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 ABSTRACT 

Liquid-liquid equilibria (LLE) phase diagrams have been determined for the systems: 2-

ethoxy-benzenamine + octane, or + decane, or + dodecane, or + tetradecane and for 4-ethoxy-

benzenamine + heptane, or + octane. The experimental method used is based on the observation, 

by mean of a laser scattering technique, of the turbidity produced on cooling when a second phase 

takes place.  All the mixtures show an upper critical solution temperature, which increases with 

the alkane size. Dipolar interactions between like molecules become stronger in the sequence: 2-

ethoxy-benzenamine < aniline < 4-ethoxy-benzenamine. Data available in the literature suggest 

that this relative variation is also valid for alkane mixtures containing other substituted anilines 

or phenols, characterized by having a second polar group. The dependence of the UCST values 

with the molecular structure of the polar aromatic compound involved is shortly discussed in 

terms of intramolecular and steric effects. 
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1. Introduction 
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We are interested on the investigation of intramolecular effects between the phenyl ring 

(C6H5 group) and a polar group, X, more or less directly attached to the aromatic ring, as these 

effects are very different to those between the same groups when they belong to different 

molecules. For example, the upper critical solution temperature (UCST) of the aniline + heptane 

mixture is 343.1 K [1], while the excess molar enthalpy, 
E

mH , of the hexan-1-amine + benzene 

system at equimolar composition and 303.2 K is 627 Jmol-1 [2]. That is, intramolecular effects 

lead to enhanced interactions between like polar molecules, while intermolecular effects make 

usually more favourable interactions between unlike molecules (see below). With this idea, we 

have studied, both experimental and theoretically, intramolecular effects, also termed proximity 

effects, in  mixtures containing aromatic amines [3-10] (anilines, 2-amino-1-methylbenzene, 1-

phenylmethanamine, 1H-pyrrole, quinoline or imizadoles); phenylmethanal, 1-phenylethanone, 

4-phenyl-2-butanone, benzyl ethanoate [11-14], benzonitrile, phenyl-acetonitrile, 3-

phenylpropionitrile [15], 2-phenoxyethanol [16], or aromatic alkanols (phenol; phenylmethanol, 

2-phenylethan-1-ol) [17-19].  As a continuation, we provide now liquid-liquid equilibria data for 

alkane systems involving 2-ethoxy-benzenamine (o-phenetidine) or 4-ethoxy-benzenamine (p-

phenetidine). Phenetidine molecules contain two different polar groups (NH2 and –O– ) attached 

to the phenyl ring in different points, and intramolecular effects between these two groups are 

also expected to exist. The case previously examined by us, phenoxyethanol + alkane systems 

[16], is somewhat different as the –O– and –OH groups are placed in the same linear chain 

attached to the phenyl ring.     

Phenetidines have a variety of applications. For example, p-phenetidine is used as an 

intermediate in the dye industry or in the obtention of p-ethoxyacetanilide (phenatecin) or of 

ethoxyquin which are important compounds to enhance the oxidative stability of products from 

food or pharmacological  manufacturers [20-21]. On the other hand, poly o-phenetidine is useful 

in order to remove nitrates from water [22]. 

 

2. Experimental 

 2.1 Materials. All the information related to the source, purity, water content and density 

(  ) of the pure compounds used in the present experimental research is collected in Table 1. The 

chemicals were used as received. Density measurements were conducted by means of a vibrating-

tube densimeter and a sound analyser, Anton Paar model DSA-5000. The repeatability and the 

relative standard uncertainty of the   values are, respectively, 510-3 kgm-3, and  0.002.  Density 

values listed in Table 1 show that our results are in good agreement with values from the literature. 

A careful survey of literature data showed that no   value has been previously reported for the 

o-phenetidine. Water contents were determined by the Karl-Fischer method. The relative standard 

uncertainty of the corresponding measurements is estimated to be 0.02.   
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2.2 Apparatus and Procedure 

Small Pyrex tubes (0.009 m i.d. and about 0.04 m length; free volume of the ampoule 

1.1710-6 m3) were used for the preparation of the mixtures. Mixtures were prepared by mass.  

Weights were obtained from an analytical balance Sartorius NSU125p (weighing accuracy 10-8 

kg). The mentioned tubes were immediately sealed by capping at 0.1 MPa and 298.15 K. Mole 

fractions were calculated on the basis of the relative atomic mass Table of 2015 issued by the 

Commission on Isotopic Abundances and Atomic Weights (IUPAC) [23]. 

 The LLE curves were determined by means of the observation of the turbidity produced 

on cooling when a second phase takes place. A brief summary of the procedure follows. (i) The 

samples in the sealed Pyrex tubes are placed in a thermostat bath few hundredths of degree above 

the expected temperature. (ii) Mixtures are then slowly cooled at a rate of 1.2 Kh-1 under 

continuous stirring. Since the equilibrium times are much longer in the two-phase region than the 

corresponding times in the one-phase region, this method is suitable to prevent supercooling and 

gravity effects in mixtures at compositions far from the critical one [24,25].  (iii) A red He-Ne 

laser (wavelength of 635 nm) is situated on one side of the equilibrium cell, and the light beam 

crossing through the solution is focused on a photodiode placed at the other side of the cell. When 

the temperature is slowly decreased, small drops of the dispersed liquid phase start to growth and the 

light is dispersed during the transition. This causes a voltage variation in the mentioned photodiode, 

which is determined by a digital Agilent 34410A multimeter connected to a PC. Transition 

temperatures can be then measured. In the current investigation, the mixtures show a dark red color 

and the use of different lasers was tested in order to improve the technique, but no further 

improvement was attained. (iv) Two or three runs are usually conducted in order to get a better 

assessment of the equilibrium temperatures. A direct comparison between results obtained using 

our experimental technique and data from the literature can be encountered elsewhere [26]. The 

equilibrium temperatures were measured using a Pt-1000 resistance. The thermometer was 

calibrated according to the ITS-90 scale of temperature. The fixed points used at this end were 

the triple point of the water and the fusion point of Ga. The precision of the equilibrium 

temperature measurements is ± 0.001 K. The corresponding estimated standard uncertainty 

depends on the region where measurements are conducted. In the flat region of the coexistence 

curves (top of the curves), the uncertainty of the temperature is 0.1 K; while outside of this region 

(tails of the curves), it is 0.2 K.  For the equilibrium mole fractions, the standard uncertainty is 

0.0005.  This value is determined taking into account that the more volatile component is partially 

evaporated to the mentioned free volume of the ampoule.    

 

  3. Experimental results 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

 5 

The directly measured liquid-liquid equilibrium temperatures,T ,   vs. 
1x , the mole 

fraction of the phenetidine, for the systems o-phenetidine  +  n-C8, or +  n-C10, or + n-C12,  or +  

n-C14 and for p-phenetidine +  n-C7, or +  n-C8 are collected in Table 2 (Figures 1,2). Values of 

UCST for the systems o-phenetidine + hexane (299.2 K), or + heptane (301.2 K), and  p-

phenetidine  + hexane (354.2 K), or + heptane (356.2 K)  are available in the literature [27]. The 

latter value is in good agreement with our result (355.8 K, see below).  As in many systems 

previously investigated [5,6,11-16,18,19] the LLE curves of the mixtures under study are 

characterized by some typical features: (i) they show a rather flat maximum (Figures 1,2); (ii) the 

curves become progressively shifted towards higher 
1x  values when the chain length of the alkane 

increases (Figure 1); (iii) the upper critical solution temperature, UCST,  increases linearly with 

the number of C atoms of the n-alkane (Table 3).  

 The experimental (
1x ,T) data of each system were correlated by means of the equation 

[28,29]: 

 

 c c/ /
m

T K T K k y y          (1) 

with 

 11 1

1








x

x
y         (2) 

 
1c

1c1 1
c

x
y

x






 
        (3) 

 

In equations (1-3), m, k, , Tc and x1c stand for the parameters which must be adjusted against the 

experimental data. The coordinates of the critical point are denoted by (x1c, Tc). It is remarkable 

that, when  = 1, equation (1) is similar to [30-32]:  

 

  B          (4) 

 

In this equation, "' 211    is any order parameter. In other words, it is any density variable 

in the conjugate phase (along the present research, 11 x ). On the other hand,    is the reduced 

temperature, defined as:   = (Tc – T)/Tc ,    is the critical exponent related to 1  and B is the 

amplitude [32]. It is well-known that the critical exponent   depends on the theory applied to its 

determination.26,30   

The parameters m, k, , Tc and x1c were obtained from an adjustment based on  a 

Marquardt algorithm [33] with all the points weighted equally. Final values of the parameters, 
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together with  the standard deviations for the liquid-liquid equilibrium temperatures, ( )T ,  are 

given in Table 3. The ( )T  values are calculated from: 

  

      
1/ 2

2

exp calc/ / / /T K T K T K N n    
       (5) 

 

Here, N is the number of data points, and n, the number of adjusted parameters (= 5). Results 

listed in Table 3 show that equation (1) fits well the experimental results. 

 

4. Discussion 

 

Below, we are referring to 
E

mH  values at 298.15 K and equimolar composition.   

4.1 Intramolecular effects in aromatic polar compound + alkane systems   

 Along a series of investigations, we have shown that, in alkane systems, dipolar interactions 

between polar molecules involving a polar group X are stronger than those between isomeric linear 

molecules with the same X group. For example, UCST (heptane) = 343.1 K (aniline) [1]; 327.3 

(phenol) [34] while 
E

mH  (heptane)/Jmol-1 = 962 (hexan-1-amine) [35]; 527 (hexan-1-ol) [36]; 

1862 (aniline; T = 333.15 K); 1941 (aniline, T = 353.15 K) [37].  Similarly, 
E

mH (heptane)/Jmol-

1 =  1278 (methoxybenzene) [38]; 260 (1-methoxypentane) [39]; 1492 (1-phenylethanone) [40]; 

886 (heptan-2-one) [41]; 1361 (phenylmethanal) [42]; 1066 (pentanal) [43]; or 
E

mH

(cyclohexane)/Jmol-1 = 1390 (benzonitrile) [44]; 1101 (pentanenitrile) [45]; 1654 (nitrobenzene, 

T = 293.15 K) [46]; 1225 (1-nitropentane) [47]. This behaviour has been ascribed to the existence 

of intramolecular effects, i.e. proximity effects,  between the C6H5  group and the polar X group 

under consideration.  

4.2 Intermolecular effects in linear polar compound + aromatic hydrocarbon 

mixtures 

These effects are encountered when the aromatic ring and X do not pertain to the same 

molecule. They lead to increased interactions between unlike molecules, and, usually, to 

decreased 
E

mH  values. For the sake of comparison, we provide now some examples for linear 

polar compound + benzene mixtures. Thus, 
E

mH  (C6H6)/Jmol-1 = 627 (hexan-1-amine; T = 303.2 

K) [2]; 171 (hexan-2-one) [48]; 82 (pentanal) [49]; 112 (pentanenitrile) [50];   205 (1-

methoxypentane; T = 293.15 K) [51].  It is to be noted, that 
E

mH  values of 1-alkanol + benzene 

systems are higher than those of the corresponding alkane mixtures. For example, for the hexan-

1-ol + benzene system, 
E

mH / Jmol-1 = 1141 [52]. It is clear that benzene is a much more effective 
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breaker of the alcohol self-association than alkanes. Taking into account the above considerations, 

our LLE data for phenetidine systems reveal the existence of strong dipolar interactions between 

these molecules, which contain three groups.  In fact, the same three groups are present in the 

aniline + 3-oxapentane system, but in different molecules, and, at 293.15 K, the corresponding 

E

mH value is  500 Jmol-1 [53] This remarks that intermolecular effects are predominant when 

the polar groups are placed in different molecules. 

4.3 The effect of replacing an aromatic polar compound, C6H5X, by its 

corresponding methyl derivative, CH3C6H4X,  in alkane systems 

We note that, in mixtures with a given alkane, UCST decreases when an aromatic polar 

compound (aniline, phenol, nitrobenzene, X = NH2; OH; NO2) is replaced by the corresponding 

methyl derivative (e.g, 2- methyl-benzenamine, 4-methyl-benzenamine, 2-methyl-phenol, 4-

methyl-phenol…) (Table 4). This behaviour can be ascribed to the lower aromatic surface fraction 

of the methyl derivatives compared to that of the C6H5X molecules, which leads to weaker 

proximity effects between the X group and the phenyl ring. Steric effects are also present since 

the critical temperature of the solution with the 2-methyl derivative is lower than that of the 

system with the corresponding 4-methyl derivative (Table 4). The existence of the mentioned 

steric effects in cresols is supported by the application of the Treszcznowicz-Kehiaian model for 

the representation of apparent heat capacities of phenol and substituted phenols in dilute heptane 

[54]. 

4.4 The effect of replacing the CH3 group in CH3C6H4X molecules by a second 

polar group, Y, in alkane systems 

The Y groups under consideration are Cl, NO2, OCH3; OCH2CH3. UCST values listed in 

Table 4 (Figure 3) show that for heptane systems with 2-methyl-benzenamine derivatives, this 

magnitude changes in the order: 2-chloro-benzenamine < 2-methyl-benzenamine < 2-ethoxy-

benzenamine < 2-nitro-benzenamine. For mixtures containing phenols, the corresponding UCST 

variation is similar: 2-chloro-phenol < 2-methyl-phenol < 2-nitro-phenol < 2-methoxyphenol. 

This means that dipolar interactions between the mentioned polar molecules become stronger 

along the indicated sequences. However, when the second polar group in attached to the aromatic 

ring in the para position, the UCST variation is somewhat different. In the case of systems with 

substituted anilines, such variation is as follows: 4-methyl-benzenamine < 4-chloro-benzenamine 

< 4-ethoxy-benzenamine. For mixtures involving substituted phenols, we also find that UCST(4-

methyl-phenol) < UCST(4-chloro-phenol). We can conclude that the introduction of a second 

polar group (NO2; OCH3; OCH2CH3) in the 2  position may lead to stronger dipolar interactions. 

This is due to the existence of new interactions between the (X,Y) groups, and between the 

(Y,C6H5  ) groups. Chlorinated derivatives seem to be an exception.  If the Y group is situated in 

the 4  position, dipolar interactions become stronger, independently of the considered Y group, 
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compared to those existing between molecules of the 4-methyl type. An interesting point is that 

the UCST changes in the order: 2-ethoxy-benzenamine < aniline < 4-ethoxy-benzenamine. For 

example, in the case of octane systems, UCST/K = 304.1 (2-ethoxy-benzenamine); 344.9 (aniline) 

[55]; 358.2 (4-ethoxy-benzenamine). For phenol and its derivatives, the variation is similar (Table 

4). It seems that steric effects exerted by the new Y group in the 2   position are predominant 

over, say, the new XY intramolecular effects and UCST decreases. In contrast, these interactions 

seem to be predominant when the Y group is placed in the 4   position, leading to higher values 

of the critical temperature. Nevertheless, for some systems containing the NO2 group a different 

trend is observed. Thus, UCST(heptane)/K = 291.9 (nitrobenzene) [56]; 388.15 (1-methoxy-2-

nitro-benzene) [57]. The dependence of the alkane solubility on the molecular structure of the 

aromatic polar compound deserves a careful experimental research, currently undertaken. 

 

 5. Conclusions 

LLE phase diagrams have been obtained for the systems 2-ethoxy-benzenamine  + octane, 

or + decane, or + dodecane, or + tetradecane, and for 4-ethoxy-benzenamine + heptane, or + 

octane. The mixtures are characterized by having an UCST, which increases with alkane size. 

Dipolar interactions between like molecules become stronger in the sequence: 2-ethoxy-

benzenamine  < aniline < 4-ethoxy-benzenamine. The attachment of a second polar group 

(different to Cl) in the ortho position to a molecule of the type (C6H5X; X =NH2; OH) leads to 

weaker dipolar interactions. If the second polar group is attached in the para position, dipolar 

interactions become strenghthened. 
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Table1 

Properties of pure compounds at 0.1 MPa and 298.15 Ka 

Compound CAS Source Initial moleb 

fraction 

 /kgm-3 Water 

Contentc 
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    Exp. Lit.  

2-ethoxy-

benzenamine 

90-70-2 Sigma- 

Aldrich 

 99.4% 1045.74  12310-4 

4-ethoxy-

benzenamine 

156-43-4 Sigma- 

Aldrich 

 99.1% 1056.76 105758 70010-4 

Heptane 142-82-5 Fluka  99.5% 679.51 679.4659 810-4 

Octane 111-65-9 Sigma- 

Aldrich 

 99.4% 698.68 698.6259 1510-4 

Decane 24-18-5 Fluka  99.8% 726.35 726.3559 1210-4 

Dodecane 112-40-3 Fluka  99.7% 745.51 745.3260 710-4 

Tetradecane 629-59-4 Fluka  99.5% 759.27 759.3260 910-4 

astandard uncertainties are: ( )u T 0.01 K; ( )u P  0.5 kPa; the relative standard uncertainty for 

density is 
r ( )u   = 0.002 and 0.02 for water content; bprovided by the supplier by gas 

chromatography;  cin mass fraction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2  

Experimental liquid-liquid equilibrium temperatures for 2-ethoxy-benzenamine (1), or 4-

ethoxy-benzenamine (1) + n-alkane(2) mixturesa at 0.1 MPa. 
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x1 T/K x1 T/K 

2-ethoxy-benzenamine (1) + octane (2) 

0.1755 295.8 0.4505 304.1 

0.1923 297.4 0.4615 304.1 

0.2055 298.1 0.4915 304.0 

0.2191 299.5 0.5285 303.9 

0.2338 300.4 0.5594 303.7 

0.2452 301.0 0.5749 303.6 

0.2650 301.8 0.5980 303.2 

0.2863 302.6 0.6140 303.1 

0.3094 303.0 0.6524 302.4 

0.3217 303.3 0.6641 302.1 

0.3485 303.7 0.6850 301.3 

0.3955 304.1 0.7067 300.6 

0.4202 304.2   

2-ethoxy-benzenamine (1) + decane (2) 

0.2691 305.2 0.4586 310.5 

0.2826 306.0 0.4718 310.5 

0.300 307.1 0.4983 310.6 

0.3273 307.9 0.5230 310.7 

0.3625 308.9 0.5607 310.6 

0.3928 309.5 0.5871 310.7 

0.4277 310.3 0.6219 310.4 

0.4432 310.4   

2-ethoxy-benzenamine (1) + dodecane (2) 

0.2191 304.1 0.5317 317.8 

0.2492 306.7 0.5552 317.8 

0.2741 309.5 0.5762 317.8 

0.2954 311.7 0.6081 317.7 

0.3189 313.2 0.6204 317.7 

0.3474 314.3 0.6435 317.6 

Table 2 (continued) 

0.3646 315.0 0.6966 317.5 

0.3876 315.8 0.6984 317.3 

0.4188 316.7 0.7341 316.9 
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0.4417 317.0 0.7437 316.7 

0.4855 317.7 0.7800 315.2 

0.5169 317.8   

2-ethoxy-benzenamine (1)   + tetradecane (2) 

0.2545 310.3 0.5510 324.6 

0.2591 310.9 0.5806 324.9 

0.2757 312.5 0.6154 324.8 

0.3002 314.9 0.6517 324.7 

0.3387 317.8 0.6724 324.6 

0.3525 318.5 0.6740 324.5 

0.3963 320.9 0.7050 324.5 

0.4354 322.3 0.7240 324.4 

0.4833 323.7 0.7552 324.0 

0.5209 324.3   

4-ethoxy-benzenamine (1)   + heptane (2) 

0.0988 333.0 0.3367 355.4 

0.1156 337.6 0.3702 356.0 

0.1323 340.8 0.3779 356.0 

0.1733 347.2 0.4070 356.0 

0.2103 350.7 0.4635 356.0 

0.2318 352.2 0.4736 355.9 

0.2691 354.1 0.4930 356.0 

0.2906 354.5 0.5290 355.6 

0.3115 355.0 0.5418 355.5 

0.3340 355.4 0.5657 355.3 

4-ethoxy-benzenamine (1)   + octane (2) 

0.1414 341.9 0.3750 357.9 

0.1602 344.6 0.4198 358.2 

0.1919 349.1 0.4497 358.2 

0.2007 349.9 0.4682 358.3 

0.2391 353.3 0.5086 358.2 

Table 2 (continued) 

0.2811 355.7 0.5403 358.1 

0.2963 356.3 0.5447 358.2 

0.3234 357.0 0.5779 358.0 
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0.3489 357.9   

a standard uncertainties are: 
1( )u x = 0.0005; ( )u p  1 kPa; the combined expanded uncertainty  

(0.95 level of confidence) for temperature is 
c ( )U T   0.2 K in the flat region of the curves and 

0.4 K outside this region 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3 

Coefficients in eq. (1) for the fitting of the (x1, T) pairs listed in Table 2 for 2-ethoxy-

benzenamine, or 4-ethoxy-benzenamine (1) + n-alkane(2) Mixtures; (T) is the standard 

deviation defined by eq. (5).   
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N a m  k   Tc/K x1c (T)/K 

2-ethoxy-benzenamine(1) + octane(2) 

25 2.944  262 1.529 304.1 0.450 0.09 

2-ethoxy-benzenamine (1) + decane(2) 

15 3.216  824 0.475 310.6 0.540 0.09 

2-ethoxy-benzenamine(1) + dodecane(2) 

23 3.546  620 0.744 317.7 0.587 0.08 

2-ethoxy-benzenamine(1) + tetradecane(2) 

19 3.286  418 0.683 324.7 0.639 0.11 

4-ethoxy-benzenamine(1) + heptane(2) 

20 3.929  2086 0.852 355.8 0.440 0.17 

4-ethoxy-benzenamine(1) + octane(2) 

18 3.417  615 1.080 358.2 0.478 0.11 

a number of experimental data points 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4 

Upper critical solution temperatures (UCST) for aromatic polar compounda + n-alkane mixtures.  

UCST 
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Alkane X C6H5-X Y 2-Y-C6H4-X 4-Y-C6H4-X 

Heptane NH2 343.11 CH3
 292.95 305.6b,57 

   Cl 286.227 353.227 

   OCH2CH3
 304.127 358.2c 

   NO2
 479.227  

Heptane OH 327.134 CH3
 282.127 285.227 

   Cl 279.027 340.227 

   NO2 316.227 373.027 

hexadecane OH 360.761 CH3 299.257 315.257 

   NO2 334.661  

   OCH3 340.561  

   Cl  359.561 

Heptane NO2 291.956 CH3 272.127  

   OCH3 388.257  

athe polar compounds considered are: aniline, phenol, or nitrobenzene (polar group X = NH2; OH, 

NO2) and the derivatives including the Y group (CH3; Cl; OCH3; OCH2CH3) in the 2- or 4-

positions; bmixture with 2-methylpentane; cthis work 
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Figure 1. LLE for 2-ethoxy-benzenamine(1) + octane(2) (●); + decane(2) (■); + 

dodecane(2) (▲); + tetradecane(2) () systems. Points, experimental 

results (this work); solid lines, calculations with equation 1 using the 

parameters  listed in Table 3. 
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Figure 2. LLE for 4-ethoxy-benzenamine(1) + heptane(2) (●); + octane(2) (■) 

systems. Points, experimental results (this work); solid lines, calculations 

with equation 1 using the parameters  listed in Table 3. 
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Figure 3. UCST for aromatic polar compound + n-alkane mixtures vs. n, the number 

of C atoms in the alkane (for references of experimental data, see Table 4)  
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Highlight 

LLE diagrams are determined for o-phenetidine, or p-phenetidine + n-alkane systems 

All the mixtures show an UCST, which increases with the alkane size  

Amine-amine dipolar interactions change as follows: o-phenetidine< aniline< p-phenetidine 

Interactions between other anilines/phenols with a second polar group are examined 

Steric effects in ortho or para anilines/phenols with a second polar group are discussed 
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