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Datasets are growing in size and complexity at a pace never seen before, forming ever larger datasets
known as Big Data. A common problem for classification, especially in Big Data, is that the numerous
examples of the different classes might not be balanced. Some decades ago, imbalanced classification
was therefore introduced, to correct the tendency of classifiers that show bias in favor of the majority
class and that ignore the minority one. To date, although the number of imbalanced classification
methods have increased, they continue to focus on normal-sized datasets and not on the new reality of
Big Data. In this paper, in-depth experimentation with ensemble classifiers is conducted in the context
of imbalanced Big Data classification, using two popular ensemble families (Bagging and Boosting)
and different resampling methods. All the experimentation was launched in Spark clusters, comparing
ensemble performance and execution times with statistical test results, including the newest ones
based on the Bayesian approach. One very interesting conclusion from the study was that simpler
methods applied to unbalanced datasets in the context of Big Data provided better results than complex
methods. The additional complexity of some of the sophisticated methods, which appear necessary to
process and to reduce imbalance in normal-sized datasets were not effective for imbalanced Big Data.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

In computing science, a new term has emerged to describe
he sheer size of datasets, which are rapidly expanding through-
ut the world: Big Data. The main characteristics of Big Data
ere initially established by Laney [1] around the 3 Vs: Vol-
me, Velocity and Variety. Additional Vs have since been added
uch as Value [2] and Veracity [3].1 Big Data can essentially
e defined at the intersection between these concepts: Volume
large datasets), Velocity (data-processing speeds must respond
o data-generation speeds), Variety (different forms of data), Ve-
acity (must be resilient under uncertain or imprecise data) and
alue (usefulness) [4]. Real-world classification problems are not
sually balanced; i.e., the number of instances that belong to
ach class is unevenly distributed [5]. These classification prob-
ems, known as imbalanced or unbalanced learning, have received
lot of attention over recent years [6–8]. The applications of

mbalanced learning are broad and diverse, because balanced
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Á. Arnaiz-González), jjrodriguez@ubu.es (J.J. Rodríguez), cgosorio@ubu.es
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1 Despite the fact that some authors have identified other Vs within the
ig Data equation, the five Vs presented in this paper are by far the most
epresentative.
ttps://doi.org/10.1016/j.asoc.2021.107447
568-4946/© 2021 The Author(s). Published by Elsevier B.V. This is an open access a
c-nd/4.0/).
datasets in real-life are unfortunately rare to find. Moreover, the
class in which we are usually interested is the underrepresented
one [9]. Some applications of imbalanced learning include ac-
tivity recognition [10], behavior analysis [11], industrial systems
monitoring [12,13], video mining [14] and cancer malignancy
grading [15], among others. A general classifier applied with no
strategy to process imbalanced datasets will tend to ignore the
minority class and will therefore almost inevitably misclassify
it. Imbalanced classification is frequent in standard classification,
but it is crucial within Big Data environments [8,16,17]. Several
alternative approaches for processing imbalanced data have been
proposed and can be grouped into four categories [18]2:

• Algorithm-level: the algorithms are internally modified to
process the imbalance, i.e., the algorithms are biased to-
wards focusing on minority class instances.

• Data-level: instead of changing the algorithms, the idea is
to resample or to rebalance the class distribution within the
input dataset.

• Cost-sensitive: the algorithms incorporate different misclas-
sification costs for the different classes within the dataset.

• Classifier ensembles: the capability of ensembles to im-
prove on the results of difficult classification tasks has been
demonstrated. A common ensemble construction method

2 As pointed out in [7], these categories are not mutually exclusive.
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for imbalanced learning is at the data-level, by training
each base classifier with a pre-processed dataset. Another
approach is the use of heterogeneous ensembles [19].

The decision to use one or another approach is highly problem
dependent, nevertheless algorithm-level approaches and cost-
sensitive approaches are, according to [18], more data depen-
dent, while the other two methods are more versatile. Data-
level is currently the most popular approach to process im-
balanced data [20]. The present paper is broadly focused on
data-level and classifier ensemble approaches and specifically
on how the resampling techniques help ensemble learning to
address imbalanced classification in Big Data problems.

The topic of imbalanced classification in Big Data is still at
an early stage [8,21]. Two gaps have been identified: the few
ensemble methods designed for Big Data problems [22] and per-
haps even fewer for processing imbalance within Big Data [17].
The aim of this work is therefore to conduct an experimental
evaluation of some of the most popular ensembles in the context
of imbalanced Big Data classification: Bagging and Boosting using
various resampling techniques. The Apache Spark framework,
a widely used Big Data platform, will be used for the experi-
mentation. Since proposing new implementations for Big Data is
beyond the scope of this study, the experiments will only be run
on currently available (or easily implementable) ensemble and
resampling methods in Apache Spark.

The rest of the paper will be structured as follows. In Section 2,
research into ensembles applied to the imbalance problem will be
explained. In Section 3, the state-of-the-art of data pre-processing
techniques for Big Data will be described. In Section 4, details
of the experimentation will be reported, followed by an expla-
nation of the results that will be given in Section 5. Finally, the
main conclusions and future research lines will be discussed in
Section 6.

2. Ensemble learning for imbalanced problems

As is well-known, ensemble learning is based on the con-
struction and the subsequent combination of several classifiers
to obtain a new classifier that can outperform the base classi-
fiers [18]. Desirable properties of the classifiers that make up
ensembles are accuracy, instability and diversity, among others.
Instability is a useful property of the base classifiers of an en-
semble (i.e., small variations within an input dataset can generate
significant changes within the classifier). Diversity is essential,
because if all the base classifiers were to predict the same class,
then there might be little point in building an ensemble. There
are multiple methods to force diversity, many of which are based
on either Bagging [23] (which resamples the dataset) or Boost-
ing [24] (which assigns a weight to the instances depending on
the difficulty of their classification). However, there are some
other methods that involve alternative techniques [25–29].

Pre-processing techniques that balance the class proportions
can be applied in a straightforward manner within an ensemble
and will usually either reduce the size of the majority class,
increase the size of the minority class, or even achieve both at the
same time [7]. Although there are several techniques, we will only
summarize those that are generally used to deal with imbalance
in ensemble learning:

• Random UnderSampling (RUS): consists of randomly remov-
ing examples of the majority class. The number of examples
removed reduces the imbalance ratio, and it can balance the
dataset, or even unbalance it in the opposite direction.

• Random OverSampling (ROS): consists of randomly repli-
cating examples of the minority class. As with the previ-
ous case, the number of examples generated reduces the
imbalance ratio.
2

• Synthetic Minority Oversampling TEchnique (SMOTE) [30]:
generates synthetic instances of the minority class by in-
terpolation of two original minority instances. It applies
k-nearest neighbors to ensure that the instances selected for
the interpolation are close to each other.

• Random OverSampling Examples (ROSE) [31]: generates a
new synthetic dataset of a certain size and a certain im-
balance ratio. A typical strategy is to create a balanced
dataset of the same size as the input dataset. ROSE generates
new artificial examples according to a smoothed bootstrap
approach.

• Random Balance (RB) [32]: as the balancing technique, ei-
ther the generation or the elimination of instances (more
suitable for a dataset), and the optimal imbalance ratio will
a priori be unknown, a generative method (SMOTE) and a re-
duction of instances method (RUS) are randomly combined
in each classifier by the RB ensemble method. The imbalance
ratio of the datasets that are generated is also random, all of
which yields additional diversity from which the ensemble
may also benefit.

These pre-processing techniques can either be performed once
at the beginning (before training the ensemble classifier), or
before training each single base classifier of the ensemble. For
example, the use of undersampling in each base classifier of
a bagging ensemble, is known as under-bagging, in the same
way that over-bagging consists in using oversampling within
bagging [18].

During the last two decades, different combinations of en-
sembles and pre-processing techniques have been proposed to
improve classification performance [18], both for Bagging and
Boosting [33] families, as well as hybrid solutions [34].

3. Imbalanced data pre-processing for big data

Despite the intense research over past decades in imbalanced
learning for normal-sized datasets, the imbalance problem in
relation to computational scalability has yet to be thoroughly ex-
plored [35]. The first comparison of several resampling methods
in both Hadoop and Spark was presented in [8]. For a complete
review of these methods, we would recommend the following
papers [16,17].

Simple sampling techniques, such as Random OverSampling
(ROS) and Random UnderSampling (RUS) were among the first
attempts to deal with imbalance in Big Data classification [36].
The effect of RUS on Big Data with simulated class imbalance
datasets was likewise studied in [37].

SMOTE is another popular algorithm to deal with imbalanced
datasets, the straightforward implementation and sound per-
formance of which has increased its popularity and led to a
proliferation of SMOTE variants, that number over 85 [38] today.
The Big Data version of SMOTE (SMOTE-BD) was recently pre-
sented in [39]. A Big Data implementation of a SMOTE algorithm
based on the Neighborhood Rough Set Model [40] (NRSBoundary-
SMOTE) was presented in [41].

The ROSEFW-RF [42] algorithm (Random OverSampling and
Evolutionary Feature Weighting for Random Forest) was the win-
ning algorithm in the ECBDL’14 Big Data competition. This al-
gorithm balances the classes using ROS and identifies the most
relevant features through an evolutionary feature-selection pro-
cess, before building a Random Forest classifier. The algorithm
demonstrated its strengths winning the competition.

Despite the fact that most studies are based on ensemble and
simple sampling techniques, more sophisticated methods have
been presented, such as evolutionary undersampling [43], among
others.
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Table 1
Sampling techniques used in the experimental study and their configuration.
Abbr. Method Details and parameters

RUS Random Undersampling Undersampling without replacement until 50% of the data belongs to minority class.
ROS Random Oversampling Oversampling until 50% of the data belongs to minority class.
SMOTE SMOTE (approximated) K = 5, Oversampling until 50% of the data belongs to minority class.
ROSE ROSE shrinkFactor = 1, Generate n synthetic examples with 50% probability of belonging to any class.

(n is the size of the original dataset)
RB Random Balance A random imbalance ratio is applied for each base classifier.
Table 2
Ensemble classifiers used in the experimental study and their configuration.
Abbr. Method Details and parameters

BAG Bagging numTrees = 100, maxDepth = 5, subsamplingRate = 1.0, featureSubsetStrategy = all
RANF Random Forest numTrees = 100, maxDepth = 5, subsamplingRate = 1.0, featureSubsetStrategy = auto
GBT Gradient Boosting Trees maxIter = 100, maxDepth = 5
m
R

t

The lack of methods applicable to imbalanced learning in
ig Data frameworks poses difficulties when extracting knowl-
dge from large datasets with unevenly distributed classes. The
carcity of methods becomes even more noticeable when it is
ompared with the large number of methods for normal-sized
atasets [17]. Furthermore, some of these methods were im-
lemented only for Hadoop before Spark became more popular,
nd thus, their comparison is even more challenging. To the
est of our knowledge, no comprehensive experimentation has
een conducted to date, to compare resampling-based ensemble
ethods with Big Data imbalance classification, and we consider

hat there is a need for that kind of experimental evaluation.
nowing whether resampling techniques can and to what extent
hey can benefit imbalanced Big Data classification is essential to
ccomplish meaningful and successful future research.

. Experimental set-up

The experimental set-up was organized into two groups, in
rder to determine the effects of the balancing/resampling strate-
ies on the performance of the ensembles:

• Dataset resampling and then training: the dataset was bal-
anced once at the beginning (following one of the strategies)
and an ensemble classifier was trained using the resampled
dataset.

• Resampling within the ensemble: the ensemble performs a
resampling strategy before the training of each base clas-
sifier (i.e., there are as many resamples as there are base
classifiers).

4.1. Methods

Five popular sampling techniques were tested in the ex-
erimentation: RUS, ROS, SMOTE, ROSE, and RB. All the algo-
ithms were implemented in Scala and executed within the
pache Spark framework. The implementation of RUS and ROS
as straightforward using the Spark API. As mentioned above,
MOTE-BD [39] is an implementation of the SMOTE algorithm
or Spark, however, we used our own implementation of SMOTE3
ased on Fang’s approximated KNN,4 that uses a hybrid spill-tree
pproach [44], to achieve high accuracy and search efficiency.
parallel version of ROSE was implemented under the Spark

ramework following the existing R implementation [45]. Finally,
he RB implementation is a variant of the original algorithm

3 Approx-smote on GitHub: https://github.com/mjuez/approx-smote.
4 Saurfang spark-knn on GitHub: https://github.com/saurfang/spark-knn.
 c

3

specifically adapted to Big Data.5 Table 1 lists the sampling
methods that were tested.

The performance of the sampling techniques was compared
using three different ensemble classifiers available for Spark:
Bagging (BAG), Random Forest (RANF), and Gradient Boosting
Trees (GBT), thus covering the Bagging and Boosting families of
ensembles.

In the first group of experiments (resampling before training),
the ensembles were trained using the balanced datasets obtained
after applying the sampling techniques: RUS, ROS, SMOTE, and
ROSE. In the second group of experiments (resampling within
the ensemble), specific implementations of Bagging and Gradi-
ent Boosting Trees were developed for processing the imbalance
problem. In these implementations, a new sampling was per-
formed for each base classifier in the ensemble, for which the
following methods were used: RUS, ROS and RB.

So that the comparison of the ensemble algorithms was on
equal terms, all the ensembles were composed of 100 trees,
each with a depth of 5. The details of the algorithms and their
parameters are listed in Table 2.

The methods without resampling and therefore with no estab-
lished method of processing imbalance were also included in the
experiments, as a baseline performance reference, these methods
are referred to in this paper as the Gini variant. Traditionally, clas-
sification and regression trees (CART) have used the Gini index as
a split criterion. Nevertheless, when datasets are imbalanced, the
Gini index is biased in favor of the majority class [46]. For this
reason, the weighted Gini (WGini) index could be beneficial for
the application of trees to imbalanced learning, thus it was also
included in this experimental evaluation.6

To sum up, different ensemble classifiers were evaluated: BAG,
RANF, and GBT. For each ensemble, two impurity indexes were
used as a baseline (Gini and WGini) and some popular resampling
techniques were tested: ROS, RUS, SMOTE, ROSE, and RB. The
use of weighted Gini with the resampling techniques was not
explored because, as we resampled until both classes were totally
balanced, the result would be equivalent to the use of the default
Gini index.

5 To speed up its execution with Big Data, instead of the SMOTE and RUS
ethods in the original algorithm, the new one used a combination of ROS and
US.
6 Due to the fact that the weighted Gini index is not available on the Spark

rees, the instances were weighted according to the imbalance ratio of their
lass, as proposed by Chen et al. [47].

https://github.com/mjuez/approx-smote
https://github.com/saurfang/spark-knn
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Table 3
Main characteristics of the datasets used in the experiments: number of instances, number of features, number of classes of the minority
and majority classes, imbalance ratio, and dataset size in libsvm [48] format.
Dataset # instances # attributes # maj/min IR Size (GB)

COVTYPE 1 vs 4 229207 54 211840/17367 12.20 0.02
COVTYPE 1 vs 3 232350 54 211840/20510 10.33 0.02
COVTYPE 1 vs 2 247594 54 211840/35754 5.92 0.02
COVTYPE 0 vs 4 300668 54 283301/17367 16.31 0.03
COVTYPE 0 vs 3 303811 54 283301/20510 13.81 0.03
COVTYPE 0 vs 2 319055 54 283301/35754 7.92 0.03
ECBDL’14 1M 999716 893 978128/21588 45.31 15.70
SUSY IR16 2881796 18 2712173/169623 15.99 1.04
SUSY IR4 3389320 18 2712173/677147 4.00 1.23
KDDCUP dos vs r2l 3 884496 119 3883370/1 126 3448.82 0.50
KDDCUP dos vs normal 4 856151 119 3883370/972781 3.99 0.62
HEPMASS IR16 5578586 28 5250124/328462 15.98 3.20
HIGGS IR16 6194093 28 5829123/364970 15.97 3.26
HEPMASS IR4 6561364 28 5250124/1 311240 4.00 3.77
HIGGS IR4 7284166 28 5829123/1 455043 4.00 3.94
ECBDL’14 10M 9998491 893 9783328/215163 45.47 45.80
A

4.2. Experimental framework

Six popular classification datasets for Big Data were used in
he experiments.7 Two standard techniques were used to gen-
rate the imbalanced datasets [39]. Several imbalanced datasets
ere generated from the multi-class datasets (i.e., covtype and
ddcup), by selecting the majority class and one of the mi-
ority classes. Since the binary datasets (i.e., susy, higgs, and

hepmass) are actually almost evenly balanced, the imbalance
was forced by subsampling the class with fewer instances us-
ing two different imbalance ratios: 4 and 16. The ECBDL’14 is
already unbalanced, so it was used as is without any trans-
formation. Only two subsamples (approximately 1 million and
10 million instances) with the original imbalance ratio were
processed, because of the huge size of this dataset and bud-
getary limitations on the computing time that may be requested
on Google Cloud clusters. Table 3 summarizes the resulting 16
datasets. All the datasets were stored in libsvm [48] format.
As the implementation of some algorithms, such as SMOTE or
ROSE, cannot process nominal features, all nominal features were
binarized using one-hot encoding.

The experiments were performed using 5 repetitions of a 2-
fold cross-validation. A random seed value was set at 46 to enable
experimental repeatability.

For evaluating and comparing statistical differences in per-
formance, average ranks and statistical tests were used. Average
ranks were computed by assigning, for each dataset, one to the
best classifier, two to the second, and so on. When there was
a tie between several classifiers, their average rankings were
assigned to each one. The final value assigned to each method
was the mean of its rankings across all datasets. The Friedman
test, followed by the Hochberg 1×N (one vs. all) and the Nemenyi
N×N (all vs. all) post hoc procedures [50] were used to evaluate
any statistical difference in the results.

Bayesian analysis [51] (baycomp8 library was used) was con-
ducted using Bayesian hierarchical sign tests, which separately
account for the results of all folds and repetitions, for comparative
purposes. The number of samples for all Bayesian comparisons
was set at 50000. A common graphical representation of this type
of analysis is a ternary plot [52] where the region of practical

7 The covtype, susy, higgs, hepmass, and kddcup datasets are available from
he UCI Machine Learning repository [49] https://archive.ics.uci.edu/ml/index.
hp. The ECBDL14 dataset is available from the Evolutionary Computation for
ig Data and Big Learning Workshop competition website http://cruncher.ico2s.
rg/bdcomp/.
8 The baycomp library is publicly available at https://baycomp.readthedocs.io/
n/latest/.
 w
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equivalence (ROPE) appears on the top corner, and on the right
and left corners are the regions of the methods under comparison.
The ROPE was set to 0.05, which means that two algorithms with
a difference in performance of less than 0.05 will be considered
equivalent.

The experiments were executed in cloud-based clusters pro-
vided by the Google Cloud Platform. The cloud cluster was com-
posed of a total of twenty-eight nodes (one master node and
twenty-seven worker nodes). All nodes were of the n1-highmem-
8 type, which had 8 virtual CPUs, and 52 GB of RAM. Hence, the
cluster size was 224 vCPUs and occupied 1456 GB of RAM. At
that point in time, the vCPUs of n1-highmem nodes could be
of the four following types: Intel Xeon (Skylake), Intel Xeon E5
(Sandy Bridge), Intel Xeon E5 v2 (Ivy Bridge), Intel Xeon E5 v3
(Haswell), or Intel Xeon E5 v4 (Broadwell E5). The Apache Spark
environment was provided by Google Dataproc software, version
1.4, running on Debian 9, with Apache Hadoop 2.9.2, and Apache
Spark 2.4.5.9 Google Cloud Storage, as a distributed file system,
was used for storing the datasets and the experimental results.

4.3. Performance metrics

Standard accuracy metrics tend to focus on all target classes
equally, which is a problem for the minority ones [53]. For this
reason, the use of a single metric in imbalance classification is
not recommended, as it is commonly preferred to use several
dedicated metrics to contrast interpretations.

In this study, the four distinct metrics under consideration
were: F1 Score (F1-score), Matthews Correlation Coefficient (MCC),
Geometric Mean (G-mean), and Area Under the Curve (AUC). All
these metrics were defined using different values given in the
confusion matrix. If we consider a problem with two classes:
a class of interest, the ‘‘positive’’ class (+), and another usually
much larger class, the ‘‘negative’’ (−) one; then the mistakes
(False Positives and False Negatives) and successes (True Posi-
tives and True Negatives) of a classifier can be sorted within a
confusion matrix, as follows:

Predicted labels
+ − total

Actual labels + TP FN P
− FP TN N
total P̂ N̂

9 The experiments of the Weighted Gini (WGini) was launched within a
pache Spark 3.0.1 cluster, since the instance weighting on the trees training
ere not supported in previous versions.

https://archive.ics.uci.edu/ml/index.php
https://archive.ics.uci.edu/ml/index.php
http://cruncher.ico2s.org/bdcomp/
http://cruncher.ico2s.org/bdcomp/
https://baycomp.readthedocs.io/en/latest/
https://baycomp.readthedocs.io/en/latest/
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Fig. 1. A Friedman–Nemenyi test comparison of the different ensemble classifiers performing resampling before training, according to MCC (a) and AUC (b) metrics.
The methods connected with a thick horizontal line show no significant differences between each other at a level of α = 0.05. For many methods there is a close
tatistical equivalence.
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The F1-score is the harmonic mean of precision
( TP
TP+FP

)
and

ecall
( TP
TP+FN

)
:

1-score =
2

recall−1
+ precision−1

= 2 ×
recall × precision
recall + precision

=
TP

TP +
1
2 (FP + FN)

(1)

The MCC is a metric strongly advised for imbalance classifica-
tion [54]:

MCC =
TP × TN − FP × FN√

P̂ × P × N̂ × N
(2)

The G-mean is the geometric mean of sensitivity and specificity:

-mean =

√
sensitivity × specificity =

√
TP

TP + FN
×

TN
TN + FP

(3)

The domains of all the metrics, except MCC, were between 0
nd 1, where 1 was the best value. Furthermore, MCC is a met-
ic that expresses the correlation between the actual and the
redicted class, with values ranging between −1 (total disagree-
ent) and +1 (perfect agreement).
The definition of the AUC is slightly less straightforward. When

he result of a binary classifier is the probability that the in-
tance belongs to the class of interest, the final assignment of
he class will ultimately depend on a threshold value from which
e consider that the probability is sufficient to assign the class
f interest. For each threshold value, we would have different
esults of the classifier, and therefore different TP and FP rate
alues (TPR and FPR). If we consider the entire range of values
or the threshold, from zero to one, we can represent the re-
ults obtained for each threshold as points with the coordinates
TPR, FPR). The curve obtained by considering all these points is
alled the Receiver Operating Characteristic curve, or ROC curve.
f we now consider the area under the curve (AUC), its value
erves as an indicator of classifier performance for all possible
hresholds. A good classifier will have a value close to 1 and a
andom (non-informative) classifier will have a value close to 0.5.

For the sake of simplicity, only the MCC and the AUC metrics
re reported in the following sections. The reason is because, for
his experimental evaluation, we have found that the four metrics
an be paired in such a way that both metrics of each pair lead
o almost the same interpretations. The two groups of metrics are
1-score and MCC, and G-mean and AUC. Nonetheless the results
f the four metrics may be found in the Appendix A.

. Results and discussion

As previously stated, the experimentation was divided into
wo groups: resampling before training (see Section 5.1) and
 t

5

resampling within the ensemble (see Section 5.2). A comparison
of both approaches may be found in Section 5.3; a comparison of
their execution times is presented in Section 5.4; and, finally, all
the results are discussed in Section 5.5.

5.1. Resampling before training ensemble

This subsection shows the performance results of the ensem-
ble methods trained after obtaining a dataset by resampling the
original dataset. These experiments correspond with the data-
level approach.

Table 4.a details the results of the experiments for MCC, and
Table 4.b for AUC. The best results of the datasets from each
ensemble classifier group (i.e., BAG, RANF, and GBT) are shown
within gray boxes, and the best overall results are highlighted
within black boxes. The blueness intensity of each cell is used
for highlighting the results, the higher the metric, the darker the
blue. A clear superiority of GBT over BAG and RANF ensemble
classifiers was shown. The impact of the RUS, ROS, and SMOTE
pre-processing methods gave quite similar performances at a
glance. Moreover the classifier trained with the original dataset
using the weighted Gini index, could also be included in that
similar-performing group of methods (i.e., row-wise blueness
intensity is almost the same for the four variants: WGini, RUS,
ROS, and SMOTE). ROSE by contrast, generally achieved worse
performance. Focusing on each metric separately, the results for
MCC tended to reveal that it is better not to pre-process at all
and to train the classifier using the Gini index; on the other
hand, AUC highlighted a better performance when pre-processing
techniques were used or, at least, when the weighted Gini index
was used. Nevertheless, it is worth noting that the results of
the classifiers trained without taking the imbalance into account
(i.e., Gini variants) were, for some datasets, totally unacceptable,
uch as for example ECBDL or HIGGS, while the other alternatives
ffered good overall results.
Table 5 shows the average ranks computed for each metric,

he dashed line represents the limit below which the methods
iffer statistically from the best one at a significance level of
5%. The best method was ROS+GBT for both metrics, followed
y GBT (WGini). The AUC metric revealed that some resampling,
r at least the use of weighted Gini, contributed to overcoming
he imbalance, because regular ensembles (i.e., Gini variants)
ere ranked extremely low. The methods that showed the worst
esults were, in general, RANF (Gini) and all the variants involving
OSE.
The results of the Friedman–Nemenyi test can be seen in Fig. 1.

t shows all groups of methods that performed equivalently, pro-
iding therefore, additional information to the average rankings
iscussed above. Also, the number of groups (i.e., from five to
even) could be considered high. Fig. 1.a shows that SMOTE+GBT,
OS+GBT, and GBT (WGini) performed better than over half of

he evaluated methods, which include all RANF variants and three
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xperimental results performing resampling before the ensemble training for MCC (a) and AUC (b). The best results for each classifier appear within gray boxes,
hile the best results overall are within black boxes. GBT showed the best performance for both metrics. For MCC, Gini variants, specially the GBT one, showed the
est performance for the majority of the datasets. WGini, RUS, ROS, and SMOTE were all preferable options for AUC, depending on the ensemble in use.

a) MCC

Dataset BAG RANF GBT

Gini WGini RUS ROS SMOTE ROSE Gini WGini RUS ROS SMOTE ROSE Gini WGini RUS ROS SMOTE ROSE

COVTYPE 1vs4 0.9522 0.9438 0.9422 0.9314 0.9392 0.8976 0.9206 0.9227 0.9229 0.9235 0.9244 0.5602 0.9906 0.9776 0.9686 0.9801 0.9791 0.8963

COVTYPE 1vs3 0.6753 0.5789 0.5696 0.5655 0.5592 0.0043 0.2925 0.5263 0.5186 0.5173 0.5210 0.0000 0.8548 0.7897 0.7675 0.7917 0.7947 0.0043

COVTYPE 1vs2 0.9801 0.9756 0.9734 0.9745 0.9738 0.9447 0.9759 0.9663 0.9680 0.9689 0.9665 0.6207 0.9975 0.9938 0.9930 0.9959 0.9958 0.9445

COVTYPE 0vs4 0.7408 0.6848 0.6741 0.6739 0.6803 0.2409 0.6734 0.6577 0.6580 0.6572 0.6640 0.2405 0.9051 0.8036 0.7822 0.8095 0.8108 0.2409

COVTYPE 0vs3 0.8993 0.7829 0.7870 0.7762 0.7763 0.5864 0.8184 0.7471 0.7514 0.7504 0.7413 0.0835 0.9751 0.9463 0.9218 0.9493 0.9487 0.5868

COVTYPE 0vs2 0.8852 0.8033 0.7995 0.8008 0.8008 0.3267 0.7828 0.7987 0.7921 0.7905 0.7961 0.3325 0.9317 0.8858 0.8816 0.8878 0.8921 0.3267

ECBDL’14 1M 0.0000 0.1275 0.1269 0.1226 0.1203 0.0883 0.0000 0.1353 0.1340 0.1344 0.1282 0.1180 0.0602 0.1555 0.1405 0.1560 0.1169 0.1166

SUSY IR16 0.4385 0.3061 0.3068 0.3002 0.2917 0.3334 0.4284 0.3091 0.3123 0.3117 0.3017 0.3381 0.4970 0.3537 0.3519 0.3541 0.3445 0.4524

SUSY IR4 0.5345 0.4685 0.4695 0.4665 0.4604 0.4830 0.5174 0.4752 0.4793 0.4775 0.4705 0.4884 0.5796 0.5295 0.5281 0.5287 0.5221 0.5569

KDDCUP dos vs r2l 0.9757 0.9596 0.4275 0.8650 0.7890 0.3895 0.9508 0.8245 0.5325 0.8818 0.8316 0.5442 0.9955 0.9885 0.4128 0.9938 0.9956 0.3936

KDDCUP dos vs nor. 0.9987 0.9991 0.9989 0.9993 0.9993 0.9952 0.9980 0.9979 0.9978 0.9978 0.9977 0.9946 0.9999 0.9999 0.9998 0.9999 0.9999 0.9954

HEPMASS IR16 0.6565 0.4319 0.4190 0.4353 0.4562 0.3364 0.4255 0.3428 0.3431 0.3433 0.3529 0.3244 0.6706 0.4742 0.4714 0.4737 0.5406 0.3121

HIGGS IR16 0.1158 0.1597 0.1591 0.1569 0.1497 0.1168 0.0000 0.1750 0.1761 0.1751 0.1746 0.1203 0.1944 0.2306 0.2289 0.2301 0.2070 0.1691

HEPMASS IR4 0.6920 0.6153 0.6141 0.6158 0.5988 0.5253 0.6353 0.5360 0.5369 0.5363 0.5426 0.5159 0.7188 0.6636 0.6628 0.6630 0.6892 0.4917

HIGGS IR4 0.2004 0.2663 0.2654 0.2644 0.2541 0.1923 0.0843 0.2883 0.2900 0.2895 0.2956 0.1976 0.3440 0.3743 0.3723 0.3735 0.3496 0.2606

ECBDL’14 10M 0.0000 0.1252 0.1246 0.1250 0.1256 0.0922 0.0000 0.1348 0.1346 0.1351 0.1275 0.1213 0.0717 0.1620 0.1583 0.1617 0.1374 0.1210

(b) AUC

Dataset BAG RANF GBT

Gini WGini RUS ROS SMOTE ROSE Gini WGini RUS ROS SMOTE ROSE Gini WGini RUS ROS SMOTE ROSE

COVTYPE 1vs4 0.9694 0.9933 0.9931 0.9924 0.9929 0.9848 0.9313 0.9892 0.9901 0.9900 0.9901 0.9286 0.9941 0.9973 0.9971 0.9980 0.9977 0.9847

COVTYPE 1vs3 0.7939 0.8902 0.8898 0.8865 0.8876 0.5001 0.5474 0.8830 0.8816 0.8807 0.8821 0.5000 0.9055 0.9629 0.9605 0.9630 0.9628 0.5001

COVTYPE 1vs2 0.9930 0.9958 0.9955 0.9954 0.9953 0.9877 0.9822 0.9916 0.9919 0.9926 0.9924 0.9064 0.9988 0.9989 0.9989 0.9992 0.9992 0.9877

COVTYPE 0vs4 0.8366 0.9595 0.9588 0.9577 0.9577 0.7580 0.7802 0.9473 0.9484 0.9472 0.9475 0.7576 0.9396 0.9806 0.9786 0.9810 0.9803 0.7580

COVTYPE 0vs3 0.9221 0.9750 0.9749 0.9747 0.9744 0.9386 0.8545 0.9627 0.9621 0.9640 0.9639 0.5471 0.9828 0.9939 0.9924 0.9941 0.9941 0.9386

COVTYPE 0vs2 0.9339 0.9630 0.9628 0.9630 0.9628 0.7580 0.8479 0.9580 0.9582 0.9569 0.9580 0.7630 0.9614 0.9825 0.9822 0.9830 0.9833 0.7580

ECBDL’14 1M 0.5000 0.7043 0.7053 0.6986 0.6641 0.6515 0.5000 0.7103 0.7085 0.7091 0.6751 0.6870 0.5030 0.7270 0.7210 0.7285 0.5638 0.6952

SUSY IR16 0.6264 0.7701 0.7702 0.7680 0.7649 0.7466 0.6125 0.7716 0.7722 0.7718 0.7719 0.7553 0.6641 0.7934 0.7928 0.7934 0.7892 0.7278

SUSY IR4 0.7200 0.7689 0.7693 0.7685 0.7661 0.7495 0.6909 0.7712 0.7720 0.7717 0.7718 0.7572 0.7433 0.7941 0.7937 0.7939 0.7918 0.7357

KDDCUP dos vs r2l 0.9761 0.9984 0.9993 0.9984 0.9989 0.9986 0.9524 0.9997 0.9996 0.9997 0.9999 0.9996 0.9953 0.9973 0.9992 0.9979 0.9975 0.9992

KDDCUP dos vs nor. 0.9997 0.9998 0.9998 0.9998 0.9998 0.9987 0.9996 0.9996 0.9996 0.9996 0.9995 0.9974 1.0000 1.0000 1.0000 1.0000 1.0000 0.9987

HEPMASS IR16 0.7550 0.8343 0.8348 0.8343 0.8336 0.8183 0.5976 0.8214 0.8220 0.8221 0.8223 0.8144 0.7645 0.8626 0.8619 0.8623 0.8506 0.8126

HIGGS IR16 0.5102 0.6669 0.6659 0.6644 0.6526 0.5961 0.5000 0.6774 0.6783 0.6776 0.6714 0.5986 0.5313 0.7265 0.7254 0.7261 0.6989 0.6061

HEPMASS IR4 0.8006 0.8342 0.8331 0.8337 0.8327 0.8171 0.7444 0.8212 0.8218 0.8216 0.8222 0.8139 0.8237 0.8620 0.8620 0.8619 0.8564 0.8053

HIGGS IR4 0.5381 0.6663 0.6659 0.6651 0.6565 0.5987 0.5047 0.6771 0.6779 0.6776 0.6795 0.6017 0.6119 0.7265 0.7256 0.7261 0.7099 0.6202

ECBDL’14 10M 0.5000 0.7000 0.7002 0.6985 0.6709 0.6587 0.5000 0.7108 0.7108 0.7106 0.6834 0.6891 0.5040 0.7462 0.7432 0.7458 0.5896 0.6994
variants of BAG. Regarding the bad performance of the ROSE
variants, the test showed that those variants were only worse
than the GBT-based methods. Fig. 1.b shows that only ROS+GBT
and GBT (WGini) performed better than more than half of the
tested methods. In contrast to the MCC results, the RANF variants
were not so badly ranked by the AUC. Finally, it could be seen that
the Gini variants performed worse than their respective WGini
variants.
6

Table 6 shows the one-to-one comparisons using the Bayesian
hierarchical sign test for each metric and ensemble classifier
variant. For the sake of simplicity, instead of showing the ternary
heatmap plots, for each comparison the three values (Left, Right,
and ROPE) were reported. Left corresponds to the first element
under comparison, and Right to the second (e.g., for Gini vs WGini
comparison, Left corresponds to Gini, and Right to WGini). The
best results for each comparison (i.e., a metric and a classifier)
appear within black boxes.
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Fig. 2. A Friedman–Nemenyi test comparison of the different ensemble classifiers performing resampling for each base classifier, according to MCC (a) and AUC (b)
etrics. The methods connected with a thick horizontal line showed no significant differences between each other (at a level of α = 0.05). It was not clear whether

esampling was beneficial or not for the MCC. The use of resampling improved AUC performance.
Table 5
Average ranks of the ensemble classifiers performing resampling before training,
according to both the MCC (a) and the AUC (b) metrics. The methods below the
dashed line showed significant differences with the best one according to the
Hochberg procedure at a confidence level of 95%. ROS+GBT was the best method,
followed by GBT (WGini).

Algorithm Avg. rank

ROS+GBT 3.0000
GBT (WGini) 3.4375
GBT (Gini) 3.4375
SMOTE+GBT 4.0000
RUS+GBT 5.5625
BAG (Gini) 7.9375
BAG (WGini) 9.1875
ROS+BAG 10.5000
RUS+BAG 10.7500
SMOTE+BAG 11.0625
ROS+RANF 11.0625
RUS+RANF 11.2500
SMOTE+RANF 11.5625
RANF (WGini) 11.5625
RANF (Gini) 11.7500
ROSE+GBT 14.0312
ROSE+RANF 15.3125
ROSE+BAG 15.5938

Algorithm Avg. rank

ROS+GBT 2.3750
GBT (WGini) 2.8125
RUS+GBT 3.7500
SMOTE+GBT 5.1875
BAG (WGini) 7.4375
RUS+BAG 7.5625
RUS+RANF 8.6875
ROS+BAG 8.7500
ROS+RANF 9.1250
SMOTE+RANF 9.3750
RANF (WGini) 9.4375
SMOTE+BAG 9.6875
GBT (Gini) 11.0625
ROSE+GBT 14.1562
ROSE+BAG 14.6562
ROSE+RANF 14.6875
BAG (Gini) 15.5000
RANF (Gini) 16.7500

(a) MCC (b) AUC

For the first set of comparisons, Gini vs others, it is remark-
ble how much it depended on the chosen metric whether the
nsemble (using Gini without any resampling) was considered
etter or not. For example, in BAG and GBT the use of Gini was
referred for MCC (by a narrow margin), whereas the opposite
as true for AUC (by a much larger margin). RANF performed

n a more consistent way, for all metrics usually the use of
esampling or WGini showed itself to be better than the Gini
ariant. For the second set of comparisons, WGini vs ROS, RUS,
nd SMOTE, Right and Left values were very close, thus no clear
inner could be named. Likewise, the comparisons between ROS
nd RUS were not conclusive and were highly dependent on the
nsemble method used and the metric under consideration. The
ad performance of ROSE as a resampling method was clearly
orse than other resampling techniques (RUS, SMOTE, and ROS)
nd all non-resampling techniques (Gini and WGini). It must be
oted that the ROPE region was almost zero for most of the
omparisons, which means that the methods hardly performed
qually well, but that one method would be better than the other
epending on the specific dataset.

.2. Resampling within the ensemble

This subsection collects the results of the ensemble methods
hat perform the resampling within the ensemble; each base
lassifier in the ensemble will be trained on a dataset obtained
fter performing a specific resampling for that classifier. Table 7.a
7

details the results of the experiments for MCC, and Table 7.b
for AUC. As in the previous section, the boxes and the blueness
intensity of the cells, are used to highlight the results and pro-
vide an enriched representation. As might be expected, for this
strategy, GBT was also shown to be better than BAG. Focusing on
the results involving resampling (i.e., excluding Gini and WGini
variants), for GBT, ROS could be more beneficial, while RUS ap-
parently performed better for BAG. Nevertheless, looking closely
at the tables, row-wise blueness intensity is almost the same for
RUS, ROS, and RB, which suggests that all the resampling methods
performed in a similar way. As stated before, depending on the
chosen metric, pre-processing techniques could be discouraged
because the Gini variants of the ensembles, apparently performed
better. This happens specifically when looking at the MCC metric,
but its unacceptable performance with some datasets such as
ECBDL and HIGGS should not be forgotten.

In Table 8, the average ranks computed for each of the per-
formance metrics are shown. GBT+ROS showed the best results
for both metrics, being statistically better than any BAG variant.
Looking at AUC, the worst methods were the Gini variants of GBT
and BAG. The best methods were GBT variants when resampling
was used (ROS, RB and RUS), with no differences between all
three. On the other hand, for MCC the worst method was BAG+RB
and BAG using the weighted Gini index, leaving it apparently
quite clear that resampling techniques performed better than the
non-resampling (using Gini or weighted Gini) alternatives.

The results of the Friedman–Nemenyi test are shown in Fig. 2.
As regards the MCC, GBT+ROS and GBT (Gini) performed better
than any BAG variant, on the contrary, BAG+RB and BAG (WGini)
performed worse than any GBT variant. Thus, it is not clear
whether resampling was beneficial or not. Another interesting
insight for this metric, is that all GBT variants were considered
equivalent and the same could be said for all BAG variants.
Regarding the AUC metric, the use of resampling improved the
performance. GBT+ROS and GBT+RB were better than any BAG
variant and the Gini variant of GBT. Moreover, GBT (Gini) and BAG
(Gini) performed worse than any other GBT variant. For both met-
rics, five groups of equivalent-performing classifiers were shown,
also, the size of the groups ranged from three to five methods
so, the statistical differences between most of the methods were
pretty small.

Finally, regarding the one-to-one comparisons, Table 9 shows
the Bayesian hierarchical sign test for each pair of methods be-
longing to this part of the study. It should be noted that the
Gini vs WGini comparison was not reported here, because already
appears in Table 6. In view of the comparisons between Gini
vs resampling (RUS, ROS, and RB), a clear discrepancy is shown
between the MCC and the AUC metrics for both ensemble families
(BAG and GBT). In view of MCC, the Gini variants performed
better than the resampling-based variants by a narrow margin.
On the contrary, the resampling-based variants clearly performed
better for the AUC metric (i.e., Right region values were close
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ne to-one comparison using the Bayesian hierarchical sign test for each metric and classifier variant. The best results for each comparison (metric and classifier)
ppear within black boxes. Generally, it was unclear whether one variant was better than other. It depended on the specific dataset, metric, and ensemble method.
OSE was the only variant that showed itself to be clearly worse than the rest.
Comparison Metric BAG RANF GBT

Left ROPE Right Left ROPE Right Left ROPE Right

Gini vs WGini MCC 0.6105 0.0000 0.3895 0.4058 0.0000 0.5942 0.6665 0.0000 0.3335

AUC 0.1180 0.0000 0.8820 0.0165 0.0000 0.9835 0.0648 0.0002 0.9350

Gini vs RUS MCC 0.7355 0.0000 0.2645 0.4263 0.0000 0.5737 0.7737 0.0000 0.2263

AUC 0.0695 0.0000 0.9305 0.0030 0.0000 0.9970 0.0845 0.0002 0.9153

Gini vs ROS MCC 0.6868 0.0000 0.3132 0.3832 0.0000 0.6168 0.6155 0.0000 0.3845

AUC 0.0628 0.0002 0.9370 0.0105 0.0000 0.9895 0.0695 0.0000 0.9305

Gini vs SMOTE MCC 0.7072 0.0000 0.2928 0.4433 0.0000 0.5567 0.6073 0.0000 0.3927

AUC 0.0985 0.0000 0.9015 0.0255 0.0000 0.9745 0.2112 0.0003 0.7885

Gini vs ROSE MCC 0.9145 0.0000 0.0855 0.9455 0.0000 0.0545 0.9768 0.0000 0.0232

AUC 0.4535 0.0000 0.5465 0.2827 0.0000 0.7173 0.6402 0.0000 0.3598

WGini vs RUS MCC 0.6723 0.0005 0.3272 0.5642 0.0000 0.4358 0.6230 0.0000 0.3770

AUC 0.5273 0.0235 0.4492 0.5252 0.0003 0.4745 0.4925 0.0037 0.5038

WGini vs ROS MCC 0.5465 0.0000 0.4535 0.5072 0.0000 0.4928 0.4635 0.0000 0.5365

AUC 0.5122 0.0000 0.4878 0.4990 0.0005 0.5005 0.4783 0.0195 0.5022

WGini vs SMOTE MCC 0.5302 0.0000 0.4698 0.5002 0.0000 0.4998 0.5042 0.0000 0.4958

AUC 0.5325 0.0008 0.4667 0.5360 0.0013 0.4627 0.6653 0.0000 0.3347

WGini vs ROSE MCC 0.9657 0.0000 0.0343 0.9585 0.0000 0.0415 0.9550 0.0000 0.0450

AUC 0.9417 0.0003 0.0580 0.9490 0.0000 0.0510 0.9480 0.0000 0.0520

RUS vs ROS MCC 0.3820 0.0012 0.6168 0.4263 0.0002 0.5735 0.3465 0.0000 0.6535

AUC 0.5155 0.0092 0.4753 0.5172 0.0248 0.4580 0.4810 0.0210 0.4980

RUS vs SMOTE MCC 0.4173 0.0000 0.5827 0.3957 0.0035 0.6008 0.3200 0.0003 0.6797

AUC 0.5317 0.0003 0.4680 0.5410 0.0043 0.4547 0.7295 0.0113 0.2592

RUS vs ROSE MCC 0.8760 0.0000 0.1240 0.9698 0.0000 0.0302 0.9515 0.0000 0.0485

AUC 0.8872 0.0000 0.1128 0.9660 0.0000 0.0340 0.9680 0.0000 0.0320

ROS vs SMOTE MCC 0.4567 0.0000 0.5433 0.6167 0.1293 0.2540 0.4675 0.0000 0.5325

AUC 0.4940 0.0307 0.4753 0.0813 0.8862 0.0325 0.6912 0.0828 0.2260

ROS vs ROSE MCC 0.9278 0.0000 0.0722 0.9865 0.0000 0.0135 0.9862 0.0000 0.0138

AUC 0.9172 0.0000 0.0828 0.9828 0.0005 0.0167 0.9888 0.0000 0.0112

SMOTE vs ROSE MCC 0.8992 0.0000 0.1008 0.9597 0.0000 0.0403 0.9908 0.0000 0.0092

AUC 0.8665 0.0000 0.1335 0.9475 0.0008 0.0517 0.9413 0.0022 0.0565
to 1). Using weighted Gini, for BAG ensembles could be sufficient
as it has shown itself to be marginally better than applying any
kind of resampling. Nevertheless, it was unclear whether resam-
pling might be beneficial for GBT ensembles, as the differences
were minimal and opted for one option or the other depending on
the metric in use. Finally, regarding the comparisons between re-
sampling methods (RUS, ROS, and RB), no clear winner was found
either for the BAG or for the GBT ensembles. The differences that
could led to the choice of one method or the other were very
small, and thus, the decision will depend on the specific dataset
and metric.
8

5.3. Comparing the two strategies

Having separately tested the performance of the two strate-
gies, a comparison of all the previous methods will be reported
in this subsection.

In Table 10, the average ranks of all the algorithms of the
study are shown. GBT+ROS was the best method, followed by
most of the other alternatives of GBT which were considered
statistically equivalent according to the Hochberg procedure at
a confidence interval of 95% (for MCC, RUS+GBT was statistically
worse; while for AUC, SMOTE+GBT was statistically worse). The



M. Juez-Gil, Á. Arnaiz-González, J.J. Rodríguez et al. Applied Soft Computing 108 (2021) 107447

T
E
a
m

(

able 7
xperimental results performing resampling for each ensemble base classifier for MCC (a) and AUC (b). The best results for each classifier and the best overall results
ppear within gray and black boxes, respectively. GBT showed the best performance for both metrics. For MCC, Gini variants showed the best performance for the
ajority of the datasets. With regard to the AUC, RUS and ROS were preferable for BAG and GBT, respectively.

a) MCC

Dataset BAG GBT

Gini WGini RUS ROS RB Gini WGini RUS ROS RB

COVTYPE 1vs4 0.9522 0.9438 0.9457 0.9467 0.9445 0.9906 0.9776 0.9690 0.9789 0.9703

COVTYPE 1vs3 0.6753 0.5789 0.5783 0.5786 0.5791 0.8548 0.7897 0.7860 0.8016 0.7801

COVTYPE 1vs2 0.9801 0.9756 0.9753 0.9785 0.9769 0.9975 0.9938 0.9932 0.9952 0.9933

COVTYPE 0vs4 0.7408 0.6848 0.6853 0.6863 0.6839 0.9051 0.8036 0.7934 0.8157 0.7941

COVTYPE 0vs3 0.8993 0.7829 0.8042 0.7845 0.7958 0.9751 0.9463 0.9385 0.9571 0.9391

COVTYPE 0vs2 0.8852 0.8033 0.8039 0.8059 0.8179 0.9317 0.8858 0.8852 0.8956 0.8892

ECBDL’14 1M 0.0000 0.1275 0.1279 0.1276 0.1249 0.0602 0.1555 0.1466 0.1613 0.1469

SUSY IR16 0.4385 0.3061 0.3070 0.3073 0.3100 0.4970 0.3537 0.3513 0.3538 0.3514

SUSY IR4 0.5345 0.4685 0.4698 0.4686 0.4504 0.5796 0.5295 0.5312 0.5314 0.5314

KDDCUP dos vs r2l 0.9757 0.9596 0.4164 0.8699 0.9141 0.9955 0.9885 0.4266 0.9982 0.4388

KDDCUP dos vs nor. 0.9987 0.9991 0.9988 0.9993 0.9992 0.9999 0.9999 0.9998 0.9998 0.9998

HEPMASS IR16 0.6565 0.4319 0.4282 0.4311 0.3847 0.6706 0.4742 0.4751 0.4762 0.4743

HIGGS IR16 0.1158 0.1597 0.1608 0.1604 0.1545 0.1944 0.2306 0.2344 0.2352 0.2344

HEPMASS IR4 0.6920 0.6153 0.6149 0.6160 0.5771 0.7188 0.6636 0.6685 0.6684 0.6686

HIGGS IR4 0.2004 0.2663 0.2683 0.2676 0.2543 0.3440 0.3743 0.3785 0.3793 0.3785

ECBDL’14 10M 0.0000 0.1252 0.1253 0.1253 0.1219 0.0717 0.1620 0.1619 0.1650 0.1619

(b) AUC

Dataset BAG GBT

Gini WGini RUS ROS RB Gini WGini RUS ROS RB

COVTYPE 1vs4 0.9694 0.9933 0.9935 0.9937 0.9944 0.9941 0.9973 0.9971 0.9979 0.9972

COVTYPE 1vs3 0.7939 0.8902 0.8924 0.8900 0.8973 0.9055 0.9629 0.9652 0.9666 0.9637

COVTYPE 1vs2 0.9930 0.9958 0.9957 0.9963 0.9962 0.9988 0.9989 0.9989 0.9992 0.9989

COVTYPE 0vs4 0.8366 0.9595 0.9606 0.9599 0.9611 0.9396 0.9806 0.9806 0.9825 0.9807

COVTYPE 0vs3 0.9221 0.9750 0.9772 0.9765 0.9754 0.9828 0.9939 0.9941 0.9953 0.9942

COVTYPE 0vs2 0.9339 0.9630 0.9633 0.9630 0.9646 0.9614 0.9825 0.9827 0.9839 0.9831

ECBDL’14 1M 0.5000 0.7043 0.7066 0.7049 0.7030 0.5030 0.7270 0.7288 0.7338 0.7293

SUSY IR16 0.6264 0.7701 0.7710 0.7702 0.7695 0.6641 0.7934 0.7949 0.7953 0.7949

SUSY IR4 0.7200 0.7689 0.7697 0.7695 0.7653 0.7433 0.7941 0.7951 0.7952 0.7951

KDDCUP dos vs r2l 0.9761 0.9984 0.9993 0.9976 0.9979 0.9953 0.9973 0.9989 0.9994 0.9990

KDDCUP dos vs nor. 0.9997 0.9998 0.9997 0.9998 0.9998 1.0000 1.0000 1.0000 1.0000 1.0000

HEPMASS IR16 0.7550 0.8343 0.8357 0.8355 0.8316 0.7645 0.8626 0.8643 0.8645 0.8642

HIGGS IR16 0.5102 0.6669 0.6683 0.6675 0.6577 0.5313 0.7265 0.7299 0.7304 0.7300

HEPMASS IR4 0.8006 0.8342 0.8344 0.8344 0.8318 0.8237 0.8620 0.8639 0.8640 0.8641

HIGGS IR4 0.5381 0.6663 0.6677 0.6672 0.6474 0.6119 0.7265 0.7286 0.7290 0.7287

ECBDL’14 10M 0.5000 0.7000 0.7006 0.7004 0.6990 0.5040 0.7462 0.7476 0.7499 0.7476
worst results were for ROSE (for all the ensembles) and RANF

(without resampling) that were ranked lowest in the tables.

9

Fig. 3 shows the performance of the methods by using average

ranks with one-to-one comparisons: one metric on each axis.
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Fig. 3. Average ranks for all ensemble methods according to MCC and AUC
metrics. The shape of the marker represents the resampling strategy, the color
of the marker represents the ensemble method, and the fill of the marker
represents the two resampling strategies: before training (unfilled), and within
the ensemble (filled). In general, GBT variants showed better performance than
RANF and BAG variants.

The marker aspect represents: the resampling strategy (shape),
the ensemble method (color), and the two resampling strategies
(unfilled means resampling before training, and filled means re-
sampling within the ensemble). Two clusters could be found, one
contained most of the GBT variants on the best positions (left
lower corner), while the other contained RANF and BAG variants,
which were located farther to the right. Differences between
RANF and BAG were not so clear, but in general the BAG variants
tended to perform better than the RANF ones. The differences be-
tween the metrics were remarkable for some methods, especially
for the Gini variants (represented with circular markers), which
were positioned far away from the diagonal line. This finding
offers an interesting insight, insofar as the use of resampling
may be not beneficial for the performance of some classifiers
according to some metrics. For this reason, the use of several
metrics is advisable and may even be crucial when drawing
proper conclusions on imbalance within Big Data environments.

The rankings suggested to us that resampling before training
had a fairly similar performance to resampling for each base
classifier within the ensemble. This intuitive evaluation may be
contrasted in Fig. 4, which represents several Bayesian hierarchi-
cal sign tests compared to the performance of resampling before
training the ensemble (L) with the performance of resampling
within the ensemble (R). The application of RUS (Fig. 4.a) before
training, for BAG ensembles, showed a slightly better perfor-
mance. On the contrary, for GBT ensembles, applying RUS at each
iteration of the ensemble marginally outperformed its application
once before training. Finally, ROS (Fig. 4.b) showed that it was
moderately better when used for each classifier within the en-
semble than when used to obtain a balanced dataset with which
to train all the classifiers in the ensemble. Irrespective of the
detailed analysis presented above, the overall idea, as the clouds
of points were almost centered and situated outside the ROPE
region, was that no clear winner could be named. Neither could
a similar performance between strategies be noted. Therefore,
depending on the specific dataset one approach will be better
than the other and vice-versa.
10
Table 8
Average ranks of the ensemble classifiers performing resampling for each base
classifier, according to the MCC (a) and the AUC (b) metrics. The methods below
the dashed line were statistically different from the best one according to the
Hochberg procedure at a confidence level of 95%. GBT+ROS was the best method,
being statistically better than any BAG variant.

Algorithm Avg. rank

GBT+ROS 2.1875
GBT (Gini) 2.5625
GBT (WGini) 3.6250
GBT+RB 3.9375
GBT+RUS 4.6875
BAG (Gini) 6.1250
BAG+ROS 7.3125
BAG+RUS 7.9375
BAG (WGini) 8.3125
BAG+RB 8.3125

Algorithm Avg. rank

GBT+ROS 1.1875
GBT+RB 2.3750
GBT+RUS 3.0625
GBT (WGini) 4.0000
BAG+RUS 5.8125
BAG+ROS 6.6250
BAG+RB 7.0000
BAG (WGini) 7.3750
GBT (Gini) 7.5625
BAG (Gini) 10.0000

(a) MCC (b) AUC

.4. Execution time analysis

In this study, two popular families of ensembles were evalu-
ted: Bagging and Boosting. Their intrinsic differences make their
xecution times significantly different. As is well known, execu-
ion times are crucial in Big Data environments. With this in mind,
he training and prediction times of the different ensemble algo-
ithms and resampling techniques for the ECBDL14’10M dataset
see Table 3) are presented in this section. Fig. 5 shows a bar plot
ith the training and prediction times for all ensemble methods
hat were tested. On the left hand-side of the plot, orange bars
epict prediction times in microseconds (µs). On the right-hand
ide, purple bars depict training times in seconds (s). BAG, RANF,
nd GBT ensembles (from top to bottom) were grouped with
lack horizontal lines.
In training, the fastest method was Random Forest trained

ith a dataset subsampled by RUS, followed by Random Forest
ithout resampling (Gini and WGini variants). This result was
redictable, because RUS decreases the number of instances in
he dataset (speeding up the training process), and Random For-
st builds decision trees using feature subsets. The approaches
hat apply resampling within the ensemble (BAG+RUS, BAG+ROS,
AG+RB; and GBT+RUS, GBT+ROS, GBT+RB) were computationally
ore expensive than those that apply it before training, which
as therefore reflected by their execution times. The slowest
ethod was SMOTE+GBT. It is well known that SMOTE is a

ime-consuming method, because of the kNN computation, and
ts combination with boosting makes it a less recommendable
lternative for Big Data in terms of training time.
In prediction, the differences between the tested methods

ere much smaller. This result is because, once all the trees of
n ensemble are built, voting and prediction is almost the same,
egardless of the ensemble family. The resampling before training
ethods were the fastest, followed by the methods that involved

raining each base classifier with a different resample.

.5. Discussion

The experimental results revealed that GBT outperformed Bag-
ing and Random Forest for imbalanced Big Data classification,
hich is in line with what happens with normal-sized datasets,
here Boosting has traditionally outperformed Bagging. More
pecifically, the combination of ROS within the GBT training (i.e.,
BT+ROS) was the best method for all the measures. The main
rawback of GBT is the much lengthier time taken for training
han Bagging approaches (e.g., RUS+GBT was around 13 times
lower than RUS+BAG). Also, GBT scalability in Big Data was lim-
ted, because Boosting performs an iterative process, that cannot
e fully parallelized.
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Fig. 4. Bayesian hierarchical sign test heatmaps showing the influence of RUS and ROS resampling before training BAG (top row) and GBT (bottom row) ensembles
L), compared with the influence of RUS and ROS resampling on each iteration of the ensemble (R). Each column represents one metric. There was no clear winner,
s the each approach performed better than the others as a function of the specific dataset.
Table 9
Bayesian hierarchical sign tests comparing different resampling methods (RUS, ROS, and RB) applied within the ensemble (BAG and
GBT), according to the MCC and AUC metrics. Resampling methods were also compared to base ensembles using Gini and Weighted
Gini impurities. Depending on the specific metric, resampling-based ensembles would be recommended or not. Which resampling
method is better, is unclear.
Comparison Metric BAG GBT

Left ROPE Right Left ROPE Right

Gini vs RUS MCC 0.6950 0.0000 0.3050 0.7278 0.0000 0.2722

AUC 0.1430 0.0000 0.8570 0.0575 0.0000 0.9425

Gini vs ROS MCC 0.6218 0.0000 0.3782 0.5615 0.0000 0.4385

AUC 0.0725 0.0002 0.9273 0.0755 0.0000 0.9245

Gini vs RB MCC 0.6160 0.0000 0.3840 0.7155 0.0000 0.2845

AUC 0.0833 0.0000 0.9167 0.1235 0.0005 0.8760

WGini vs RUS MCC 0.6557 0.0000 0.3443 0.5727 0.0000 0.4273

AUC 0.5027 0.0015 0.4958 0.4460 0.0027 0.5513

WGini vs ROS MCC 0.4765 0.0000 0.5235 0.4840 0.0000 0.5160

AUC 0.4998 0.0232 0.4770 0.4830 0.0350 0.4820

WGini vs RB MCC 0.5242 0.0000 0.4758 0.5865 0.0000 0.4135

AUC 0.5458 0.0025 0.4517 0.4835 0.0095 0.5070

RUS vs ROS MCC 0.3788 0.0000 0.6212 0.3357 0.0000 0.6643

AUC 0.5135 0.0002 0.4863 0.4677 0.0225 0.5098

RUS vs RB MCC 0.4283 0.0000 0.5717 0.5125 0.0000 0.4875

AUC 0.5222 0.0000 0.4778 0.5092 0.0005 0.4903

ROS vs RB MCC 0.5057 0.0000 0.4943 0.6233 0.0000 0.3767

AUC 0.5157 0.0000 0.4843 0.4907 0.0005 0.5088
Overall, resampling for each base classifier in the ensemble
ad a better performance than resampling only once before train-
ng. Nevertheless, the differences were not as clear as might be
xpected, in view of the Hochberg procedure that showed their
tatistical equivalence, and the Bayesian tests that showed quite
alanced distributions for both alternatives, revealing that one
trategy could outperform the other on around 50% of occasions.
11
SMOTE is a powerful but computationally expensive method,
which appears not to be as good in Big Data as it is in normal-
sized datasets. Something similar happens with ROSE that, al-
though it has proven its validity with normal-sized datasets,
clearly showed a worse performance with datasets of greater size.
In other words, methods that generate synthetic examples were
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d

Fig. 5. Comparison of execution times for ECBDL14’10M dataset. Orange bars (on the left) depict the prediction time in microseconds (µs). Purple bars (on the right)
epict the training time in seconds (s). RANF showed itself to be the fastest ensemble method, and RUS, the fastest resampling strategy. GBT ensembles and SMOTE

resampling strategies, were the two slowest choices. Also, resampling before training the ensemble was faster than resampling within the ensemble.
unable to outperform ROS, which is simpler and less computa-
tionally intensive. Our intuitive understanding of this unexpected
behavior is that, although the proportion of instances in minority
classes remains unfavorable in Big Data, it seems that the increase
in these instances in large datasets is enough to make introducing
new synthetic instances no beneficial.

It is worth noting that algorithm performance differs greatly
depending on the metric that is used. Special attention should
be paid to studies and experimentation, because the use of one
metric or another might lead to completely different conclusions.
For this reason, the use of several imbalance metrics is highly
recommended within Big Data environments, just as it is for
normal-sized datasets.

With regard to the MCC, ensemble methods without balancing
the datasets (i.e., using the Gini index) were quite competitive,
specially BAG, which was ranked better than its combination with
any resampling technique. Nevertheless, it has to be noted that
for some datasets, such as ECBDL14 and HIGGS, an ensemble
trained without any balancing technique is the alternative that
clearly performed worst of all. Bearing this in mind, and knowing
that Gini variants achieved very poor results for AUC metric,
we can affirm that balancing techniques can actually contribute
functional methods to mitigate the problem of imbalance within
Big Data. Whenever no resampling techniques are used, we highly
encourage the use of impurity indexes, at the least, that take into
account the imbalance, such as the weighted Gini index. The use
of weighted Gini has demonstrated itself in this study to be a
reasonably good solution for imbalanced Big Data: it is fast and
straightforward to apply by instance weighting.
12
6. Conclusions and future work

Although there are numerous studies on the classification of
imbalanced data, these studies are practically non-existent in the
context of imbalanced Big Data classification. This paper has shed
light on the impact of using data-level approaches within Big
Data ensemble classification. Those approaches mainly involve
the use of pre-processing techniques such as RUS, ROS, SMOTE,
or ROSE for transforming an imbalanced dataset into a balanced
one. Whether rebalancing is better performed once only before
training the ensemble, or as many times as there are base clas-
sifiers contained in the ensemble, was also evaluated. All the
experiments were performed on Bagging-based and Boosting-
based ensembles, highlighting how resampling techniques specif-
ically affect both ensemble families, in terms of performance. The
conclusions of the study, although some might appear ambigu-
ous, can be very useful to help guide future research work into
imbalance in Big Data classification.

Within the experimental framework, Boosting ensembles, al-
though requiring more computational power, clearly outper-
formed Bagging-based alternatives. The use on the trees construc-
tion of an impurity index that takes into account the imbalance,
such as weighted Gini, offered roughly equivalent results to the
use of resampling techniques. Surprisingly, the training of the
ensembles on the original datasets without any change (using
the standard Gini index), offered quite good results overall (for
MCC and F1-score metrics). However, this procedure is not ad-
visable, because the results were dreadful for some datasets
(clearly visible when AUC or G-mean were used), but still an
accurate indicator of a lack of robust solutions for improving
the performance for all the metrics. Regarding the resampling
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Table 10
Average ranks of all ensemble classifiers evaluated in this study, according to the
MCC and AUC metrics. The statistical differences between the methods below
the dashed line and the best method were significant, according to the Hochberg
procedure at a confidence level of 95%. GBT-based ensembles showed themselves
to be statistically better than BAG and RANF ensembles.

Algorithm Avg. rank

GBT+ROS 2.9375
ROS+GBT 4.5625
GBT (Gini) 4.6250
GBT (WGini) 5.0625
SMOTE+GBT 5.6250
GBT+RB 5.8750
GBT+RUS 6.7500
RUS+GBT 8.6250
BAG (Gini) 11.0000
BAG+ROS 12.8125
BAG (WGini) 13.9375
BAG+RUS 14.0000
BAG+RB 14.6250
ROS+BAG 15.5625
ROS+RANF 15.6875
RUS+RANF 15.9375
RUS+BAG 16.0000
SMOTE+BAG 16.2500
RANF (WGini) 16.3125
RANF (Gini) 16.3750
SMOTE+RANF 16.4375
ROSE+GBT 19.0312
ROSE+RANF 20.7500
ROSE+BAG 21.2188

Algorithm Avg. rank

GBT+ROS 1.8125
GBT+RB 3.3750
GBT+RUS 4.1875
ROS+GBT 4.7500
GBT (WGini) 5.6875
RUS+GBT 6.6875
SMOTE+GBT 8.1250
BAG+RUS 10.3750
BAG+ROS 11.5625
BAG (WGini) 12.5625
RUS+BAG 12.6875
BAG+RB 12.8750
RUS+RANF 13.1875
ROS+RANF 13.6250
RANF (WGini) 13.9375
ROS+BAG 14.1875
SMOTE+RANF 14.2500
SMOTE+BAG 15.1875
GBT (Gini) 16.0000
ROSE+GBT 19.8438
ROSE+RANF 20.3125
ROSE+BAG 20.5312
BAG (Gini) 21.5000
RANF (Gini) 22.7500

(a) MCC (b) AUC

ethods, ROS generally achieved better results, but with only a
inimal advantage, closely followed by RUS and SMOTE with no
tatistically significant differences. In contrast, ROSE was clearly
he worst alternative. Our conclusion is therefore that complex
ethods that involve the generation of synthetic instances are
ot as effective for Big Data as they are for normal-sized datasets.
lthough they could, depending on the dataset, be the best
ption, in general we discourage their use in favor of simpler and
aster methods such as ROS.

Ensembles specifically designed to overcome the imbalance
roblem (i.e., resampling before training each base classifier),
chieved better performance than resampling a dataset once and
hen training a conventional ensemble with it. Nevertheless, the
ifferences between the two strategies were very small, suggest-
ng that whether one strategy is actually better than the other will
trongly depend on the data set to which it is applied. Therefore,
henever execution times are considered critical, as it is often
he case with Big Data, the general recommendation would be
o use the faster strategies based on a single initial resampling or
he use of impurity indexes that take into account imbalance (e.g.
eighted Gini).
An interesting insight is the importance of using different

valuation metrics when dealing with imbalance problems. This
s preferable, because each metric uses the values within the
onfusion matrix in a specific way and therefore has its own
trengths and weaknesses. Hence, using more than one metric
ields a more informed view of the results and a better evaluation
f the performance of a single classifier. The conclusions that can
e drawn by using MCC and F1-score are very different than using
UC or G-mean, thus at least one metric of each group should
e used for future Big Data imbalance studies (in addition, it is
nough to use one from each group, since the conclusions that can
e obtained are similar for the two metrics within each group).
Despite the advances relating to the classification of Big Data

n recent years, research into imbalanced Big Data is still scarce
nd more studies and surveys are needed to unify the publica-
ions that periodically emerge. More precisely, the presence of
13
he pathologies that are traditionally associated with imbalanced
atasets, such as overlapping, noisy examples, small disjuncts,
nd borderline instances [32], have yet to be studied in Big Data.
The resampling in this study perfectly balanced the datasets

ith 50% of the examples belonging to each class (with the
xception of RB, for which the imbalanced ratios were random for
ach base classifier). Another interesting future line of research
ould be the evaluation of how different resampling ratios affect
ifferent classifiers.
In view of the results given by the data-level approaches

or imbalanced Big Data learning, we place the focus on the
xploration of algorithm-level approaches, which should assist
ore fruitful advances for these kinds of problems. An interest-

ng research line could be the evaluation of novel forest-based
pproaches that have recently emerged, such as Random Forest
uantile classifier [55] and the adaptation of Oblique Random
orest [56] for imbalanced learning, specially for large datasets.
he design and implementation of new classifiers for Big Data
rameworks, such as Apache Spark, is a promising research line
owadays, as is the adaptation and revalidation of any popular
roposal for normal-sized datasets.
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