A6) and (A7)]. In this work, we consider
the same simple spin-phonon model used by Garanin to derive
the generalized equation of motion for ferromagnets, the qLLB
equation [22].

A. Spin-phonon model

Initially in this model a magnetic ion is assumed to interact
weakly with a thermal phonon bath via direct and the second-
order (Raman) spin-phonon processes with a linear spin
operator dependence. Then, the ferromagnetic interactions are
taken into account in the mean-field approximation (MFA).
The spin-phonon model Hamiltonian reads as

Ĥ(t) = Ĥs(t) + Ĥph + V̂s−ph, (1)

where Ĥs describes the spin system energy, Ĥph describes the
phonon energy, V̂s−ph describes the spin-phonon interaction:

Ĥs(t) = −μ̂ · HMFA(t) = γ HMFA(t) · Ŝ,

Ĥph =
∑

q

�ωqâ
†
q âq , (2)

V̂s−ph = P̂ (F̂d + F̂R),

where

P̂ = η · Ŝ,

F̂d = −
∑

q

Vq(â†
q + â−q),

F̂R = −
∑
p,q

Vp,q â
†
pâq .

In the expressions above, μ̂ = −γ Ŝ is the magnetic mo-
ment operator, Ŝ is the spin operator, γ = |g|μB/� is the
gyromagnetic ratio where g is the Landé g factor, μB is
the Bohr magneton, and � is the reduced Planck constant.
â
†
q (âq) is the creation (annihilation) operator which creates

(annihilates) a phonon with frequency ωq where q stands for
both the wave vector k and the phonon polarization. The first
term in the spin-phonon interaction potential V̂s−ph in Eq. (2)
takes into account the direct transformation processes which
are characterized by the amplitude Vq , and the second term
describes the Raman processes with amplitudes Vp,q . The
interaction may be anisotropic via the crystal field, which is
taken into account through the parameter η. The vector HMFA

is an effective field in the MFA given by

HMFA(t) = HE(t) + H(t) + HK = J0

μat

m(t) + h(t), (3)

where HE(t) = (J0/μat )m(t) is the homogeneous part of
the exchange field, J0 is the exchange parameter related in
the MFA to the Curie temperature Tc as J0 = 3kBTcS/(S +
1), μat = |g|μBS is the atomic magnetic moment, m(t) =
〈μ̂(t)〉/μat = −〈Ŝ(t)〉/(�S) is the reduced magnetization, and
h = H + HK , where H is the external magnetic field and HK

represents the anisotropy field.

B. Magnetization dynamics

The calculation of the spin dynamics is somewhat cum-
bersome. First, from the general theory of a spin system
interacting weakly with a thermal bath, one finds that the
time derivative of the spin operator expectation value is
given by Eq. (A6). From this equation, for the spin-phonon
model described by Eq. (1) and using Markov and secular
approximations, one arrives to (see Appendix B) [22]

dm
dt

= −γ m × h − K2
tanh

(
y0

2

)
tanh

(
y

2

) (
2(S + 1) tanh

(
y

2

)
m

− 1

)
× m × (m × h)

mH MFA

− 2K2

(
1 − tanh

(
y0

2

)
tanh

(
y

2

) m · HMFA

mH MFA

)
m + (K2 − K1)

×
[

(m × h)2

(mH MFA)2
m + (m · HMFA)m × (m × h)

(mHMFA)2

]
, (4)

where y is defined through the relation (B11), y0 is the
equilibrium value of y, and K1 and K2 are given by Eqs. (B8)
and (B9), respectively. In stationary dynamic processes (|y −
y0| � y) and assuming a strong exchange field (HE � h), one
arrives from Eq. (4) to the so-called qLLB equation [22,23]

dm
dt

= −γ m × Heff+γα‖
m · Heff

m2
m − γα⊥

m × (m × Heff)

m2
,

(5)

where Heff is the effective field given by

Heff =
{

1
2χ̃‖

(
1 − m2

m2
e

)
m + h, Tph < Tc

J0
μat

(
ε − 3m2

5As

)
m + h, |ε| � 1

(6)

where ε = (Tc − Tph)/Tc, As = 2(S + 1)2/([S + 1]2 + S2),
and me = BS(βJ0me) is the equilibrium magnetization for
h = 0. The longitudinal susceptibility χ̃‖ can be evalu-
ated in the MFA at Tph < Tc as χ̃‖ = μatβB ′

S/(1 − βB ′
SJ0)

where B ′
S(x) = dBS/dx is evaluated at the equilibrium B ′

S =
B ′

S(βJ0me). The parameters α‖ and α⊥ in Eq. (5) are the
so-called longitudinal and transverse damping parameters,
respectively, and they are given by

α‖ =
{

λ
2Tph

3Tc

2qs

sinh (2qs ) , Tph � Tc

λ
2Tph

3Tc
, Tph > Tc

(7)

α⊥ =
{

λ
[ tanh(qs )

qs
− 2Tph

3Tc

(
1 − K1

2K2

)]
, Tph � Tc

λ
2Tph

3Tc
, Tph > Tc

(8)

where qs = 3Tcme/[2(S + 1)Tph] and

λ = K2
(S + 1)

S

μat

γ kBTph

(9)

is the coupling to the bath parameter. In the isotropic case
(ηx = ηy = ηz), the analysis shows that at high temperatures
K1 	 K2 while at low temperatures K1 � K2 [22,23,25]. In
the simulations presented in this work, we always consider
the high-temperature case (K1 = K2). Finally, for modeling
purposes λ is usually considered as a phenomenological
“coupling-to-the bath” parameter.
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Note that the longitudinal damping is related to the longi-
tudinal magnetization relaxation and which has shown good
agreement in laser-induced ultrafast magnetization dynamics
experiments in materials as Ni [16], Gd [17], and FePt [21].
The transverse damping is basically related to the relaxation
of the ferromagnetic resonance (FMR) mode. Consequently,
the transverse damping parameter increases with temperature,
consistent with atomistic modeling results (Ref. [26]) and
well-known FMR experiments [27,28].

The qLLB equation (5) is very similar to its classical
counterpart derived in Ref. [13] using nonequilibrium ther-
modynamics (the Fokker-Planck equation for a collection of
atomic spins described by the LLG equation with phenomeno-
logical coupling-to-the bath parameter). Unlike its classical
counterpart, qLLB depends on the quantum number S which
strongly affects both longitudinal and transverse relaxation
time scales. Moreover, due to its quantum mechanical origin,
it allows to analyze the magnetization dynamics as function
of different microscopic models and temperature dependence
of the coupling-to-the bath parameter. For more detailed
investigation of this matter, see Ref. [23]. Finally, the quantum
spin S could be also used phenomenologically as an adjustable
parameter to get a better description of the temperature-
dependent magnetization and therefore magnetization dynam-
ics. For example, the transition metals are known to be well
described with the Brilloun function with S = 1

2 .

C. Phonon temperature dynamics

The general theory of a spin system interacting weakly with
a thermal bath also allows to analyze the bath dynamics due
to the interaction of phonons with the spin system only, that
is, in adiabatic conditions one finds that the time derivative of
the bath energy expectation value is given by Eq. (A7). For
the spin-phonon model described by Eq. (1), the integrals in
Eq. (A7) are calculated following the same procedure as in
Eqs. (B1) and (B2). As a result, from Eq. (A7) one arrives to

d

dt
〈Ĥph〉 = W2γH MFA(t)

2�
〈(η−Ŝ+ − e−y0η+Ŝ−)η · Ŝ〉

+ W2γH MFA(t)

2�
〈η · Ŝ(η+Ŝ− − e−y0η−Ŝ+)〉.

(10)

On the other hand, from Eq. (B5) one finds

d

dt
〈Ŝz〉 = − W2

2�
〈(η−Ŝ+ − e−y0η+Ŝ−)η · Ŝ〉

− W2

2�
〈η · Ŝ(η+Ŝ− − e−y0η−Ŝ+)〉. (11)

Therefore, the substitution of Eq. (11) into (10) leads to

d

dt
〈Ĥph〉 = −γH MFA(t)

d

dt
〈Ŝz〉. (12)

As it was done previously, in order to avoid tedious calculations
it was assumed that HMFA(t) = H MFA(t)ez, hence, for the
general case Eq. (12) reads as

d

dt
〈Ĥph〉 = −γ HMFA(t) · d

dt
〈Ŝ〉 = μatHMFA · dm

dt
, (13)

where the time derivative of the magnetization is given by
Eq. (4). Therefore, for n atoms in a unit-cell volume v0 the
time derivative of the bath temperature is

dTph

dt
= n

Cphv0

d

dt
〈Ĥb〉 = Ms

Cph

HMFA · dm
dt

, (14)

where Cph is the phonon bath specific heat in units of
JK−1m−3 and Ms = nμat/v0 is the saturation magnetization
at T = 0 K. Equation (14) is related to energy conservation
between spins and phonons during the dynamics since energy
is conserved in each spin-phonon scattering event at the atomic
level [see the quantity W2, Eq. (B4)]. In Appendix C, we prove
the energy conservation of this model using the first law of
thermodynamics. Finally, when Eq. (4) is multiplied by HMFA,
the last two terms in the right-hand side of Eq. (4) cancel each
other. Therefore, in the case of stationary dynamic processes
(|y − y0| � y) and a strong exchange field (HE � h), Eq. (14)
can be written as

dTph

dt
= γα‖MsJ0

Cphμat

m · Heff + γα′
⊥Ms

Cph

(m × h)2

m2
≡ f (m,Tph),

(15)

where α′
⊥ ≡ α⊥(K1 = K2) is given by Eq. (8) with K1 = K2.

The function f describes how the bath temperature changes
per unit time due to the interaction of the bath with the spins.
We see that the magnetic transverse relaxation [second term
in Eq. (15)] always increases the phonon temperature. On the
other hand, the longitudinal relaxation [first term in Eq. (15)]
increases (decreases) the bath temperature when m · Heff > 0
(m · Heff < 0), as it should be. More precisely, since we have

m · Heff 	
{

1
2χ̃‖

[me(h‖)2 − m2] + O(δm2), Tph < Tc

3J0m

5Asμat
[me(h‖)3 − m3] + O(ε), |ε| � 1

(16)

where δm = m − me, me(h‖) is the magnitude of the in-field
equilibrium magnetization and h‖ is the component of field h
along m, then in situations where m < me(h‖) [m > me(h‖)]
the longitudinal relaxation increases (decreases) the bath
temperature.

Note also that it follows from Eq. (14) that the characteristic
time scale of the temperature dynamics follows that of the
magnetization dynamics. The latter is known to have two
characteristic time scales [26,29] for the longitudinal dynamics
(τ‖) and for the transverse one (τ⊥) defined by

τ‖ = χ̃‖
γα‖

, τ⊥ = me

2γ hα⊥
, (17)

where me is the equilibrium value of m at given temperature.
The two relaxation characteristic times have different time
scales: the longitudinal relaxation occurs in the time scale of
smaller than 1 ps, while the transverse one in the time scale of
100 ps–1 ns.

Similarly, in Appendix D we present a self-consistent de-
scription of the coupled dynamics between spins and electron
bath using an electron-impurity model. The time derivative
of the electron bath temperature given by Eq. (D9) may be
used in the modeling of laser-induced ultrafast magnetization
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dynamics based on qLLB equation coupled to the two-
temperature model for taking into account the specific heat of
spins. However, such analysis is beyond the scope of this work.

III. MODELING RESULTS

In order to illustrate the potential use of the obtained results,
in this section we present some examples of the use of the
self-consistent spin-phonon dynamical model derived above.
Two cases are examined, for which either the simple magnetic
longitudinal relaxation process or the transverse one are the key
mechanism for the related magnetothermic effects. The chosen
examples correspond to research fields that have been very
active during the last decades based on their foreseen relevance
for societal needs, but that despite the efforts devoted have
not yet achieved their anticipated significance. Thus, the first
example, focused on the longitudinal relaxation, deals with
magnetic refrigeration, the cooling technology that is envi-
ronmentally friendly and has high-energy efficiency [30]. The
second example, focused on the transverse relaxation, deals
with magnetic hyperthermia, a promising treatment for cancer
treatment that uses the heat released by magnetic nanoparticles
under an ac field to treat the tumor. Advantages of such
treatment include the avoidance of the harmful secondary
effect of chemotherapies/radiotherapies, local application,
and the possibility to treat tumor types that are essentially
insensitive to usual chemotherapies and radiotherapies.

It is important to keep in mind that the purpose of these
examples is not to undertake any unsolved aspect of the related
research fields, but only to illustrate the suitability of the
presented model to contribute to their further development.
Thus, it must be noted, for example, that we use a simplified
description where the magnetization dynamics is described
in terms of one qLLB equation. For transverse relaxation, this
corresponds to the consideration of a small nanoparticle where
the magnetization reversal does not include the formation of
nonhomogeneous structures. For the longitudinal relaxation,
our approach is suitable for modeling situations close to the
Curie temperature, first, because the longitudinal relaxation
becomes appreciable in this case and, second, because the
most favorable thermodynamical processes there correspond
to the change of the magnetization magnitude rather than the
domain-wall formation.

A. Magnetic longitudinal dynamics

First, we focus on the coupled magnetic and phonon
temperature dynamics induced by a pure magnetic longitudinal
relaxation, that is, processes where the magnetization vector
only changes its magnitude with time. One interesting
technological application of the coupled magnetic and phonon
dynamics is magnetic refrigeration (MR), the cooling technol-
ogy that makes use of the magnetic longitudinal relaxation in
order to change the temperature of a magnetic material [31,32].
MR involves the conversion of spin degrees of freedom to tem-
perature, including both phonon and electron contributions,
and shows its higher values at magnetic phase transitions where
the longitudinal relaxation process dominates. The potential
use of MR as an alternative to conventional cooling techniques
has not yet been achieved, thus pointing out the importance

TABLE I. Parameters of Gd and Fe3O4 used in the simulations.
For Fe3O4, we have K̃1 = K̃

(c)
1 .

Gd Fe3O4

μat (μB ) 7.63 4.00
Ms (A/m) 2.14 × 106 4.5 × 105

K̃1 (J/m3) 1.3 × 104 −1.2 × 102

K̃
(c)
2 (J/m3) 2.8 × 102

Tc (K) 293 860
S 7/2 5/2
λ 0.001 0.05
γ (T−1s−1) 1.76 × 1011 1.76 × 1011

Cph (Jm−3K−1) 1.86 × 106 3.48 × 106

of developing theoretical tools able to help on the design of
commercially suitable MR-based cooling devices. Next,
we will show how the reported model described above can
contribute to the modeling, and hence guidance, of the MR
research.

For simplicity, we take parameters of Gd, often considered
as a modeling material for magnetic refrigeration since Tc

is closed to room temperature. We take into account the
uniaxial anisotropy field HK = (2K̃1mz/Ms)ez, where K̃1 is
the anisotropy constant, and the external field along the z axis
H = Hzez, so that h = HK + H. The parameters of Gd used
in the simulations are given by Table I.

In Fig. 1, we show the adiabatic temperature change
versus the initial temperature T0 in Gd due to the application
of an external magnetic field Bz = μ0Hz = 5 T (μ0 is the
permeability of free space) along the the magnetization vector
m = mzez, calculated using the qLLB equation [Eq. (5)]
coupled to Eq. (15) (solid line). The results are compared with
the experimental data from Ref. [33] (solid dots), showing a
very good agreement. Here, we calculated only the temperature
change at Tph < Tc, where the material is ferromagnetic at the
initial state. At Tph > Tc, the initial state is paramagnetic,
so that the temperature change may also be calculated using

0 50 100 150 200 250 300
0

2

4

6

8

10

12

T f
-T

0
(K
)

T0 (K)

experiment
simulation

TC

BZ= 5 T

FIG. 1. Temperature change �T = Tf − T0 versus the initial
temperature T0 in Gd due to the application of an external magnetic
field Bz = μ0Hz = 5 T calculated using the qLLB equation [Eq. (5)]
coupled to Eq. (15) (solid blue line) The dotted red line corresponds
to the experiment from Ref. [33] (solid dots).
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FIG. 2. Refrigeration cycle of Gd obtained by the integration of
the qLLB equation (5) coupled to Eq. (15) in the adiabatic processes
and to Eq. (18) in the nonadiabatic processes.

the paramagnetic qLLB equation [22], which is obtained by
the replacement HMFA → H in the qLLB equation given by
Eq. (4). We see that the temperature change obtained by
simulations is very similar to the experiments.

A simple example of the refrigeration cycle could consist
of the following steps: (i) adiabatic process where an external
magnetic field is applied, (ii) nonadiabatic process keeping
the external magnetic field on, (iii) adiabatic demagnetization
removing the external field, and (iv) nonadiabatic process in
the absence of the external field. In order to show the appli-
cability of the self-consistent spin-phonon model to magnetic
refrigeration, we are going to simulate this refrigeration cycle
of Gd. For the nonadiabatic processes, we add Newton’s law of
cooling in Eq. (15), that is, we coupled the qLLB equation to

dTph

dt
= f (m,Tph) − Tph − Troom

τth
, (18)

where function f is given by Eq. (15), Troom = 280 K, and
τth = 400 ps. Notice that the dynamics in the nonadiabatic pro-
cesses are very sensitive to the diffusion model and the value
of τth. In the present case, we have chosen them arbitrarily, but
they need to be adjusted to every specific situation of interest.

In Fig. 2, we show the refrigeration cycle of Gd calculated
by the integration of the qLLB equation [Eq. (5)] coupled to the
phonon bath through Eq. (15) in the adiabatic and to Eq. (18)
in nonadiabatic processes.

As we have shown in Fig. 1, the magnetocaloric effect
is more efficient at temperatures close to Tc. However, as we
show in Fig. 3 at temperatures close to Tc the magnetization and
temperature take more time to reach their equilibrium values.
This is due to the phenomenon called critical slowing down
which is related to divergence of the longitudinal susceptibility
at T = Tc, χ̃‖ ∝ 1/(Tc − T ) [23]. In particular, the analysis of
the qLLB equation shows that at T = Tc the magnetization
longitudinal relaxation time follows the expression [23]

τ‖(h,Tc) = 5Asμat

6γ λJ0m
2
h

, mh =
(

5Asμath

3J0

)1/3

, (19)

0 1 2 3

0.0

0.5

1.0

0.0

0.5

1.0

(m
-m

0)
/(m

f-m
0)

time (ns)

T0=200 K
T0=250 K
T0=290 K

(T
-T

0)
/(T

f-T
0)

T0=200 K
T0=250 K
T0=290 K

Adiabatic
Bz=1 T

FIG. 3. (Upper panel) Normalized temperature and (lower panel)
magnetization dynamics of Gd induced by the application of an
external magnetic field of Bz = μ0Hz = 1 T in adiabatic conditions
at three different initial temperatures T0 = 200, 250, and 290 K. It
was obtained by the integration of the qLLB equation (5) coupled to
Eq. (15).

where mh is the field-induced equilibrium magnetization at
Tc. This fact is not a problem in current magnetocaloric
refrigeration devices working at temperatures close to Tc since
their usual cycle frequency is quite slow (of the order of 10 Hz)
[31]. Typically in this case, the longitudinal relaxation of the
system as whole is defined by the presence of interacting grains
with the relaxation time via both (small) exchange and dipolar
interactions and is much larger than the present case where
the exchange interactions are large. However, the present case
may be important in future high-frequency devices based on
terahertz laser [34,35].

B. Magnetic transverse dynamics

One of the most promising nanomedical approaches for
cancer treatment is magnetic fluid hyperthermia (MFH)
[7–9] which takes advantage of the spin-heat dynamics coming
from the magnetic transverse relaxation. This technique makes
use of alternating external magnetic fields to heat magnetic
nanoparticles, previously delivered within the tumor, to locally
kill cancer cells (which are more sensitive to a temperature
increase �T than the healthy ones).

However, to date only limited clinical-application success
has been reached [9]. The main difficulty hampering its further
development is the poor knowledge of both (i) the heat-
dissipation performance of magnetic nanoparticle systems and
(ii) of the adequate conditions for efficient heat-triggered
cancer treatment. A puzzling example is the MFH-induced
cell death with negligible �T (of the whole system) reported
in several cases [36,37], which suggests that local heating
(i.e., at the particle nanoenvironment level) might be enough
to induce the cell apoptosis [38]. Some recent works reported
large �T values at the particle nanoenvironment that could
justify the local damage within the cells [39,40]. However,
those large �T values are in conflict with classical models of
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heat conduction mechanism, largely exceeding the predicted
values [41].

In this context, the need to carry out theoretical research
able to embrace both the heat generation under the ac field,
mediated by the spin-phonon coupling, with the rate of heat
release to the environment occurring during the dynamic
process is clear.

Typically, the MFH phenomena involve large number of
nanoparticles and time scales which range from nanoseconds
(magnetization transverse dynamics) to minutes (macroscopic
measured temperature of the nanoparticles environment).
Consequently, it might be argued that the use of a magnetic
equation of motion, as the self-consistent spin-phonon model
presented here, may be not suitable in the simplified version
for an overall description of magnetic hyperthermia (other
techniques as kinetic Monte Carlo modeling are more suitable
for the involved time scales) [42]. Note, however, that the
specific aspect we aim to undertake here is not the investigation
of hyperthermia issues in the usual approach (i.e., good heating
capabilities), but we aim, instead, to shed some light on the
complex dynamics of the temperature-rise and heat-dissipation
counterbalance. In this sense, the present model is likely to
provide insightful information.

For simplicity, we considered a single-domain nanopar-
ticle made of magnetite (Fe3O4) described by one sin-
gle macrospin. We take into account the cubic anisotropy
field HK = −(1/Ms)(∂EK/∂m), where EK = K̃

(c)
1 [(m2

xm
2
y +

m2
xm

2
z + m2

ym
2
z)/m4

e] + K̃
(c)
2 [(m2

xm
2
ym

2
z)/m6

e], K̃
(c)
1 and K̃

(c)
2

are the cubic anisotropy constants, and the external field H,
so that h = HK + H. The parameters of Fe3O4 used in the
simulations are given by Table I. Moreover, we assume that
the nanoparticle is spatially fixed, so that only Néel switching
mechanism takes place; such assumption is borne out by exper-
imental works reporting negligible contribution of Brownian
rotation to heat dissipation in the cellular environment [43].
We also consider that it interchanges heat with its surroundings
through Newton’s law of cooling, therefore, we use the qLLB
equation (5) coupled to Eq. (18). The initial magnetization is
along the easy direction 〈1,1,1〉, that is, m = (me/

√
3)(1,1,1).

The size of the nanoparticle in this simple model is related to
τth through τth = (V Cph)/(Aσ ), where V and A are the volume
and surface area of the nanoparticle, respectively, Cph is the
phonon heat capacity per unit volume, and σ is the heat transfer
coefficient.

In Fig. 4, we show the numerical results of the magnetiza-
tion and phonon bath temperature responses to an alternating
magnetic field B(t) = (0.2/

√
3)(−1, − 1, − 1) sin(2πνt) T

(i.e., along the easy-axis direction) with frequency ν =
10 MHz for different values of τth = 0.5, 5, and 20 ns.
Notice that the magnetization dynamics in the three cases is
approximately the same due to the small change in the bath
temperature. We see that as τth increases, the time-averaged
temperature of the nanoparticle also increases. This is because
the heat dissipation rate of the nanoparticle becomes slower
and more energy is saved in the phonon bath during the
magnetic relaxation. The small reduction of the phonon tem-
perature observed initially is due to the magnetic longitudinal
relaxation induced by the external field applied, opposite to
the magnetization. Furthermore, note that depending on the
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FIG. 4. The z component of the external applied magnetic field
(upper panel), phonon bath temperature (middle panel), and z

component of the magnetization (lower panel) dynamics in Fe3O4

calculated using the qLLB equation (5) coupled to Eq. (18) for
different values of τth = 0.5, 5, and 20 ns.

frequency of the ac field ν and the τth value, the particle may
experience a completely different self-heating effect (either
due to the environment alone or because of the particles not
having enough time to dissipate the energy), and this will
in turn influence the heating properties [44]. It is therefore
crucial to develop precise methods for accurate estimation
of the energy dissipation in order to develop better modeling
tools able to guide the experimental advancements in the MFH
research area.

IV. CONCLUSIONS

In summary, we have presented a self-consistent spin-
phonon dynamical model based on the qLLB equation,
which includes not only the action of the thermal bath on
magnetization, but also the inverse effect, that is, phonon
temperature change induced by magnetization relaxation. Note
that a very simple spin-phonon Hamiltonian, where interaction
is linear in the spin operator, is used here. However, the model
is also directly valid for simple spin-electron Hamiltonian [23]
and may be generalized in the future to more complicated
situations. The self-consistent spin-phonon dynamical model
will be useful to model interesting phenomena where the
magnetic and temperature dynamics are relevant, such as
HAMR, ultrafast magnetism, magnetic refrigeration, magnetic
hyperthermia, or spincaloritronics.

We have provided two simple examples of the use of the
model, related to longitudinal and transverse magnetic relax-
ation, and inspired by magnetic refrigeration and magnetic
hyperthermia phenomena. In the first case, we calculated the
refrigeration cycle of Gd. The numerical results show that
the magnetocaloric effect is higher close to Tc in agreement
with experiments. In the second case, we have used the
model to calculate the magnetization and phonon temperature
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responses of a Fe3O4 nanoparticle to an alternative external
magnetic field. Noteworthy, our results might contribute to
understanding the current debate in the literature regarding the
existence of large �T local values at nanoparticle surface.

Note that, generally speaking, our model is too simplified
to claim an overall correct modeling of the above-mentioned
phenomena within our approach, but it opens perspectives to
construct more realistic models for their better understanding.
Note that we did not consider an important energy-dissipating
mechanism, related to excitation of nonhomogeneous magne-
tization structures as well as we did not take into account long-
range spin waves. This can be overcome by considering micro-
magnetic simulations based on qLLB as in Refs. [18,19,21].
Furthermore, our diffusion model for the temperature to the
environment is too simplified and should be substituted in the
future by more realistic models [45]. We believe that the model
presented in this work constitutes a step forward towards more
realistic modeling of spincaloritronic dynamics.
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APPENDIX A: GENERAL THEORY FOR A SPIN SYSTEM
INTERACTING WEAKLY WITH A THERMAL BATH

In this Appendix, we summarize the general theory of the
spin system interacting weakly with a thermal bath, necessary
for the present study [24]. The starting point is the Hamiltonian
of the spin system interacting with a bath, given by

Ĥ(t) = Ĥ0(t) + V̂ , Ĥ0(t) = Ĥs(t) + Ĥb, (A1)

where Ĥs and Ĥb are the Hamiltonians of the spin system and
the bath, respectively, and V̂ describes the interaction between
them. Here, we consider that the total Hamiltonian Ĥ(t) is
time dependent through the nonperturbed Hamiltonian of the
spin system Ĥs(t). The interaction operator V̂ has the general
form

V̂ =
∑

j

P̂j F̂j , (A2)

where P̂j and F̂j are operators acting only on the spin system
and bath, respectively.

The time evolution of the density matrix operator ρ̂(t) is
governed by the quantum Liouville equation

dρ̂(t)

dt
= − i

�
[Ĥ(t),ρ̂(t)]. (A3)

From this equation, one arrives to [24]

d

dt
ρ̂(t) = − i

�
[Ĥ0(t),ρ̂(t)] − i

�
[V̂ ,ρ̂(0)]

− 1

�2

∫ t

0
dt ′[V̂ ,[V̂ (t ′−t)I ,Û

†
0 (t ′−t)ρ̂(t ′)Û0(t ′−t)]],

(A4)

where Û0(t) = Ûs,0(t)Ûb,0(t) is the nonperturbed time evo-
lution operator evaluated at instant t , Ûs,0(t) and Ûb,0(t) =
exp(−iĤbt/�) are the nonperturbed time evolution operators
of the spin system and bath, respectively, and V̂ (t)I =
Û

†
0 (t)V̂ Û0(t) is the interaction operator in the interaction

picture.
Now, it is assumed that the interaction between the spin

system and the bath is weak, which means that entanglement
between them is small, thus, the density operator of the whole
system can be factorized. Additionally, it is considered that
the bath is at thermal equilibrium (quasiequilibrium), then the
density matrix operator can be written as

ρ̂(t) ∼= ρ̂s(t)ρ̂
eq

b (t), ρ̂
eq

b (t) = 1

Zb(t)
exp

(
− Ĥb

kBTb(t)

)
,

(A5)

where ρ̂s(t) and ρ̂
eq

b (t) are the density matrix opera-
tors of the spin system and bath, respectively, Zb(t) =
Trb( exp{−Ĥb/[kBTb(t)]}) is the bath partition function where
Trb is the partial trace over the bath variables, and Tb is the
bath temperature.

The time evolution of the spin operator can be obtained
from Eqs. (A4) and (A5) in the following way. First, the partial
trace over the bath variable in Eq. (A4) is performed, next it is
multiplied by one of the components of the spin operator Ŝi ,
i = x,y,z, and then the partial trace over the spin variable is
calculated. This procedure leads to

d

dt
〈Ŝi〉 = d

dt
Trs{ρ̂s(t)Ŝi} = − i

�
Trs{[Ĥs(t),ρ̂s(t)]Ŝi} − i

�
Trs(Trb{[V̂ ,ρ̂(0)]}Ŝi)

− 1

�2

∫ t

0
dt ′Trs(Trb{[V̂ ,[V̂ (t ′ − t)I ,Û

†
0 (t ′ − t)ρ̂(t ′)Û0(t ′ − t)]]}Ŝi), i = x,y,z (A6)

where 〈. . .〉 stands for the expectation value of the spin component.
On the other hand, the time evolution of the bath energy can also be obtained from Eqs. (A4) and (A5) by calculating the

partial trace over the spin system, multiplying by Ĥb and then performing the partial trace over the bath variable, that is,

d

dt
〈Ĥb〉 = d

dt
Trb

{
ρ̂

eq

b (t)Ĥb

} = − i

�
Trb(Trs{[V̂ ,ρ̂(0)]}Ĥb)

− 1

�2

∫ t

0
dt ′Trb(Trs{[V̂ ,[V̂ (t ′ − t)I ,Û

†
0 (t ′ − t)ρ̂(t ′)Û0(t ′ − t)]]}Ĥb). (A7)
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Therefore, this equation describes the bath energy dynamics
due to the interaction only with the spin system. This means
that it is valid for adiabatic conditions, where there is no heat
transfer with the material environment. Notice that an external
magnetic field can induce energy changes in the phonon bath
indirectly via the excitation of the spin system.

APPENDIX B: DERIVATION OF THE QLLB EQUATION

In this Appendix, we present a short summary of the
derivation of the qLLB equation [22,23], which may help
to understand the approximations, limitations, and future
possible improvements of the self-consistent description of
spin-phonon dynamics presented in this work.

First, the second term in the right-hand side of Eq. (A6)
is zero for the interaction operators considered in the spin-
phonon model. On the other hand, the analytical calculation
of the integrals in Eq. (A6) is complicated. However, with the
help of the Markov approximation [24], which is equivalent
to the replacement Û

†
0 (t ′ − t)ρ̂(t ′)Û0(t ′ − t) → ρ̂(t) in the

integrand, and assuming that the retarded spin operator Ŝ(t ′ −
t)I precesses around the field HMFA(t) = H MFA(t)ez, the
integrals can be calculated analytically. The approximations
are based on the fact that the kernel of the integrals are
localized in |t − t ′| � 1/wmax, where wmax is the maximal
frequency of the phonon excitations [22,46]. In order to avoid
unnecessary tedious calculations, the field HMFA is considered
to be along the z axis, and at the end the general case is

deduced from it. As a result, the integrals in Eq. (A6)
become [22]

∫ t

0
dt ′η · Ŝ(t ′ − t)I

∑
i,j

〈F̂i F̂j (t ′ − t)〉

	 ηzŜzW1 + W2

2
(η+Ŝ− + e−y0η−Ŝ+), (B1)∫ t

0
dt ′η · Ŝ(t ′ − t)I

∑
i,j

〈F̂i(t
′ − t)F̂j 〉

	 ηzŜzW1 + W2

2
(e−y0η+Ŝ− + η−Ŝ+), (B2)

where y0 = β � γH MFA, β = 1/(kBTph), Ŝ± = Ŝx ± iŜy ,
η± = ηx ± iηy , and

W1 =
∑
q,p

|Vp,q |2np(nq + 1)πδ(ωq − ωp), (B3)

W2 =
∑

q

|Vq |2(nq + 1)πδ(ωq − γH MFA)

+
∑
p,q

|Vp,q |2np(nq + 1)πδ(ωq − ωp − γH MFA), (B4)

where nq = [exp(β�ωq) − 1]−1 is the Bose-Einstein distribu-
tion. Thus, using Eqs. (B1) and (B2) in Eq. (A6), one finds

d

dt
〈Ŝi〉 = − iγH MFA(t)

�
〈[Ŝi ,Ŝz]〉 − ηzW1

�2
〈[[Ŝi ,η · Ŝ],Ŝz]〉 − W2

2�2
〈[Ŝi ,η · Ŝ](η+Ŝ− + e−y0η−Ŝ+)〉

− W2

2�2
〈(e−y0η+Ŝ−+η−Ŝ+)[η · Ŝ,Ŝi]〉, i = x,y,z. (B5)

This equation can be simplified with the help of the secular
approximation [24], where the nonsecular terms are neglected.
It forces the coarse-grained time interval to be [24] �t �
�/(Em − En) where Em(n) is an eigenvalue of Ĥs . As a result,
Eq. (B5) is simplified to

d

dt
〈Ŝx(y)〉 = ∓γH MFA〈Ŝy(x)〉 − (K1 + K2)〈Ŝx(y)〉

+ K2

�
tanh

(
y0

2

)
〈Ŝx(y)Ŝz + ŜzŜx(y)〉, (B6)

d

dt
〈Ŝz〉 = −2K2〈Ŝz〉 − 2

�
K2 tanh

(
y0

2

)〈
Ŝ2

x + Ŝ2
y

〉
, (B7)

where

K1 = η2
zW1, (B8)

K2 = 1
4 (1 + e−y0 )

(
η2

x + η2
y

)
W2. (B9)

Next, the spin operator averages are calculated using the
method of the modeling distribution functions [47], assuming

a suitable form for the spin density operator as follows;

ρ̂s(t) = Z−1
s exp

[
− y(t) · Ŝ

�

]
, Zs =

S∑
m=−S

exp[−ym],

(B10)

where y(t) is an auxiliary dimensionless time-dependent
function and its equilibrium value is y0 = βγ � HMFA =
βμatHMFA/S. It is possible to show [22] that y(t) is re-
lated to the time-dependent reduced magnetization m(t) =
−〈Ŝ(t)〉/�S as

m(t) = BS[Sy(t)]
y(t)

y(t)
, (B11)

where BS(x) = [(2S + 1)/2S] coth([2S + 1]x/2S) − (1/2S)
coth(x/2S) is the Brillouin function for the spin value S. With
this method, one finds [22]

〈Ŝi Ŝj + Ŝj Ŝi〉 = Sm �
2δij

tanh
(

y

2

) + Sm �
2

tanh
(

y

2

)
×

[
2(S + 1) tanh

(
y

2

)
m

− 3

]
mimj

m2
. (B12)
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Hence, using this equation in Eqs. (B6) and (B7) and
considering the general case where HMFA is not necessary
parallel to the z axis, one arrives to Eq. (4) [22].

APPENDIX C: SPIN-PHONON ENERGY CONSERVATION

In this Appendix, we prove the energy conservation
between spins and phonons in our model through the first law
of thermodynamics. For simplicity and following the original
qLLB equation derivation in Ref. [22], here we consider the
two-ion (exchange) anisotropy, that is, the MFA field of each
magnetic ion is given by

HMFA
i (t) = J0

μat

[mi(t) − η̃xmx,i(t)ex − η̃ymy,i(t)ey] + H(t),

(C1)

where η̃x(y) are small dimensionless exchange anisotropy
constants with |̃ηx(y)| � 1. Next, from the first law of thermo-
dynamics we find that the time derivative of the total energy
(spins and bath) in adiabatic conditions is given by the work per
unit time done by the external field on the spin system, that is,

d〈Ĥtot〉
dt

= d〈Ĥb〉tot

dt
+ d

〈
Ĥ

tot
s

〉
dt

= −μat

N∑
i=1

mi · dH
dt

, (C2)

where N is the total number of spins,

d〈Ĥb〉tot

dt
=

N∑
i=1

d〈Ĥb〉i
dt

(C3)

is the time derivative of total bath energy expectation value,
and 〈Ĥ

tot
s 〉 is the total energy expectation value of the spin

system, that is,

〈
Ĥ

tot
s

〉
(t) = −μat

N∑
i=1

H̃MFA
i (t) · mi(t), (C4)

where

H̃MFA
i (t) = J0

2μat

[mi(t) − η̃xmx,i(t)ex − η̃ymy,i(t)ey] + H(t).

(C5)

Notice that H̃MFA
i is different to HMFA [see Eq. (C1)] because

it contains an extra factor 1
2 in the exchange field due to the

spin double counting in the summation done in Eq. (C4).
Next, we derive Eq. (C4) with respect to time

d
〈
Ĥ

tot
s

〉
dt

= − μat

N∑
i=1

HMFA
i · dmi

dt
− μat

N∑
i=1

mi · dH
dt

. (C6)

Finally, from Eqs. (C2), (C3), and (C6) we find

d〈Ĥb〉i
dt

= μatHMFA
i · dmi

dt
, i = 1, . . . ,N (C7)

which is the same time derivative of the bath energy per spin
than in Eq. (13).

APPENDIX D: ELECTRON-IMPURITY MODEL

In this Appendix, we derive a self-consistent description of
the spin-electron bath dynamics using the electron-impurity

scattering model proposed by Koopmans et al. in Ref. [48] and
Dalla Longa in Ref. [49] for the laser-induced magnetization
dynamics. The Hamiltonian consists of a spin system which
weakly interacts with a spinless electron bath and it reads as

Ĥ = Ĥs + Ĥe + V̂s-e, (D1)

where Ĥs is the energy of the spin system, Ĥe stands for
the electron bath energy, and V̂s−e describes the spin-electron
interaction energy:

Ĥs = γ HMFA · Ŝ, (D2)

Ĥe =
∑

k

(εk − μ)ĉ†kĉk, (D3)

V̂s-e =
∑
k,k′

Vk,k′ (Ŝ+ + Ŝ−)ĉ†kĉk′ . (D4)

Here, ĉ
†
k (ĉk) is the creation (annihilation) operator which

creates (annihilates) an electron with momentum k, εk =
�

2k2/(2mel), mel is the electron mass, μ is the chemical
potential, Vk,k′ describes the scattering amplitude. The vector
HMFA is given by Eq. (3).

In our previous work [23], we already showed that the
qLLB equation can be obtained for this model. In particular,
we found the same qLLB equation given by Eq. (5) where now
the temperature corresponds to the electron bath temperature
Te, K1 = 0, K2 = (1 + e−y0 )W2 with y0 = β � γH MFA, β =
1/(kBTe), and

W2 = 2π
∑
k,k′

|Vk,k′ |2ñk′(1 − ñk)δ

(
γH MFA − εk − εk′

�

)
,

(D5)

where ñk = [exp (β(εk − μ)) + 1]−1 is the Fermi-Dirac dis-
tribution. Moreover, the damping parameters are given by

α‖ =
{

λ 2Te

3Tc

2qs

sinh (2qs ) , Te � Tc

λ 2Te

3Tc
, Te > Tc

(D6)

α⊥ =
{

λ
[ tanh(qs )

qs
− 2Te

3Tc

]
, Te � Tc

λ Te

3Tc
, Te > Tc

(D7)

where ε = (Tc − Te)/Tc, qs = 3Tcme/[2(S + 1)Te], and

λ = K2
(S + 1)

S

μat

γ kBTe

. (D8)

Following the same procedure as in spin-phonon interaction
model described in Sec. II C, we find that for the electron-
impurity model the time derivative of the electron bath
temperature induced by the spin dynamics is

dTe

dt
= γα‖MsJ0

Ceμat

m · Heff + γα⊥Ms

Ce

(m × h)2

m2
≡ f (m,Te),

(D9)

where Ce is the electron bath specific heat in units of JK−1m−3

and Heff is given by Eq. (6) with bath temperature equals
to Te.
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Fuente, and Jesus M. Angew, Chem. Int. Edit. 52, 11526 (2013).

[41] S. Dutz and R. Hergt, Nanotechnology 25, 452001 (2014).
[42] S. Ruta, R. Chantrell, and O. Hovorka, Sci. Rep. 5, 9090 (2015).
[43] R. Di Corato, A. Espinosa, L. Lartigue, M. Tharaud, S.

Chat, T. Pellegrino, C. Ménager, F. Gazeau, and C. Wilhelm,
Biomaterials 35, 6400 (2014).

[44] E. Garaio, O. Sandre, J.-M. Collantes, J. A. Garcia, S. Mornet,
and F. Plazaola, Nanotechnology 26, 015704 (2015).

[45] H. H. Pennes, J. Appl. Physiol. 1, 93 (1948).
[46] D. A. Garanin, Adv. Chem. Phys. 147, 213 (2012).
[47] D. A. Garanin, V. V. Ishchenko, and L. V. Panina, Teor. Mat.

Fiz. 82, 242 (1990) [Theor. Math. Phys. 82, 169 (1990)].
[48] B. Koopmans, J. J. M. Ruigrok, F. Dalla Longa, and W. J. M. de

Jonge, Phys. Rev. Lett. 95, 267207 (2005).
[49] F. Dalla Longa, Ph.D. thesis, Eindhoven University of Technol-

ogy, Eindhoven, The Netherlands, 2008.

014409-10

http://dx.doi.org/10.1109/JPROC.2008.2004315
http://dx.doi.org/10.1109/JPROC.2008.2004315
http://dx.doi.org/10.1109/JPROC.2008.2004315
http://dx.doi.org/10.1109/JPROC.2008.2004315
http://dx.doi.org/10.1088/0953-8984/19/16/165218
http://dx.doi.org/10.1088/0953-8984/19/16/165218
http://dx.doi.org/10.1088/0953-8984/19/16/165218
http://dx.doi.org/10.1088/0953-8984/19/16/165218
http://dx.doi.org/10.1103/PhysRevLett.76.4250
http://dx.doi.org/10.1103/PhysRevLett.76.4250
http://dx.doi.org/10.1103/PhysRevLett.76.4250
http://dx.doi.org/10.1103/PhysRevLett.76.4250
http://dx.doi.org/10.1038/ncomms1666
http://dx.doi.org/10.1038/ncomms1666
http://dx.doi.org/10.1038/ncomms1666
http://dx.doi.org/10.1038/ncomms1666
http://dx.doi.org/10.1038/nature07321
http://dx.doi.org/10.1038/nature07321
http://dx.doi.org/10.1038/nature07321
http://dx.doi.org/10.1038/nature07321
http://dx.doi.org/10.1051/jphystap:019170070010300
http://dx.doi.org/10.1051/jphystap:019170070010300
http://dx.doi.org/10.1051/jphystap:019170070010300
http://dx.doi.org/10.1051/jphystap:019170070010300
http://dx.doi.org/10.2174/1568026614666140118203550
http://dx.doi.org/10.2174/1568026614666140118203550
http://dx.doi.org/10.2174/1568026614666140118203550
http://dx.doi.org/10.2174/1568026614666140118203550
http://dx.doi.org/10.1039/c2cs15337h
http://dx.doi.org/10.1039/c2cs15337h
http://dx.doi.org/10.1039/c2cs15337h
http://dx.doi.org/10.1039/c2cs15337h
http://dx.doi.org/10.1063/1.4935688
http://dx.doi.org/10.1063/1.4935688
http://dx.doi.org/10.1063/1.4935688
http://dx.doi.org/10.1063/1.4935688
http://dx.doi.org/10.1103/PhysRevB.85.184301
http://dx.doi.org/10.1103/PhysRevB.85.184301
http://dx.doi.org/10.1103/PhysRevB.85.184301
http://dx.doi.org/10.1103/PhysRevB.85.184301
http://dx.doi.org/10.1063/1.4900428
http://dx.doi.org/10.1063/1.4900428
http://dx.doi.org/10.1063/1.4900428
http://dx.doi.org/10.1063/1.4900428
http://dx.doi.org/10.1103/PhysRevB.55.3050
http://dx.doi.org/10.1103/PhysRevB.55.3050
http://dx.doi.org/10.1103/PhysRevB.55.3050
http://dx.doi.org/10.1103/PhysRevB.55.3050
http://dx.doi.org/10.1063/1.4733311
http://dx.doi.org/10.1063/1.4733311
http://dx.doi.org/10.1063/1.4733311
http://dx.doi.org/10.1063/1.4733311
http://dx.doi.org/10.1103/PhysRevLett.107.027205
http://dx.doi.org/10.1103/PhysRevLett.107.027205
http://dx.doi.org/10.1103/PhysRevLett.107.027205
http://dx.doi.org/10.1103/PhysRevLett.107.027205
http://dx.doi.org/10.1103/PhysRevB.81.174401
http://dx.doi.org/10.1103/PhysRevB.81.174401
http://dx.doi.org/10.1103/PhysRevB.81.174401
http://dx.doi.org/10.1103/PhysRevB.81.174401
http://dx.doi.org/10.1103/PhysRevB.85.184407
http://dx.doi.org/10.1103/PhysRevB.85.184407
http://dx.doi.org/10.1103/PhysRevB.85.184407
http://dx.doi.org/10.1103/PhysRevB.85.184407
http://dx.doi.org/10.1103/PhysRevB.77.184428
http://dx.doi.org/10.1103/PhysRevB.77.184428
http://dx.doi.org/10.1103/PhysRevB.77.184428
http://dx.doi.org/10.1103/PhysRevB.77.184428
http://dx.doi.org/10.1063/1.2822807
http://dx.doi.org/10.1063/1.2822807
http://dx.doi.org/10.1063/1.2822807
http://dx.doi.org/10.1063/1.2822807
http://dx.doi.org/10.1103/PhysRevLett.103.117201
http://dx.doi.org/10.1103/PhysRevLett.103.117201
http://dx.doi.org/10.1103/PhysRevLett.103.117201
http://dx.doi.org/10.1103/PhysRevLett.103.117201
http://dx.doi.org/10.1038/srep03980
http://dx.doi.org/10.1038/srep03980
http://dx.doi.org/10.1038/srep03980
http://dx.doi.org/10.1038/srep03980
http://dx.doi.org/10.1016/0378-4371(91)90395-S
http://dx.doi.org/10.1016/0378-4371(91)90395-S
http://dx.doi.org/10.1016/0378-4371(91)90395-S
http://dx.doi.org/10.1016/0378-4371(91)90395-S
http://dx.doi.org/10.1103/PhysRevB.90.104428
http://dx.doi.org/10.1103/PhysRevB.90.104428
http://dx.doi.org/10.1103/PhysRevB.90.104428
http://dx.doi.org/10.1103/PhysRevB.90.104428
http://dx.doi.org/10.1103/PhysRevB.74.094436
http://dx.doi.org/10.1103/PhysRevB.74.094436
http://dx.doi.org/10.1103/PhysRevB.74.094436
http://dx.doi.org/10.1103/PhysRevB.74.094436
http://dx.doi.org/10.1103/PhysRevB.10.179
http://dx.doi.org/10.1103/PhysRevB.10.179
http://dx.doi.org/10.1103/PhysRevB.10.179
http://dx.doi.org/10.1103/PhysRevB.10.179
http://dx.doi.org/10.1063/1.348176
http://dx.doi.org/10.1063/1.348176
http://dx.doi.org/10.1063/1.348176
http://dx.doi.org/10.1063/1.348176
http://dx.doi.org/10.1103/PhysRevB.84.144414
http://dx.doi.org/10.1103/PhysRevB.84.144414
http://dx.doi.org/10.1103/PhysRevB.84.144414
http://dx.doi.org/10.1103/PhysRevB.84.144414
http://dx.doi.org/10.1016/j.ijrefrig.2008.01.004
http://dx.doi.org/10.1016/j.ijrefrig.2008.01.004
http://dx.doi.org/10.1016/j.ijrefrig.2008.01.004
http://dx.doi.org/10.1016/j.ijrefrig.2008.01.004
http://dx.doi.org/10.1016/S0304-8853(99)00397-2
http://dx.doi.org/10.1016/S0304-8853(99)00397-2
http://dx.doi.org/10.1016/S0304-8853(99)00397-2
http://dx.doi.org/10.1016/S0304-8853(99)00397-2
http://dx.doi.org/10.1103/PhysRevB.90.024425
http://dx.doi.org/10.1103/PhysRevB.90.024425
http://dx.doi.org/10.1103/PhysRevB.90.024425
http://dx.doi.org/10.1103/PhysRevB.90.024425
http://dx.doi.org/10.1038/nphoton.2013.209
http://dx.doi.org/10.1038/nphoton.2013.209
http://dx.doi.org/10.1038/nphoton.2013.209
http://dx.doi.org/10.1038/nphoton.2013.209
http://dx.doi.org/10.1021/nn201822b
http://dx.doi.org/10.1021/nn201822b
http://dx.doi.org/10.1021/nn201822b
http://dx.doi.org/10.1021/nn201822b
http://dx.doi.org/10.1021/jp907046f
http://dx.doi.org/10.1021/jp907046f
http://dx.doi.org/10.1021/jp907046f
http://dx.doi.org/10.1021/jp907046f
http://dx.doi.org/10.1039/C5CP04539H
http://dx.doi.org/10.1039/C5CP04539H
http://dx.doi.org/10.1039/C5CP04539H
http://dx.doi.org/10.1039/C5CP04539H
http://dx.doi.org/10.1021/nl400188q
http://dx.doi.org/10.1021/nl400188q
http://dx.doi.org/10.1021/nl400188q
http://dx.doi.org/10.1021/nl400188q
http://dx.doi.org/10.1002/anie.201305835
http://dx.doi.org/10.1002/anie.201305835
http://dx.doi.org/10.1002/anie.201305835
http://dx.doi.org/10.1002/anie.201305835
http://dx.doi.org/10.1088/0957-4484/25/45/452001
http://dx.doi.org/10.1088/0957-4484/25/45/452001
http://dx.doi.org/10.1088/0957-4484/25/45/452001
http://dx.doi.org/10.1088/0957-4484/25/45/452001
http://dx.doi.org/10.1038/srep09090
http://dx.doi.org/10.1038/srep09090
http://dx.doi.org/10.1038/srep09090
http://dx.doi.org/10.1038/srep09090
http://dx.doi.org/10.1016/j.biomaterials.2014.04.036
http://dx.doi.org/10.1016/j.biomaterials.2014.04.036
http://dx.doi.org/10.1016/j.biomaterials.2014.04.036
http://dx.doi.org/10.1016/j.biomaterials.2014.04.036
http://dx.doi.org/10.1088/0957-4484/26/1/015704
http://dx.doi.org/10.1088/0957-4484/26/1/015704
http://dx.doi.org/10.1088/0957-4484/26/1/015704
http://dx.doi.org/10.1088/0957-4484/26/1/015704
http://dx.doi.org/10.1007/BF01079045
http://dx.doi.org/10.1007/BF01079045
http://dx.doi.org/10.1007/BF01079045
http://dx.doi.org/10.1007/BF01079045
http://dx.doi.org/10.1103/PhysRevLett.95.267207
http://dx.doi.org/10.1103/PhysRevLett.95.267207
http://dx.doi.org/10.1103/PhysRevLett.95.267207
http://dx.doi.org/10.1103/PhysRevLett.95.267207



