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3.8.2 The κ-Poincaré Poisson-Hopf algebra . . . . . . . . . . . . . . . . . . 85

3.8.3 Poisson-Lie duality principle . . . . . . . . . . . . . . . . . . . . . . 87

4 Poisson homogeneous spaces for quantum Lorentzian groups 91
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4.6 The κ-Poincaré homogeneous space of worldlines . . . . . . . . . . . . . . . 116
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5.1 The κ-Poincaré momentum space . . . . . . . . . . . . . . . . . . . . . . . . 124

5.1.1 Dual Poisson-Lie group and curved momentum space . . . . . . . . . 125

5.2 The κ-dS Poisson-Hopf algebra . . . . . . . . . . . . . . . . . . . . . . . . . 127



CONTENTS

5.2.1 The (1+1) κ-dS algebra . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.2.2 The (2+1) κ-dS algebra . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.3 Momentum space for the κ-dS Poisson-Hopf algebra . . . . . . . . . . . . . 131

5.3.1 The (1+1) case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.3.2 The (2+1) case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.4 Curved momentum spaces in (3+1) dimensions . . . . . . . . . . . . . . . . 136

5.4.1 The (3+1) κ-(A)dS momentum space . . . . . . . . . . . . . . . . . 136

5.5 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

6 Poisson Minkowski spacetimes from Drinfel’d doubles 145
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Chapter 1

Introduction

The most accurate description of the physical world provided by contemporary physics
is based on two fundamentally different theories. On the one hand, general relativity
describes the gravitational field and shows how it is intrinsically tied to the geometry of
spacetime. On the other hand, quantum mechanics provides a description of the electro-
magnetic, weak and strong fields. These four fields, also known as fundamental interac-
tions or fundamental forces, completely describe any physical phenomena ever observed.
In particular, quantum mechanics and its modern developments in the form of quantum
field theory, gauge theory and finally the Standard Model of particle physics [1, 2, 3, 4]
have provided an extremely accurate and unified description of the electromagnetic, weak
and strong interactions. The Standard Model of particle physics has predicted with a
huge accuracy a number of particles before they had ever been observed. A recent and
important example concerns the Higgs mechanism, predicted in [5, 6, 7], which led to the
discovery by the LHC of the Higgs boson [8, 9]. Similarly, general relativity [10, 11] has
also received accurate experimental confirmations. We just mention two of them, which
have been recently performed: the first direct measurement of gravitational waves [12] and
the first direct observation of a black hole [13]. The experimental data obtained confirm
the predictions of general relativity with an extraordinarily high accuracy.

Although both general relativity and quantum mechanics are internally consistent
physical theories with an almost incredible level of accuracy that are able to explain every
experimental observation to date, fundamental problems arise when trying to unify these
two theories. Of course, an important consideration is whether this unification is necessary.
We have at least two important reasons to assert that this is indeed the case. On the one
hand, from a purely theoretical point of view it would be highly desirable to have one self-
consistent physical theory, valid to explain any physical observation. This would arguably
provide a much more satisfying description of Nature than two different theories whose
range of application is limited to certain regimes. On the other hand, there exist certain
regimes whose physics is not well understood, and those regimes are precisely the ones that
require of both general relativity and quantum theory to be described, because the physical
phenomena taking place involve gravitational and quantum mechanical contributions of
comparable strength. A paradigmatic example of such a regime is the early universe [14].
Even less extreme situations, like regions of spacetime very close to a very massive object,

1



2 CHAPTER 1. INTRODUCTION

are good examples of physical situations in which gravitational and quantum effects are
of the same order of magnitude.

The need for a quantum theory of gravity was already proposed in 1936 by M. Bronstein
[15], who was the first to note that concentrating a sufficiently large amount of energy in
a tiny region of spacetime would inevitably produce a gravitational collapse giving rise
to a micro black hole, and thus imposing a fundamental limit to our capacity to measure
the strength of the gravitational field. This is a remarkable difference of the gravitational
field with respect to the other fundamental interactions, which is intrinsically linked to
the relation between the gravitational field and the curvature of spacetime described by
Einstein’s field equations.

This unique feature of the gravitational field is at the heart of the problems that
any attempt to quantize gravity has found until this date. In particular, a perturbative
quantization of gravity has not been possible due to the fact that this theory is nonrenor-
malizable, because of the presence of unmanageable ultraviolet divergences.

Before proceeding further, it is useful to have an idea of the scale at which gravitational
and quantum effects are of a comparable order of magnitude, and so under which conditions
a theory of quantum gravity is needed. This scale receives the name of Planck scale, and it
is the one that results from the combination of the three natural constants that appear in
the relevant physical theories: the speed of light c (special relativity), Planck’s constant ~
(quantum mechanics) and Newton’s constant G (gravity). As pointed out by Max Planck
[16], with these three fundamental constants of Nature, one can define natural units of
time, length and mass, namely

tP =

√
~G
c5
∼ 10−43 s, lP =

√
~G
c3
∼ 10−35 m, mP =

√
~c
G
∼ 1.2 · 1019 GeV/c2.

(1.1)
These quantities are known as the Planck time, the Planck length and the Planck mass,
respectively. A comparison of the Planck mass with the highest energy collision performed
in LHC, which is ‘only’ 1.3·104 GeV/c2, gives a clear idea of what is the order of magnitude
of quantum gravity effects. However, as we have already commented, in the first moments
of the universe, when time was of the same order of magnitude of the Planck time, these
quantum gravity effects are thought to be important. In fact, any serious attempt to
explain the first instants of our universe should include, at least, general relativity together
with some quantum gravity corrections.

The key assumption that underlies this Thesis is that, at the Planck scale, at which a
quantum theory of gravity would describe the universe, it would be natural to expect that
spacetime could present some kind of ‘discreteness’ or ‘fuzziness’. This is what is generally
understood by quantum spacetime, term which is employed in a broad sense depending
on the concrete approach being considered. This ‘discreteness’ could appear from two
fundamentally different points of view:

• The first one is a fundamental theory of quantum gravity that has a discrete space-
time as one of its essential ingredients.

• The second point of view consists on thinking about this discreteness approach as
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a phenomenological one, amenable to describe some of the features of the quantum
structure of spacetime without having at hand a fundamental theory of quantum
gravity.

The first viewpoint is, up to date, not available, and it will be the second point of view
the one we follow in this Thesis. In particular, we take as an initial assumption that the
quantum nature of the gravitational field induces some kind of ‘discreteness’ or ‘fuzziness’,
not necessarily fundamental, of the spacetime. This assumption rapidly raises, among
many others, questions regarding the fate of the spacetime symmetries, specially Lorentz
covariance. It seems very reasonable to think that any loss of smoothness for the spacetime
should imply modified spacetime symmetries. Note that this is true irrespectively of the
fact that the ‘discreteness’ is fundamental (our ‘discrete’ spacetime emerges from a full
quantum gravity theory) or effective (we do not have a full quantum gravity theory, so we
just take a ‘discrete’ model).

A natural, and indeed largely studied, framework that naturally encompass all the
previous considerations is the one of noncommutative geometry [17, 18], and in particu-
lar, its incarnation in the theory of quantum groups and the noncommutative spacetimes
covariant under them. In fact, the relation between quantum groups and quantum gravity
has been suggested from different viewpoints since the introduction of the former by Drin-
fel’d [19] more than three decades ago. In particular, we will be aiming to describe the
‘quantum’ structure of the geometry of spacetime at the Planck scale through a noncom-
mutative algebra of ‘quantum spacetime coordinates’ [20, 21, 22, 22, 23]. This framework
has a large number of important advantages:

• It is independent of the underlying fundamental quantum gravity theory, or equiv-
alently, it provides models that should be recovered (if they turn out to be correct)
in an appropriate limit by any candidate of quantum gravity theory.

• Related to the previous point is the fact that these models could realistically pro-
vide some testable scenarios of quantum gravity effects, providing in this way ex-
perimental data/experimental limits, that any quantum gravity candidate should
predict/respect.

• The theory of quantum groups provides a very natural setting for the inclusion in
the theory of a new fundamental physical constant, most of the time thought to
be (related to) the Planck energy EP or Planck length lP , which mathematically is
just the deformation parameter of the quantum group. Recall that EP in terms of
(1.1) is given by EP = mP c

2 = ~/tP . This implies that it is the parameter that
governs the noncommutativity of the spacetime algebra, thus generating uncertainty
relations between noncommuting coordinates that can be used in order to describe a
‘fuzzy’ or ‘discrete’ nature of the spacetime at very small distances or high energies
[20, 24, 25, 26, 27, 22, 28, 29, 30].

• The construction of noncommutative spacetimes provides mathematically consistent
models with quantum group covariance which provide much extra information than
those models based on generic noncommutative algebras.
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Another important feature of the quantum group approach to the construction of ef-
fective models of quantum gravity effects is more ‘philosophical’, and is related with the
question of what are the most appropriate or natural mathematics to describe a quantum
spacetime. The answer of the approach based on quantum groups is clear and refers to
the noncommutative geometry appoach for the study of ‘noncommutative manifolds’. The
underlying idea is simple: when studying a topological manifold, Gelfand and Naimark
proved that all the topological structure can be recovered from its (commutative) algebra
of functions and that, in fact, there is a duality between topological spaces and commu-
tative algebras, in the sense that every commutative algebra is the algebra of functions
for some topological space. This theorem shows a clear path to generalize the notion of
topological space (and in particular of smooth manifold) to some kind of ‘noncommuta-
tive space’, just by considering noncommutative algebras. Although, unfortunately the
topological counterpart is lost in this approach, if we think on noncommutative algebras
as ‘deformations’ of commutative ones, we could think that the underlying space would
be a ‘noncommutative deformation’ of the initial topological space (although rigorously
there is no such a thing).

Before proceeding with our discussion about noncommutative spacetimes, let us recall
a well-known example of a noncommutative algebra. It is well-known that in the Hamilto-
nian description of physical systems, noncommutative algebras play a prominent role. For
instance, nonrelativistic quantum mechanics is based on a ‘noncommutative phase space’
in which position and momenta operators generate the Lie algebra

[x̂a, p̂b] = i~ δab , [x̂a, x̂b] = 0, [p̂a, p̂b] = 0, a, b ∈ {1, . . . , N}, (1.2)

which is the direct sum of N copies of the Heisenberg-Weyl algebra. Here, noncommuta-
tivity is controlled by the fundamental constant ~, since the ~→ 0 limit of (1.2) leads to
an abelian algebra, and the classical limit of (1.2) is defined by the Poisson bracket

{xa, pb} ≡ lim
~→0

[x̂a, p̂b]

i~
= δab . (1.3)

In this way we recover the symplectic structure of the Hamiltonian formulation of Classical
Mechanics, which can properly be said to be a Poisson-noncommutative theory. This
apparently innocent example indeed underlies the idea of introducing noncommutative
algebras in order to describe quantum spacetime, since it presents the following important
insight: the switch from classical to quantum mechanics is encoded by a fundamental
constant of Nature, in this case ~ (with units of action), in such a way that the quantum
behavior of a system becomes relevant when its action is of the order of ~. Although
the problem in which we are interested in this Thesis is essentially different, this well-
known example shows how the shift from commutative to noncommutative objects can be
mediated by the introduction of a new physical constant that divides two fundamentally
different (but related) descriptions of reality.

When applied to the concrete problem of describing quantum spacetime, the arguments
above should be sufficient to convince the reader that noncommutative geometry is a
sensible approach to study the effective quantum spacetime arising from a fundamental
theory of quantum gravity. Moreover, the remarks about the nonexistence of an underlying
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topological noncommutative spacetime are not important since there is no single reason
why our universe must be a topological space (in particular a smooth manifold). In this
sense, we will call noncommutative spacetime to some noncommutative algebra of functions
depending analytically on some parameter (the quantum or deformation parameter) in
such a way that in a certain limit we recover the commutative algebra of functions of a
classical spacetime. By the latter we simply mean any Lorentzian smooth manifold with
a metric which is a solution of Einstein’s field equations of general relativity. To work in
this way is useful because it allows to think about noncommutative spacetimes as analytic
deformations of classical spacetimes, and in particular it allows to consider, for instance,
how noncommutative Minkowski spacetimes could be constructed.

All the discussion above regarding noncommutative geometry is also relevant for de-
scribing the symmetries of these noncommutative spacetimes. As we have already men-
tioned, we will work with those noncommutative spacetimes which are covariant under
quantum group symmetries, where quantum groups are just noncommutative versions of
Lie groups. In fact the quantum groups appearing in this work will be deformations (de-
pending analytically of some quantum parameter) of the Lie groups of isometries of the
maximally symmetric Lorentzian spacetimes of constant curvature. There are three of
these classical spacetimes, the so-called Minkowski, de Sitter and anti-de Sitter space-
times (hereafter (A)dS spacetimes). Their isometry groups are called Poincaré, de Sitter
and anti-de Sitter groups (hereafter (A)dS groups). In this way, objects such as noncom-
mutative Minkowski or (A)dS spacetimes, and quantum Poincaré or (A)dS groups will
appear repeatedly throughout the Thesis, usually accompanied by the relevant quantum
parameter.

We recall that the so-called ‘quantum’ deformations of kinematical Lie groups and
algebras (see [19, 31, 32, 33, 33, 34] and references therein) and their semiclassical coun-
terparts (Poisson-Lie groups [19, 35]) will be the main tool employed in this Thesis. As
argued above, they present many features that make them suitable to be considered in a
quantum gravity scenario. In concrete, some of the most relevant for this work will be:

• They are Hopf algebra deformations of kinematical Lie groups in which the quantum
deformation parameter can be related to a Planck scale parameter [36, 37, 38].

• They give rise to noncommutative spacetimes which are covariant under quantum
group (co)actions. In this context, several notions related with ‘quantum kinemat-
ical geometry’ can rigorously be generalized, like the ones of Poisson and quantum
homogeneous spaces [39, 40, 41, 42, 43, 44, 45, 46].

• Quantum groups can be thought of as Hopf algebra quantizations of Poisson-Lie
groups, and the relevance of the latter in (2+1) gravity has strictly been established
(see [47, 48, 49, 50, 51, 52, 53]).

• Deformed Casimir operators of quantum kinematical algebras can be interpreted as
modified dispersion relations of the same type that the ones appearing in several
phenomenological approaches to quantum gravity [54, 38, 55].

As it happens with ordinary Lie groups, quantum group techniques are specially use-
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ful to construct noncommutative analogues of spacetimes that can be obtained either as
group manifolds or as homogeneous spaces (as discussed previously, Minkowski and (A)dS
spacetimes fall into this class). Moreover, each Lie group admits a number of differ-
ent quantum group deformations, and the quantum spacetime arising from each of them
can essentially be different. The classification and explicit construction of such a plural-
ity of quantum geometries constitutes one of the main issues in the theory of quantum
kinematical groups, which is far from being completed. In general, we will show that non-
commutative spacetimes with a non-vanishing cosmological constant Λ can be viewed as
‘geometric’ nonlinear deformations (with parameter Λ) of the noncommutative Minkowski
spacetimes with quantum deformation parameter q related to either lP or Ep.

In the following pages, we present a brief introduction to the main problems and results
presented within this Thesis, which we intend to be useful in order to comprehend which
are the main results included in this work, and which concrete problems they try to solve,
together with a brief physical motivation to these problems.

Mathematical foundations

The general idea presented until now has been that ‘fuzziness’ or ‘minimal length (energy)
scale’ scenarios for quantum gravity seem to point out in the direction of some kind of
noncommutative spacetime, and that this noncommutativity is characterized by a shift
from geometry to algebra if we attend to the natural mathematical tools that we posses
to study these objects.

This Thesis follows this line of thought, and thus in Chapter 2 we introduce the es-
sential tools from differential geometry that allows us to study the geometry of classical
spacetimes. In particular, we first introduce some general notions about Lie groups and
homogeneous spaces, and then we particularize them to the case of the three Lorentzian
spacetimes of constant curvature. These three spacetimes, whose noncommutative ver-
sions constitute the main objects of this Thesis, are described in full detail, including the
introduction of the appropriately chosen local coordinates that will be used in the rest of
this Thesis. Spacetimes with a non-vanishing constant curvature are specially interesting
from the point of view of noncommutative spaces, and they have not been considered
in detail in the literature. In this regard, we will present important generalizations of
well-known results for the flat (Minkowskian) case that nevertheless were still unknown.

As we have also mentioned, the philosophy of quantum groups is somehow to maintain
some of this geometrical intuition. In this sense, we have already mentioned that quantum
groups can be thought of as Hopf algebra quantizations of Poisson-Lie groups. Although
all these concepts will be made precise in Chapter 3, for now it is sufficient to mention
that a Poisson-Lie group is just a Lie group together with a Poisson structure (like the
one in the phase space of classical mechanics), in such a way that the group multiplication
and this Poisson structure are compatible [19]. In the same way, the noncommutative
spacetimes mentioned above (which mathematically are quantum homogeneous spaces)
have a Poisson version known as Poisson homogeneous spaces [39]. In a complete analogy
with homogeneous spaces endowed with an action of a Lie group, they are just smooth
manifolds endowed with a Poisson structure compatible with the action of the Poisson-
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Lie group, and it is because of this compatibility that they are called covariant Poisson
spacetimes.

The relevance of Poisson-Lie groups and Poisson homogeneous spaces is thus twofold:
on the one hand, they are simpler mathematical objects than quantum groups/quantum
homogeneous spaces, in the sense that one can apply all the well-known tools from dif-
ferential geometry to study them, and so keeping the geometrical insights provided by
the classical objects. On the other hand, Poisson-Lie groups/Poisson homogeneous spaces
can be quantized to obtain their noncommutative counterparts. In other words, we have
that quantum homogeneous spaces are (comodule algebra) quantizations of Poisson ho-
mogeneous spaces, which are covariant under Poisson-Lie group actions [39], and the
quantization of the latter provides the corresponding quantum group symmetry. This
second consideration is essential for our purposes, because sometimes the quantization
process starting from a Poisson homogeneous space and arriving to a quantum homoge-
neous space is much simpler than the construction of the quantum homogeneous space
by starting from the very beginning with noncommutative objects. This is the case for
example in the construction of the quantum κ-(A)dS spacetime performed on Chapter 4.

Moreover, the Poisson approach has another huge advantage: even when the quantiza-
tion is difficult, Poisson-Lie groups are just the first order, in the quantization parameter,
of quantum groups (which is equivalent to say that quantum groups are quantizations
of Poisson-Lie groups), and usually they provide the most relevant information regarding
the deformation. This is specially true when having in mind applications to quantum
gravity, in which the physical quantities related to these deformations are very small so,
many times, no higher order contributions in these parameters seem to be necessary from
a phenomenological point of view. As a consequence, the study and explicit construction
of Poisson homogeneous spacetimes have been shown to be fruitful in order to construct
quantum homogeneous spacetimes and, in general, noncommutative spaces with quantum
group invariance (see [56, 57, 44, 43, 58, 59, 60, 61] and references therein).

A remark is in order here: we have mentioned two different parameters, the quantum
(or deformation) parameter and the quantization parameter. These are two different
parameters and they should not be confused: the quantum (or deformation) parameter is
already present at the Poisson-Lie level and it is the parameter that we will interpret as
related to the Planck length or energy (an example is the parameter κ of the κ-Minkowski
spacetime). The quantization parameter is the parameter that appears when quantizing a
Poisson-Lie group to obtain a quantum group (in the phase space example ~ would be the
quantization parameter). This distinction is more important for conceptual clarity than
from a physical point of view, since we really do not have any experimental data that
allow us to interpret any of the parameters as a well-defined physical constant. In fact, it
could happen that the physical Planck length (energy) will be related to the combination
of these two parameters.

Minkowski and (A)dS noncommutative spacetimes

It is worth recalling that most of the quantum spacetimes that have been introduced so far
in the literature are noncommutative versions of the Minkowski spacetime [62, 63, 64, 65,
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66]. As a consequence, the construction of noncommutative spacetimes with non-vanishing
cosmological constant arose as a challenging problem in order to describe the interplay
between the non-vanishing curvature of spacetime and quantum gravity effects, having
in mind the possible cosmological consequences of Planck scale physics, which have been
considered in [67, 68, 69, 70, 71, 72].

Among these noncommutative spacetimes with quantum group symmetry, and in par-
ticular with a quantum Poincaré symmetry group, probably the most studied example is
the well-known κ-Minkowski noncommutative spacetime

[x̂0, x̂a] = −1

κ
x̂a, [x̂a, x̂b] = 0, a, b = 1, 2, 3, (1.4)

where κ is a parameter proportional to the Planck mass (see [63, 64, 65, 62]). The non-
commutative algebra (1.4) defines a noncommutative spacetime which is covariant under
the κ-Poincaré quantum group [65], a ‘quantum deformation’ of the group of isometries
of Minkowski spacetime which is the dual (as a Hopf algebra) of the κ-Poincaré quan-
tum algebra, that was obtained for the first time in [62] (see also [73, 74, 75, 76, 77]) by
making use of quantum group contraction techniques [78, 79, 80] applied onto real forms
of the Drinfel’d-Jimbo quantum deformation for appropriate complex simple Lie algebras
[19, 31].

Since then, the κ-Minkowski spacetime has provided a privileged benchmark for the
implementation of a number of models aiming to describe different features of quantum
geometry at the Planck scale and their connections with ongoing phenomenological pro-
posals. Without pretending to be exhaustive, κ-Minkowski spacetime has been studied
in relation with wave propagation on noncommutative spacetimes [81], dispersion rela-
tions [82, 83, 84, 85], relative locality phenomena [86], curved momentum spaces and
phase spaces [87, 88], noncommutative differential calculi [89, 90], star products [91], non-
commutative field theory [92, 93, 94], representation theory [95, 96] and light cones [97].
Specially relevant for this Thesis, at least from a conceptual point of view, are deformed
special relativity theories (formerly introduced in [98, 99, 100] and further developed in
[101, 102, 103, 104, 36, 105, 106]) in which Planck mass mP , or equivalently Planck length
lP (1.1), is introduced as a second relativistic invariant (besides the speed of light) which
modifies the classical relativistic symmetries of the system, in order to make them com-
patible with the existence of a new fundamental scale.

In the light of the interest devoted to the κ-Poincaré quantum algebra, it is somehow
surprising that analogous deformations for (A)dS groups had not been presented so far.
In particular, from a physical perspective they are specially relevant when cosmological
distances are involved, because then the interplay between gravity and quantum spacetime
should take into consideration the spacetime curvature [69, 107, 108, 70]. Therefore a
natural (maximally symmetric) noncommutative spacetime to be considered in this context
should be the quantum analogue of the (A)dS spacetime.

This will be in fact the first important result of this Thesis, presented in the first half
of Chapter 4: we have proven that there is essentially only one possible generalization
(under reasonable physical assumptions) of the κ-Minkowski spacetime to the case of a
non-vanishing cosmological constant, and we have explicitly constructed it. It should be
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noticed that while the problem of constructing noncommutative (A)dS spacetimes, which
are covariant under the appropriate quantum kinematical group, has recently attracted
some attention (see [109, 110, 111, 112, 113, 114, 60]), probably the most important case
given by the κ-(A)dS spacetime was still lacking.

The name of this noncommutative example is due to the fact that in the limit of
vanishing cosmological constant Λ → 0 one recovers the κ-Poincaré algebra, while in the
limit κ → ∞ one recovers the algebra of symmetries of the (A)dS spacetime. In this
way, the structure of the first part of Chapter 4 is the following: first, we recall both
the well-known κ-Poincaré quantum algebra, and then we construct the κ-Minkowski
noncommutative spacetime (1.4), starting by its construction as a Poisson homogeneous
space and followed by its quantization (which in this case is straightforward). Afterwards,
we prove that the generalization of this deformation to the (A)dS spacetime is unique if
we impose that the time translation generator is primitive, and we recall the associated
quantum algebra, which had been presented in [114]. Afterwards, we explicitly construct
the noncommutative κ-(A)dS spacetime, by following the same approach of quantizing the
semiclassical limit provided by the Poisson homogeneous space structure. However, due
to the presence of a non-vanishing cosmological constant, the κ-(A)dS spacetime is highly
nonlinear and therefore, in order to obtain a quantization in term of simple expressions,
we firstly quantize its first order. Afterwards we introduce ambient space coordinates, in
which the Poisson structure is quadratic, and in terms of which the quantization takes a
simple form. All these results were recently presented in [115].

Noncommutative spaces of worldlines

So far we have introduced the idea of noncommutative spacetimes that are covariant
under the appropriate quantum group symmetries. However, there exists a number of
approaches to quantum gravity in which the fundamental object is not spacetime itself
but momentum or phase spaces. An example is the relative locality approach [116, 117],
whose basic assumption is that the only physical quantities that can truly be measured
are momenta and energy of particles. In this context, it is indeed a natural question to
ask whether quantum groups, understood as deformed symmetries of noncommutative
spacetimes, have any role to play in the description of these momentum or phase spaces.
In fact they do, and the second part of Chapter 4 is devoted to this subject.

For the simplest case of free massive particles moving on some spacetime, the phase
space can be identified with the space of oriented time-like geodesics (worldlines of free
massive particles). If this spacetime is taken as the Minkowski one, time-like geodesics are
simply straight lines inside the lightcone. However for a general spacetime, i.e. a smooth
manifold endowed with a Lorentzian metric, the situation is much more complicated, as
will be detailed in Chapter 4. For the present work our interest is focused in the maximally
symmetric spacetimes of constant curvature, i.e. Minkowski and (A)dS spacetimes, for
which the space of time-like geodesics is indeed a homogeneous space.

As we will show in the second part of Chapter 4, the construction of a noncommutative
space of worldlines that is covariant under the appropriate quantum group of isometries
follow the same lines as in the case of spacetime. In this Chapter we firstly introduce
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a general procedure to construct noncommutative spaces of worldlines associated to any
quantum deformation (with the only obvious requirement that the quantum homogeneous
space of worldlines to be well-defined). We remark here that an important step in this
construction, which greatly simplifies our future work, is to choose local coordinates on
this space in such a way that the canonical Poisson-Lie structure on the group can be
obtained by canonical projection, so we firstly introduce these local coordinates.

In order to illustrate this construction, we consider the particular κ-Poincaré defor-
mation, which as we will see, has some remarkable properties. In particular, the Poisson
homogeneous space obtained is of Poisson subgroup type, and thus it is arguably simpler
than the corresponding spacetime, which is coisotropic. As it is the common procedure
during this Thesis, we firstly look at the Poisson counterparts of any construction in order
to get a semiclassical geometrical description, and only later we try to quantize it to ob-
tain the full noncommutative structures. In the case of noncommutative phase spaces, this
Poisson approach is even more natural since phase spaces are naturally symplectic man-
ifolds. The consequences of this Poisson structure induced by a quantum deformation of
the isometry groups for the dynamics of free massive particles on Lorentzian homogeneous
spaces certainly deserves further attention, but it is remarkable that in the κ-Poincaré case
this Poisson structure is (almost) a symplectic structure and so its quantization is triv-
ial to perform. All this procedure is presented in Chapter 4 and is based on the results
presented in [61].

Curved momentum spaces

While we have previously considered the role of quantum deformations in phase space, in
Chapter 5 we study the other aforementioned space: momentum space, and in particular
the nontrivial structure induced on it by the quantum κ-Poincaré and κ-(A)dS groups.
In order to understand the ideas behind this construction, we should remark that recent
developments in quantum gravity research have given new substance to the long-forgotten
idea that momentum space should have a nontrivial geometry, an intuition originally due
to Max Born [118].

However, such an idea was not seriously considered in the bibliography until the in-
troduction, more than a decade ago, of deformed special relativity (DSR) in [98, 100].
Nevertheless, it is now understood that a nontrivial geometry of momentum space is a
general feature of DSR theories [104, 103, 119, 117, 116, 120]. This is intimately related
with the presence of the Planck energy as a second relativistic invariant (besides the
speed of light), that can play the role of a curvature scale of the momentum manifold
[121, 122]. Nontrivial properties of momentum space emerge also in (2+1)-dimensional
quantum gravity, where explicit computations show that the effective description of quan-
tum gravity coupled to point particles is given by a theory with curved momentum space
and noncommutative spacetime coordinates [123, 37, 124, 125]. Of more direct interest
for the results present in this Thesis are those models of noncommutative geometry, where
the space of momenta (that are dual to the noncommutative spacetime coordinates) is
curved [126, 81, 127, 87].

The nontrivial geometry of momentum space is also interesting from a phenomenolog-



11

ical point of view, since for instance, it is related to an energy-dependent correction to the
time of flight of free particles [128] (known as dual redshift) or to dual-gravity lensing [129].
These Planck-scale corrections can be tested by astrophysical observations [130]. Never-
theless, most of these studies are not able to describe situations in which both spacetime
and momentum space curvature are present, although the most promising observations
involve propagation of particles over cosmological distances, for which spacetime curvature
cannot be neglected [54, 131, 132, 70, 133]. In the past few years several proposals, aimed
at extending relativistic models with curved momentum space, were put forward in order
to include non-vanishing spacetime curvature [107, 134, 135, 136, 137, 138]. The general
understanding coming from these approaches is that when both momentum space and
spacetime have non-vanishing curvature they become so intertwined that it is not possible
to give a neat geometrical description of the properties of momentum space on its own.

In this Thesis we show that this is not necessarily the case. Indeed, in Chapter 5 we are
able to explicitly construct the curved momentum space generated by quantum-deformed
spacetime symmetries in presence of a non-vanishing cosmological constant. We achieve
this result by enlarging the momentum space so that the latter is not only the manifold
of momenta associated to translations on spacetime, but it also includes the ‘hyperbolic’
momenta associated to the boost transformations and the angular momenta associated to
rotations. Within this construction we can also show that in the vanishing cosmological
constant limit the Lorentz sector is not involved in the structure of the momentum space
because it decouples from the energy-momentum sector, thus recovering previous results
in the literature.

In particular, we again make use of Hopf algebras, which have proved to be a very use-
ful mathematical framework to model certain DSR symmetries. As mentioned previously,
the most studied example is the κ-Poincaré Hopf algebra [64, 76, 139], the investigation
of which provided inspiration and more precise understanding of several features of DSR
models. For example, it can be explicitly shown that the manifold of momenta associated
to the κ-Poincaré translation generators is a (‘portion’ of a) dS manifold, whose curvature
is determined by the quantum deformation scale κ [87] and whose metric determines the
free particle dispersion relation that is indeed compatible with the κ-Poincaré symme-
tries, thus showing that the phenomenology associated to the κ-Poincaré algebra fits very
naturally within the framework of relative locality [140, 87, 141].

In Chapter 5 we present a generalization of all these results to the case of a non-
vanishing cosmological constant by working with the κ-deformation of the (A)dS algebra,
previously constructed in Chapter 4 (see also [74, 62, 142, 143, 144, 68, 114]). The approach
here presented starts by considering the lower (1+1) and (2+1)-dimensional cases [145], in
which the situation is simpler, and then to work out the physically realistic case of (3+1)
dimensions [146]. In the low dimensional cases, the situation is qualitatively similar to
the flat case: the curved momentum space associated to this quantum deformation has
the geometry of a (‘portion’ of a) dS manifold, although now enlarged with ‘hyperbolic’
and angular momenta associated to boosts and rotations, respectively. However, in the
(3+1)-dimensional case, the qualitative picture changes, showing that the geometry of the
momentum space is different dependending on the sign of the cosmological constant. The
method employed [147, 59] to obtain these results makes use the Poisson version of the
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‘quantum duality principle’ in order to construct the dual Poisson-Lie group associated to
the κ-(A)dS deformation. This procedure, which is a generalization of the one presented
in [103], has the advantage that we can obtain deformed dispersion relations as Casimir
functions for the Poisson-Lie structure on the dual group. All these results have given rise
to the publications [145, 146, 148].

(2+1) noncommutative spacetimes from Drinfel’d doubles

All the constructions commented above have something in common: they are applications
of quantum groups (Hopf algebras) to quantum gravity problems from a phenomeno-
logical or effective point of view. However, quantum groups have also arised in different
approaches to quantum gravity, such as the combinatorial quantization of gravity in (2+1)
dimensions or path integral approaches such as state sum models or spin foams (see, for
instance [149, 150, 151, 152, 153, 154, 155, 156], and references therein).

While, as we have commented, in any dimension quantum groups are natural candi-
dates to describe the symmetries of a quantum theory of gravity, in the case of (2+1)
dimensions their role is much better understood. Moreover, quantum gravity in (2+1)
dimensions is often consider as a suitable toy model which incorporates some conceptual
key points that a full quantum gravity theory is supposed to address (see [157] for a nice
introduction to the subject). As it is well-known, gravity in (2+1) dimensions is quite dif-
ferent from the full (3+1)-dimensional theory [158, 157]. The source of this difference can
be traced back to the fact that in three dimensions the Ricci tensor completely determines
the Riemann tensor. Therefore, every solution of the vacuum Einstein field equations is lo-
cally isometric to one of the three maximally symmetric spacetimes of constant curvature,
Minkowski or (A)dS, only depending on the value of the cosmological constant [157]. As
a consequence, gravity in (2+1) dimensions is a topological theory in which gravitational
waves do not exist. In fact, (2+1)-dimensional gravity admits a description as a Chern-
Simons theory with gauge group given by the group of isometries of the corresponding
spacetime model [49, 50]. In this context the phase space structure of (2+1)-gravity is
related with the moduli space of flat connections on a Riemann surface whose symme-
tries are given by certain Poisson-Lie (PL) groups [47, 48], which as already stated are
the semiclassical counterpart of quantum groups. The relevant Poisson structure on this
latter space admits a natural description in terms of coboundary Lie bialgebras associated
with the gauge group. It is the presence of these PL groups playing the role of classical
symmetries what makes clearer how quantum groups should enter in the game.

Given the above considerations, while the generic role of PL and quantum groups in
(2+1)-gravity is clear, the question of which quantum deformations are the relevant ones
from the physical viewpoint is a matter of intense investigation [68, 52, 159, 160, 161, 162].
In this context, both Lorentzian and Euclidean groups have been considered [154, 52, 159,
21, 163, 164, 165, 51]. Moreover, there is evidence that relevant quantum deformations are
the ones coming from a classical r-matrix arising from a Drinfel’d double (DD) structure,
since this ensures that the Fock-Rosly condition [48] is fulfilled, thus allowing a consistent
definition of the Poisson structure on the moduli space of flat connections (see [110] and
references therein). These works made evident that a systematic study of all the possible



13

DD structures for the isometry groups of spacetime models for (2+1)-gravity was needed.
However, while the DD structures for the (A)dS groups have been fully described [110, 109,
112, 111], that is not the case for DD structures for the Poincaré group, thus preventing
the complete understanding of Lorentzian DD structures and their relationships under Lie
bialgebra contraction procedures [80], for which the inclusion of the cosmological constant
Λ as an explicit parameter has been proven to be very useful. Given that models of
Euclidean gravity in three dimensions have also been considered [159], it certainly would
be interesting to have an explicit description not only of the DD structures for the Poincaré
group, but also for the Euclidean group, and in this way be able to compare both theories
and their possible consequences.

In Chapter 6 some of these problems will be faced, and in particular the quantum
deformations arising from DD structures will be put into correspondence with the full
classification given in [166] for both Lorentzian and Euclidean signatures (note that anal-
ogous classifications for the (A)dS cases can be found in [167, 168]), and the analysis of
their contraction from the DD structures for the (A)dS Lie algebras, which were provided
in [110], will also be given. Moreover, each DD structure provides a canonical quantum
deformation of the Poincaré or Euclidean group, completely characterized by its canonical
r-matrix. We therefore explicitly construct and analyze each of the associated Poisson
homogeneous spaces associated to these DD structures, and find that they indeed have
quite different properties. A similar analysis is performed for the (1+1)-non-trivially cen-
trally extended Poincaré group, obtaining that it has two possible DD structures. We
also argue that this plurality of DD structures of the Poincaré group is exceptional among
the kinematical groups, for which we present a discussion of the possibility of existence of
DD structures for kinematical groups in (2+1) and other dimensions. In the publications
[169, 170], all these new results can be found.

Dual Poisson homogeneous spaces

A fundamental difference between a commutative and a noncommutative spacetime that
we have not sufficiently emphasized until this moment is the existence of uncertainty rela-
tions in the latter. This is a well-known fact, and indeed a good example is the quantum
mechanical phase space (1.2). However, in (1.2) the noncommutativity only arises between
momenta and position operators while, in the case of a noncommutative spacetime there
will be an extra noncommutativity among the position operators themselves. For a non-
commutative spacetime that is covariant under some quantum group, these uncertainty
relations are tied to this symmetry. Due to the physical relevance of these uncertainty
relations, the problem of how quantum group symmetries are related to the uncertainty re-
lations of the corresponding covariant noncommutative spacetime certainly deserves some
attention.

With this in mind, in Chapter 7 we introduce the concepts of coreductive and cosym-
metric deformations, which have the property that the geometry of their dual spaces,
which determines the nature of these uncertainty relations, have a specially simple form.
More in detail, the Lie bialgebra associated to a coreductive deformation defines a dual
space which is a reductive homogeneous space, while a cosymmetric deformation generates
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a dual symmetric space. In order to illustrate these concepts with some explicit examples,
we consider the κ-Poincaré and κ-(A)dS deformations analyzed in Chapters 4 and 5 and
we study the geometry of their associated dual spaces. In general, these dual spaces are
completely different to the associated spacetimes. In the particular examples considered,
they do not even admit invariant metrics, so with the aim of studying their geometry we
make use of the framework of K-structures, which was introduced in Chapter 2, and their
associated connections. It is found that while in (2+1) dimensions the κ-Lie bialgebra
is coreductive for the Poincaré and (A)dS algebras, in (3+1) dimensions coreductivity is
only admissible for the κ-Poincaré Lie bialgebra, since the introduction of this condition
turns out to be incompatible with the existence of a non-vanishing cosmological constant
parameter Λ. Regarding the dual homogeneous spaces, we obtain that while in (2+1) di-
mensions their associated Poisson structures turn out to be Λ-deformations of the Lorentz
Lie algebra so(2, 1), in (3+1) dimensions the dual of the κ-Minkowski space has a Poisson
structure isomorphic to the non-deformed Lorentz Lie algebra so(3, 1).

This Chapter 7, of a more mathematical nature, shows that the study of dual PL
groups and other associated geometric structures provides a completion of the landscape
of new symmetries associated to quantum groups. These results are included in the paper
[171].



Chapter 2

Lie groups and homogeneous
spaces

The aim of this Chapter is to provide the most relevant differential geometric notions that
will be needed during the rest of this Thesis. In particular, it will deal with the basics
of Lie groups, Lie algebras and their actions on smooth manifolds. This latter concept
will be specially important for our work, so we introduce the notion of a G-space, i.e. a
manifold endowed with an action of a Lie group G.

Certain type of actions of a Lie group on a manifold, namely transitive actions, define
the important notion of homogeneous space, which will be a key concept for this Thesis.
We also state some well-known results that allow us to construct models of homogeneous
spaces from coset spaces of Lie groups by closed subgroups, where these subgroups are
the ones fixing a chosen point from the homogeneous space. Among homogeneous spaces,
the so-called symmetric spaces will be treated in more detail, since most of the geometric
objects appearing in this Thesis belong to this subset.

In §2.1 we introduce the concepts of Lie group and Lie algebra, show the relation
among them and define several important related notions. Afterwards we define the notion
of homogeneous space for a Lie group and study its geometry. We finish this Section by
considering the special cases of reductive and symmetric homogeneous spaces, and by
presenting their geometrical properties in more detail.

In §2.2 we study the Lie algebras of the groups of isometries for the three maximally
symmetric Lorentzian spaces of constant curvature, namely Minkowski and (anti-)de Sit-
ter, which we refer as Lorentzian spacetimes of constant curvature (or simply Lorentzian
spacetimes for brevity). Here we introduce the kinematical basis we employ in the rest
of this Thesis. We give explicit expressions for the (3+1), (2+1) and (1+1)-dimensional
situations, since they will be heavily used during this work.

In §2.3 we study the Minkowski and (anti-)de Sitter spacetimes as coset spaces of their
Lie groups of isometries (motion groups), namely the Poincaré ISO(3, 1), anti-de Sitter
SO(3, 2) and de Sitter SO(4, 1) groups. Our description will be based on the construction
of Lorentzian spacetimes as cosets of the motion group by the so-called Lorentz group.
We will provide appropriate local coordinates on them, as well as ambient space coordi-
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nates. In particular, these local coordinates are defined in such a way that our future
constructions follow in the simplest possible way. Similarly to the previous Section we
give explicit descriptions for the different dimensional cases (1+1), (2+1) and (3+1). We
finish this Section by describing the metric properties of these spaces, and by providing
the expressions for left- and right-invariant vector fields in the chosen local coordinates.

2.1 Lie groups, Lie algebras and homogeneous spaces

During this Section we follow [172, 173, 174, 175, 176, 177, 178, 179]. Let us start by
defining some standard notation. During the rest of this work, we define an n-dimensional
smooth real manifold M (which we shall simply call a manifold or smooth manifold) as
a paracompact Hausdorff topological space M equipped with an atlas {(Uµ, ϕµ)|M =
∪µUµ, ϕµ : Uµ → Rn} such that every transition function

ϕµν = ϕν ◦ ϕ−1
µ

∣∣∣∣
ϕµ(Uµ∩Uν)

: ϕµ(Uµ ∩ Uν)→ ϕν(Uµ ∩ Uν) (2.1)

is smooth, i.e. ϕµν ∈ C∞(Rn,Rn). In fact, most of the time, manifolds appearing in
this work will be real analytic. Because M is paracompact and Hausdorff, then it admits
partitions of unity, and hence it admits both Riemannian metrics and connections. For
any manifold M we denote by TM and T ∗M to its tangent and cotangent bundles. Local
sections of TM are called vector fields and denoted by Γ(TM) = X(M), while local sections
of T ∗M are called one-forms and denoted by Γ(T ∗M) = Ω1(M). In general, sections of
any bundle B over M will be denoted by Γ(B). For a vector field evaluated in a point
m ∈M we write Xm ∈ TmM .

Let M,N be smooth manifolds and let f : M → N be a smooth map between them.
Then we denote by f∗ : TM → TN to the differential (pushforward) of f , defined as a
bundle map such that for each m ∈ M defines the linear map f∗,m : TmM → Tf(m)N
given by

f∗,m(Xm)(F ) = Xm(F ◦ f) (2.2)

for all Xm ∈ TmM and F ∈ C∞(R). If (x1, . . . , xn) is a set of local coordinates on an open

subset U ⊂ M , then we write {∂a
∣∣
m

= ∂
∂xa

∣∣∣∣
m

|a ∈ {1, . . . , n}} to the associated basis of

TmM . Then, the set of vector fields { ∂
∂xa | a ∈ {1, . . . , n}} give a local parallelization of

U ⊂M .

2.1.1 Lie groups

Consider a set G and let us endow it with a group structure. We define the multiplication
map by

µ : G×G→ G

(g, h)→ gh
(2.3)
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and the inverse map by

ι : G→ G

g → g−1
(2.4)

for all g, h ∈ G. The set G endowed with this group structure will also be called G, since
no confusion should arise. The identity element of a group G will be hereafter denoted by
e, unless otherwise stated.

Definition 2.1. A Lie group over the field k is a group G equipped with the structure of
a smooth manifold in such a way that the group multiplication map is a smooth map.

Note that this definition implies that the inverse map is also smooth, which is deduced
by applying the inverse map theorem to the map G×G→ G×G, (g, h)→ (g, gh) whose
differential clearly induces an isomorphism between the tangent spaces. In this work the
base field k will be either R or C, and the groups are understood to be finite-dimensional
unless otherwise stated. Let us fix g ∈ G and define three operations on G that will play
a significant role, namely left multiplication, right multiplication and conjugation, namely

Lg : G→ G

h→ g h,
(2.5)

Rg : G→ G

h→ h g
(2.6)

and

Cg : G→ G

h→ g h g−1,
(2.7)

respectively. In fact, it is easy to check that these maps are diffeomorphisms of G. Note
that Lg = µ(g, ·), Rg = µ(·, g) and Cg = Lg ◦Rg−1 = Rg−1 ◦Lg, since Lg and Rg commute.

Definition 2.2. A subgroup H of the Lie group G is called a Lie subgroup if it is a
submanifold of G.

Hereafter we write H < G if we want to emphasize that H is a Lie subgroup of G,
while by H ⊂ G we only mean that H is contained in G as a subset.

Theorem 2.1. [179] Every closed subgroup H of G is a Lie subgroup.

Definition 2.3. Let G1 and G2 be Lie groups. A map φ : G1 → G2 is called a Lie group
homomorphism if it is both a group homomorphism and a smooth map. If in addition
φ is a group isomorphism and a diffeomorphism, then it is called an isomorphism of Lie
groups.

Definition 2.4. A one parameter subgroup of a Lie group G is a smooth curve

g : R→ G

t→ g(t) = gt
(2.8)
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satisfying

g(t1)g(t2) = g(t1 + t2)

g(0) = e.
(2.9)

Clearly, for each one parameter subgroup, the differential of g at 0 ∈ R defines a unique
X = g∗,0 ∈ TeG.

Let M be a smooth manifold and G a Lie group. We can define different actions of G
as a group on M as a set. However the extra structure of both M and G motivates the
following more restrictive definition.

Definition 2.5. An action of a Lie group G on a smooth manifold M is a homomorphism
α : G→ Diff(M) such that the map α(g) : M →M,m→ α(g)m is smooth for all g ∈ G.
We say that an action α is transitive if for all m,n ∈M , there exists at least one element
g ∈ G such that α(g)m = n. The action α is called faithful if for every g ∈ G, α(g)m = m
for all m ∈ M implies g = e. We call a manifold endowed with a Lie group action a
G-space.

With the notation of the previous definition, it is clear that an action induces a smooth
map G×M →M which, by a slight abuse of notation, we also denote α and we call the
action of G on M , since no confusion should arise. This map is given by

α : G×M →M

(g,m)→ α(g)(m).
(2.10)

This smooth map α : G×M →M induces the following two smooth maps

αg : M →M

m→ αg(m) = α(g)(m)
(2.11)

and

αm : G→M

g → αm(g) = α(g)(m).
(2.12)

for all g ∈ G and m ∈ M . The first one is just the smooth map α(g) of Definition 2.5
that defines the action and assigns, for each fixed g ∈ G the point m′ ∈M that results of
applying such a transformation. The second one assigns, for any fixed m ∈ M , to every
g ∈ G the point m′ ∈ M resulting from applying the transformation corresponding to
g ∈ G. In general, it should be clear to which of the previous maps we are referring in each
moment. From the condition of α : G→ Diff (M) being a group homomorphism (of course
the group operation on Diff (M) is the composition of diffeomorphisms), we have that
α(g h) = α(g)α(h) for all g, h ∈ G, and therefore it is clear that α(g h) (m) = αg (αh (m)).

Associated to any Lie group action there are a number of important notions, which we
now summarize. For each m ∈M we call the set

Gm = {g ∈ G |αg (m) = m} (2.13)
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the stabilizer of m, which is the set of elements of G that keeps the point m invariant. The
following Theorem states that this is indeed always a subgroup of G. The set of points in
M that can be reached from a fixed point m ∈M by the action of G is called the orbit of
m, so

Om = {αg (m) | g ∈ G}. (2.14)

When studying G actions on M the subset of functions belonging to C∞(M) which is
invariant by G plays an important role and we denote it by

C∞(M)G = {f ∈ C∞(M) | f(αg (m)) = f(m) ∀m ∈M, g ∈ G}. (2.15)

Theorem 2.2. [177] Let α be an action of a Lie group G on a smooth manifold M . For
any point m ∈M the map

αm : G→M

g → α(g)(m)
(2.16)

has constant rank k and

i) the stabilizer Gm is a Lie subgroup of codimension k in G and Te(Gm) = Ker (αm)∗;

ii) for some neighborhood U of e ∈ G the set α(U)m = {αg(m) | g ∈ U} is a submanifold
of dimension k in M , and Tm(α(U)m) = (αm)∗(Te(G));

iii) if the orbit α(U) is a submanifold in M , then dimα(G)m = k.

For a transitive action α the stabilizers Gm, Gn of any two points m,n ∈ M are
isomorphic. Moreover, they are conjugate subgroups, so there exists some g ∈ G such
that Gn = g Gm g

−1 for any m,n ∈ M . This fact is very useful, because for transitive
actions, it is sufficient to compute the stabilizer Gm for a given m ∈M . We will use this
property during the rest of this work in order to construct coset spaces. The fact that
the stabilizer Gm of m ∈ M is a Lie subgroup explains the alternative notation isotropy
subgroup.

Three actions of G on itself are associated to (2.5), (2.6) and (2.7) in a canonical way,
namely

L : G×G→ G

(g, h)→ Lg(h) = g h,
(2.17)

R : G×G→ G

(g, h)→ Rg(h) = h g,
(2.18)

and

C : G×G→ G

(g, h)→ Cg(h) = g h g−1,
(2.19)

and we denote them as left, right and adjoint actions of G, respectively. These three
actions define maps G → G, which we call Lg, Rg, Cg respectively, by fixing their first
argument.
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2.1.2 Left- and right-invariant vector fields

Let M be a smooth manifold and X(M) the set of vector fields on M . This set forms
an infinite dimensional Lie algebra when endowed with the Lie bracket for vector fields,
defined by its action on functions

[X,Y ]f = X(Y f)− Y (Xf), (2.20)

for all X,Y ∈ X(M) and all f ∈ C∞(M). In the particular case where M = G is a Lie
group two subsets of X(M) are particularly important: the left- and right invariant vector
fields, which are defined by

XL(G) =

{
XL ∈ X(M)|(Lh)∗X

L

∣∣∣∣
g

= XL

∣∣∣∣
hg

}
=

=
{
XL ∈ X(M)|(XLf) ◦ Lh = XL(f ◦ Lh)

}
,

(2.21)

XR(G) =

{
XR ∈ X(M)|(Rh)∗X

R

∣∣∣∣
g

= XR

∣∣∣∣
gh

}
=

=
{
XR ∈ X(M)|(XRf) ◦Rh = XR(f ◦Rh)

}
,

(2.22)

respectively. By definition, each left- (right-) invariant vector field is completely defined
by its value at the identity of G, since for example (XLf)(g) = (XL(f ◦ Lg))(e), and so
they admit the following explicit description. For any given vector Ta ∈ TeG we have

(XL
a f)(g) =

d

dt

∣∣∣∣
t=0

f
(
g etTa

)
, (XR

a f)(g) =
d

dt

∣∣∣∣
t=0

f
(
etTag

)
, (2.23)

for all f ∈ C∞(G) and all g ∈ G. The vector space of left-invariant vector fields equipped
with a Lie bracket is called the Lie algebra g of G. The previous argument shows that
there exists an isomorphism from the vector space TeG to the vector space of left-invariant
vector fields on G, so due to the invariance of the Lie bracket under diffeomorphisms, we
can identify g ' TeG. From now on we will use this identification. This construction
inspires the abstract definition of a Lie algebra.

2.1.3 Lie algebras

Let V be a vector space over the field k. A Lie bracket on V is a bilinear map [ , ] :
V ⊗ V → V satisfying the following two conditions

(L1) [X,Y ] = −[Y,X];

(L2) [X, [Y, Z]] + [Z, [X,Y ]] + [Y, [Z,X]] = 0;

for all X,Y, Z ∈ V . Condition (L1) is called the antisymmetry condition, while (L2) is
the Jacobi identity. Note that the antisymmetry condition (L1) is equivalent, in presence
of the Jacobi identity (L2), to the condition [X,X] = 0 for all X ∈ V .
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Definition 2.6. A Lie algebra g is a pair (V, [ , ]g) where V is a vector space and [ , ]g is
a Lie bracket.

If there is no uncertainty about the Lie algebra under consideration, we can omit the
subscript in the bracket and write just [ , ] instead of [ , ]g. We call the dual of a Lie
algebra g, and denote it by g∗, the dual vector space V ∗. It should be noticed that in
principle the Lie algebra structure does not induce any extra structure on g∗. Let g be
an n-dimensional Lie algebra and choose an algebraic basis of g, say {X1, . . . , Xn}. Then
we define an algebraic basis on g∗, say {x1, . . . , xn}, by means of the canonical pairing
〈Xi, xj〉 = δij between vector spaces. In this work we are mainly interested with finite
dimensional Lie algebras, so unless otherwise stated this will be the case for all the Lie
algebras under consideration.

Let us consider an n-dimensional Lie algebra g and take a basis {X1, . . . , Xn} of g in
which the structure constants are ckij , i.e. [Xi, Xj ] =

∑n
k=1 c

k
ijXk. Then the antisymmetry

condition (L1) is equivalent to ckij = −ckji for all i, j, k ∈ {1, . . . , n}. The Jacobi identity
(L2) is equivalent to

n∑
l=1

(
cljkc

m
il + clijc

m
kl + clkic

m
jl

)
= 0, (2.24)

for all i, j, k ∈ {1, . . . , n}. In fact, these equations can be just expressed as∑
l

∑
(i,j,k)∈Σ3

(
cljkc

m
il

)
= 0, (2.25)

for all i, j, k ∈ {1, . . . , n}.
∑

(i,j,k)∈Σ3
denotes a cyclic permutation of the indices i, j, k.

Definition 2.7. Let g1 and g2 be Lie algebras. A Lie algebra homomorphism φ from g1

to g2 is a linear map φ : g1 → g2 such that φ ◦ [ , ]g1 = [ , ]g2 ◦ (φ⊗ φ).

The identification TeG ' g allows the definition of the exponential map

exp : g→ G

X → g1,
(2.26)

where gt are the one-parameter subgroups from Definition 2.4. This allows us to rigorously
exponentiate Lie algebra elements X to one-parameter subgroups of gt ⊂ G, and by the
properties given in Definition 2.4 it is fully justified (and hereafter we will do so) to write
gt = exp(tX) for all X ∈ g.

2.1.4 Representations of Lie groups and Lie algebras

The adjoint and coadjoint representations of a Lie group and a Lie algebra will play an
important role in the rest of the Thesis, so we now describe it. Let V be a finite dimensional
vector space over the field k.

Definition 2.8. A representation of a Lie group G on V is a smooth group homomorphism
ρ : G→ GL(V ).
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Since k will be either R or C, we will also write ρ : G→ GL(n,R) or ρ : G→ GL(n,C)
to specify whether the representation is real or complex. In complete analogy with the
notion of a Lie group representation, we define

Definition 2.9. A representation of a Lie algebra g on V is a Lie algebra homomorphism
ρ : g→ GL(V ).

In the previous definitions it should be noticed that the Lie algebra structure GL(V )
is given by the usual matrix commutator [A,B] = A ·B −B ·A.

Given that a Lie algebra is by itself a particular a vector space, then we can indeed
consider representations of both G and g on GL(g), and so consider Lie group and Lie
algebra representations of the form

ρ : g→ GL(g), (2.27)

and

ρ : G→ GL(g). (2.28)

If the homomorphism ρ defining the representation is injective, then we shall say that the
representation is faithful.

There is a canonical representation of G on its Lie algebra g namely, the adjoint
representation, associated to the adjoint action of G on itself, and defined by

Ad : G→ GL(g)

g → Adg
(2.29)

where

Adg : g→ g

T → d

dt

∣∣∣∣
t=0

(
getT g−1

) (2.30)

for all T ∈ g and g ∈ G. The differential of the adjoint representation of a Lie group G is
the so-called adjoint representation of its Lie algebra g. Differentiating the representation
Ad we get

adS(T ) =
d

ds

∣∣∣∣
s=0

Adexp (s S)(T ) =
d

ds

∣∣∣∣
s=0

d

dt

∣∣∣∣
t=0

(
esSetT e−sS

)
= [S, T ], (2.31)

and this motivates the following

Definition 2.10. The adjoint representation of g is the Lie algebra homomorphism

ad : g→ GL(g)

X → adX
(2.32)

where the map adX : g→ g, called the adjoint action of g on itself, is given by adX(Y ) =
[X,Y ] for all X,Y ∈ g.
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The adjoint representation satisfies

ad([X,Y ]g) = [adX , adY ]GL(g) , (2.33)

or equivalently
ad([X,Y ])Z = adX(adY Z)− adY (adXZ), (2.34)

for all X,Y, Z ∈ g, which is just the the Jacobi identity (condition (L2) from the definition
of the Lie bracket).

For a vector space V we denote its n-fold tensor product by V ⊗n =

n︷ ︸︸ ︷
V ⊗ · · · ⊗ V . The

extension of the adjoint action of g on itself to g⊗n will be specially useful. So we define

adX : g⊗n → g⊗n

Y1 ⊗ · · · ⊗ Yn →
n∑
a=1

Y1 ⊗ · · · ⊗ adX(Ya)⊗ · · · ⊗ Yn.
(2.35)

The dual of (2.29) is the coadjoint representation Ad∗ : G → GL(g∗), defined by
Ad∗g = (Adg−1)∗ where the duality is defined with respect to the canonical pairing between
dual vector spaces, i.e.

〈Ad∗gx,X〉 = 〈x,Adg−1X〉 (2.36)

for all g ∈ G, X ∈ g and x ∈ g∗. The differential of Ad∗ in e ∈ G will be denoted by
ad∗ : g→ GL(g∗) and is given by ad∗X = −(adX)∗, thus satisfying

〈ad∗Y x,X〉 = 〈x,−adYX〉 (2.37)

for all X,Y ∈ g and x ∈ g∗.

A Lie algebra g can act on a smooth manifold by means of an infinitesimal action, by
which we mean a Lie algebra morphism from g to the Lie algebra of vector fields X(M).

Example 2.1. (Matrix Lie groups) Let Mat(n × n, k) be the set of n-dimensional
square matrices with coefficients in the field k = R,C. The general linear group is defined
as GL(n, k) = {M ∈ Mat(n× n,K) | detM 6= 0}, i.e. the ones with an inverse. Its Lie
algebra is gl(n, k) = Mat(n × n,K). By Theorem 2.1 every closed subgroup of GL(n, k)
is a Lie group, and they are called matrix Lie groups (or linear Lie groups). Note that
GL(n,C) ⊂ GL(2n,R). Some important real matrix groups are listed below, together
with their Lie algebras.

• Orientation group:

GL+(n,R) = {M ∈ GL(n,R) | detM > 0} , gl+(n,R) = gl(n,R). (2.38)

• Special linear group:

SL(n,R) = {M ∈ GL(n,R) | detM = 1} , sl(n,R) = {M ∈ gl(n,R) | trM = 0} .
(2.39)
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• Orthogonal group:

O(n) =
{
M ∈ GL(n,R) |M t = M−1

}
, o(n) =

{
M ∈ gl(n,R) |M t = −M

}
.

(2.40)

• Special orthogonal group:

SO(n) = O(n,R) ∩ SL(n,R), so(n) = o(n) ∩ sl(n,R). (2.41)

• Indefinite orthogonal groups:

O(p, q) =
{
M ∈ GL(n,R) |M tIp,qM = Ip,q

}
,

o(p, q) =
{
M ∈ gl(n,R) |M tIp,q + Ip,qM = 0

}
,

(2.42)

where p+ q = n, Ip,q =

(
−Ip 0

0 Iq

)
and Im the m×m identity matrix.

• Special indefinite orthogonal groups:

SO(p, q) = O(p, q) ∩ SL(p+ q,R), so(p, q) = o(p, q) ∩ sl(n,R). (2.43)

Note that we can see (special) orthogonal groups as particular cases of (special)
indefinite orthogonal groups, with p = 0 and thus O(0, n) = O(n) and SO(0, n) =
SO(n).

• Symplectic groups:

Sp(n,R) =
{
M ∈ GL(2n,R) |M tSnM = Sn

}
,

sp(n) =
{
M ∈ gl(2n,R) |M tSn + SnM = 0

}
,

(2.44)

where Sn =

(
0 In
−In 0

)
.

Some important complex matrix groups are:

• Special linear group:

SL(n,C) = {M ∈ GL(n,C) | detM = 1} , sl(n,C) = {M ∈ gl(n,C) | trM = 0} .
(2.45)

• Unitary groups:

U(n) =
{
M ∈ GL(n,C) |M †M = I

}
, u(n) =

{
M ∈ gl(n,C) |M † = −M

}
.

(2.46)
where † denotes Hermitian conjugation (complex conjugation followed by transposi-
tion).

• Special unitary groups:

SU(n) = U(n) ∩ SL(n,C), su(n) = u(n) ∩ sl(n,C). (2.47)

♦

All the groups explicitly used in this Thesis are matrix groups.
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2.1.5 Geometry of homogeneous spaces

In the following we will briefly recall some useful results concerning the geometry of ho-
mogeneous spaces, considering with special care the particular cases of reductive and
symmetric spaces. We stress that on the one hand, all the spacetime manifolds that we
study during this work are symmetric spaces, and on the other hand, in Chapter 5 we
will introduce certain deformations of spacetime symmetries for which its dual space is a
reductive or symmetric space. For the sake of brevity, in the sequel we use an algebraic
approach to the geometry of these spaces.

Definition 2.11. Let M be a smooth manifold. A connection ∇ on M is a bilinear map

∇ : X(M)× X(M)→ X(M)

(X,Y )→ ∇XY
(2.48)

satisfying

i) ∇fXY = f∇XY ,

ii) ∇X(fY ) = (Xf)Y + f∇XY ,

for all X,Y ∈ X(M) and f ∈ C∞(M). The vector field ∇XY is called the covariant
derivative of Y with respect to X.

By using partitions of unity it is easy to see that connections can be defined on every
smooth manifold. Associated to every connection on M there are two objects, the Riemann
curvature and torsion tensors, that measure the extent to which the connection is not
commutative (curvature), and how much it differs from the Lie bracket [·, ·] (torsion).
These two tensors are defined as follows.

Definition 2.12. Let M be a smooth manifold and ∇ a connection on M . The curvature
tensor R for the connection ∇ is the map

R : X(M)× X(M)× X(M)→ X(M)

(X,Y, Z)→ R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z
(2.49)

for all X,Y, Z ∈ X(M).

Definition 2.13. Let M be a smooth manifold and ∇ a connection on M . The torsion
tensor T for the connection ∇ is the map

T : X(M)× X(M)→ X(M)

(X,Y )→ ∇XY −∇YX − [X,Y ]
(2.50)

for all X,Y ∈ X(M).

We say that a connection is torsion-free if its torsion tensor T vanishes identically. Let
(M, g) be a indefinite Riemannian manifold, i.e. a manifold M equipped with a indefinite
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Riemannian metric g, defined by gm(X,Y ) = 〈Xm, Ym〉 for all X,Y ∈ X(M) and m ∈M .
In terms of the linear map

ϕ : TmM → TmM

X → R(Xm, Ym)Zm
(2.51)

for all Xm, Ym, Zm ∈ TmM , the Ricci tensor R is defined by

R(Ym, Zm) = trϕ, (2.52)

for all Xm, Ym ∈ TmM .

Definition 2.14. We say that a connection is (indefinite) Riemannian, (indefinite) metric
compatible or simply that it is a metric connection, if

∇X(〈Y,Z〉) = 〈∇XY,Z〉+ 〈Y,∇XZ〉, (2.53)

for all X,Y, Z ∈ X(M), where 〈·, ·〉 : X(M)× X(M)→ R is the (indefinite) metric on M .

It is a well-known fact that in any Riemannian manifold, there is a unique torsion-
free connection compatible with the metric (see for example [172]), called the Levi-civita
connection. The same is true for indefinite Riemannian manifolds.

Proposition 2.1. [176] Let (M, g) be a (indefinite) Riemannian manifold. Then there is
a unique connection ∇ on M satisfying the following two properties

i) ∇ is metric compatible;

ii) ∇ is torsion-free.

After these general definitions, let us consider the geometry of homogeneous spaces.
The starting point is given by the construction in the following Proposition.

Proposition 2.2. [180] Let G be a Lie group and H a closed subgroup of G. Then the
quotient space G/H admits a structure of a real analytic (in particular smooth) manifold
in such a way that the left action of G on G/H is real analytic, that is, the mapping
G × G/H → G/H which maps (g, g′H) into (gg′)H is real analytic. In particular, the
projection

p : G→ G/H

g → gH
(2.54)

is a real analytic quotient map. In addition p is a locally trivial fibre bundle.

The previous result, which states the properties of coset spaces, together with the
following one, which identifies homogeneous spaces with certain cosets, will be heavily
used in the rest of this Thesis.
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Theorem 2.3. [177] Let α be a transitive action of a Lie group G on a smooth manifold
M. Then for any m ∈M the map

βm : G/Hm →M

gHm → αgm
(2.55)

is a diffeomorphism which commutes with the action of G. (Here it is assumed that the
group G acts on G/Hm by left translations.)

Definition 2.15. Let α : G → Diff (M) be a transitive action of the Lie group G on
the smooth manifold M . Then we say that (M,G,α) is a homogeneous space. Under the
identification provided by the diffeomorphism (2.55) of Theorem 2.3, we write M = G/Hm,
where Hm is the stabilizer of some m ∈ M , and we also call this coset a homogeneous
space.

In the above Definition, for every homogeneous space there is a choice of a point
m ∈M . This is not a problem, since if m′ ∈M is a different point, then by transitivity of
α, there is an element g ∈ G, such that αg(m) = m′ and Hm′ = Cg(Hm) = gHmg

−1, and
G/Hm and G/Hm′ are diffeomorphic. In this way we usually write M = G/H in order
to denote a homogeneous space. Theorem 2.3 together with Proposition 2.2 identify coset
spaces of Lie groups by closed subgroups as models of homogeneous spaces for transitive
Lie group actions.

In the following, it will be useful to characterize certain vector fields associated to Lie
group actions on homogeneous spaces.

Definition 2.16. For any homogeneous space M = G/H with an action α : G→ Diff (M)
we have the associated action vector fields Xα ∈ X(M), defined by

(Xα
a f)(m) =

d

dt

∣∣∣∣
t=0

f(αexp(−tTa)m) (2.56)

for all Ta ∈ g, m ∈M and f ∈ C∞(M).

Action vector fields Xα on M = G/H are related to right invariant vector fields (2.23),
for if f ∈ C∞(M), then f ∈ C∞(G)H and we have that

(Xα
a f)(gH) =

d

dt

∣∣∣∣
t=0

f(αexp(−tTa)(gH)) =
d

dt

∣∣∣∣
t=0

f(e−tTagH)) =

=
d

dt

∣∣∣∣
t=0

f(e−tTag)) = − d

dt

∣∣∣∣
t=0

f(etXg)) = −(XR
a f)(g).

(2.57)

In particular, action vector fields for the action α : G→ Diff (M) form a finite dimensional
Lie subalgebra Xα(M), which is isomorphic to g, of the infinite dimensional Lie algebra
X(M).

For any homogeneous spaceM = G/H we have the identification To(M) = TeH(G/H) '
g/h, induced by the projection p of Proposition 2.2. We write o = eH for the origin of a
homogeneous space. A specially beautiful and conceptually clear treatment of the geom-
etry of homogeneous spaces is given by the theory of K-structures [181, 182, 183, 184],
which will be used in the last Chapter of the Thesis.
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Definition 2.17. Let M be an n-dimensional smooth manifold and K < GL(n,R) a
matrix Lie group. A K-structure is a reduced subbundle P of the frame bundle F (M) to
the Lie group K.

Example 2.2. Some important types of geometric structures on smooth manifolds admit a
unified description in the language of K-structures. In particular, K-structures associated
to the matrix Lie groups introduced in Example 2.1 are specially interesting, and we just
mention here briefly some of them:

• For K = GL+(n,R) we have orientations.

• For K = SL(n,R) we have volume elements.

• For K = O(n) we have Riemannian metrics.

• For K = O(p, n − p) we have indefinite Riemannian metrics (in the particular case
p = 1 we say that such a indefinite Riemannian metric is a Lorentzian metric).

• For K = Sp(2n) we have (almost) symplectic structures.

• For K = GL(n,C) (seen as a subset of GL(2n,R)) we have (almost) complex struc-
tures.

• For U(n) we have (almost) Kähler structures.

In the language of K-structures, some geometric properties can be explained in a very
elegant and simple manner, for example:

i) From SL(n,R) ⊂ GL+(n,R) we get that a volume element induces an orientation.

ii) From Sp(n,R) ⊂ SL(2n,R) we get that an (almost) symplectic form induces a
volume element.

iii) From GL(n,C) ⊂ GL+(2n,R) we get that an (almost) complex structure induces
an orientation.

iv) From U(n) = O(2n)∩Sp(2n,R)∩GL(n,C) we get that an (almost) Kähler structure
is nothing more that a Riemannian metric, an (almost) symplectic structure and an
(almost) complex structure (together with some compatibility conditions between
them).

In the previous examples, ‘almost’ means that these structures are not necessarily inte-
grable.

♦

The following relevant result relates quadratic forms with the geometry of manifolds
endowed with K-structures.

Theorem 2.4. [185, 186] For a closed subgroup K of GL(n,R), with n ≥ 3, the following
two statements are equivalent:
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i) K is the group of all matrices which preserve a certain non-degenerate quadratic
form of any signature,

ii) For every n-dimensional manifold M and for every reduced subbundle P of F (M)
with group K, there is a unique torsion-free connection in P .

This Theorem essentially says that there is a one-to-one correspondence between non-
degenerate quadratic forms on tangent spaces to manifolds and linear torsion-free connec-
tions on them. In the following we consider the particular case K = O(p, n − p) of the
previous Theorem, which corresponds to indefinite Riemannian metrics. Specially impor-
tant will be the case K = O(1, n−1), which gives rise to Lorentzian metrics, which are the
relevant ones in general relativity, and in particular in the description of the maximally
symmetric spacetimes of constant curvature, introduced in the next Section, and whose
quantum deformations are the main topic of this Thesis.

G-invariant indefinite Riemannian metrics on homogeneous spaces

We have mentioned that an indefinite Riemannian metric is a special case of K-structure,
in particular it is an O(p, n − p)-structure, since the Lie group O(p, n − p) preserves the
quadric

p∑
i=1

(xi)2 −
n∑

j=p+1

(xj)2, (2.58)

defining the indefinite Riemannian metric. For homogeneous spaces G/H, transitivity of
the action allows us to describe G-invariant indefinite Riemannian metrics in terms of its
restriction to the origin eH of G/H. We have the following

Proposition 2.3. [172] There is a natural one-to-one correspondence between the G-
invariant indefinite Riemannian metrics g on M = G/H and the AdH-invariant non-
degenerate symmetric bilinear forms 〈·, ·〉 on g/h. The correspondence is given by

〈X̄, Ȳ 〉 = g(X,Y )eH , (2.59)

for all X,Y ∈ g, where X̄ and Ȳ are the elements of g/h corresponding to X and Y ,
respectively.

A metric g is called Riemannian if and only if the the bilinear form 〈·, ·〉 of the previous
Proposition is positive definite, i.e has signature (+ · · ·+). A metric g is called Lorentzian
if and only if the form 〈·, ·〉 has signature (+−· · ·−−). In the general case with signature
(+ + · · ·+︸ ︷︷ ︸

p

− · · · − −︸ ︷︷ ︸
n−p

) we have an indefinite Riemannian (also pseudo-Riemannian) metric.

2.1.6 Geometry of reductive homogeneous spaces

Among the set of homogeneous spaces, those that are reductive are simpler to describe.
They are essentially those homogeneous spaces G/H for which their tangent space can be
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identified with some subset of the Lie algebra g (recall that for a general homogeneous
space we only have that TgH(G/H) ' g/h). In the case of reductive homogeneous spaces
we do have an AdH -invariant isomorphism g/h ' t, where g = h⊕ t, and so the description
of these spaces becomes specially simple. Reductive spaces will be relevant in two points
of this Thesis: firstly, the maximally symmetric Lorentzian spaces we will consider in
following Section are symmetric spaces, and thus they are particular examples of reductive
spaces. Secondly, and this is the main reason we describe their geometry in this Section, in
Chapter §7 reductive spaces will appear as dual spaces associated to certain Lie bialgebra
structures underlying quantum deformations.

Definition 2.18. Let M = G/H be a homogeneous space. We say that M is reductive
if g = Lie (G) may be decomposed into a vector space direct sum of h = Lie (H) and an
AdH -invariant subspace t, that is, if

i) g = h⊕ t, h ∩ t = 0,

ii) AdH t ⊂ t.

Condition ii) implies that t is adh-invariant, that is

ii)’ [h, t] ⊂ t.

If H is connected, then ii)′ implies ii). Thus, for reductive homogeneous spaces, the
structure of the Lie algebra g can be written as

[h, h] ⊂ h, [h, t] ⊂ t, [t, t] ⊂ h⊕ t. (2.60)

As mentioned before, AdH -invariance for t implies that for a reductive homogeneous
space M = G/H we can further identify To(M) = TeH(G/H) ' g/h ' t. In what follows,
the following notations will prove useful: [·, ·]h and [·, ·]t define the projection of the Lie
bracket [·, ·] to the respective subspaces. Then we write

[X,Y ] = [X,Y ]h + [X,Y ]t, (2.61)

where [X,Y ]h ∈ h and [X,Y ]t ∈ t are the projections of the Lie bracket on g to h and t,
respectively.

For reductive spaces, given a G-invariant K-structure there is a one-to-one correspon-
dence between the set of G-invariant connections and the set of linear mappings t → g.
The zero map defines the simplest of these connections, the so-called canonical connection,
which has the following three important properties:

• If we call gt = {etX |X ∈ t} the set of one-parameter subgroups (see Definition 2.4),
then gt is the set of geodesics starting at o for the canonical connection. Moreover,
any other geodesic is just a translate by a Lie group element of one of the curves in
gt, so the complete set of geodesics is just {αg(gt) | g ∈ G}.

• The canonical connection is complete.
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• G-invariant tensor fields are parallel transported with respect to the canonical con-
nection.

For the canonical connection, curvature and torsion tensors take a simpler form. Taking
into account G-invariance, we get the following

Theorem 2.5. [173] Let P be a G-invariant K-structure on a reductive homogeneous
space M = G/H with decomposition g = h ⊕ t. Curvature and torsion tensors of the
canonical connection in P satisfy

i) T (X,Y )eH = −[X,Y ]t, ∀X,Y ∈ t,

ii) (R(X,Y )Z)eH = −[[X,Y ]h, Z], ∀X,Y, Z ∈ t,

iii) ∇T = 0,

iv) ∇R = 0.

As we can see from Condition i) of the above Theorem, the canonical connection is
not torsion free. However, in the following Section we will be interested in torsion-free
Lorentzian connections, so let us introduce the so-called natural torsion-free connection,
which is the unique connection on the reductive homogeneous space M = G/H which has
the same set of geodesics as the canonical connection and is torsion-free. Similarly to the
canonical connection, the natural torsion-free connection is complete.

G-invariant indefinite Riemannian metrics on reductive homogeneous spaces

When M = G/H is a reductive homogeneous space, the tangent description of indefinite
Riemannian metrics given in Proposition 2.3 can be refined. Then we have the following

Proposition 2.4. [173] If M = G/H is reductive with an AdH-invariant decomposition
g = h ⊕ t, then there is a natural one-to-one correspondence between the G-invariant
indefinite Riemannian metrics g on M and the AdH-invariant non-degenerate symmetric
bilinear forms 〈·, ·〉 on t. The correspondence is given by

〈X,Y 〉 = g(X,Y )eH , (2.62)

for all X,Y ∈ t.

The AdH -invariance of B implies that

〈[Z,X], Y 〉+ 〈X, [Z, Y ]〉 = 0, (2.63)

for all X,Y ∈ t and all Z ∈ h. If H is connected, the converse is also true.

Definition 2.19. A homogeneous space M = G/H with a G-invariant indefinite Rieman-
nian metric g is said to be naturally reductive if it admits an AdH -invariant decomposition
g = h⊕ t satisfying the condition

〈X, [Z, Y ]t〉+ 〈[Z,X]t, Y 〉 = 0 (2.64)

for all X,Y, Z ∈ t.
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Let g be the G-invariant metric corresponding to 〈·, ·〉. Then the Riemannian con-
nection for g coincides with the natural torsion-free connection if and only if M = G/H
is naturally reductive. Moreover, if M = G/H is naturally reductive then the curvature
tensor R of the Riemannian connection satisfies

g(R(X,Y )Y,X)eH =
1

4
〈[X,Y ]t, [X,Y ]t〉 − 〈[[X,Y ]h, Y ], X〉 (2.65)

for all X,Y ∈ t.

The following Theorem is very useful in order to construct naturally reductive homo-
geneous spaces starting from a Lie algebra g.

Theorem 2.6. [173] Let M = G/H be a homogeneous space. If the Lie algebra g =
Lie (G) admits an AdG-invariant non-degeneate symmetric bilinear form 〈·, ·〉 such that
its restriction 〈·, ·〉h to h is non-degenerate. Then

i) The decomposition g = h⊕ t defined by

t = {X ∈ g | 〈X,Y 〉 = 0, ∀Y ∈ h} (2.66)

is AdH-invariant and the restriction 〈·, ·〉t of 〈·, ·〉 to t is also non-degenerate and
adH-invariant;

ii) The homogeneous space G/H is naturally reductive with respect to the decomposition
g = h⊕ t defined above and the G-invariant metric g defined by 〈·, ·〉t;

iii) The curvature tensor R defined by the metric g satisfies

g(R(X,Y )Y,X)h =
1

4
〈[X,Y ]t, [X,Y ]t〉t + 〈[X,Y ]h, [X,Y ]h〉h (2.67)

for all X,Y ∈ t.

2.1.7 Geometry of symmetric homogeneous spaces

Let G be a Lie group and σ an automorphism of G. Lets call Gσ ⊂ G to set the of elements
which are fixed by sigma. Then Gσ < G is a closed subgroup of G, and following [173],
we define

Definition 2.20. A symmetric space is a triple (G,H, σ) consisting of a connected Lie
group, a closed subgroup H of G and an involutive automorphism σ of G such that H lies
between Gσ and the identity component of Gσ.

Obviously, if Gσ is connected then H = Gσ. The tangent space of a symmetric space
naturally inherits the structure of a symmetric Lie algebra.

Definition 2.21. A symmetric Lie algebra is a triple (g, h, σ) consisting of a Lie algebra g,
a Lie subalgebra h and an involutive automorphism σ of g, where h = {X ∈ g |σ(X) = X}.
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For any symmetric Lie algebra, involutivity of σ directly implies that, as a linear map,
its only possible eigenvalues are ±1. If we call h to the eigenspace corresponding to +1
and t to the eigenspace corresponding to −1, i.e.

σ(X) = X, ∀X ∈ h

σ(X) = −X, ∀X ∈ t
(2.68)

then it is straightforward to prove that

[h, h] ⊂ h, [h, t] ⊂ t, [t, t] ⊂ h. (2.69)

Proposition 2.5. [173] Let (G,H, σ) be a symmetric space with tangent symmetric Lie
algebra (g, h, σ). Then the splitting g = h⊕ t is AdH-invariant, i.e. AdH t ⊂ t.

The Proposition above, together with (2.69), shows that every symmetric Lie algebra
is reductive (2.60). Note that for every symmetric algebra h ∩ t = ∅ trivially. In the same
way, every symmetric homogeneous space is reductive.

Regarding the geometry of symmetric homogeneous spaces M = G/H, we have that
the condition [t, t] ⊂ h implies a great simplification, since in that case the canonical
connection coincides to the torsion-free connection. Moreover, this connection is the only
connection on M = G/H that is invariant by the symmetries of M . In the following
Theorem some important properties of the canonical connection directly obtained by par-
ticularizing the corresponding results for reductive homogeneous spaces are stated.

Theorem 2.7. [173] Let (G,H, σ) be a symmetric space, then the canonical connection
on the homogeneous space M = G/H satisfies

i) If we call gt = {etX |X ∈ t} to the set of one-parameter subgroups (see Definition
2.4), then gt is the set of geodesics starting at eH for the canonical connection.
Moreover, any other geodesic is just a translate by a Lie group element of one of the
curves in gt, so the complete set of geodesics is just {αg(gt) | g ∈ G};

ii) It is complete;

iii) G-invariant tensor fields are parallel transported;

iv) T = 0 and ∇T = 0;

v) R(X,Y )Z = adZ [X,Y ] = −[[X,Y ], Z] for all X,Y, Z ∈ t ' TeH(M);

iv) ∇R = 0.

G-invariant indefinite Riemannian metrics on symmetric homogeneous spaces

The following two Theorems completely define the geometry of the Lorentzian spaces we
will introduce in the following Section.

Theorem 2.8. [173] Let (G,H, σ) be a symmetric space. A G-invariant indefinite Rie-
mannian metric on M = G/H, if there exists any, induces the canonical connection on
M .
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Theorem 2.9. [173] Let (G,H, σ) be a symmetric space with G semi-simple and let
g = h ⊕ t be the canonical decomposition. Then the restriction of the Killing-Cartan
form 〈·, ·〉 of g to t defines a G-invariant indefinite Riemannnian metric on M = G/H by

g(X,Y )eH = 〈X,Y 〉 (2.70)

for all X,Y ∈ t.

In this Section we have described the geometry of homogeneous spaces, emphasizing the
special cases of reductive and symmetric spaces, and we have stated all the mathematical
background necessary to their construction as coset spaces from Lie groups. Now we shall
use these results in order to describe in detail the three Lorentzian spaces, which will be
the central objects during this Thesis.

2.2 Lie algebras of the Lorentzian groups

In the following two sections we study the three maximally symmetric Lorentzian space-
times of constant curvature, i.e. anti-de Sitter (AdS), de Sitter (dS) and Minkowski (M)
spacetimes, and their groups of isometries, namely the (A)dS and Poincaré groups. These
three spaces and their motion groups admit a unified description in terms of the cosmo-
logical constant parameter Λ and in what follows we exploit this fact by presenting in a
unified framework the Lie algebras, Lie groups and homogeneous spaces corresponding to
them. In fact, we will also make use of the parameter

η2 ≡ −Λ, η ≡
√
−Λ. (2.71)

In this way, when the cosmological constant Λ > 0 is positive (dS) we have that η will be
a real parameter, while if the cosmological constant Λ < 0 is negative (AdS) then η will
be a purely imaginary parameter. Clearly, in the vanishing cosmological constant case
Λ = 0 (M) we have that η = 0. It should be noticed that, unless otherwise stated, all the
expressions appearing in this Thesis will be analytic in the parameter η, so in particular
the limit η → 0 will always be well-defined.

These three maximally symmetric Lorentzian homogeneous spaces of constant curva-
ture (together with their Lie groups of isometries and the respective Lie algebras) will be
described in (1 + 1), (2 + 1) and (3 + 1) dimensions, giving the explicit expressions in
each case. For the sake of simplicity, hereafter we will refer to these spaces and groups
simply as Lorentzian spaces (groups, algebras). Therefore, when we write ‘Lorentzian
space’ we really mean a ‘maximally symmetric Lorentzian homogeneous space of constant
curvature’. More general manifolds endowed with a Lorentizian metric will be explicitly
pointed out when appropriate.

We will see that while, for these spaces, some features are common to any dimension,
some of their properties are strongly dimension-dependent. From now on we denote by n
the spatial dimension of the spacetime, and so we denote by Gn+1

Λ to the (A)dS or Poincaré
groups of dimensions n+ 1, and by gn+1

Λ to their Lie algebras, i.e. gn+1
Λ = Lie(Gn+1

Λ ). We
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remark here that we usually omit the superscript denoting the dimension whenever no
confusion is possible.

Hereafter we use latin indexes a, b, c, . . . to label spatial components and so they take
values in the set {1, . . . , n}. It should be sufficiently clear throughout the text which is
the concrete value of n, but otherwise we will make it explicit. Greek indices will denote
spacetime indices and so they take values in {0, . . . , n}.

We denote spatial vectors by bold letters, for example v = (v1, . . . , vn) and w =
(w1, . . . , wn). Then we write v · w = v1w1 + · · · + vnwn and v2 = v · v for the scalar
product of two vectors and the square of a vector, respectively. Whenever appropriate
(dimensions two and three) we also write v×w for their vector product. We also denote
by εab and εabc the Levi-Civita symbols such that ε12 = 1 and ε123 = 1, in dimensions two
and three, respectively. For spacetime vectors, i.e. vectors whose indices run from 0 to n,
we use the notation v̄ = (v0, v1, . . . , vn).

We now give a unified description of the Lie algebras of the three Lorentzian groups in
terms of the cosmological constant. The basis we use to describe these Lie algebras will be
called the kinematical basis, because it corresponds to a particular kinematical assignment
of the generators of the one parameter transformation subgroups, as described below.

2.2.1 (3+1) dimensional Lorentzian algebras

Let us denote by g3+1
Λ the family of Lie algebras with the following commutation relations

[Ja, Jb] = εabcJc, [Ja, Pb] = εabcPc, [Ja,Kb] = εabcKc,

[Ka, P0] = Pa, [Ka, Pb] = δabP0, [Ka,Kb] = −εabcJc,
[P0, Pa] = −ΛKa, [Pa, Pb] = ΛεabcJc, [P0, Ja] = 0.

(2.72)

It corresponds to the Lie algebra of the anti-de Sitter, Poincaré and de Sitter groups
in (3 + 1) dimensions when Λ < 0, Λ = 0 or Λ > 0, respectively. We call this basis
the kinematical basis due to the clear physical interpretation of the generators: Ja are
the generators of the three spatial rotations, Ka are the generators of the three Lorentz
boosts while P0 is the generator of the time translation and Pa are the generators of
the three spatial translations. For Λ > 0 we have that g3+1

Λ ' so(4, 1), for Λ = 0 it is
g3+1

Λ ' iso(3, 1)1 and for Λ < 0 it is g3+1
Λ ' so(3, 2). Along this Thesis we will use the

notation g3+1
Λ when we refer to this one-parametric family of algebras and we will only

write so(4, 1), iso(3, 1) or so(3, 2) when we need to singularize one of them.

The family of Lie algebras (2.72) has two Casimir elements [187]. The first one is
quadratic and comes from the Killing-Cartan form. It is given by

C = P 2
0 −P2 − Λ(J2 −K2). (2.73)

The second one is a forth order invariant,

W2 = W 2
0 −W2 − Λ(J ·K)2, (2.74)

1This notation is a shortcut for the semidirect sum of Lie algebras. For example in this case iso(3, 1) ≡
so(3, 1) n R4. The same notation will be used for the semidirect product of Lie groups, so for example
ISO(3, 1) ≡ SO(3, 1) n R4.
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where W0 = J ·P and Wa = −JaP0 + εabcKbPc are the components of the (anti-)de Sitter
analogue of the Pauli-Lubanski four-vector. In the Poincaré case Λ = 0 the invariant
W 2

0 −W2 provides the square of the spin/helicity operator, which in the rest frame is
proportional to the square of the angular momentum operator. It is worth emphasizing
that the presence of a non-vanishing cosmological constant Λ implies that the quadratic
invariant has a new contribution coming from the Lorentz sector of the Lie algebra.

Two subalgebras of the Lorentzian Lie algebras (2.72) play an important role in the rest
of the paper. The first one is the well-known Lorentz algebra l3+1 containing boosts Ka and
rotations Ja, which is Λ-independent and isomorphic to so(3, 1), and with commutators
given by

[Ja, Jb] = εabcJc, [Ja,Kb] = εabcKc, [Ka,Kb] = −εabcJc. (2.75)

The second one, let us call it h3+1, is the Lie subalgebra containing the time translation
P0 and the rotations Ja, with Lie brackets

[P0, Ja] = 0, [Ja, Jb] = εabcJc. (2.76)

This Lie subalgebra, which again is Λ-independent, is isomorphic to so(3) ⊕ R. We have
that the intersection of l3+1 and h3+1 is again a Lie subalgebra, the rotation subalgebra
so(3).

Consider the faithful representation of g3+1
Λ given by ρ : g3+1

Λ → GL(5,R) and let us
identify g3+1

Λ with the image under this representation ρ(g3+1
Λ ). We can write a generic

element Q of this Lie algebra as

QΛ = xµPµ + ξaKa + θaJa =


0 Λx0 −Λx1 −Λx2 −Λx3

x0 0 ξ1 ξ2 ξ3

x1 ξ1 0 −θ3 θ2

x2 ξ2 θ3 0 −θ1

x3 ξ3 −θ2 θ1 0

 . (2.77)

For latter purposes we also write down the generic element in the particular case Λ = 0,
for which the first raw vanishes

Q0 = xµPµ + ξaKa + θaJa =


0 0 0 0 0
x0 0 ξ1 ξ2 ξ3

x1 ξ1 0 −θ3 θ2

x2 ξ2 θ3 0 −θ1

x3 ξ3 −θ2 θ1 0

 . (2.78)

Note that this representation is constructed in such a way that the projection to (2+1) (or
(1+1)) dimensions is obtained just setting the relevant coordinates to zero, or equivalently,
taking away the fifth (or forth and fifth) row(s) and column(s).
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2.2.2 (2+1) dimensional Lorentzian algebras

From these Lie algebras it is straightforward to write down the corresponding one for
(2 + 1) dimensions. We write g2+1

Λ and we have the following commutation relations

[J, Pa] = εabPb, [J,Ka] = εabKb, [J, P0] = 0,

[Ka, Pb] = δabP0, [Ka, P0] = Pa, [K1,K2] = −J,
[P0, Pa] = −ΛKa, [P1, P2] = ΛJ,

(2.79)

where we have written J = J3 for the generator of the unique spatial rotation in (2 + 1)
dimensions. For Λ < 0 we have that g2+1

Λ ' so(2, 2), for Λ = 0 it is g2+1
Λ ' iso(2, 1), while

for Λ > 0 we have that g2+1
Λ ' so(3, 1).

The structure of the centre of g2+1
Λ is modified with this dimensional reduction, since

now we have two quadratic Casimir elements, the first one being formally similar to (2.73)
and given by

C = P 2
0 −P2 − Λ(J2 −K2), (2.80)

while the second one

W = −JP0 +K1P2 −K2P1 (2.81)

is the so-called Pauli-Lubanski vector. This second quadratic Casimir is obtained from
(2.74) where the only remaining component is W3. The Lorentz algebra l2+1, isomorphic
to so(2, 1), is structurally similar to (2.75), with explicit commutators

[J,Ka] = εabKb, [K1,K2] = J. (2.82)

The second subalgebra h2+1 ' R2 is now generated by the time translation and the rotation
generator, so it is abelian.

2.2.3 (1+1) dimensional Lorentzian algebras

In (1 + 1) dimensions we have g1+1
Λ with commutators

[K,P0] = P1, [K,P1] = P0, [P0, P1] = −ΛK (2.83)

where we have written K = K1 for the unique remaining boost. Note that in this case, for
Λ 6= 0, the automorphism Pµ →

√
ΛP ′µ transforms the last bracket in [P ′0, P

′
1] = −K, so

we have that in fact the Lie algebras of the de Sitter and anti-de Sitter groups in (1 + 1)
dimensions are isomorphic. So for both Λ < 0 and Λ > 0 we have that g1+1

Λ ' so(2, 1)
and for Λ = 0 it is g1+1

Λ ' iso(1, 1). In this dimension only the first quadratic Casimir
survives, giving

C = P 2
0 − P 2

1 + ΛK2. (2.84)

In this case l1+1 is generated by the boost and h1+1 by the time translation, being both
of them unidimensional.
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2.3 Geometry of Lorentzian groups and spacetimes

At this moment, we are interested in describing the Lorentzian spacetimes (Minkowski
and (anti)-de Sitter) as coset spaces of the corresponding Lorentzian groups G divided by
the corresponding isotropy group L, the Lorentz group2.

Note that if n represents the spatial dimension of the maximally symmetric spacetime
of constant curvature M = G/L under consideration, then its isometry group G has
dimension (n + 1)(n + 2)/2. So we have that dimM = n + 1, dimG = (n + 1)(n + 2)/2
and dimL = dimG− dimL = n(n+ 1)/2.

For later purposes, we will introduce coordinates in both the groups and the homoge-
neous spaces in such a way that most computations on the group can be straightforwardly
translated to the coset space. In order to do that, suppose that

(xα, ξa, θa) : G→ R(n+1)(n+2)/2,

g → (xα(g), ξa(g), θa(g))
(2.85)

are a set of local coordinates on the group G and p : G → G/L, g → gL is the canonical
projection. The set of functions on the coset space G/L is precisely the set of L-invariant
functions on the group G, see (2.15), i.e. C∞(G/L) = C∞(G)L. So in order to define
coordinate functions on G/L it is sufficient to find n+1 independent L-invariant functions
on G.

However, as it will become clear later, we are interested in defining coordinate functions
such that the following diagram commutes

G G/L

R(n+1)(n+2)/2 Rn+1

p

(xα,ξa,θa) x̃α

p̃

(2.86)

and so
x̃α(gL) = x̃α ◦ p(g) = p̃ ◦ (xα, ξa, θa)(g) = xα(g). (2.87)

In this way we can identify x̃α = xα, and in fact we will do that whenever confusion is
not possible. The so-called exponential coordinates of the second kind, provided that the
exponentiation ordering is the appropriate one, fulfil all of our requirements. In the rest
of this Section we describe the explicit form of these coordinates for the three Lorentzian
groups.

2.3.1 (3+1) dimensional Lorentzian spacetimes

In order to construct the (3+1)-dimensional (anti-)de Sitter and Minkowski spacetimes
(which we call generally M3+1

Λ ) as coset spaces, we parametrize an element of the (anti-)de

2In Chapter 3 we will consider a different coset space, the space of time-like geodesics for these Lorentzian
spacetime, where the isometry subgroup H has h as its Lie algebra.
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Sitter group G3+1
Λ in the form

G3+1
Λ = expx0ρ(P0) expx1ρ(P1) expx2ρ(P2) expx3ρ(P3)

× exp ξ1ρ(K1) exp ξ2ρ(K2) exp ξ3ρ(K3) exp θ1ρ(J1) exp θ2ρ(J2) exp θ3ρ(J3) ,

(2.88)

where the Lorentz subgroup L3+1 is parametrized by

L3+1 = exp ξ1ρ(K1) exp ξ2ρ(K2) exp ξ3ρ(K3) exp θ1ρ(J1) exp θ2ρ(J2) exp θ3ρ(J3). (2.89)

In this way we have that M3+1
Λ = G3+1

Λ /L3+1 and so we identify the three maximally sym-
metric Lorentzian spacetimes of constant curvature with coset spaces of their respective
group of isometries divided by the Lorentz subgroup. These cosets are different depending
on the cosmological constant, and we have that

• Λ < 0 : Anti-de Sitter spacetime AdS3+1 = SO(3, 2)/SO(3, 1).

• Λ = 0 : Minkowski spacetime M3+1 = ISO(3, 1)/SO(3, 1).

• Λ > 0 : de Sitter spacetime dS3+1 = SO(4, 1)/SO(3, 1).

For each of these homogeneous spaces, which are indeed symmetric, we can identify their
tangent space at every point m = gL ∈MΛ with the translation sector, i.e.

Tm(M3+1
Λ ) = TgL3+1(G3+1

Λ /L3+1) ' g3+1
Λ /l3+1 ' t3+1 = span {P0,P}, (2.90)

as explained in §2.1.6.

Although these three spacetimes admit a common description as coset spaces they are
quite different. For example, from the topological point of view both M3+1 and dS3+1

are simply connected, while π1(AdS3+1) = Z. The generator of π1(AdS3+1) can be
taken in the time dimension, or in other words, AdS3+1 has time-like closed geodesics
and thus it is not straightforward to consider it as a physically realistic spacetime model.
However, one can consider its double cover, which is simply-connected, and this problem
disappears. Even if AdS3+1 is not in principle a physically realistic spacetime model, due
to the famous AdS/CFT conjecture [188] the space AdS3+1, together with its analogues
in other dimensions, has attracted much attention. In fact, as topological spaces we have
that M3+1 ' R4, dS3+1 ' R×S3 and AdS3+1 ' S1×R3 (' denotes here homeomorphic).
Some of the geometrical properties of these spaces will be discussed below.

In the coordinates defined by the inverse map of (2.88) a group element is given by a
matrix element of the form

G3+1
Λ =

(
s4 Ā
s̄T B

)
, (2.91)

where B is a 4×4 matrix and we recall that s̄ = (s0, s1, s2, s3) and s̄T denotes the transpose
of s̄. When the cosmological constant vanishes Λ = 0, G3+1

0 is just the Poincaré group
R4 n SO(3, 1), and the matrix element (2.91) takes the simpler form

G3+1
0 =

(
1 0̄
x̄T L

)
, (2.92)
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where L is the 4× 4 matrix representation of an element of the Lorentz subgroup. So we
have that

lim
Λ→0

G3+1
Λ = G3+1

0 , lim
Λ→0

s4 = 1, lim
Λ→0

sα = xα, lim
Λ→0

Aα = 0. (2.93)

The explicit form of the element (2.91) is quite complicated, so we omit it for the sake of
brevity, but we do write down explicitly the one-parameter subgroups of GΛ, which are
obtained by exponentiation of the associated Lie algebra element. These are given by

ex
0P0 =


cos ηx0 −η sin ηx0 0 0 0
1
η

sin ηx0 cos ηx0 0 0 0

0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 , ex
1P1 =


cosh ηx1 0 η sinh ηx1 0 0

0 1 0 0 0
1
η

sinh ηx1 0 cosh ηx1 0 0

0 0 0 1 0
0 0 0 0 1

 ,

ex
2P2 =


cosh ηx2 0 0 η sinh ηx2 0

0 1 0 0 0
0 0 1 0 0

1
η

sinh ηx2 0 0 cosh ηx2 0

0 0 0 0 1

 , ex
3P3 =


cosh ηx3 0 0 0 η sinh ηx3

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

1
η

sinh ηx3 0 0 0 cosh ηx3

 ,

eθ
1J1 =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 cos θ1 − sin θ1

0 0 0 sin θ1 cos θ1

 , eξ
1K1 =


1 0 0 0 0
0 cosh ξ1 sinh ξ1 0 0
0 sinh ξ1 cosh ξ1 0 0
0 0 0 1 0
0 0 0 0 1

 ,

eθ
2J2 =


1 0 0 0 0
0 1 0 0 0
0 0 cos θ2 0 sin θ2

0 0 0 1 0
0 0 − sin θ2 0 cos θ2

 , eξ
2K2 =


1 0 0 0 0
0 cosh ξ2 0 sinh ξ2 0
0 0 1 0 0
0 sinh ξ2 0 cosh ξ2 0
0 0 0 0 1

 ,

eθ
3J3 =


1 0 0 0 0
0 1 0 0 0
0 0 cos θ3 − sin θ3 0
0 0 sin θ3 cos θ3 0
0 0 0 0 1

 , eξ
3K3 =


1 0 0 0 0
0 cosh ξ3 0 0 sinh ξ3

0 0 1 0 0
0 0 0 1 0
0 sinh ξ3 0 0 cosh ξ3

 ,

(2.94)
where as mentioned before the parameter η is related to the cosmological constant by
η2 = −Λ. This means that η is either a real number (η = 1/τ) for AdS3+1 or a purely
imaginary one (η = i/τ) for dS3+1, where τ is the radius of the universe.

This matrix representation of the isometry groups G3+1
Λ and their Lie algebras g3+1

Λ

can be characterized in terms of the bilinear form represented by the matrix

IΛ = diag(+1,−Λ,Λ,Λ,Λ), (2.95)

which identifies them with the isometry groups of the five-dimensional linear space (R5, IΛ)
with ambient coordinates (s4, s0, s1, s2, s3) ≡ (s4, s0, s). This alternative description is
given by

G3+1
Λ =

{
M ∈ GL(5,R) : MT IΛM = IΛ

}
,

g3+1
Λ =

{
M ∈ Mat(5,R) : MT IΛ + IΛM = 0

}
,
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where MT denotes the transpose of M (note that these expressions are just the ones
defining the indefinite orthogonal groups in Example 2.1).

Here, the origin of the spacetime has ambient coordinates O = (1, 0, 0, 0, 0) and is
invariant under the Lorentz subgroup L < G3+1

Λ given by (2.89). The orbit passing
through O corresponds to the (3+1) homogeneous spacetime which is contained in the
pseudosphere (see Theorem 2.2)

ΣΛ ≡ (s4)2 − Λ
(
(s0)2 − s2

)
= 1, (2.96)

determined by IΛ (2.95). Note that the in the limit Λ→ 0 (τ →∞), which corresponds to
the contraction to the Minkowski space, the pseudosphere ΣΛ gives rise to two hyperplanes,
which are characterised by the condition s4 = ±1. From now on we will identify the
Minkowski space with the hyperplane given by s4 = +1, thus containing the origin O.

The metric on the homogeneous spacetime is obtained from the flat ambient metric
(given by IΛ) and dividing it by the sectional curvature (which equals −Λ, see below) and
restricting the resulting metric to the pseudosphere ΣΛ:

dσ2 = − 1

Λ

(
(ds4)2 − Λ

(
(ds0)2 − (ds1)2 − (ds2)2 − (ds3)2

))∣∣∣∣
ΣΛ

= (ds0)2 − (ds1)2 − (ds2)2 − (ds3)2 − Λ
(s0ds0 − s1ds1 − s2ds2 − s3ds3)2

1 + Λ((s0)2 − s2)
.

(2.97)

Now let us introduce four intrinsic spacetime coordinates that will be helpful in the sequel:
these are the so-called geodesic parallel coordinates (x0, x1, x2, x3) [189], which can be
regarded as a generalization of the flat Cartesian coordinates to non-vanishing curvature.
They are defined in terms of the action of the one-parameter subgroups (2.94) for P0, P
on the origin O = (1, 0, 0, 0, 0) of the spacetime:

(s4, s0, s)T = exp(x0P0) exp(x1P1) exp(x2P2) exp(x3P3)OT ,

yielding

s4 = cos ηx0 cosh ηx1 cosh ηx2 cosh ηx3,

s0 =
sin ηx0

η
cosh ηx1 cosh ηx2 cosh ηx3,

s1 =
sinh ηx1

η
cosh ηx2 cosh ηx3,

s2 =
sinh ηx2

η
cosh ηx3,

s3 =
sinh ηx3

η
.

(2.98)

The geometrical meaning of the coordinates (x0,x) that parametrize a generic point Q
in the spacetime via (2.98) is as follows. Let l0 a time-like geodesic and l1, l2, l3 three
space-like geodesics such that these four basis geodesics are orthogonal at O. Then x0 is
the geodesic distance from O up to a point Q1 measured along the time-like geodesic l0;
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x1 is the geodesic distance between Q1 and another point Q2 along a space-like geodesic l′1
orthogonal to l0 through Q1 and parallel to l1; x2 is the geodesic distance between Q2 and
another point Q3 along a space-like geodesic l′2 orthogonal to l′1 through Q2 and parallel
to l2; and x2 is the geodesic distance between Q3 and Q along a space-like geodesic l′3
orthogonal to l′2 through Q3 and parallel to l3.

Recall that time-like geodesics (as l0) are compact in AdS3+1 and non-compact in
dS3+1, while space-like ones (as li, l

′
i; i = 1, 2, 3) are compact in dS3+1 but non-compact

in AdS3+1. Thus the trigonometric functions depending on x0 are circular in AdS3+1

(η = 1/τ) and hyperbolic in dS3+1 (η = i/τ) and, conversely, those depending on xa

are circular in dS3+1 but hyperbolic in AdS3+1. By inserting the parametrisation (2.98)
into the metric (2.97) we obtain the corresponding expression in terms of geodesic parallel
coordinates

dσ2 = cosh2(ηx1) cosh2(ηx2) cosh2(ηx3)(dx0)2

− cosh2(ηx2) cosh2(ηx3)(dx1)2 − cosh2(ηx3)(dx2)2 − (dx3)2 .
(2.99)

For Λ ∈ {±1, 0} this expression reduces to

AdS3+1 : dσ2 = cosh2 x1 cosh2 x2 cosh2 x3 (dx0)2 − cosh2 x2 cosh2 x3 (dx1)2

− cosh2 x3 (dx2)2 − (dx3)2 .

M3+1 : dσ2 = (dx0)2 − (dx1)2 − (dx2)2 − (dx3)2 .

dS3+1 : dσ2 = cos2 x1 cos2 x2 cos2 x3 (dx0)2 − cos2 x2 cos2 x3 (dx1)2

− cos2 x3 (dx2)2 − (dx3)2 .

(2.100)
This approach is such that the projection to lower dimensions is straightforward, just
by setting the relevant coordinates to zero. Also, it should be stressed that the limit of
vanishing cosmological constant Λ→ 0 is always well-defined and allows us to recover the
results for the Poincaré group and Minkowski spacetime.

2.3.2 Geometric properties of Lorentzian spaces

As we have previously stated, M3+1, dS3+1 and AdS3+1 are homogeneous symmetric
spaces, so we can apply the results from §2.1.7 to these particular examples.

First of all, let us study the canonical connection (see Theorem 2.7) on these spaces.
We know that, in addition to be torsion free, it satisfies that ∇R = 0. Moreover it is
complete and its geodesics are one-parameter subgroups (2.94) (and Lie group translates
of them). Its Riemann tensor can be computed at the identity by v) of Theorem 2.7 (it is
just given by R(Pα, Pβ)Pγ = −[[Pα, Pβ], Pγ ]), and we have that

R(P0, Pa)P0 = −[[P0, Pa], P0] = ΛPa,

R(P0, Pa)Pb = −[[P0, Pa], Pb] = ΛδabP0,

R(Pa, Pb)P0 = −[[Pa, Pb], P0] = 0,

R(Pa, Pb)Pc = −[[Pa, Pb], Pc] = −ΛεabdεdcePe.

(2.101)
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Note that the Riemann tensor is identically zero in the vanishing-constant (flat) case
Λ = 0.

In order to study the metric properties of these spacetimes, let us now consider the
symmetric bilinear form induced by the Killing-Cartan form on g in the kinematical basis
(2.72), whose non-zero components are given by

〈P0, P0〉 = 1, 〈Pa, Pa〉 = −1,

〈Ja, Ja〉 = −Λ, 〈Ka,Ka〉 = Λ.
(2.102)

Note that this is just the Casimir (2.73) seen as a bilinear form on g, induced by the
identification g ' g∗. By Theorem 2.9 this bilinear metric defines a Lorentzian metric
on dS3+1 and AdS3+1. Moreover, although the Poincaré group G3+1

0 is not semi-simple
and the result of the theorem cannot directly be used, since 〈·, ·〉 is AdL-invariant and
its restriction 〈·, ·〉t is non-degenerate, then it also defines a Lorentzian metric on M3+1

by Proposition 2.4. This bilinear form is the one defining the metric g (2.99). We recall
that the explicit construction of metrics induced by the Killing-Cartan form, and their
relations with Casmirs of their respective Lie algebras, is studied for the complete family
of Cayley-Klein spaces in [189, 187, 190], by following a contraction procedure.

On the other hand, by Theorem 2.8 the metric g associated to (2.102) induces the
canonical connection on M3+1

Λ , in the sense that the canonical connection is the only met-
ric compatible connection for g (the so-called Levi-Civita connection). Let us now compute
all these geometric properties in the geodesic parallel local coordinates (x0, x1, x2, x3) pre-
viously defined. In order to do that, we need to introduce some notation. The Christoffel
symbols of the second kind Γαβγ are defined as the unique coefficients satisfying

∇α
(

∂

∂xβ

)
=

3∑
γ=0

Γγαβ

(
∂

∂xγ

)
. (2.103)

If we write the metric g in terms of these local coordinates, set g = gαβ dxα ⊗ dxβ and
denote by gαβ the inverse of the metric components, then we have that Γαβγ are given by

Γαβγ =
1

2

3∑
δ=0

gαδ
(
∂gβδ
∂xγ

+
∂gγδ
∂xβ

−
∂gβγ
∂xδ

)
. (2.104)

In terms of the Christoffel symbols of the second kind Γαβγ , the components of the Riemann
tensor are given by

Rαβγδ =
∂Γαδβ
∂xγ

−
∂Γαγβ
∂xδ

+

3∑
ε=0

(
ΓεδβΓαγε − ΓεγβΓαδε

)
. (2.105)

Note that the components of the Riemann tensor are related to the corresponding basis
of t = span {P0,P} through

3∑
α=0

RαβγδPα = R(Pγ , Pδ)Pβ. (2.106)
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We also recall that the components of the Riemann tensor have the following symmetries

Rαβγδ = −Rαβδγ ,
Rαβγδ +Rαδβγ +Rαγδβ = 0.

(2.107)

We also define R αβγδ =
∑3

ε=0 gαεR
ε
βγδ. The components of the Ricci tensor Rαβ are given

by

Rαβ =

3∑
γ=0

Rγαγβ, (2.108)

while the scalar curvature R is defined as

R =
3∑

α,β=0

gαβRαβ. (2.109)

Also, the sectional curvature of the coordinated plane αβ is given by

K(αβ) =

∑3
γ=0 gαγR

γ
βαβ

gααgββ − gαβgβα
. (2.110)

In the local coordinates (x0, x1, x2, x3), the non-vanishing Christoffel symbols [191] of the
second kind (2.104) are given by

Γ0
01 = η tanh(ηx1),

Γ0
02 = Γ1

12 = η tanh(ηx2),

Γ0
03 = Γ1

13 = Γ2
23 = η tanh(ηx3),

Γ1
00 = η tanh(ηx1) cosh2(ηx1),

Γ2
00 = η tanh(ηx2) cosh2(ηx1) cosh2(ηx2),

Γ3
00 = η tanh(ηx3) cosh2(ηx1) cosh2(ηx2) cosh2(ηx3),

Γ2
11 = −η tanh(ηx2) cosh2(ηx3),

Γ3
11 = −η tanh(ηx3) cosh2(ηx2) cosh2(ηx3),

Γ3
22 = −η tanh(ηx3) cosh2(ηx3),

(2.111)

while the non-vanishing components of the Riemann tensor (2.105) read

R1
010 = R2

020 = R3
030 = η2 cosh2(ηx1) cosh2(ηx2) cosh2(ηx3),

R2
121 = R3

131 = −η2 cosh2(ηx2) cosh2(ηx3),

R3
232 = −η2 cosh2(ηx3),

R0
101 = R0

202 = −η2 cosh2(ηx2) cosh2(ηx3),

R1
212 = −η2 cosh2(ηx3),

R0
303 = R1

313 = R2
323 = −η2.

(2.112)
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Note that evaluating these components at the origin of MΛ, we recover (2.101). The Ricci
tensor is diagonal, with components

R00 = 3η2 cosh2(ηx1) cosh2(ηx2) cosh2(ηx3),

R11 = −3η2 cosh2(ηx2) cosh2(ηx3),

R22 = −3η2 cosh2(ηx3),

R33 = −3η2,

(2.113)

while the scalar and sectional curvatures of the (3+1) spacetime are given by R = 12η2 =
−12Λ and K(ab) = η2 = −Λ, respectively.

2.3.3 (2+1) dimensional Lorentzian spaces

In (2 + 1) dimensions, the explicit cosets are:

• Λ < 0 : Anti-de Sitter spacetime AdS2+1 = SO(2, 2)/SO(2, 1).

• Λ = 0 : Minkowski spacetime M2+1 = ISO(2, 1)/SO(2, 1).

• Λ > 0 : de Sitter spacetime dS2+1 = SO(3, 1)/SO(2, 1).

In this dimension, we have the following homeomorphisms: AdS2+1 ' S1 × R2,
M2+1 ' R3 and dS2+1 ' R × S2, which clearly show how these three spaces are dif-
ferent even from a purely topological point of view. The picture is qualitatively similar to
the (3 + 1)-dimensional case, so we do not comment further on this.

In the (2+1) dimensional case the matrices G2+1
Λ and G2+1

0 are obtained from (2.91)
and (2.92), respectively, just by setting x3 = 0, ξ3 = 0, θ1 = 0, θ2 = 0 and θ3 = θ. It is
easy to see that the last column and last row vanish. Explicitly we have

G2+1
Λ =


s4 A4

0 A4
1 A4

2

s0 B0
0 B0

1 B0
2

s1 B1
0 B1

1 B1
2

s2 B2
0 B2

1 B2
2

 (2.114)

where

s4 = cos ηx0 cosh ηx1 cosh ηx2,

s0 =
sin ηx0

η
cosh ηx1 cosh ηx2,

s1 =
sinh ηx1

η
cosh ηx2,

s2 =
sinh ηx2

η
,

(2.115)
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A4
0 = cos(ηx0)(sinh ξ1 cosh ξ2 sinh(ηx1) + sinh ξ2 cosh(ηx1) sinh(ηx2))− cosh ξ1 cosh ξ2 sin(ηx0),

A4
1 =− cos θ sinh ξ1 sin(ηx0) + cosh ξ1(cos θ cos(ηx0) sinh(ηx1)− sin θ sinh(ξ2) sin(ηx0))

+ sin θ cos(ηx0)(sinh ξ1 sinh ξ2 sinh(ηx1) + cosh ξ2 cosh(ηx1) sinh(ηx2)),

A4
2 = sin θ sinh ξ1 sin(ηx0)− cosh ξ1(cos θ sinh ξ2 sin(ηx0) + sin θ cos(ηx0) sinh(ηx1))

+ cos θ cos(ηx0)(sinh ξ1 sinh ξ2 sinh(ηx1) + cosh ξ2 cosh(ηx1) sinh(ηx2)),

(2.116)

B0
0 = cosh ξ1 cosh ξ2 cos(ηx0) + sin(ηx0)(sinh ξ1 cosh ξ2 sinh(ηx1) + sinh ξ2 cosh(ηx1) sinh(ηx2)),

B0
1 = cos θ sinh ξ1 cos(ηx0) + cosh ξ1(sin θ sinh ξ2 cos(ηx0) + cos θ sin(ηx0) sinh(ηx1)),

+ sin θ sin(ηx0)(sinh ξ1 sinh ξ2 sinh(ηx1) + cosh ξ2 cosh(ηx1) sinh(ηx2)),

B0
2 = cos θ(cosh ξ1 sinh ξ2 cos(ηx0) + sin(ηx0)(sinh ξ1 sinh ξ2 sinh(ηx1) + cosh ξ2 cosh(ηx1) sinh(ηx2))),

− sin θ(sinh ξ1 cos(ηx0) + cosh ξ1 sin(ηx0) sinh(ηx1)),

B1
0 = sinh ξ1 cosh ξ2 cosh(ηx1) + sinh ξ2 sinh(ηx1) sinh(ηx2),

B1
1 = cosh(ηx1)(sin θ sinh ξ1 sinh ξ2 + cos θ cosh ξ1) + sin θ cosh ξ2 sinh(ηx1) sinh(ηx2),

B1
2 = cosh(ηx1)(cos θ sinh ξ1 sinh ξ2 − sin θ cosh ξ1) + cos θ cosh ξ2 sinh(ηx1) sinh(ηx2),

B2
0 = sinh ξ2 cosh(ηx2),

B2
1 = sin θ cosh ξ2 cosh(ηx2),

B2
2 = cos θ cosh ξ2 cosh(ηx2).

(2.117)
The metric in these coordinates reads

dσ2 = cosh2(ηx1) cosh2(ηx2)(dx0)2 − cosh2(ηx2)(dx1)2 − (dx2)2, (2.118)

which is just (2.99) with the relevant coordinates set equal to zero. The left- and right-
invariant vector fields are given in Table 2.1.

For the Poincaré group G2+1
0 these expressions are much simpler, since the matrix

element reads

G2+1
0 =

 1 0 0 0
x0 cosh ξ1 cosh ξ2 sinh ξ1 cos θ + cosh ξ1 sinh ξ2 sin θ − sinh ξ1 sin θ + cosh ξ1 sinh ξ2 cos θ
x1 sinh ξ1 cosh ξ2 cosh ξ1 cos θ + sinh ξ1 sinh ξ2 sin θ − cosh ξ1 sin θ + sinh ξ1 sinh ξ2 cos θ
x2 sinh ξ2 cosh ξ2 sin θ cosh ξ2 cos θ

 .

(2.119)
and the left- and right-invariant vector fields are given in Table 2.2. The Lorentz subgroup
reads

L2+1 =

1 0 0 0
0 cosh ξ1 cosh ξ2 sinh ξ1 cos θ + cosh ξ1 sinh ξ2 sin θ − sinh ξ1 sin θ + cosh ξ1 sinh ξ2 cos θ
0 sinh ξ1 cosh ξ2 cosh ξ1 cos θ + sinh ξ1 sinh ξ2 sin θ − cosh ξ1 sin θ + sinh ξ1 sinh ξ2 cos θ
0 sinh ξ2 cosh ξ2 sin θ cosh ξ2 cos θ

 .

(2.120)

2.3.4 (1+1) dimensional Lorentzian spaces

Finally, in (1 + 1) dimensions we have the following spaces, constructed as cosets:



2.3. GEOMETRY OF LORENTZIAN GROUPS AND SPACETIMES 47

Table 2.1: [148] Left- and right-invariant vector fields for the isometry groups of the (2+1)-
dimensional de Sitter (Λ > 0), anti-de Sitter (Λ < 0) and Minkowski (Λ = 0) spaces in
terms of η =

√
−Λ.

XL
P0

=
cosh ξ1 cosh ξ2

cosh(ηx1) cosh(ηx2)

(
∂x0 − η sinh(ηx1)∂ξ1

)
+

sinh ξ1 cosh ξ2

cosh(ηx2)
∂x1 + sinh ξ2 ∂x2 − η tanh(ηx2) cosh ξ2 ∂ξ2

XL
P1

=

(
sinh ξ1 cos θ + cosh ξ1 sinh ξ2 sin θ

cosh(ηx1) cosh(ηx2)

)(
∂x0 − η sinh(ηx1)∂ξ1

)
+

(
cosh ξ1 cos θ + sinh ξ1 sinh ξ2 sin θ

cosh(ηx2)

)
∂x1

+ cosh ξ2 sin θ ∂x2 − η tanh(ηx2)

(
tanh ξ2 cos θ ∂ξ1 + sinh ξ2 sin θ ∂ξ2 −

cos θ

cosh ξ2
∂θ

)
XL
P2

=

(
cosh ξ1 sinh ξ2 cos θ − sinh ξ1 sin θ

cosh(ηx1) cosh(ηx2)

)(
∂x0 − η sinh(ηx1)∂ξ1

)
+

(
sinh ξ1 sinh ξ2 cos θ − cosh ξ1 sin θ

cosh(ηx2)

)
∂x1

+ cosh ξ2 cos θ ∂x2 + η tanh(ηx2)

(
tanh ξ2 sin θ ∂ξ1 − sinh ξ2 cos θ ∂ξ2 −

sin θ

cosh ξ2
∂θ

)
XL
K1

=
cos θ

cosh ξ2
∂ξ1 + sin θ ∂ξ2 + tanh ξ2 cos θ ∂θ

XL
K2

= − sin θ

cosh ξ2
∂ξ1 + cos θ ∂ξ2 − tanh ξ2 sin θ ∂θ

XL
J = ∂θ

XR
P0

= ∂x0

XR
P1

= − sin(ηx0) tanh(ηx1) ∂x0 + cos(ηx0) ∂x1 − η
sin(ηx0)

cosh(ηx1)
∂ξ1

XR
P2

= − sin(ηx0) tanh(ηx2)

cosh(ηx1)

(
∂x0 − η sinh(ηx1) ∂ξ1

)
− cos(ηx0) sinh(ηx1) tanh(ηx2) ∂x1 + cos(ηx0) cosh(ηx1) ∂x2

+η

(
cos(ηx0) sinh(ηx1) sinh ξ1 − sin(ηx0) cosh ξ1

cosh(ηx2)

)
∂ξ2

+η

(
cos(ηx0) sinh(ηx1) cosh ξ1 − sin(ηx0) sinh ξ1

cosh(ηx2) cosh ξ2

)(
∂θ − sinh ξ2∂ξ1

)
XR
K1

=
cos(ηx0) tanh(ηx1)

η
∂x0 +

sin(ηx0)

η
∂x1 +

cos(ηx0)

cosh(ηx1)
∂ξ1

XR
K2

=
cos(ηx0) tanh(ηx2)

η cosh(ηx1)

(
∂x0 − η sinh(ηx1) ∂ξ1

)
− sin(ηx0) sinh(ηx1) tanh(ηx2)

η
∂x1 +

sin(ηx0) cosh(ηx1)

η
∂x2

+

(
sin(ηx0) sinh(ηx1) sinh ξ1 + cos(ηx0) cosh ξ1

cosh(ηx2)

)
∂ξ2

+

(
sin(ηx0) sinh(ηx1) cosh ξ1 + cos(ηx0) sinh ξ1

cosh(ηx2) cosh ξ2

)(
∂θ − sinh ξ2∂ξ1

)
XR
J = −cosh(ηx1) tanh(ηx2)

η
∂x1 +

sinh(ηx1)

η
∂x2 −

cosh(ηx1)

cosh(ηx2)

(
cosh ξ1 tanh ξ2 ∂ξ1 − sinh ξ1 ∂ξ2 −

cosh ξ1

cosh ξ2
∂θ

)
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Table 2.2: Left- and right-invariant vector fields for the (2+1) Poincaré group G2+1
0 .

XL
P0

= cosh ξ2 (cosh ξ1∂x0 + sinh ξ1∂x1
)

+ sinh ξ2∂x2

XL
P1

= cos θ
(
sinh ξ1∂x0 + cosh ξ1∂x1

)
+ sin θ

(
sinh ξ2 (cosh ξ1∂x0 + sinh ξ1∂x1

)
+ cosh ξ2∂x2

)
XL
P2

= − sin θ
(
sinh ξ1∂x0 + cosh ξ1∂x1

)
+ cos θ

(
sinh ξ2 (cosh ξ1∂x0 + sinh ξ1∂x1

)
+ cosh ξ2∂x2

)
XL
K1

=
cos θ

cosh ξ2

(
∂ξ1 + sinh ξ2 ∂θ

)
+ sin θ ∂ξ2

XL
K2

= − sin θ

cosh ξ2

(
∂ξ1 + sinh ξ2 ∂θ

)
+ cos θ ∂ξ2

XL
J = ∂θ

XR
P0

= ∂x0

XR
P1

= ∂x1

XR
P2

= ∂x2

XR
K1

= x1 ∂x0 + x0 ∂x1 + ∂ξ1

XR
K2

= x2∂x0 + x0∂x2 +
sinh ξ1

cosh ξ2

(
− sinh ξ2∂ξ1 + ∂θ

)
+ cosh ξ1∂ξ2

XR
J = −x2∂x1 + x1∂x2 +

cosh ξ1

cosh ξ2

(
∂θ − sinh ξ2∂ξ1

)
+ sinh ξ1∂ξ2
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• Λ < 0 : Anti-de Sitter spacetime AdS1+1 = SO(2, 1)/SO(1, 1).

• Λ = 0 : Minkowski spacetime M1+1 = ISO(1, 1)/SO(1, 1).

• Λ > 0 : de Sitter spacetime dS1+1 = SO(2, 1)/SO(1, 1).

In this low dimensional case AdS1+1 is diffeomorphic to dS1+1, and neither of them is
simply-connected, in fact π1(dS1+1) = π1(AdS1+1) ' Z. However, the causal structure
is different, because for dS1+1 the generator of π1 is space-related while for AdS1+1 is
time-related. Topologically we have that AdS1+1 ' dS1+1 ' R × S, while M1+1 ' R2.
The group element now reads

G2+1
Λ =

s4 A4
0 A4

1

s0 B0
0 B0

1

s1 B1
0 B1

1

 (2.121)

where

s4 = cos ηx0 cosh ηx1,

s0 =
sin ηx0

η
cosh ηx1,

s1 =
sinh ηx1

η
,

(2.122)

A4
0 =η

(
− sin(ηx0) cosh ξ + cos ηx0 sinh ηx1 sinh ξ

)
,

A4
1 =η

(
− sin(ηx0) sinh ξ + cos ηx0 sinh ηx1 cosh ξ

)
,

(2.123)

B0
0 = cos ηx0 cosh ξ + sin ηx0 sinh ηx1 sinh ξ,

B0
1 = cos ηx0 sinh ξ + sin ηx0 sinh ηx1 cosh ξ,

B1
0 = cosh ηx1 sinh ξ,

B1
1 = cosh ηx1 cosh ξ.

(2.124)

Left- and right-invariant vector fields in these coordinates are obtained from (2.121) and
are given in Table 2.3.

For the Poincaré group G1+1
0 the group element takes the simple form

G1+1
0 =

 1 0 0
x0 cosh ξ sinh ξ
x1 sinh ξ cosh ξ

 , (2.125)

and the explicit left- and right-invariant vector fields are given in Table 2.4. The Lorentz
subgroup is just

L1+1 =

1 0 0
0 cosh ξ sinh ξ
0 sinh ξ cosh ξ

 . (2.126)
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Table 2.3: [148] Left- and right-invariant vector fields for the isometry groups of the (1+1)-
dimensional de Sitter (Λ > 0), anti-de Sitter (Λ < 0) and Minkowski (Λ = 0) spaces in
terms of η =

√
−Λ.

XL
P0

=
1

cosh(ηx1)

(
cosh ξ ∂x0 + cosh(ηx1) sinh ξ ∂x1 − η sinh(ηx1) cosh ξ ∂ξ

)
XL
P1

=
1

cosh(ηx1)

(
sinh ξ ∂x0 + cosh(ηx1) cosh ξ ∂x1 − η sinh(ηx1) sinh ξ ∂ξ

)
XL
K = ∂ξ

XR
P0

= ∂x0

XR
P1

=
1

cosh(ηx1)

(
− sin(ηx0) sinh(ηx1) ∂x0 + cos(ηx0) cosh(ηx1) ∂x1 − η sin(ηx0) ∂ξ

)
XR
K =

1

cosh(ηx1)

(
cos(ηx0) sinh(ηx1)

η
∂x0 +

sin(ηx0) cosh(ηx1)

η
∂x1 + cos(ηx0) ∂ξ

)

We have at hand all the background and explicit expressions needed for the rest of this
Thesis, as far as the definition and geometric properties of the three maximally symmetric
Lorentzian spacetimes is concerned. In the next Chapter this background will be extended
to the Poisson homogeneous space framework.
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Table 2.4: Left- and right-invariant vector fields for the (1+1) Poincaré group G1+1
0 .

XL
P0

= cosh ξ∂x0 + sinh ξ∂x1

XL
P1

= sinh ξ∂x0 + cosh ξ∂x1

XL
K = ∂ξ

XR
P0

= ∂x0

XR
P1

= ∂x1

XR
K =x1∂x0 + x0∂x1 + ∂ξ
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Chapter 3

Poisson-Lie groups and Poisson
homogeneous spaces

The main aim of this Chapter is to introduce the relevant tools from Poisson geometry
that will be needed throughout this Thesis. As a general idea, we could say that we switch
to the realm of Poisson geometry and we essentially introduce Poisson structures on the
geometric objects considered in the first Chapter. As we will see this ‘Poisson version’
becomes in many cases richer due to the fact that a given Lie group or homogeneous space
admit, in general, several different Poisson structures.

In §3.1 we introduce some basics on Poisson geometry. In §3.2 we consider Poisson-Lie
groups and Poisson homogeneous spaces, which can be thought of as the ‘Poisson version’
of Lie groups and homogeneous spaces, respectively. In §3.3 we introduce the notion of Lie
bialgebra as the tangent counterpart of a Poisson-Lie group, and the relationship between
Lie bialgebras and the (modified) classical Yang-Baxter equation is studied. In particular,
we see how solutions of this equation define the so-called coboundary Poisson-Lie groups,
which have canonically defined a Poisson structure, the so-called Sklyanin bracket, on the
Lie group. This has the great advantage that, endowed with such a Poisson structure, the
Lie group becomes a Poisson-Lie group. In §3.4 classical Drinfel’d doubles are described
with some detail, since they are directly connected to Lie bialgebras and play a remarkable
role in this Thesis. Once all these concepts have been introduced, we have all the ingre-
dients to study Poisson homogeneous spaces, which are the main topic of this Thesis, and
are introduced in §3.5. In particular we present the result by Drinfel’d relating Poisson
homogeneous spaces to Lagrangian Lie subalgebras of the classical Drinfel’d double. The
main references for Sections §3.1 to §3.5 are [192, 35, 193, 194].

In §3.6, the essentially geometric language employed so far is switched to a more
algebraic one, having in mind the idea of quantizing the Poisson structures previously
considered. Here we introduce the notions of an algebra (essentially a vector space with
a product) and its dual, a coalgebra (in which the product is replaced by a coproduct),
together with their natural morphisms. When both algebra and coalgebra structures
are defined on the same vector space, we have an algebraic structure called a bialgebra.
Then we introduce the notion of Hopf algebra, which is just a bialgebra with some extra
structure. We also introduce the notion of (co)action, which is the algebraic concept

53
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underlying homogeneous spaces. When these (co)actions respect some predefined Poisson
structure, we arrive to the notion of Poisson (co)actions, which can be thought of as the
algebraic version of Poisson homogeneous spaces. Section §3.7 the notion of quantization
for the algebraic structures introduced in §3.6 is properly defined. For these two Sections,
we have followed [195, 35, 34, 196, 197], which contain the background material on these
algebraic structures and their quantization.

The last Section §3.8 contains an explicit example of some of the concepts previously
introduced, which will hopefully serve as a preliminary illustration of some of the most
relevant constructions included within this Thesis. Here we work out the example of
the (1+1)-dimensional κ-Minkowski spacetime seen as a Poisson homogeneous space for
the Poincaré group, and we compute explicitly the Poisson-Hopf structure on its algebra
of functions. Then we show how the coalgebra structure for the associated quantum
universal enveloping algebra can be computed by applying the quantum duality principle,
which allows us to derive explicitly the unique Poisson-Hopf algebra on the dual group
whose linearization is the Lie-Poisson structure on the dual vector space of the original
Poincaré Lie algebra. This will be essentially the framework that we will follow in the
rest of this Thesis in order to construct (2+1) and (3+1) dimensional Lorentzian Poisson
homogeneous spaces and their quantization.

3.1 Poisson geometry

Let M be a real smooth manifold and let us denote its algebra of smooth functions by
C∞(M).

Definition 3.1. A Poisson bracket on M is an R-bilinear map { , } : C∞(M)×C∞(M)→
C∞(M) that satisfies the following three properties:

(P1) {f1, f2} = −{f2, f1} (Antisymmetry)

(P2) {f1, {f2, f3}}+ {f3, {f1, f2}}+ {f2, {f3, f1}} = 0 (Jacobi identity)

(P3) {f1f2, f3} = f1{f2, f3}+ {f1, f3}f2 (Leibniz rule)

for all f1, f2, f3 ∈ C∞(M). A Poisson manifold is a pair (M, { , }).

A Poisson bracket can be equivalently defined by a bivector π ∈ Γ(
∧2 TM) ⊂ TM ⊗

TM , by means of {f1, f2} = (df1 ⊗ df2)(π), called the Poisson bivector. Therefore, the
Poisson manifold (M, { , }) is also denoted by (M,π). Moreover, a Poisson manifold can
also be defined as a pair (M,π) satisfying that π ∈ Γ(

∧2 TM) and [π, π] = 0 (where here
[·, ·] is the Schouten-Nijenhuis bracket extending the Lie bracket of vector fields). The
Jacobi identity (P2) is then equivalent to the condition∑

k

(
∂πij

∂xk
πkl +

∂πjl

∂xk
πki +

∂πli

∂xk
πkj
)

= 0 (3.1)

for the Poisson bivector π. We say that a bivector is Poisson if it satisfies this condition.



3.1. POISSON GEOMETRY 55

Definition 3.2. Let (M, {·, ·}M ) and (N, {·, ·}N ) be twoPoisson manifolds. A Poisson
map is a smooth map φ : M → N such that

{f1 ◦ φ, f2 ◦ φ}M = {f1, f2}N ◦ φ (3.2)

for all f1, f2 ∈ C∞(N). An isomorphism of Poisson manifolds is a Poisson map that is
also a diffeomorphism.

Let (M,π) be a Poisson manifold and let us define some important concepts. A Poisson
submanifold (N, πN ) is a submanifold N ⊂M such that the inclusion mapping i : N ↪→M
is a Poisson mapping for the Poisson structure π on M and πN on N .

We call C ∈ C∞(M) a Casimir function of a given Poisson bracket if it Poisson-
commutes with every function f ∈ C∞(M), i.e. {C, f} = 0 for all f ∈ C∞(M).

For every function H ∈ C∞(M), we define the Hamiltonian vector field XH associated
to H as the unique vector field satisfying XHf = {f,H}.

If x = (x1, . . . , xn) are local coordinates on M we have that

{f1, f2} =

n∑
i,j=1

πij(x)
∂f1

∂xi
∂f2

∂xj
, (3.3)

where πij(x) are the components of the Poisson bivector

πx =
n∑

i,j=1

πij(x)
∂

∂xi
⊗ ∂

∂xj
. (3.4)

Let (M1, π1) and (M2, π2) Poisson manifolds. Then M1 ×M2 is a Poisson manifold
with the product Poisson structure given by

{f1, f2}M1×M2(m1,m2) = {f1(−,m2), f2(−,m2)}M1(m1) + {f1(m1,−), f2(m1,−)}M2(m2)
(3.5)

for all m1 ∈M1 and m2 ∈M2, and where for any function f : M1 ×M2 → R we define

f(−,m2) :M1 → R
m1 → f(m1,m2)

(3.6)

and

f(m1,−) :M2 → R
m2 → f(m1,m2).

(3.7)

In terms of the Poisson bivector the product Poisson structure is simply written as
πM1×M2 = πM1 ⊕ πM2 ∈ Γ(

∧2 T (M1 ×M2)).

A Poisson bivector π on M induces a bundle map

]π : T ∗M → TM, (3.8)
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and, by a slight abuse of notation, we also denote by ]π the associated map on sections

]π : Ω1(M)→ X(M)

α→ iαπ.
(3.9)

We call the rank of a Poisson structure at m ∈ M the rank of the linear map ]π,m :
T ∗mM → TmM .

The following example introduces an important Poisson structure on the dual space of
a Lie algebra, which is called a Lie-Poisson structure. Since it will be extensively employed
in the rest of this Thesis, we shall describe it in detail.

Example 3.1. Let g = (V, [·, ·]) be a real finite dimensional Lie algebra and call g∗ = V ∗

the dual vector space. If we consider functions f : g∗ → R, we have that for each x ∈ g∗

their differentials f∗ define maps f∗,x : Txg
∗ ' g∗ → Tf(x)R ' R. Now, if we denote by

〈·, ·〉 the canonical identification between g and g∗, we can define

{f1, f2}(x) = 〈[(f1)∗,x, (f2)∗,x], x〉 (3.10)

for each x ∈ g∗. Since g is a vector space, if {T1, . . . , Tn} is a basis of g, we can also think
of Ti as global coordinates on g∗. If we set [Ti, Tj ] = ckijTk, then we have that

{f1, f2}(x) =
∑
i,j,k

ckij〈x, Tk〉
∂f1

∂Ti

∂f2

∂Tj
=
∑
i,j

πij(x)
∂f1

∂Ti

∂f2

∂Tj
. (3.11)

The fundamental brackets read

{Ti, Tj}(x) =
∑
k

ckij〈x, Tk〉 =
∑
k

ckijTk(x) (3.12)

for all x ∈ g∗. Thus, we have that for every real finite dimensional Lie algebra g we can
construct a Poisson structure on its dual just by replacing the Lie brackets by Poisson
brackets. This justifies the notation we employ for this Lie-Poisson structure in g∗, which
we call the Poisson version of g and we denote by P(g).

♦

Definition 3.3. A symplectic manifold is a pair (M,ω) where M is a smooth manifold
and ω is a non-degenerate antisymmetric 2-form on M .

It is clear that a symplectic structure ω on M induces a linear isomorphism

[ω : Γ(TM)→ Γ(T ∗M)

X → iXω.
(3.13)

Note that every symplectic manifold is a Poisson manifold with the Poisson structure
defined by

{f1, f2} = Xf1f2 (3.14)

where Xf1 is the unique vector field defined by Xf1 = iXf1ω. The following theorem
completely characterizes symplectic manifolds locally.
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Theorem 3.1. [198] (Darboux theorem) Let (M,ω) be a 2n-dimensional symplectic
manifold. Then, for all m ∈ M there exists a neighborhood U of m and local coordinates
(q1, . . . , qn, p1, . . . , pn) on U such that

ω|U =

n∑
i=1

dqi ∧ dpi. (3.15)

Corollary 3.1. Symplectic manifolds are even dimensional.

If the rank of a Poisson manifold equals the dimension of the manifold for every m ∈M
then it is called non-degenerate or symplectic, and in fact it is a symplectic manifold with
symplectic structure given by ω(X1, X2) = π(]−1

π X1, ]
−1
π X2) for all X1, X2 ∈ X(M) (note

that this is well-defined since in the case of constant rank the map ]π (3.8) is a bundle
isomorphism). In the remaining of this section we will describe the local structure of
Poisson manifolds. As proved by Weinstein in [199], any Poisson manifold can be seen
locally as a product of a symplectic manifold and a degenerate Poisson manifold. Before
that, let us introduce the so-called symplectic foliation of a Poisson manifold.

Proposition 3.1. [35] Let (M,π) be a Poisson manifold, and for every two points m,n ∈
M consider the relation m ∼ n if and only if n can be reached from m by a piecewise
smooth curve, each of its segments being the integral curve of a Hamiltonian vector field.
Then ∼ is an equivalence relation and the equivalence classes M/ ∼ of ∼ are Poisson
submanifolds of M . The dimension of each of these submanifods N equals the rank of the
Poisson structure at each point n ∈ N .

The Poisson submanifolds defined by the previous Proposition are called the symplectic
leaves of M . Clearly we have that Casimir functions are constant along symplectic leaves,
so the symplectic leaves of a Poisson manifold are contained on the level sets of Casimir
functions. In fact, if the rank of the Poisson structure is constant inside an open subset
U ⊂ M , then the symplectic leaves on U are exactly the intersection of the level sets for
all the Casimir functions of M .

Theorem 3.2. [199] (Splitting theorem) Let m ∈M be any point in a Poisson manifold
M . Then there are a neighborhood U of m in M and an isomorphism φ = (φS , φN ) from
U to a product manifold S × N such that S is symplectic and the rank of the Poisson
structure of N at φ(m) is zero. The factors S and N are unique up to local isomorphism.

A corollary to this theorem is a Poisson version of the existence of Darboux coordinates.

Corollary 3.2. Let (M,π) be an n-dimensional Poisson manifold with constant rank k in
a neighborhood U of m in M . Then there exists a set of local coordinates {qi, pi, yj} (where
i ∈ {1, . . . , k} and j ∈ {1, . . . , n − 2k}) on U such that {qi, qj} = {pi, pj} = {qi, yj} =
{pi, yj} = {yi, yj} = 0, {qi, pj} = δij. In terms of these coordinates the Poisson bivector
reads

πu =
k∑
i=1

∂

∂qi
∧ ∂

∂pi
+

n−2k∑
i<j

P (y1(u), . . . , yn−2k(u))
∂

∂yi
∧ ∂

∂yj
(3.16)

for all u ∈ U , where P : M → R is a function satisfying that P (y1(m), . . . , yn−2k(m)) = 0.
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3.2 Poisson-Lie groups and Poisson homogeneous spaces

Definition 3.4. A Poisson-Lie group (G, π) is a Lie group G endowed with a Poisson
structure π in such a way that the multiplication µ : G × G → G is a Poisson map with
respect to π on G and the product Poisson structure πG×G = π ⊕ π (3.5) on G×G.

Explicitly, the previous definition means that

{f1, f2}G ◦ µ(g1, g2) = {f1 ◦ µ, f2 ◦ µ}G×G(g1, g2), (3.17)

for all f1, f2 ∈ C∞(G) and g1, g2 ∈ G.

This definition makes use of two Poisson structures, π on G and πG×G on G ×G. In
fact, it is equivalent [193] to the following condition for the Poisson structure on G

{f1, f2}G(g1, g2) = {f1 ◦ Lg1 , f2 ◦ Lg1}G(g2) + {f1 ◦Rg2 , f2 ◦Rg2}G(g1) (3.18)

for all f1, f2 ∈ C∞(G), g1, g2 ∈ G, and Lg1 and Rg2 are defined in (2.5) and (2.6), respec-
tively. Equivalently, in terms of the corresponding Poisson bivectors we have that

πg1g2 = Lg1,∗πg2 +Rg2,∗πg1 , (3.19)

so we say that the Poisson bivector is multiplicative. From here it is clear that a Poisson-
Lie group is never symplectic, because in particular πe = 0.

In the same way that Lie group actions on smooth manifolds have been introduced in
§2.1.1, giving rise to the notion of G-spaces, let us introduce now the notion of a Poisson
G-space as a Poisson manifold (M,π) endowed with an action by a Lie group G.

Definition 3.5. A Poisson G-space is a Poisson manifold (M,πM ) endowed with a Lie
group action α : (G×M,πG ⊕ πM )→ (M,π) that is a Poisson map.

Therefore, for a Poisson G-space, we have that

{f1, f2}M ◦ α(g,m) = {f1 ◦ α, f2 ◦ α}G×M (g,m), (3.20)

for all f1, f2 ∈ C∞(M), all g ∈ G and all m ∈ M , which is analogous to (3.17). This
condition can be expressed in terms of the Poisson brackets on M and G as

{f1, f2}M ◦ α(g,m) = {f1 ◦ αg, f2 ◦ αg}M (m) + {f1 ◦ αm, f2 ◦ αm}G(g) (3.21)

where the notation here used is the same as the one for (2.11) and (2.12). Note that
fi ◦ αg : M → M and fi ◦ αm : G → G. In terms of the Poisson bivectors on M and G,
the relation (3.21) can be rewritten as

πM (α(g,m)) = (αg)∗πM (m) + (αm)∗πG(g). (3.22)

Either of the identities (3.20), (3.21) and (3.22), which are just equivalent ways of express-
ing the relation between Poisson structures on M and G and the action α : G→ Diff (M),
are frequently referred to as the covariance condition. So, given a Poisson G-space (M,πM )
we will say that it is covariant under the Poisson-Lie group (G, πG) to emphasize that the
action is compatible with the Poisson structures defined on the homogeneous space and
on the Lie group.
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3.3 Lie bialgebras

Definition 3.6. A Lie bialgebra (g, δ) is a Lie algebra g endowed with a map δ : g→ g⊗g,
called the cocommutator, fulfilling the following conditions:

(B1) δ(X) ∈
∧2 g ∀X ∈ g (skew-symmetry)

(B2)
∑

cycl(δ ⊗ id) ◦ δ(X) = 0 ∀X ∈ g (Co-Jacobi condition)

(B3) δ([X,Y ]) = adXδ(Y )− adY δ(X), ∀X,Y ∈ g (1-cocycle conditon)

If we take a basis of g such that [Xi, Xj ] = ckijXk and δ(Xn) = f lmn Xl ⊗Xm, then the
skew-symmetry condition (B1) implies

f lmn = −fmln (3.23)

for all n,m, l. The co-Jacobi condition (B2) implies∑
l

(
f lmn f ijl + f ljn f

mi
l + f lin f

jm
l

)
= 0, (3.24)

that can alternatively be written as ∑
{i,j,m}∈Σ3

f lmn f ijl = 0, (3.25)

where
∑
{i,j,m}∈Σ3

represents a cyclic sum over indices i, j,m, while the 1-cocycle condition
(B3) implies ∑

k

f lmk ckij = f lki c
m
kj + fkmi clkj + f lkj c

m
ik + fkmj clik. (3.26)

Note that conditions (B1) and (B2) can be restated by saying that the dual map tδ :
g∗ ⊗ g∗ → g∗ defines a Lie bracket (in other words (B1) and (B2) are just (L1) and (L2)

for the dual Lie algebra g∗ with structure constants f jki ). Writing tδ = [, ]∗ we have that
[f, g]∗ = (f ⊗ g) ◦ δ for all f, g ∈ g∗.

Definition 3.7. Let (g, δ) be a Lie bialgebra and h a Lie subalgebra of g. We say that
(h, δ|h) is a sub-Lie bialgebra of (g, δ) if δ(h) ⊂ h⊗ h.

Definition 3.8. Let (g, δ) be a Lie bialgebra and (M,π) a Poisson manifold, such that g
acts on M by an infinitesimal action ρ : g→ X(M). We say that ρ is a Poisson action if

Lρ(X)π = (ρ ∧ ρ)δ(X), (3.27)

for all X ∈ g, where L represents the Lie derivative.
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3.3.1 Lie bialgebras as tangent counterparts of Poisson-Lie groups

Let G be a Lie group, and let us consider the map

η : G→
2∧
g

g → (Rg−1)∗π(g),

(3.28)

which is just the right translation (2.6) of the Poisson bivector π to the identity e. The
fact that π is multiplicative (3.19) allows us to prove that η is in fact a cocycle of G with
values in

∧2 g, i.e.
η(g1g2) = η(g1) + Adg1η(g2), (3.29)

for all g1, g2 ∈ G. The derivative at the identity e of η defines a map

δ : g→
2∧
g

X → d

dt

∣∣∣∣
t=0

η(etX).

(3.30)

It is easy to prove [193] that π being multiplicative (3.19) implies the 1-cocycle condition
(B3) while π being Poisson (3.1) implies the co-Jacobi condition (B2). Skew-symmetry
(B1) is trivially satisfied, so we have that (g, δ) is a Lie bialgebra.

Thus, we have proved that the tangent counterpart of a Poisson-Lie group is a Lie
bialgebra. By this we mean that in the tangent space to a Poisson-Lie group a natural Lie
bialgebra structure is defined. The converse is true in the same sense that for Lie groups,
so we have the following remarkable result due to Drinfel’d

Theorem 3.3. [19] There is a one-to-one correspondence between Lie bialgebras and
connected and simply connected Poisson-Lie groups.

3.3.2 Lie bialgebras and the classical Yang-Baxter equation

A great simplification in the problem of constructing (at least locally) Poisson-Lie struc-
tures is thus obtained by reducing this problem to the one of finding Lie bialgebra struc-
tures and then ‘exponentiate’ them. However, a further simplification arises by the fact
that the cocommutator is a cocycle, and a particular case of cocycles are those which are
cobondaries, i.e. those ones whose cocommutator can be written as

δ : g→ g⊗ g

X → adX(r)
(3.31)

for all X in g, where r ∈ g ⊗ g. We say that a Lie bialgebra (g, δ) is a coboundary Lie
bialgebra if its cocommutator is of the form (3.31). Before describing coboundary Lie
algebras, we need to introduce some notation. If we write

r =
∑
i

Xi ⊗ Yi (3.32)

then we denote r12 = r and r21 = σ(r) =
∑

i Yi ⊗Xi.
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Definition 3.9. The algebraic Schouten bracket is defined by

[[r, r]] ≡ [r12, r13] + [r12, r23] + [r13, r23], (3.33)

where

[r12, r13] =
∑
i,j

[Xi, Xj ]⊗ Yi ⊗ Yj ,

[r12, r23] =
∑
i,j

Xi ⊗ [Yi, Xj ]⊗ Yj ,

[r13, r23] =
∑
i,j

Xi ⊗Xj ⊗ [Yi, Yj ].

(3.34)

The following two equations, written in terms of the algebraic Schouten bracket, will
play a prominent role in the rest of this work.

Definition 3.10. The classical Yang-Baxter equation (CYBE) is defined as

[[r, r]] = 0, (3.35)

while the modified classical Yang-Baxter equation (mCYBE) is

adX [[r, r]] = 0, (3.36)

for all X ∈ g.

It is clear that solutions of the CYBE are also solutions of the mCYBE. However,
solutions of the mCYBE which are not solutions of the CYBE play an important role, so
we introduce the following notation:

Definition 3.11. Let g be a Lie algebra. We say that an element r ∈ g⊗ g is a classical
r-matrix if

(R1) adX(r12 + r21) = 0 ∀X ∈ g,

(R2) [[r, r]] = 0 ∀X ∈ g.

With this definition, we have the following result that answers positively the question
about the existence of quantizations for r-matrices, in the sense of [200].

Theorem 3.4. [200] Let g be a Lie algebra and r ∈ g⊗g a classical r-matrix. Then there
exists a quantum R-matrix R ∈ U(g)⊗ U(g)[[h]] such that R = 1 + hr (modh2).

The parameter h is known as the deformation (or quantization) parameter. Note that
quantizations play an important role in this work, and they will be treated in detail in
§3.6. Now we have the following result, which identifies solutions of the mCYBE with Lie
bialgebra structures on g.
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Proposition 3.2. [35] Let g be a Lie algebra and let r ∈ g ⊗ g. The map δ defined by
(3.31) is the cocommutator of a Lie bialgebra structure on g if and only if the following
conditions are satisfied:

i) adX(r12 + r21) = 0 ∀X ∈ g,

ii) adX [[r, r]] = 0 ∀X ∈ g.

It is clear that every classical r-matrix defines a coboundary Lie bialgebra, but not
every Lie bialgebra is defined by a classical r-matrix. The following definition identifies
the four different types of Lie bielgebras.

Definition 3.12. We call a Lie bialgebra (g, δ):

i) Non coboundary if its cocommutator cannot be written as δ : g⊗ g→ g, X → adXr
for any r ∈ g⊗ g.

ii) Coboundary if its cocommutator can be written as δ : g⊗ g→ g, X → adXr with a
(skew-symmetric) element r ∈ g⊗ g.

iii) Quasitriangular if its cocommutator can be written as δ : g ⊗ g → g, X → adXr
with a classical r-matrix r ∈ g⊗ g.

iv) Triangular if its cocommutator can be written as δ : g ⊗ g → g, X → adXr with a
skew-symmetric classical r-matrix r ∈ g ∧ g.

In this way, every triangular Lie bialgebra is quasitriangular, and both of them are
particular cases of coboundary Lie bialgebras. In fact, the definition of Lie bialgebras by
skew-symmetric solutions of the mCYBE will be a key part of this work, so we state as a
Proposition the following straightforward result.

Proposition 3.3. Coboundary Lie bialgebras are in a one-to-one correspondence with
skew-symmetric solutions of the mCYBE.

Proof. We previously need the following result

Lemma 3.1. [194] Let g be a Lie algebra. Then:

i) If r = r′ + t ∈ g⊗ g with r′ = −r′21 and adXt = 0 for all X ∈ g, then

[[r, r]] = [[r′, r′]] + [[t, t]]. (3.37)

ii) If adXt = 0 for all X ∈ g, then adX [[t, t]] = 0 for all X ∈ g.

Now, let us assume that (g, δ) is coboundary, i.e. δ(X) = adXr ∈
∧2 g for all X ∈ g.

Then, from i) of Proposition 3.2, the only possibility is that r = r′+t, where r′ ∈
∧2 g and

adXt = 0 for all X ∈ g, for if it is not, then the cocommutator will not be skew-symmetric.
Now, using i) from the previous Lemma,

adX [[r, r]] = adX [[r′, r′]] + adX [[t, t]] = 0, (3.38)

but adX [[t, t]] = 0 by ii) from Lemma 3.1, so adX [[r′, r′]] = 0 and then r and r′ define the
same Lie bialgebra (g, δ).
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From now on we generally assume that any r ∈ g⊗g defining a Lie bialgebra structure
is skew-symmetric, so in fact r ∈

∧2 g. The only exception will be Chapter 6 where
we consider Drinfel’d double structures and the associated quasi-triangular r-matrices.
However, even in this case we can skew-symmetrize them and work with skew-symmetric
solutions of the mCYBE, as we will discuss in detail in §3.4.

For certain Lie algebras, solutions of the CYBE and solutions of the mCYBE are closely
related. In particular, consider a Lie algebra g endowed with a non-degenerate symmetric
bilinear form (·, ·) which is adg-invariant. Note that this last condition is equivalent to say
that the bilinear form is associative, because

(adYX,Z) + (X, adY Z) = 0 (adg-invariance) (3.39)

directly implies

([X,Y ], Z) = (X, [Y,Z]) (Associativity) (3.40)

for all X,Y, Z ∈ g. Lie algebras endowed with such a bilinear form are called metric Lie
algebras and it is worth noticing that in [201, 202, 203] kinematical metric Lie algebras
have been recently studied.

Now, for any metric Lie algebra g the element ω∗ ∈
∧3 g∗ defined by ω∗(X1, X2, X3) =

([X1, X2], X3) for all X1, X2, X3 ∈ g, is ad∗g-invariant, since

〈ad∗Y ω
∗, X1 ⊗X2 ⊗X3〉 = 〈ω∗,−adY (X1 ⊗X2 ⊗X3)〉 =

〈ω∗, [X1, Y ]⊗X2 ⊗X3 +X1 ⊗ [X2, Y ]⊗X3 +X1 ⊗X2 ⊗ [X3, Y ]〉 =

([[X1, Y ], X2], X3) + ([X1, [X2, Y ]], X3) + ([X1, X2], [X3, Y ]) =

([[X1, X2], Y ], X3) + ([X1, X2], [X3, Y ]) = 0,

(3.41)

where 〈·, ·〉 is the canonical pairing between g and g∗, and we have used the Jacobi identity
for g, as well as (2.35) and (2.37). The identification of g and g∗ allows us to define an
adg-invariant element ω ∈

∧3 g. Now, ii) of Proposition (3.2) will be satisfied if

[[r, r]] = −ω (3.42)

so r is a solution of the mCYBE. But we can see the bilinear form (·, ·) as a quadratic and
symmetric element of g∗⊗g∗, and by means of 〈·, ·〉 as a quadratic and symmetric element
Ω ∈ g ⊗ g which is adg-invariant (we call this element the quadratic tensorized Casimir).
From Lemma 3.1 and the proof of Proposition 3.3 it follows that

[[Ω,Ω]] = ω, (3.43)

and so we have proved the following

Proposition 3.4. Let g be a metric Lie algebra. Then r′ is a skew-symmetric solution of
the mCYBE if and only r = r′ + Ω is a solution of the CYBE.

Note that Ω in this Proposition is the same as t in Lemma 3.1.
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3.3.3 Coboundary Poisson-Lie groups and other Poisson structures from
the mCYBE

We have introduced the notion of coboundary Lie bialgebras as those which are defined
by means of a solution of the mCYBE. Poisson-Lie groups associated to coboundary
Lie bialgebras are called coboundary Poisson-Lie groups and its Poisson-Lie structure is
defined in the following Proposition.

Proposition 3.5. [35] Let G be a Lie group and g its Lie algebra. Consider a skew-
symmetric r-matrix r ∈

∧2 g defining a coboundary Lie bialgebra (g, δ) by δ(X) = adXr
for all X ∈ g. Then the only Poisson-Lie structure on G whose tangent space is (g, δ) is
defined by the following Poisson bracket

{f1, f2} =
∑
i,j

rij
(
XL
i f1X

L
j f2 −XR

i f1X
R
j f2

)
(3.44)

or equivalently by the Poisson bivector

Π =
∑
i,j

rij
(
XL
i ⊗XL

j −XR
i ⊗XR

j

)
(3.45)

for all f1, f2 ∈ C∞(G). XL
i and XR

i are left- and right-invariant vector fields on G defined
by (2.23).

The Poisson bracket defined by (3.44) (Poisson bivector defined by (3.45)) is called a
Sklyanin bracket (bivector).

Along this work, the Sklyanin bracket (and its induced structures on coset spaces) will
play a prominent role. However, there exist other Poisson structures on G associated to
skew-symmetric solutions of the mCYBE (although clearly neither of them define Poisson-
Lie structures). For the sake of completeness, we mention here three of them.

Proposition 3.6. [35] Let G be a Lie group, g its Lie algebra and consider a skew-
symmetric solution of the CYBE r ∈

∧2 g, i.e. a triangular r-matrix. Then

1. {f1, f2}L =
∑

i,j r
ijXL

i f1X
L
j f2

2. {f1, f2}R =
∑

i,j r
ijXR

i f1X
R
j f2

are Poisson structures on G. Moreover {·, ·}L
(
{·, ·}R

)
is left-invariant (right-invariant).

Proposition 3.7. [194] Let G be a coboundary Poisson-Lie group defined by a skew-
symmetric solution of the mCYBE r(s), then the Heisenberg double Poisson structure

{f1, f2}H =
∑
i,j

rij(s)
(
XL
i f1X

L
j f2 +XR

i f1X
R
j f2

)
(3.46)

endows G with the structure of a Poisson G×G-space with respect to left and right mul-
tiplications, given by (2.5) and (2.6) respectively.
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Proposition 3.8. [194] Let G be a Poisson-Lie group defined by a quasitriangular classical
r-matrix, then the dual Poisson structure

{f1, f2}D =
∑
i,j

rij(s)
(
XL
i f1X

L
j f2 +XR

i f1X
R
j f2

)
− rij

(
XL
i f1X

R
j f2 −XR

i f1X
L
j f2

)
(3.47)

endows G with the structure of a Poisson G-space with respect to the adjoint action (2.19).

3.4 Manin triples and classical Drinfel’d doubles

Given a Lie bialgebra (g, δ), we have seen that its dual vector space g∗ is endowed with a
Lie algebra structure. We now consider the vector space D(g) = g⊕ g∗ and we define on
it the (not necessarily positive definite) scalar product (also called pairing) given by

〈(X,x), (Y, y)〉 = f(Y ) + g(X) (3.48)

for all X,Y ∈ g and x, y ∈ g∗.

Theorem 3.5. [195] Let be (g, δ) be a Lie bialgebra and D(g) = g ⊗ g∗. There exists a
unique Lie algebra structure on D(g) such that

(i) Both g and g∗ are Lie subalgebras of D(g).

(ii) The scalar product (3.48) is associative, i.e. 〈[X,Y ], Z〉 = 〈X, [Y,Z]〉, ∀X,Y, Z ∈
D(g).

From (ii) of the previous theorem, it directly follows that if X ∈ g and x ∈ g∗, then

[X,x] = −ad∗Xx+ (x⊗ 1) ◦ δ(X). (3.49)

Definition 3.13. The vector space D(g) endowed with the Lie algebra defined above is
called the classical Drinfel’d double Lie algebra of g. The triple (g, g∗, D(g)) is called a
Manin triple.

If we choose a basis Yi, i ∈ 1, . . . n on g and write

[Yi, Yj ] = ckijYk, δ(Yi) = f jki Yj ⊗ Yk, (3.50)

then, in terms of the algebraic dual basis yi on g∗, i.e. yj(Yi) = δji , the explicit commuta-
tion relations in D(g) = g⊗ g∗ read

[Yi, Yj ] = ckijYk, [yi, yj ] = f ijk y
k, [Yi, y

j ] = f jki Yk − c
j
iky

k. (3.51)

A simple computation shows that

C =
1

2

n∑
i=1

(
yiYi + Yiy

i
)

(3.52)

is a quadratic Casimir element for D(g), i.e. C is a quadratic element of the center of the
universal enveloping algebra U(D(g)).

Definition 3.14. Let D(G) be the only connected and simply connected Lie group with
Lie algebra D(g). Then we call D(G) the classical double Lie group of G, where g =
Lie (G).
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3.4.1 Quasitriangular Lie bialgebra structure on D(g)

Any Drinfel’d double Lie algebra is canonically endowed with a coboundary (and in fact
quasitriangular) Lie bialgebra structure, defined by the canonical r-matrix

r = yi ⊗ Yi ∈ g∗ ⊗ g ⊂ D(g)⊗D(g), (3.53)

which is a solution of the classical Yang-Baxter equation (CYBE). In terms of r we define
the associated cocommutator δD(X) = adXr. Explicitly we have

δD(Yi) = −f jki Yj ⊗ Yk, δD(yi) = cijky
j ⊗ yk. (3.54)

It is clear that (g, δD|g) and (g∗, δD|g∗) are sub-Lie bialgebras of D(g, δD). Let us call Ω
the tensorized form of (3.52), i.e.

Ω =
1

2

n∑
i=1

(
yi ⊗ Yi + Yi ⊗ yi

)
(3.55)

and consider the skew-symmetric r-matrix obtained from (3.53) by subtracting Ω, which
reads

r′ = r − Ω =
1

2
yi ∧ Yi. (3.56)

A straightforward computation shows that adXΩ = 0 for all X ∈ D(g), so by linearity of
the cocommutator we have that

δD(X) = adXr
′ = adX(r − Ω) = adXr. (3.57)

3.5 Poisson homogeneous spaces

Among Poisson G-spaces (see Definition 3.5), those which are equipped with a transitive
Poisson action are specially interesting. In fact, they are the analogues of homogeneous
spaces (see Definition 2.15) in the category of Poisson manifolds.

Definition 3.15. For any Poisson-Lie group (G,Π), a Poisson homogeneous space (PHS)
over G is a Poisson G-space (M,πM , α,G) such that the action α : G × M → M is
transitive.

Recall from Definition 2.5 that an action α is transitive if for all m,n ∈M , there exists
g ∈ G such that α(g)m = n. In other words, a transitive action allows us to connect any
two points of M by means of an element of G. To be Poisson just means that this action
is compatible with the Poisson structures on M and G.

Definition 3.16. Let (M,πM , α
M , G) and (N, πN , α

N , G) be two PHS. A homomorphism
of Poisson homogeneous spaces is a Poisson map φ : (M,πM )→ (N, πN ) compatible with
the group action, i.e. it satisfies {f1 ◦ φ, f2 ◦ φ}M = {f1, f2}N ◦ φ and αNg ◦ φ = φ ◦αMg for
all f1, f2 ∈ C∞(N), g ∈ G.
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Once we have introduced the notion of a PHS, we proceed to describe their tangent
structure. With this aim we need the following

Definition 3.17. Let g be a Lie algebra. A Lagrangian Lie subalgebra of the Drinfel’d
double D(g) is a Lie subalgebra l < D(g) such that l⊥ = l with respect to the canonical
pairing on its classical Drinfel’d double algebra (3.48).

A Lagrangian Lie subalgebra l < D(g) is called coisotropic if

(l ∩ g)⊥ = l ∩ g∗, (3.58)

where
(l ∩ g)⊥ ≡ {x ∈ g∗|〈x,X〉 = 0, ∀X ∈ g}. (3.59)

PHS for a Lie group G are related to Lagrangian Lie subalgebras of its classical Drin-
fel’d double. We now describe this relation in detail, following closely the recent work
[60].

Theorem 3.6. [39]. (See also [60]). Let (G,Π) be a Poisson-Lie group.

i) Every pair (M,m) given by a PHS M over G and a point m ∈ M defines a La-
grangian Lie subalgebra l < D(g) with l∩ g = hm, where hm is the Lie algebra of the
stabilizer Hm = {g ∈ G |αg(m) = m}.

ii) Isomorphism classes of PHS over G correspond to orbits of pairs (l, H), where l <
D(g) is a Lagrangian Lie subalgebra and H < G is a Lie subgroup such that Lie (H) =
h = l ∩ g with respect to a certain G-action.

Proof. Implication ii) is essentially obtained by exponentiation, from uniqueness results
on Poisson-Lie groups and from the Poisson G-space (covariance) condition (3.22).

Let us focus on the first implication. Let us call Hm the stabilizer (2.13) of m ∈ M .
Then the diffeomorphism (see Theorem 2.3)

βm : G/Hm →M

gHm → αg(m)
(3.60)

identifies, on the one hand TmM ' TeHm(G/Hm) ' g/hm and on the other hand, T ∗mM '
T ∗eHm(G/Hm) ' h⊥m, where h⊥m = {x ∈ g∗ | 〈x,X〉 = 0, ∀X ∈ hm}. Now, the derivative
of the map (3.9) at the origin eHm of G/Hm, is a map

(]π)∗,eHm : T ∗eHm(G/Hm) ' h⊥m → TeHm(G/Hm) ' g/hm. (3.61)

Now, for every PHS (M,π, α,G), consider the infinitesimal action

ρ : g→ X(M)

X → Xα (3.62)

which assigns to each X ∈ g its associated action vector field Xα (2.56). For each m ∈M
the map ρm : g → Tm(M), provided by evaluation of ρ(X) = Xα at m ∈ M , is a Lie
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algebra homomorphism with kernel ker ρm = hm = Lie (Hm). Transitivity of α implies
for every m ∈ M that TmM = span{Xα

m |X ∈ g} ' g/hm and T ∗mM = (g/hm)∗ ' h⊥m.
Denoting by p̃m : g → g/hm the derivative of (2.54), we can identify the graph of the
linear map defined by the derivative of (3.9) at m ∈M , i.e.

(]π)∗,m : T ∗mM → TmM

x→ (x⊗ id)πm,
(3.63)

with the linear subspace

lm = {(X,x) ∈ g⊕ h⊥m | (]π)∗,m(x) = p̃m(X)} ⊂ g⊕ g∗ = D(g). (3.64)

The only remaining statement to be proven is that l ≡ leHm is a Lagrangian subalgebra
of D(g), with respect to (3.48). Since working with an explicit basis will allow us to
eventually give a simple constructive description of some Poisson homogeneous spaces we
follow this path. Let us choose a basis {H1, . . . ,Hn} of h = heHm and complete it to a
basis {H1, . . . ,Hn, Tn+1, . . . , TN} of g. Call {h1, . . . , hn, tn+1, . . . , tN} with pairing

〈Hi, h
j〉 = δji , 〈Tµ, tν〉 = δνµ

〈Hi, t
µ〉 = 0, 〈Tµ, hi〉 = 0

(3.65)

for all i, j ∈ {1, . . . , n} and µ, ν ∈ {n + 1, . . . , N}. By taking into account expressions
(3.50) and (3.51) for the commutation relations of D(g), we have that

[Hi, Hj ] = ckijHk + cµijTµ, [hi, hj ] = f ijk H
k + f ijµ T

µ,

[Hi, Tµ] = cjiµHj + cνiµTν , [hi, tµ] = f iµj h
j + f iµν T

ν ,

[Tµ, Tν ] = cλµνTλ + ciµνHi, [tµ, tν ] = fµνλ tλ + fµνi hi,

[hi, Hj ] = cijkh
k + cijµt

µ − f ikj Hk − f iµj Tµ, [hi, Tµ] = ciµjh
j + ciµνt

ν − f ijµ Hj − f iνµ Tν ,

[tµ, Hi] = cµijh
j + cµiνt

ν − fµji Hj − fµνi Tν , [tµ, Tν ] = cµνih
i + cµνλt

λ − fµiν Hi − fµλν Tλ.

(3.66)

Clearly, as h < g, then cµij = 0 for all i, j, µ. There is a neighborhood U ⊂ G/H of the
origin eH ∈ G/H, where {Tαn+1(u), . . . , TαN (u)} is a basis of Tu U for all u ∈ U . Therefore,
the Poisson bivector on U can be written as π = πµνTαµ ⊗ Tαν , where πµν ∈ C∞(U).
Particularizing (3.64) to the origin of the homogeneous space eH ∈M we have that

l ≡ leH = h⊕ span{tµ + πµνo Tν |µ ∈ {n+ 1, . . . , N}} (3.67)

where we have written πµνo ≡ πµνeH for the Poisson bivector components evaluated at the
origin o = eH of M . Then, a direct computation using (3.65) shows that l is Lagrangian
if and only if πµνo = −πνµo . Conversely, any Lagrangian subspace l ⊂ D(g) such that
l ∩ g = h can be put into the form (3.67) by a change of basis of the subspaces t =
span{Tn+1, . . . , TN} and h⊥ = span{tn+1, . . . , tN}.

There only remains to be checked that l is in fact a Lie subalgebra of D(g). First of
all, let us introduce the following notation

Mµν
λ ≡ (Tαλ π

µν)(eH),

Mµν
i ≡ (Hα

i π
µν)(eH).

(3.68)
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The Jacobi condition for the Poisson bracket on U ⊂ M imposes the set of constraints
given by ∑

(µ,ν,λ)∈Σ3

(
πρµo Mνλ

ρ + πσµo πρνcλρσ

)
, (3.69)

where the sum means cyclic permutations of those indexes. Moreover, the condition of
Poisson G-space (covariance condition) for the Poisson bivector (3.22) implies that

Mµν
λ = fµνλ + πρνo c

µ
λρ + πρµo cνλρ,

Mµν
i = 0.

(3.70)

Inserting conditions (3.69) and (3.70) on the Lie bracket for general elements of

l = span{tµ + πµνo Tν , Hi|µ ∈ {n+ 1, . . . , N}, i ∈ {1, . . . , n}}, (3.71)

which can be easily computed using (3.66), gives

[tµ + πµλo Tλ, t
ν + πνρo Tρ] = (fµνσ + πνρo c

µ
ρσ − πµρo cνρσ)(tσ + πσρo Tρ),

+ (πµλo πνρo c
i
λρ + πµρo fνiρ − πνρo fµiρ )Hi

[tµ + πµλo Tλ, Hi] = cµiν(tν + πνλo Tλ)− (fµji − π
µλ
o cjλi)Hj ,

(3.72)

proving that l is indeed a Lie subalgebra of D(g). Conversely, if we suppose that l < D(g),
then both conditions (3.69) and (3.70) hold.

Let us see now how Lagrangian Lie subalgebras change when we take a different point.
Let us call lm the Lagrangian Lie subalgebra associated to m ∈ M . Let m′ ∈ M be a
different point. Of course, by transitivity of α, it exists g ∈ G such that m′ = αg(m),
and the stabilizer Hm′ of m′ is related to the stabilizer Hm of m by Hm′ = Cg(Hm) (see
the discussion below Definition 2.15). If we denote by L(D(g)) the algebraic variety of
Lagrangian Lie subalgebras of D(g) [204] and define the adjoint action of G on D(g) by

AdD(g) : G→ GL(D(g)) (3.73)

where we have that Ad
D(g)
g , for all g ∈ G, is the map given by

AdD(g)
g : D(g)→ D(g)

(X,x)→ Adg(X) + Ad∗g(x) + (Ad∗g(x)⊗ id)η(g)
(3.74)

for all X ∈ g, x ∈ g∗. Recall from (3.28) that η(g) = (Rg)∗Π(g). This action passes to an
action on the algebraic variety L(D(g)) due to the fact that it preserves (3.48), so it sends
Lagrangian Lie subalgebras of D(g) to Lagrangian Lie subalgebras of D(g). Therefore,
isomorphism classes of PHS on M = G/H are in one-to-one correspondence with the
orbits of the adjoint action of G on D(g) (3.73) on L(D(g)), and we can identify these
orbits as models for PHS.
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3.5.1 Coisotropic Poisson homogeneous spaces

Hereafter, we consider the special case of coisotropic Lie subalgebras of D(g) (recall from
Definition 3.17 that they are those Lagrangian Lie subalgebras l ofD(g) for which (l∩g)⊥ =
l ∩ g∗). Hence, we have the following

Lemma 3.2. [60] Let h < g be a Lie subalgebra and l < D(g) a Lagrangian Lie subalgebra
of D(g) such that l ∩ g = h as in (3.67). Then l is coisotropic if and only if πµν = 0 for
all µ, ν ∈ {n + 1, . . . , N}. In this case, one has that l = h ⊕ h⊥ = span{Hi, t

µ} and the
Lie bracket on l is given by

[tµ, tν ] = fµνλ tλ, [tµ, Hi] = cµiνt
ν + f jµi Hj , [Hi, Hj ] = ckijHk, (3.75)

and the structure constants of g and g∗ satisfy cµij = 0, fµνi = 0 for all i, j ∈ {1, . . . , n} and
µ, ν ∈ {n+ 1, . . . , N}.

Consequently, for coisotropic Lie subalgebras we have that h < g and h⊥ < g∗. Spe-
cially useful will be the precise cocommutator of the subalgebra h = l∩ g that, by Lemma
3.2, is given by

δ(Hi) = f jki Hj ∧Hk + f jνi Hj ∧ Tν . (3.76)

From this expression it is clear that for every h < g, then (h, δh), where we have written
δh = δ|h, is a sub-Lie bialgebra of (g, δ) (and therefore (H,ΠH) a Poisson-Lie subgroup of

(G,ΠG)) if and only if f jνi = 0 for all i, j ∈ {1, . . . , n} and ν ∈ {n + 1, . . . , N}. In this
case, then (3.75) takes the simpler form

[tµ, tν ] = fµνλ tλ, [tµ, Hi] = cµiνt
ν , [Hi, Hj ] = ckijHk, (3.77)

so the Lagrangian Lie subalgebra l of D(g) is a semidirect product l = h n h⊥. In the
remaining of this work, the explicit construction of PHS will play a central role, and
coisotropic Lie subalgebras of D(g) will appear quite frequently. Moreover, the character-
ization by means of Lie subalgebras of D(g) is quite cumbersome, and in fact unnecessary
for our purposes. Thus let us give the following definition of a coisotropic Lie bialgebra.

Definition 3.18. Let (g, δ) be a Lie algebra and h a Lie subalgebra of g, with the Lie
bialgebra structure given by δh = δ|h. Then we say that (g, δ) is coisotropic with respect
to h if there exists a basis {H1, . . . ,Hn} of h such that

δ(Hi) = f jki Hj ∧Hk + f jµi Hj ∧ Tµ, (3.78)

where {Tn+1, . . . , TN} is any basis of the complement of h in g, f jki , f
jµ
i are arbitrary

constants and i, j, k ∈ {1, . . . , n} and µ ∈ {n+ 1, . . . , N}. When these conditions hold, we
will write

δ(h) ⊂ h ∧ g. (3.79)

Consequently:

• We say that (M,π, α,G) is a coisotropic Poisson homogeneous space if M is diffeo-
morphic to G/H by the diffeomorphism (2.55) of Theorem 2.3 and the Lie bialgebra
(g = LieG, δ) is coisotropic with respect to h = LieH.



3.5. POISSON HOMOGENEOUS SPACES 71

• We say that (M,π, α,G) is a Poisson homogeneous space of Poisson subgroup type
if M is diffeomorphic to G/H by the diffeomorphism (2.55) of Theorem 2.3 and
(h = LieH, δ|h) is a sub-Lie bialgebra of (g = LieG, δ) (or equivalently, (H,ΠH) is a
Poisson-Lie subgroup of (H,ΠH)), that is

δ(h) ⊂ h ∧ h. (3.80)

3.5.2 Poisson homogeneous spaces from semidirect products

The following construction describes a PHS structure for a particular class of Lie groups.
In particular, this will be relevant in Chapter 6 when we study PHS for the Poincaré
and Euclidean groups in (2+1) dimensions, which are semidirect-product groups with the
particularity that the dimension of the isotropy subgroup equals the dimension of the
subalgebra of translations.

Let us consider a Lie group G of the form G = H nAd∗ h
∗, where h∗ is the dual vector

space of h = Lie(H), endowed with the trivial Lie algebra structure, so h∗ ' Rn. Then
we have that g = h nad∗ h

∗. If we denote a group element by (h, t) we can write the
group multiplication as (h1, t1) · (h2, t2) = (h1h2, t1 + Ad∗

h−1
1

(t2)). Let h = 〈Ja〉 be a basis

for h and h∗ = 〈Pa〉 the dual basis, so 〈Ja, Pb〉 = δab. The commutation relations read
[Ja, Jb] = ccabJc and [Pa, Pb] = 0, while the cross relations are obtained from the group law,
namely [Ja, Pb] = ad∗JaPb. More explicitly

〈[Ja, Pb], Jc〉 = 〈ad∗JaPb, Jc〉 = 〈−(adJa)∗, Jc〉 = −〈Pb, adJaJc〉 = −cbac = −cbac〈Pc, Jc〉,
(3.81)

so ad∗JaPb = −cbacPc. Therefore, the Lie algebra commutators will be

[Ja, Jb] = ccabJc, [Ja, Pb] = ad∗JaPb = −cbacPc, [Pa, Pb] = 0. (3.82)

Theorem 3.7. With the same notation as above the homogeneous space M = G/H is a
Poisson homogeneous space of Lie algebraic type isomorphic to h.

Proof. It is straightforward from (3.51) to see that G = D(H) is a Drinfel’d double with
Ya = Ja and ya = Pa, and so the classical skew-symmetric r-matrix r =

∑
a Pa∧Ja defines

a Poisson-Lie structure on G by means of the Sklyanin bracket, which in this case takes
the simple form

{f1, f2} =
∑
a

(
XL
Paf1X

L
Jaf2 −XR

Paf1X
R
Jaf2

)
. (3.83)

Let us introduce local coordinates in a neighborhood U of g ∈ G by the map α : U → Rn,
(g Πn

a=1 expxaPa Πn
b=1 exp θbJb)→ (xa, θa). In this way xa define a set of local coordinates

in M and it suffices to compute the Sklyanin bracket for them

{xb, xc} =
∑
a

(
XL
Pax

bXL
Jax

c −XR
Pax

bXR
Jax

c

)
. (3.84)
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Using right-invariance of xa and the definition of local coordinates we have that

XL
Jax

c =
d

dt

∣∣
t=0

xc(ex
kPkeθ

kJketJa) =
d

dt

∣∣
t=0

xc(ex
kPkeθ

kJk) = 0,

XR
Pax

b =
d

dt

∣∣
t=0

xb(etPaex
kPkeθ

kJk) =
d

dt

∣∣
t=0

xb(etPaex
kPk)

=
d

dt

∣∣
t=0

(t+ xk)δab = δab,

(3.85)

and

XR
Jax

c =
d

dt

∣∣
t=0

xc(etJaex
kPkeθ

kJk) =
d

dt

∣∣
t=0

xc(etJaex
kPk)

=
d

dt

∣∣
t=0

xc(etJaex
kPke−tJa) =

d

dt

∣∣
t=0

xc(Ad∗etJa (xkPk)) = xc(xkad∗JaPk)

=xc(−ckalPlxk) = −ckalxc(xkPl) = −ckalδclxk = −ckacxk.

(3.86)

Therefore, the fundamental brackets for the Poisson structure π of the homogeneous space
M = G/H read

{xb, xc} = ckacx
kδab = ckbcx

k, (3.87)

which is of Lie algebraic type (linear).

Corollary 3.3. Any linear Poisson structure on a manifold M with dimension d can be
constructed as a Poisson homogeneous space for some Lie group G of dimensions 2d.

3.6 (Co)algebras, bialgebras and Hopf algebras

Until this moment, the description has been mainly geometrical. Let us now switch to
a more algebraic language that will be useful in the rest of this Thesis, specially when
introducing the quantization of Poisson structures.

Definition 3.19. An algebra (A,µ, i) over a commutative ring k is a k-module A equipped
with two k-module maps: the multiplication (or product) µ : A ⊗k A → A, and the unit
i : A→ A, making the following diagrams commutative

A⊗ k A⊗A k ⊗A

A

id⊗i

'
µ

i⊗id

'

A⊗A

A⊗A⊗A A

A⊗A

µµ⊗id

id⊗µ µ

(3.88)
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These properties are equivalent to i(α) = α1 and µ(a1 ⊗ a2) = a1 · a2, for all α1 ∈ k
and a1, a2 ∈ A. In terms of the flip operator

σ : A⊗A→ A⊗A
(a1, a2)→ (a2, a1),

(3.89)

an algebra is commutative if the following diagram is commutative

A⊗A A⊗A

A

σ

µ µ
(3.90)

In other words µ(a1, a2) = µ ◦ σ(a1, a2) = µ(a2, a1) for all a1, a2 ∈ A.

An algebra homomorphism is a k-module map φ : A→ B which is compatible with the
products and units in A and B, in the sense that φ(µA(a1⊗a2)) = µB((φ⊗φ)(a1⊗a2)) for
all a1, a2 ∈ A, and φ(iA(α)) = iB(α) for all α ∈ k. These conditions can be equivalently
stated as the commutativity of the following diagrams

A⊗A A

B ⊗B B

µA

φ⊗φ φ

µB

k A

k B

iA

' φ

iB

(3.91)

Definition 3.20. Let g be a Lie algebra over the field k. As a vector space, we can
consider its tensor algebra T (g) = ⊕l≥0g

⊗l(where g⊗0 = k). Let I be the two-sided ideal
of T (g) generated by X ⊗ Y − Y ⊗X − [X,Y ]. Then the universal enveloping algebra of
g is U(g) = T (g)/I.

Definition 3.21. A coalgebra (A,∆, ε) over a commutative ring k is a k-module A
equipped with two k-module maps: the comultiplication (or coproduct) ∆ : A → A ⊗ A,
and the counit ε : A→ A, making the following diagrams commutative

A⊗ k A⊗A k ⊗A

A

id⊗ε ε⊗id

' ∆ '

A⊗A

A⊗A⊗A A

A⊗A

∆⊗id ∆

∆id⊗∆

(3.92)
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We say that a coalgebra is cocommutative if ∆(a) = σ ◦∆(a) for all a ∈ A, or equiva-
lently if the following diagram is commutative

A⊗A A⊗A

A

σ

∆ ∆
(3.93)

A coalgebra homomorphism is a k-module map φ : A → B which is compatible with
the coproducts and the counits in A and B in the sense that (φ ⊗ φ)(∆(a)) = ∆(φ(a))
and εB(φ(a)) = εA(a) for all a ∈ A. These conditions can be equivalently stated as the
commutativity of the following diagram

B ⊗B B

A⊗A A

∆

φ⊗φ

∆

φ (3.94)

In the language of category theory, we say that a coalgebra is the dual of an algebra,
where the duality should be understood as ‘reversing arrows’.

Definition 3.22. A bialgebra (A,µ,∆, i, ε) over a commutative ring k is a k-module A
such that

i) A is both an algebra and a coalgebra over k,

ii) The comultiplication ∆ : A → A ⊗ A and the counit ε : A → A are algebra homo-
morphisms,

iii) The multiplication µ : A⊗ A→ A and the unit i : A→ A are coalgebra homomor-
phisms.

The above definition means that a bialgebra is both an algebra and a coalgebra in such
a way that both structures are compatible. Bialgebras are important objects because for
them we know how to construct tensor product representations of algebras, a key fact in
the applications to physics, where algebras describe physical observables.

Definition 3.23. A Hopf algebra (A,µ,∆, i, ε, S) over a commutative ring k is a bialgebra
(A,µ,∆, i, ε) together with a bijective k-module map, the antipode S : A → A, making
the following diagram commutative

A⊗A A⊗A A⊗A

A A A

S⊗id

µ

id⊗S

∆

i◦ε i◦ε

∆ (3.95)
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Let A and B be Hopf algebras. A Hopf algebra homomorphism is a k-module map
φ : A→ B such that it is an algebra and coalgebra homomorphism.

Given a Hopf algebra A and a two-sided ideal I of A as an algebra, we say that I is a
Hopf ideal if

∆(I) ⊆ I ⊗A+A⊗ I, ε(I) = 0, S(I) ⊆ I. (3.96)

The k-module A/I inherits a Hopf algebra structure from the one in A.

Note that, by definition, Hopf algebras are associative and coassociative, while they
could be noncommutative, non-cocommutative or both. To illustrate these concepts, let us
now consider three simple instances (see [35] for more examples) of Hopf algebra structures
for finite or algebraic groups.

Example 3.2. Let G be a finite group and denote by e its identity element. We define the
group algebra k[G] ofG over the commutative ring k as a free k-module with basisG, where
the product of k[G] is obtained by extending linearly the one in G. We obtain a Hopf
algebra structure on k[G] just by considering the following formulas for the coproduct,
unit, counit and antipode

∆(g) = g ⊗ g, i(1) = e, ε(g) = 1, S(g) = g−1, (3.97)

for all g ∈ G, and extending them linearly. This Hopf algebra is cocommutative, but it is
commutative only if G is commutative.

♦

Motivated by this example, for any Hopf algebra A we say that an element a ∈ A is
group-like if ∆(a) = a⊗ a.

Example 3.3. As in the previous Example, let G be a finite group. Then the set F(G)
of regular functions with values in the ring k has a Hopf algebra structure where the
multiplication and unit are defined pointwise, while the counit and antipode are given by
ε(f) = f(e) and S(f)(g) = f(g−1) for all g ∈ G, respectively. To define the coproduct
consider the isomorphism F(G)⊗F(G)→ F(G×G) that assigns to every element f1⊗f2 ∈
F(G)⊗F(G) the function f12 ∈ F(G×G) defined by f12(g1, g2) = f1(g1)f2(g2), for every
g1, g2 ∈ G. This isomorphism allows us to have a well defined coproduct ∆ : F(G) →
F(G) ⊗ F(G) given by ∆(f)(g1, g2) = f(g1g2). This Hopf algebra structure is always
commutative, but it is cocommutative if and only if G is commutative.

♦

Example 3.4. Let G be an affine algebraic group over a field k and F(G) its algebra of
regular functions. As in the previous Example, we have that F(G) ⊗ F(G) ' F(G × G)
and the very same construction defines a Hopf algebra on F(G). As a concrete example,
consider G = GL(n, k) and denote by xij the matrix elements of X ∈ G, where i, j ∈
{1, . . . , n}. Then F(G) is the commutative algebra with generators xij and D−1 with the
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relation D−1 detX = 1. The coalgebra structure is defined by

∆(xij) =
n∑
k=1

xik ⊗ xkj ,

∆(D−1) = D−1 ⊗D−1,

ε(xij) = δij ,

ε(D−1) = 1,

(3.98)

while the antipode reads

S(xij) = (X−1)ij , S(D−1) = D (3.99)

where (X−1)ij are the matrix elements of the inverse matrix to X.

♦

The following two examples will be extremely important in the rest of this work. The
first one introduces a cocommutative Hopf algebra structure on the universal enveloping
algebra of a Lie algebra g, while the second one defines a commutative Hopf algebra
structure on the algebra of functions on a topological group.

Example 3.5. With the notation of Definition 3.20, I is a Hopf ideal and U(g) is a Hopf
algebra. By the Poincaré-Birkhoff-Witt theorem, we can see the monomials xi1xi2 · · ·xik
as generators of U(g) if {xik} is a basis of g. It is sufficient to define the coproduct, counit
and antipode on Lie algebra elements. They are given by

∆(X) = X ⊗ 1 + 1⊗X, i(1) = 1, ε(X) = 0, S(X) = −X, ∀X ∈ g,
(3.100)

respectively. These conditions, together with the Hopf algebra axioms, are sufficient to
compute the image by these maps of every element of U(g), including

∆(1) = 1⊗ 1, ε(1) = 1, S(1) = 1. (3.101)

This is an example of a cocommutative Hopf algebra, which is commutative only if g is
commutative.

♦

Example 3.6. Let G be a compact topological group (in particular a Lie group). Consider
the algebra A = C∞(G) of continuous functions on G, where the multiplication µ is
just the usual pointwise multiplication of functions, i.e. µ(f1, f2)(g) = f1(g)f2(g) for all
f1, f2 ∈ C∞(G) and g ∈ G. Now define

∆(f)(g1 ⊗ g2) = f(g1g2), i(1) = u, ε(f) = f(e), S(f)(g) = f(g−1), (3.102)

for all f ∈ C∞(G) and g, g1, g2 ∈ G. u : G → R is the constant function u(g) = 1 for
all g ∈ G. In fact, this definition does not provide a well-defined Hopf algebra, since
this coproduct takes values in C∞(G × G) which is strictly larger that C∞(G) ⊗ C∞(G).
In order to solve this problem (note that another option is to realize that the topology
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on C∞(G) allows us to regard C∞(G × G) as a completion of C∞(G) ⊗ C∞(G)), we will
consider continuous representations ρ : G→ GL(n,R). We call ρij = xij ◦ ρ to the matrix
elements of ρ. As ρ runs through all finite-dimensional representations of G, ρij generate
a subalgebra Rep(G) of C∞(G). Then it can be shown that Rep(G) is dense on C∞(G)
and Rep(G×G) is isomorphic to Rep(G)⊗Rep(G), so the maps defined previously endow
Rep(G) with a Hopf algebra structure. Also, the coproduct

∆(ρij) =
n∑
k=1

ρik ⊗ ρkj , (3.103)

induce a Hopf algebra structure on Rep(G). This is the precise Hopf algebra structure
that we will use in the main part of this work, when we consider matrix Lie groups.

♦

When g = Lie(G) the previous examples 3.5 and 3.6 are related in a precise way:
they are duals as Hopf algebras. Let us make this concept precise by considering a Hopf
algebra (A,µ,∆, i, ε, S), the dual vector space A∗ to A and its canonical pairing 〈·, ·〉.
Then (A∗, µ∗,∆∗, i∗, ε∗, S∗) is a Hopf algebra with the maps defined by

〈µ∗(f1 ⊗ f2), x〉 = 〈f1 ⊗ f2,∆(x)〉,
〈∆∗(f), x1 ⊗ x2〉 = 〈f, µ(x1, x2)〉,
〈i∗(α), x〉 = αε(x),

ε∗(f) = 〈f, 1〉,
〈S∗(f), x〉 = 〈f, S(x)〉.

(3.104)

We say that (A,µ,∆, i, ε, S) and (A∗, µ∗,∆∗, i∗, ε∗, S∗) are duals as Hopf algebras.

The explicit duality between Hopf algebras of Examples 3.5 and 3.6 is given [195] by
considering the unique homomorphism

ρ : U(g)→ End(C∞(G)), (3.105)

which is an extension of homomorphism which assigns to any element Ta ∈ g its associated
right-invariant vector field (2.23),

ρ : g→ End(C∞(G))

Ta → XR
a .

(3.106)

In this way, we can see elements of higher order in U(g) as differential operators on C∞(G).
Then define the bilinear form

〈·, ·〉 : C∞(G)× U(g)→ k

(f, a)→ (ρ(a)f)(e)
(3.107)

for all f ∈ C∞(G), a ∈ U(g) (e denotes as usual the identity in G). It is easy to see that
the map C∞(G)→ (U(g))∗ defined by f → 〈f, ·〉 is inyective, so C∞(G) can be embedded
into (U(g))∗ and so we have the duality between C∞(G) and U(g). Now, using the duality
(3.104) we find that the Hopf algebra structures defined in Examples 3.5 and 3.6 are indeed
dual as Hopf algebras.
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3.6.1 Poisson-Hopf algebras

In the following we introduce the notion of a Poisson-Hopf algebra, which will be a central
one throughout this Thesis. With this aim, we need some previous definitions.

Definition 3.24. A Poisson algebra is a commutative and associative algebra (A,µ, i)
together with a bilinear map

{·, ·} : A×A→ A (3.108)

such that

PA1. {a, b} = −{b, a},

PA2. {a, {b, c}}+ {c, {a, b}}+ {b, {c, a}} = 0,

PA3. {ab, c} = a{b, c}+ {a, c}b.

Note that PA1 and PA2 are just L1 and L2 for Lie algebras in Definition 2.6, so they
just state that A is a Lie algebra with respect to {·, ·}. PA3 is the condition that the
Poisson bracket acts as a derivation.

Example 3.7. Let (M,π) be a Poisson manifold. Then the algebra of functions on M ,
C∞(M), is a Poisson algebra.

♦

Let A,B be two algebras. Their tensor algebra A⊗B is an algebra with multiplication
map given by

µA⊗B : (A⊗B)× (A⊗B)→ A⊗B
(a1 ⊗ b1, a2 ⊗ b2)→ µA(a1, a2)⊗ µB(b1, b2)

(3.109)

We can also write µA⊗B = (µA⊗µB) ◦ (1⊗σ⊗ 1). Now, if (A, {·, ·}A) and (B, {·, ·}B) are
Poisson algebras, their tensor product inherits a natural Poisson algebra structure given
by

{a1 ⊗ b1, a2 ⊗ b2}A⊗B = {a1, a2}A ⊗ µB(b1, b2) + µA(a1, a2)⊗ {b1, b2}B (3.110)

for all a1, a2 ∈ A, b1, b2 ∈ B.

If we now consider bialgebras instead of just algebras the natural compatibility condi-
tion to require for is that the coproduct ∆ be a Poisson map. Thus we have

Definition 3.25. A Poisson bialgebra (A,µ, i, {·, ·},∆) is a Poisson algebra (A,µ, i, {·, ·})
together with a coproduct ∆ that is a Poisson map with respect to {·, ·}A in A and {·, ·}A⊗A
in A⊗A.

A Poisson-Hopf algebra (A,µ, i, {·, ·},∆, S) is a Poisson bialgebra (A,µ, i, {·, ·},∆)
which also has an antipode S.
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3.6.2 (Co)actions of (co)algebras and Hopf algebra representations

Let us now introduce the notions of actions and coactions of algebras and coalgebras,
respectively. We follow closely [35]. Let (A,µ, i) be an algebra (see Definition 3.19) over
a commutative ring k.

Definition 3.26. A left A-module is a k-module V endowed with a k-module map (also
called left action) λ : A× V → V such that the following diagrams commute:

A⊗A⊗ V A⊗ V

A⊗ V V

µ⊗idV

idA⊗λ λ

λ

k ⊗ V A⊗ V

V V

i⊗idV

' λ

idV

(3.111)

Now, let (A,∆, ε) be a coalgebra (see Definition 3.21) over a commutative ring k.

Definition 3.27. A right A-comodule is a k-module V endowed with a k-module map
(also called right coaction) ρ : V → V ⊗A such that the following diagrams commute:

V ⊗A⊗A V ⊗A

V ⊗A V

idV⊗∆

ρ⊗idA

ρ

ρ

V ⊗ k V ⊗A

V V

idV⊗ε

'

idV

ρ (3.112)

If the k-modules V have extra structure, it is therefore natural to require that such
structure is preserved by left actions and right coactions. In particular, let us assume that
(A,µA,∆A, iA, εA) is a bialgebra (or a Hopf algebra if it is endowed with an antipode).
Then we say that an algebra (V, µV , iV ) is a left A-module algebra if it is a left A-module
and

λ(a⊗µV (v1⊗ v2)) =
∑
i

µV (λ(ai⊗ v1)⊗λ(ai⊗ v2)), λ(a⊗ 1) = εA(a)1, (3.113)

where ∆(a) =
∑

i ai⊗ ai, for all a ∈ A, v1, v2 ∈ V (Sweedler’s notation). Similarly, we say
that a coalgebra (V,∆V , εV ) is a left A-module coalgebra if it is a left A-module and

∆V (λ(a⊗ v)) =
∑
i,j

λ(ai ⊗ vj)⊗ λ(ai ⊗ vj), εV (λ(a⊗ v)) = εA(a)εV (v), (3.114)

where ∆V (v) =
∑

j vj ⊗ vj , for all a ∈ A, v ∈ V .

For the case that the bialgebra A and the k-module V are endowed with Poisson
structures (see Definition 3.25), we have:

Definition 3.28. Let (A,µ, i, {·, ·},∆, S) be a Poisson-Hopf algebra and (V, µ, i, {·, ·}) a
Poisson algebra, then V is a Poisson A-comodule algebra if the right coaction ρ : V → A⊗V
is a Poisson map, where the Poisson structure in A⊗ V is given by (3.110).
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Example 3.8. Let M = G/H be a G-space with action α : G→ Diff (M). Let A be the
Hopf algebra C∞(G) and V the algebra C∞(M). Recall that the action α satisfies that
αg1g2(m) = αg1(αg2(m)) because it is a homomorphism. This property is exactly what is
implied by the axioms of left action and right coaction. In the first case we have that

λ(id⊗ λ)(a⊗ b⊗ v) = λ(a⊗ (λ(b⊗ v))) (3.115)

is equal to
λ(µ⊗ id)(a⊗ b⊗ v) = λ(µ(a⊗ b)⊗ v), (3.116)

which is exactly the previous property for the action α in an algebraic language. For right
coactions we have, if ρ(v) = v ⊗ a, that

(ρ⊗ id)ρ(v) = (ρ⊗ id)(v ⊗ a) = v ⊗ a⊗ a, (3.117)

should equal
(id⊗∆)ρ(v) = (id⊗∆)(v ⊗ a) = v ⊗∆(a), (3.118)

which is the dual of the previous property for actions. If moreover, the G-space M = G/H
is indeed a Poisson G-space, then the algebraic version of the covariance (compatibility of
the action with the Poisson structures), is just the condition

{λ(a1 ⊗ v1), λ(a2 ⊗ v2)}V = λ({a1 ⊗ v1, a2 ⊗ v2}A⊗V ) (3.119)

for left actions, or its dual

ρ({v1, v2}V ) = {ρ(v1), ρ(v2)}V⊗A (3.120)

for right coactions. ♦

Definition 3.29. A representation of a Hopf algebra (A,µ,∆, i, ε, S) over a commutative
ring k is a left A-module. Similarly, a co-representation of a Hopf algebra is a right
A-comodule.

Note that the definition of Hopf algebra representation only uses its algebra axioms,
while the co-representation only uses the coalgebra ones.

3.7 Quantization

During this Thesis, Hopf algebras will play a central role. Moreover, we will be specially
interested in ‘deformations’ of Hopf algebras, which roughly speaking are modifications
depending on a parameter (the deformation parameter or quantum parameter) of Hopf
algebras such that they keep the Hopf algebra structure and the original Hopf algebra is
obtained as an appropriate analytic limit of the deformation parameter h, as in Theorem
3.4.

Definition 3.30. A deformation of a Hopf algebra (A,µ,∆, i, ε, S) over a field k is a
topological Hopf algebra (Ah, µh,∆h, ih, εh, Sh) over the ring k[[h]] of formal power series
in an indeterminate h over k, such that
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i) Ah is isomorphic to A[[h]] as a k[[h]]-module,

ii) µh ≡ µ (mod h),

iii) ∆h ≡ ∆ (mod h),

where A[[h]] denotes the algebra of formal power series in h with coefficients on A, i.e.
elements of the form

∞∑
n=0

anh
n, (3.121)

with an ∈ A.

Definition 3.31. A quantum universal enveloping algebra (QUEA) Uh(g) is a deformation
(in the sense of Definition 3.30) of the Hopf algebra structure on the universal enveloping
algebra U(g) of a Lie algebra g defined in Example 3.5. We will also refer to a QUEA as
a quantum deformation of g, or simply as a quantum algebra.

For any quantum algebra Uh(g) with coproduct

∆h : Uh(g)→ Uh(g)⊗ Uh(g), (3.122)

the Lie algebra g inherits a Lie bialgebra structure with coproduct

δ = ∆h − σ ◦∆h (modh). (3.123)

The first order deformation given by δ provides the relevant information about the full
quantum deformation and this fact will be used throughout this Thesis. In this sense,
we can say that the quantum algebra Uh(g) is a deformation of the Lie algebra g in the
direction of the Lie bialgebra (g, δ) with deformation parameter h.

Definition 3.32. A quantization of a Poisson algebra (A,µ, i, {·, ·}) over a field k is a
noncommutative but associative topological algebra (Ah, µh, ih, [·, ·]) over the ring k[[h]]
of formal power series in an indeterminate h over k, such that

i) Ah is isomorphic to A[[h]] as a k[[h]]-module,

ii) µh ≡ µ (mod h),

iii) {a1, a2} ≡ [â1,â2]
h (modh),

where ai = âi (modh), â1, â2 ∈ Ah, a1, a2 ∈ A, and

[·, ·] = µh − µh ◦ σ, (3.124)

denotes the usual commutator on Ah. Also, A[[h]] denotes the algebra of formal power
series in h with coefficients on A, i.e. elements of the form

∞∑
l=0

alh
l, (3.125)

with al ∈ A.
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The concept of quantization of Poisson-Hopf algebras is stated as follows.

Definition 3.33. Let A be a commutative Poisson-Hopf algebra over a field k of charac-
teristic zero, and let {·, ·} be its Poisson bracket. A quantization of a Poisson-Hopf algebra
A is a Hopf algebra deformation Ah (see Definition 3.30) of A such that

{a1, a2} ≡
[â1, â2]

h
(modh), (3.126)

if a1 = â1 (modh) and a2 = â2 (modh), for all â1, â2 ∈ Ah and a1, a2 ∈ A. A quantization
of an algebraic Poisson-Lie group (G,Π) is a quantization C∞h (G) of the algebra of regular
functions C(G), regarded as a Poisson algebra, and (G,Π) is called the classical limit of
C∞h (G).

Note that in this way a quantization of a Poisson-Hopf algebra is just a deformation
of its Hopf algebra structure together with a quantization of its Poisson algebra structure
in such a way that they are compatible.

Definition 3.34. A quantum group is a quantization of an algebraic Poisson-Lie group.

For Poisson comodule algebras the natural quantization is defined as follows.

Definition 3.35. Let V be a Poisson A-comodule algebra with right coaction ρ : V → A⊗
V . A quantization of a Poisson A-comodule algebra is a quantization Ah of A as Poisson-
Hopf algebra and Vh of V as a Poisson algebra, together with a map ρh : Vh → Ah ⊗ Vh
respecting the algebra structure (quantization of the Poisson bracket) on Vh and Ah⊗Vh.

3.8 The basic Lorentzian example in (1+1) dimensions

In order to illustrate some of the concepts introduced, let us consider a simple but non-
trivial example, which will be worked out in full detail. In fact, this will be the approach
that we will follow in Chapters 4 and 5 where we generalize these results to the (2+1) and
(3+1) dimensional cases.

Let us takeG1+1
0 , i.e. the Poincaré group in (1+1) dimensions given by (2.121) in §2.3.4,

so g1+1
0 = Lie(G1+1

0 ) (hereafter we omit the dimensional superscript). For convenience, we
recall that the Lie algebra g0 reads

[K,P0] = P1, [K,P1] = P0, [P0, P1] = 0, (3.127)

and has the following quadratic Casimir

C = P 2
0 − P 2

1 . (3.128)

A general element g0 can be written as

Q0 = xµPµ + ξK =

 0 0 0
x0 0 ξ
x1 ξ 0

 . (3.129)
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and thus an element of G1+1
0 , sufficiently close to the identity, can be written

G1+1
0 =

 1 0 0
x0 cosh ξ sinh ξ
x1 sinh ξ cosh ξ

 . (3.130)

First of all, let us introduce the so-called Lie-Poisson structure on the dual vector
space g∗0 (see the detailed construction of this Poisson structure on Example 3.1). Then
we rigorously define what we will call in the remaining of this work the Poisson version
of g0. This Poisson structure, denoted by P(g0), is defined by the fundamental brackets

{K,P0} = P1, {K,P1} = P0, {P0, P1} = 0. (3.131)

where P0, P1,K are to be seen as a set of global coordinate functions on g∗0. As explained
in Example 3.1, these Poisson brackets are formally the Lie algebra commutation relations
(3.127) where commutators have been replaced by Poisson brackets.

We know (see Example 3.5) that U(g0) has a primitive Hopf algebra structure, i.e. for
g0 we have

∆0(P0) = P0⊗1+1⊗P0, ∆0(P1) = P1⊗1+1⊗P1, ∆0(K) = K⊗1+1⊗K, (3.132)

and we extend this linearly to U(g0). For instance

∆0(P0P1) = ∆0(P0)∆0(P1) = P0P1 ⊗ 1 + P0 ⊗ P1 + P1 ⊗ P0 + 1⊗ P0P1. (3.133)

A well-known quantum quantum deformation of the Hopf algebra U(g0,∆0), the so-called
κ-deformation, is defined by the element r ∈ g0 ⊗ g0, which is a solution of the mCYBE
(3.36), given by

r =
1

κ
K ∧ P1, (3.134)

where κ ∈ R is the deformation (or quantum) parameter, that in this case should be
physically thought as related to the Planck energy. From (3.134) we directly obtain the
following cocommutator

δ(P0) = 0, δ(P1) = −1

κ
P0 ∧ P1, δ(K) = −1

κ
P0 ∧K1. (3.135)

The associated quantum Poincaré algebra, denoted by Uκ(g0), is given by the following
deformed commutation relations

[K,P0] = P1, [K,P1] =
κ

2
(1− e−2P0/κ)− 1

2κ
P 2

1 , [P0, P1] = 0, (3.136)

with coproduct

∆(P0) = P0 ⊗ 1 + 1⊗ P0,

∆(P1) = P1 ⊗ 1 + e−P0/κ ⊗ P1,

∆(K) = K ⊗ 1 + e−P0/κ ⊗K.
(3.137)
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Note that the skew-symmetrized part of the first order of this coproduct is given by the
previous cocommutator (3.135), i.e. δ(X) = (∆(1) − σ ◦∆(1))(X), for all X ∈ g0.

We omit the counit and antipode because they can be computed from the Hopf algebra
axioms. The deformed quadratic Casimir for Uκ(g0) is given by

Cκ = 4κ2 sinh2(P0/(2κ))− eP0/κP 2
1 . (3.138)

We remark that the limit κ→∞ of (3.136), (3.137) and (3.138) returns the undeformed
expressions (3.127), (3.132) and (3.128), respectively.

3.8.1 The κ-Minkowski Poisson homogeneous space

First of all, let us consider the PHS associated to the Lie bialgebra (3.134). Consider the
Lie group element g ∈ G0 with coordinates (a0, a1, b) given by

g =

 1 0 0
a0 cosh b sinh b
a1 sinh b cosh b

 , (3.139)

and the point m = (1, y0, y1)T ∈ M0 = G0/L, where L is the (1 + 1) Lorentz subgroup
defined by (2.126). The action α : G0×M0 →M0 given by left multiplication is transitive,
so theG0-space for this action is indeed a homogeneous space. This right action is explicitly
given by

α(g,m) = (1, a0 + y0 cosh b+ y1 sinh b, a1 + y0 sinh b+ y1 cosh b)T ≡ (1, x0, x1)T . (3.140)

In order to have a PHS, the first step is to introduce a Poisson structure Π on G0,
such that (G0,Π) is a Poisson-Lie group. We know that the Sklyanin bracket (3.44) for
(3.134) satisfies this condition. In this case it takes the following simple form

{f1, f2} =
1

κ

((
XL
Kf1X

L
P1
f2 −XL

P1
f1X

L
Kf2

)
−
(
XR
Kf1X

R
P1
f2 −XR

P1
f1X

R
Kf2

))
(3.141)

where the XL and XR left- and right-invariant vector fields for G0 (see Table 2.4), namely

XL
P1

= sinh ξ∂x0 + cosh ξ∂x1 , XL
K = ∂ξ,

XR
P1

= ∂x1 , XR
K = x1∂x0 + x0∂x1 + ∂ξ. (3.142)

This Poisson-Lie structure on G0, which we hereafter call the Poisson κ-Poincaré group
(G0,Π), is given by the fundamental brackets

{x0, x1} = −1

κ
x1, {x0, ξ} = −1

κ
sinh ξ, {x1, ξ} =

1

κ
(1− cosh ξ) (3.143)

where x0, x1, ξ are local coordinates (exponential coordinates of the second kind) on G0

defined as explained in §2.3. In this way we have that x̃α = xα ◦ p (see (2.86)), and



3.8. THE BASIC LORENTZIAN EXAMPLE IN (1+1) DIMENSIONS 85

the Poisson κ-Minkowski spacetime (M0, π) structure will be defined by the first of the
previous brackets, i.e

{x0, x1} = −1

κ
x1, (3.144)

where for simplicity we have written x0, x1 instead of x̃0, x̃1, but we recall that we are
now dealing with functions C∞(M0) instead of C∞(G0). We will do this in the rest of this
work since no confusion should arise (note that by the definition of these coordinates all
the expressions are formally similar).

In order to check that this is a PHS we just need to verify the covariance condition
(3.20) (or equivalently (3.21)). We have that the left hand side of (3.21) reads

{x0, x1} (α(g,m)) = −1

κ
x1
(
1, a0 + y0 cosh b+ y1 sinh b, a1 + y0 sinh b+ y1 cosh b

)
= −1

κ

(
a1 + y0 sinh b+ y1 cosh b

)
(3.145)

while for the right hand side of (3.21) we compute

{x0 ◦ (α(g)), x1 ◦ (α(g))}M (m) = −1

κ
y1

{x0 ◦ αm, x1 ◦ αm}G(g) = −1

κ

(
a1 − y1 + y0 sinh b+ y1 cosh b

) (3.146)

where we have used that xµ(α(g,m)) = (xµ ◦ αm)(g) = (xµ ◦ (α(g))) (m). Thus, when
summing up the two terms of the right hand side, we see that the condition for the action
to be a Poisson map is satisfied, therefore (3.144) is a PHS. The PHS defined in this way is
called the Poisson κ-Minkowski spacetime, and we have just proved that this is a covariant
spacetime for the Poisson κ-Poincaré group in the sense of (3.20).

Note that in the very same way we could prove explicitly that the group multiplication
for G0 is a Poisson map for the Poisson structure Π (3.143). We will carry out this
computation below in the dual algebraic language of Poisson coalgebras.

3.8.2 The κ-Poincaré Poisson-Hopf algebra

The previous PHS can be described in the algebraic language of comodule algebras, more
specifically Poisson comodule algebras (see Definition 3.28), where V = C∞(M) and A =
C∞(G0). Recall that for matrix groups we have the coalgebra structure defined by ∆(gij) =∑

k gik ⊗ gkj , where gij are the matrix elements of g ∈ G0 (see Example 3.6). In this case
the coalgebra structure for C∞(G0) can be easily computed from 1 0 0

x0 cosh ξ sinh ξ
x1 sinh ξ cosh ξ

⊗
 1 0 0
x0 cosh ξ sinh ξ
x1 sinh ξ cosh ξ

 =

=

 1 0 0

x0 ⊗ 1 + cosh ξ ⊗ x0 + sinh ξ ⊗ x1 eξ⊗eξ+e−ξ⊗e−ξ
2

eξ⊗eξ−e−ξ⊗e−ξ
2

x1 ⊗ 1 + sinh ξ ⊗ x0 + cosh ξ ⊗ x1 eξ⊗eξ−e−ξ⊗e−ξ
2

eξ⊗eξ+e−ξ⊗e−ξ
2


(3.147)
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obtaining the following coproduct for the local coordinate functions:

∆(x0) = x0 ⊗ 1 + cosh ξ ⊗ x0 + sinh ξ ⊗ x1,

∆(x1) = x1 ⊗ 1 + sinh ξ ⊗ x0 + cosh ξ ⊗ x1,

∆(ξ) = ξ ⊗ 1 + 1⊗ ξ,
(3.148)

where we have taken into account that ∆(e±ξ) = e±∆(ξ) = e±ξ⊗e±ξ for primitive elements,
so that

∆(sinh ξ) = sinh(∆ξ) = sinh(ξ ⊗ 1 + 1⊗ ξ) =
eξ ⊗ eξ − e−ξ ⊗ e−ξ

2
,

∆(cosh ξ) = cosh(∆ξ) = cosh(ξ ⊗ 1 + 1⊗ ξ) =
eξ ⊗ eξ + e−ξ ⊗ e−ξ

2
.

(3.149)

Both V = C∞(M) and A = C∞(G0) are endowed with the Poisson structure of the
Poisson κ-Poincaré group, explicitly given by (3.143). In order to prove that V = C∞(M)
is indeed a Poisson (left) comodule algebra, where the left coaction ψ = ∆|V : V → A⊗V
just given by the restriction of the coproduct ∆ : A→ A⊗A, i.e.

ψ

 1
x0

x1

 =

 1 0 0
x0 cosh ξ sinh ξ
x1 sinh ξ cosh ξ

⊗
 1
x0

x1

 , (3.150)

we need to show that the coaction ψ is indeed a Poisson map, where the Poisson structure
on A⊗ V = C∞(G)⊗ C∞(M) is defined by (3.110). This is a simple computation:

{ψ(x0), ψ(x1)}A⊗V = {∆(x0),∆(x1)}A⊗V =

= {x0 ⊗ 1 + cosh ξ ⊗ x0 + sinh ξ ⊗ x1, x1 ⊗ 1 + sinh ξ ⊗ x0 + cosh ξ ⊗ x1}A⊗V =

− 1

κ

(
x1 ⊗ 1 + sinh ξ ⊗ x0 + cosh ξ ⊗ x1

)
= −1

κ
∆(x1) = ∆

(
{x0, x1}V

)
= ψ

(
{x0, x1}V

)
(3.151)

In fact, from the previous coproduct (3.148), it is easy to check that A = C∞(G0) is
indeed a Poisson coalgebra, just by proving that the coproduct respects the full Poisson-Lie
structure on G0:

{∆(x0),∆(ξ)} = {x0 ⊗ 1 + cosh ξ ⊗ x0 + sinh ξ ⊗ x1, ξ ⊗ 1 + 1⊗ ξ} =

= −1

κ
sinh(ξ ⊗ ξ) = −1

κ
∆(sinh ξ) = ∆

(
{x0, ξ}

)
{∆(x1),∆(ξ)} = {x1 ⊗ 1 + sinh ξ ⊗ x0 + cosh ξ ⊗ x1, ξ ⊗ 1 + 1⊗ ξ} =

=
1

κ
(1⊗ 1− cosh(ξ ⊗ ξ)) =

1

κ
∆(1− cosh ξ) = ∆

(
{x1, ξ}

)
(3.152)

This coalgebra language will be the one employed throughout this Thesis.
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3.8.3 Poisson-Lie duality principle

So far we have studied the κ-deformation from the viewpoint of the algebra of functions
C∞(G0), with a special emphasis on the PHS construction. Let us now focus on the
dual part, the QUEA Uκ(g0) defined by (3.136) and (3.137). We will now show how the
coproduct, given by (3.137), of this QUEA Uκ(g0), with commutation relations defined by
(3.136), can be obtained by means of the ‘quantum duality principle’. In order to do that
we need to construct the dual Lie group G∗0, so let us first describe this duality.

Consider the Poisson κ-Poincaré group (3.143) (G0, π), i.e. the Poisson-Lie group
given by the Sklyanin bracket for (3.134). From (3.134) the tangent Lie bialgebra to this
Poisson-Lie group can be directly computed (remember from (3.31) that for coboundary
Lie bialgebras we have δ(X) = adX(r) for all X ∈ g0. By the definition of a Lie bialgebra,
we know that the cocommutator defines a Lie bialgebra structure on the dual Lie algebra
g∗0 to g0, by tδ : g∗0 ⊗ g∗0 → g∗0. Now, G∗0 is defined as the unique compact and simply-
connected Lie group such that g∗0 = Lie(G∗0).

Now, as previously stated, the cocommutator δ : g0 → g0 ⊗ g0 given by (3.135) has
a dual map tδ : g∗0 ⊗ g∗0 → g∗0 that canonically induces a Lie algebra structure on g∗0.
Denoting [·, ·]∗ : g∗0 × g∗0 → g∗0 this Lie bracket and introducing an algebraic dual basis
(X0, X1, L) on g∗0 such that

〈X0, P0〉 = 〈X1, P1〉 = 〈L,K〉 = 1, (3.153)

we have that

[X0, X1]∗ = −1

κ
X1, [X0, L]∗ = −1

κ
L, [X1, L]∗ = 0, (3.154)

which is the so-called 3D ‘book’ Lie algebra [205]. In fact, this dual Lie algebra g∗0 has a
Lie bialgebra structure with cocommutator δ∗ : g∗0 → g∗0 ⊗ g∗0 given by

δ∗(X0) = L ∧X1, δ∗(X1) = L ∧X0, δ∗(L) = 0, (3.155)

which is just the dual counterpart of the Lie algebra relations (3.127).

In order to describe locally the only compact and simply-connected Lie group G∗0 such
that g∗0 = Lie(G∗0), we need to find a faithful representation ρ : g∗0 → End(R4) of g∗0 and
then exponentiate it to construct the embedding in GL(4,R4). We take this representation
to be

ρ(X0) =
1

κ


0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

 ρ(X1) =
1

κ


0 1 0 0
1 0 0 1
0 0 0 0
0 −1 0 0

 ρ(L) =
1

κ


0 0 1 0
0 0 0 0
1 0 0 1
0 0 −1 0

 ,

(3.156)
and then we introduce exponential coordinates of the second kind on G∗0, which we denote
by {p0, p1, χ}, by the inverse map of

G∗0 = exp
(
p1ρ(X1)

)
exp (χρ(L)) exp

(
p0ρ(X0)

)
. (3.157)
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A straightforward computation leads to the following explicit form for the group element

G∗0 =


cosh(p0

κ ) + 1
2κ2 e

p0/κ(p2
1 + χ2) p1

κ
χ
κ sinh(p0

κ ) + 1
2κ2 e

p0/κ(p2
1 + χ2)

p1

κ e
p0/κ 1 0 p1

κ e
p0/κ

χ
κe

p0/κ 0 1 χ
κe

p0/κ

sinh(p0

κ ) − 1
2κ2 e

p0/κ(p2
1 + χ2) −p1

κ −χ
κ cosh(p0

κ ) − 1
2κ2 e

p0/κ(p2
1 + χ2)

 .

(3.158)
Using again that ∆(mij) =

∑
kmik⊗mkj , we can compute the coproduct for G∗0 from the

expression above doing exactly the same as in (3.148). Thus one obtains

∆(p0) = p0 ⊗ 1 + 1⊗ p0,

∆(p1) = p1 ⊗ 1 + e−p0/κ ⊗ p1,

∆(χ) = χ⊗ 1 + e−p0/κ ⊗ χ,
(3.159)

which agrees with (3.137) under the identification p0 ≡ P0, p1 ≡ P1, χ ≡ K. Moreover,
by following the procedure described in [205] we are able to find the unique Poisson-Lie
structure on G∗0 whose tangent Lie biagebra is (g∗0, δ

∗), where δ∗ is given by (3.155) and
whose linearization is given by the Poisson version P(g0) of the Poincaré Lie algebra
(3.131). This Poisson-Lie structure, which is a non-coboundary one, is found to be

{χ, p0} = p1, {χ, p1} =
κ

2
(1− e−2p0/κ)− 1

2κ
p2

1, {p0, p1} = 0, (3.160)

and gives just the Poisson version P(Uκ(g0)) of the quantum universal enveloping algebra
(3.136).

To finish we can explicitly show that the coproduct (3.159) is a Poisson map for the
previous Poisson bracket (3.160) and the induced Poisson bracket on the tensor product
algebra defined by (3.110), although this fact is guaranteed since imposing these conditions
is one of the steps of the method described in [205]. We have

∆({P0, P1}) = ∆(0) = 0⊗ 0 =

= {P0 ⊗ 1 + 1⊗ P0, P1 ⊗ 1 + eP0/κ ⊗ P1} = {∆(P0),∆(P1)},
∆({K1, P0}) = ∆(P1) = P1 ⊗ 1 + e−P0/κ ⊗ P1 =

= {K1 ⊗ 1 + e−P0/κ ⊗K1, P0 ⊗ 1 + 1⊗ P0} = {∆(K1),∆(P0)},

∆({K1, P1}) =
κ

2
∆(1− e−2P0/κ)− 1

2κ
∆(P 2

1 ) =

=
κ

2
(1⊗ 1− e−2P0/κ ⊗ e−2P0/κ)

− 1

2κ
(P 2

1 ⊗ 1 + 2P1e
−P0/κ ⊗ P1 + e−2P0/κ ⊗ P 2

1 ) =

= {K1 ⊗ 1 + e−P0/κ ⊗K1, P1 ⊗ 1 + e−P0/κ ⊗ P1} = {∆(K1),∆(P1)},
(3.161)

and finally this computation shows that, under the very same identification p0 ≡ P0, p1 ≡
P1, χ ≡ K1 as above, (3.160) together with (3.159) define a Poisson-Hopf algebra structure
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which is formally similar of Uκ(g0) defined by (3.136) and (3.137). Therefore we can say
that the former is the ‘Poisson version’ of the latter.

In this way we have illustrated the Poisson version of the so-called ‘quantum duality
principle’, which will be a key ingredient in Chapter 5, where we will be using it to describe
curved momentum spaces arising from quantum deformations.
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Chapter 4

Poisson homogeneous spaces for
quantum Lorentzian groups

This fourth Chapter is divided into two interrelated parts, due to the fact that the quantum
deformation studied in both of them is the same, namely the so-called κ-deformation. In
the first part, we firstly present in §4.1 the well-known κ-deformation of the universal
enveloping algebra of the Poincaré Lie algebra g0, and afterwards in §4.2 we construct
the noncommutative spacetime associated to it, the so-called κ-Minkowski space. These
well-known results will serve as an introduction to the notation and procedure followed in
the rest of the Chapter.

The rest of the first part of this Chapter will be devoted to the analogous construction in
the case of a non-vanishing cosmological constant Λ. Following the same structure, we will
present in §4.3 the quantum universal enveloping algebra for the (anti-) de Sitter groups
GΛ [114] and afterwards, in §4.4 we present the construction of the noncommutative (anti-
) de Sitter spacetime MΛ. We will specifically start with the Poisson κ-(A)dS spacetime
and afterwards we will proceed to its quantization. Regarding the latter, we firstly look at
the first order in the parameter η =

√
−Λ and we proof that it defines a quantum sphere

generated by the space coordinates. Afterwards, we proceed to the quantization at all
orders of the cosmological constant, which we achieve by introducing ambient coordinates.
The quantization reveals an elegant result, because we obtain that the quantum Casimir of
the full algebra is just a deformed version of the pseudosphere (2.96) defining the classical
(A)dS spacetime MΛ. All these results concerning the construction of the noncommutative
κ-(A)dS spacetime have been presented in [115].

The second part of this Chapter will continue our study of the κ-deformation, but now
for the space of timelike geodesics (worldlines) of Minkowski spacetime. In §4.5 we describe
in detail this space and, in §4.6 show that a similar construction as the one employed
previously allows us to construct a noncommutative space of timelike geodesics from the
κ-Poincaré deformation, which has been published in [61]. Apart from presenting this
construction in full detail we will analyze the structural differences of the κ-deformation
on both the spacetime and the space of worldlines, and we will argue that this new space is
somewhat more adapted to this precise quantum deformation. We will also discuss some
potential physical applications of this new construction, like the one defining quantum

91
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observers from quantum group symmetries.

4.1 The κ-Poincaré quantum algebra

We start by considering the (3 + 1)-dimensional Poincaré Lie algebra g3+1
0 (from now on

we omit the superscript and write simply g0 to refer to the (3+1)-dimensional case, unless
otherwise stated) defined by the commutation relations (2.72) for Λ = 0, namely

[Ja, Jb] = εabcJc, [Ja, Pb] = εabcPc, [Ja,Kb] = εabcKc,

[Ka, P0] = Pa, [Ka, Pb] = δabP0, [Ka,Kb] = −εabcJc,
[P0, Pa] = 0, [Pa, Pb] = 0, [P0, Ja] = 0.

(4.1)

As we explained is Chapter 2 latin indices a, b, c, . . . will denote spatial coordinates so it
will run from 1 to the spatial dimension of our space n, so during this Chapter n = 3
unless otherwise stated, while greek indices will run from 0 to n.

The so-called κ-deformation is a coboundary Lie bialgebra (g, δ) defined by the follow-
ing skew-symmetric solution r ∈ g0 ⊗ g0 of the mCYBE

r =
1

κ
(K1 ∧ P1 +K2 ∧ P2 +K3 ∧ P3) (4.2)

from which the cocommutator δ(X) = adXr for all X ∈ g0 (3.31) is directly obtained:

δ(P0) = δ(Ja) = 0,

δ(Pa) =
1

κ
Pa ∧ P0,

δ(K1) =
1

κ
(K1 ∧ P0 + J2 ∧ P3 − J3 ∧ P2),

δ(K2) =
1

κ
(K2 ∧ P0 + J3 ∧ P1 − J1 ∧ P3),

δ(K3) =
1

κ
(K3 ∧ P0 + J1 ∧ P2 − J2 ∧ P1).

(4.3)

Note that time translation and rotation generators are primitive ones. This fact will be
quite relevant in the next part of this Chapter, since we will see that in the non-vanishing
cosmological constant case, a minimal assumption (that P0 remains primitive, which as
we will see is necessary from a physical point of view) imply not only that the rotation
generators Ja are no more primitive, but also some kind of symmetry breaking in the
rotation sector.

This cocommutator completely determines the κ-Poisson-Hopf Poincaré algebra struc-
ture Uκ(g0) (see Definition 3.25) given, in the so-called bicrossproduct basis [64], by the
following commutation relations

[Ja, Jb] = εabcJc, [Ja, Pb] = εabcPc, [Ja,Kb] = εabcKc,

[Ka, P0] = Pa, [Ka,Kb] = −εabcJc, [P0, Ja] = 0,

[P0, Pa] = 0, [Pa, Pb] = 0,

[Ka, Pb] = δab

(
κ

2

(
1− e−2P0/κ

)
+

1

2κ
P2

)
− 1

κ
PaPb ,

(4.4)
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together with the compatible deformed coproduct map

∆κ(P0) = P0 ⊗ 1 + 1⊗ P0,

∆κ(Pa) = Pa ⊗ 1 + e−P0/κ ⊗ Pa,
∆κ(Ja) = Ja ⊗ 1 + 1⊗ Ja,

∆κ(Ka) = Ka ⊗ 1 + e−P0/κ ⊗Ka +
1

κ
εabcPb ⊗ Jc .

(4.5)

where ∆κ : Uκ(g0) → Uκ(g0) ⊗ Uκ(g0). It is worth noticing that the limit κ → ∞
transforms (4.4) into the undeformed Lie algebra g0 (4.1) while the limit κ → ∞ of the
coproduct (4.5) just describes the canonical Hopf algebra on U(g0) described in Example
(3.5), where every generator is primitive, i.e. ∆0(X) = X ⊗ 1 + 1⊗X for all X ∈ g0.

Before proceeding further, it will be useful to recall the notion of the ‘Poisson version’
of the preceding construction, as exemplified in Section 3.8 of Chapter 2. In order to
construct it, recall that we can construct the so called Lie-Poisson structure (see Example
3.1) on the dual vector space g∗0 to the Lie algebra g0. This is a Poisson structure whose
fundamental brackets have the same form as the commutation relations for g0 (4.1). We
have denoted this algebra by P(g0) to remark this fact, and the Poisson brackets are

{Ja, Jb} = εabcJc, {Ja, Pb} = εabcPc, {Ja,Kb} = εabcKc,

{Ka, P0} = Pa, {Ka,Kb} = −εabcJc, {P0, Ja} = 0,

{P0, Pa} = 0, {Pa, Pb} = 0,

{Ka, Pb} = δab

(
κ

2

(
1− e−2P0/κ

)
+

1

2κ
P2

)
− 1

κ
PaPb ,

(4.6)

which is just a Poisson algebra deformation of the Lie-Poisson structure on g∗0, so a Poisson
version of (4.4) that we denote by P(Uκ(g0)).

In this way the previous coproduct (4.5) can be alternatively seen as a Poisson algebra
homomorphism for the previous Poisson structure and the Poisson structure defined in the
tensor product algebra, which is just the canonical one defined by (3.110). So we have the
map ∆κ : P(Uκ(g0))→ P(Uκ(g0))⊗ P(Uκ(g0)). Although we denote this map by the same
symbol as the one for quantum universal enveloping algebras, it should be clear in each
situation to which of these two maps we are referring to. In this way we have constructed a
Poisson-Hopf structure, which we will refer to as the κ-Poisson-Hopf structure, and is the
Poisson version P(Uκ(g0)) of the quantum universal enveloping algebra Uκ(g0). In fact,
as explained in Section 3.8 of Chapter 2, this would be the Poisson-Hopf algebra obtained
by applying the quantum duality principle.

This quantum deformation of the Poincaré algebra induces a deformed Casimir func-
tion Cκ for the Poisson algebra (4.6), given by

Cκ = 4κ2 sinh2(P0/2κ)− eP0/κP2 = 2κ2 [cosh(P0/κ)− 1]− eP0/κP2, (4.7)

which is a deformation of the quadratic Casimir for the Poincaré algebra (2.73).

This deformed Casimir constitutes the keystone for the interpretation of κ-Poincaré
algebra as the modified kinematical symmetry underlying a class of deformed dispersion
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relations that arise in several quantum gravity contexts [102, 121]. This feature will be
further studied in Chapter 5, where we generalize the construction of non-trivial momen-
tum spaces to the case of a non-vanishing cosmological constant (see [145, 146] where these
results were presented). It is also worth recalling that a second invariantWκ does exist for
the Poisson structure (4.6), which is just a deformed analogue of the square of the norm
of the Pauli-Lubanski four-vector, which in the undefeormed case is given by (2.74). This
second invariant Wκ is given by

Wκ =

(
cosh(P0/κ)− 1

4κ2
eP0/κP2

)
W 2
κ,0 −W2

κ , (4.8)

where the deformed components Wκ,0 and Wκ,a are

Wκ,0 = eP0/2κ J ·P, Wκ,a = −κJa sinh(P0/κ) + eP0/κεabc

(
Kb +

1

2κ
εbklJkPl

)
Pc .

(4.9)
We would like to stress that all the expressions given in this Chapter are analytic in the
deformation parameter κ, unless otherwise stated, and the non-deformed limit κ → ∞
gives rise to the usual (3 + 1) relativistic symmetries.

Note that when dealing with Hopf algebra kinematical symmetries, the coproduct
can be interpreted as the composition law for observables. In particular, the coproduct
(4.5) is such that the κ-deformation induces a nonlinear composition rule for momenta in
interaction vertices. As we are going to show in Chapter 5, it is because of this deformed
composition rule that curvature in the κ-Poincaré momentum space emerges. In more
technical terms, the curvature of the momentum space arises as a consequence of the non
cocommutativity of the coproduct map for the translation generators.

4.2 The κ-Minkowski noncommutative spacetime

Once the κ-Poisson-Hopf algebra deformation (recall that it is simply the Poisson version
of Uκ(g0)) has been described in the previous Section, we proceed to construct its asso-
ciated noncommutative spacetime, the so-called κ-Minkowski spacetime. Although this
noncommutative spacetime has been known for a long time [62, 63, 64], and in fact it is
one of the most studied noncommutative spacetimes, our construction as a Poisson homo-
geneous space (PHS) followed by its (trivial in this case) quantization, will proof useful
both because of its simplicity and the fact that this procedure can be generalized to the
construction of different spacetimes, as we will in fact do in §4.4.

As it was explained in Section 2.2 of Chapter 2, our strategy for the construction
of a Poisson homogeneous space for the Poisson-Lie group (G,Π) starts with a suitable
parametrization of the Lie group G, i.e. the introduction of local coordinates that descend
to functions in the quotient spaceG/H. This local coordinates are obtained exponentiating
the matrix representation of the Lie algebra given by (2.78) in an appropriate order. In
our case we will use geodesics parallel coordinates (see the discussion after (2.97)) which
are defined by the inverse map of (2.88). In this way we obtain a local parametrization
of G0, and the same can be done in order to introduce local coordinates on the Lorentz
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group L (2.89). In this way, we introduce local coordinates x̄ : M0 = G0/L → R4 on the
four-dimensional Minkowski spacetime.

The following step in our construction involves the introduction of a Poisson structure
on M0, which we shall call π, such that it be covariant in the sense of (3.22), under the
action of the Lie group G0. This is precisely what a Poisson homogeneous space for the
Poisson-Lie group (G0,Π) gives us, so let us apply all the machinery described in Chapter
3 to this particular case, where it will be useful to recall the low dimensional example at
the end of that Chapter, since the procedure is analogous. First of all, in order to have a
well-defined Poisson homogeneous space in such a way that its Poisson structure can be
easily obtained, a sufficient condition is given by the coisotropy condition (see Definition
(3.79)), which in this case reads

δ(l) ⊂ l ∧ g0, (4.10)

where l = Lie(L) and g0 = Lie(G0) are the Lie algebras of the Lorentz and Poincaré groups,
respectively. In our case, this condition is fulfilled as shown in (4.3). It is important to
note that the Lorentz subalgebra l is not a Lie subalgebra, so the Lorentz group will not be
a Poisson subgroup, but a coisotropic one. This situation should be compared with the one
considered at the end of this Chapter, where the Poisson homogeneous space constructed
in the space of time-like geodesics of Minkowski space, is indeed a Poisson homogeneous
space of Poisson subgroup type.

Once we have checked that the quotient space M0 = G0/L can be given the structure
of a coisotropic Poisson homogeneous space for the κ-Poincaré Poisson-Lie group, the
following step is to explicitly write down the only coboundary Poisson-Lie structure on
G0 defined by the κ-Poincaré r-matrix (4.2). This Poisson-Lie structure (G0,Π) is given
by the Sklyanin bracket (3.44), which in this particular case reduces to

{f1, f2} =
1

κ

3∑
a=1

((
XL
Kaf1X

L
Paf2 −XL

Paf1X
L
Kaf2

)
−
(
XR
Kaf1X

R
Paf2 −XR

Paf1X
R
Kaf2

))
(4.11)

for all f1, f2 ∈ C∞(G0). Introducing exponential coordinates of the second kind on G0,
defined as in (2.88), the fundamental brackets in this coordinates for this Poisson structure
Π read:

{x0, xa} = − 1

κ
xa, {xa, xb} = 0, {ξa, ξb} = {ξa, θb} = {θa, θb} = 0,

{x0, ξ1} = − 1

κ

sinh ξ1

cosh ξ2 cosh ξ3
, {x0, ξ2} = − 1

κ

cosh ξ1 sinh ξ2

cosh ξ3
,

{x0, ξ3} = − 1

κ
cosh ξ1 cosh ξ2 sinh ξ3

{x0, θ1} =
1

κ

(
tan θ2 sinh ξ1

(
cos θ1 tanh ξ2

cosh ξ3
+ sin θ1 tanh ξ3

)
− cosh ξ1 sinh ξ2 tanh ξ3

)
,

{x0, θ2} =
1

κ
sinh ξ1

(
cos θ1 tanh ξ3 − sin θ1 tanh ξ2

cosh ξ3

)
,

{x0, θ3} = − 1

κ

sinh ξ1

cos θ2

(
cos θ1 tanh ξ2

cosh ξ3
+ sin θ1 tanh ξ3

)
,
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{x1, ξ1} =
1

κ

(
1− cosh ξ1

cosh ξ2 cosh ξ3

)
, {x1, ξ2} = − 1

κ

sinh ξ1 sinh ξ2

cosh ξ3
,

{x1, ξ3} = − 1

κ
sinh ξ1 cosh ξ2 sinh ξ3,

{x1, θ1} =
1

κ

(
tan θ2 cosh ξ1

(
cos θ1 tanh ξ2

cosh ξ3
+ sin θ1 tanh ξ3

)
− sinh ξ1 sinh ξ2 tanh ξ3

)
,

{x1, θ2} =
1

κ
cosh ξ1

(
cos θ1 tanh ξ3 − sin θ1 tanh ξ2

cosh ξ3

)
,

{x1, θ3} = − 1

κ

cosh ξ1

cos θ2

(
cos θ1 tanh ξ2

cosh ξ3
+ sin θ1 tanh ξ3

)
,

{x2, ξ1} = − 1

κ
sinh ξ1 tanh ξ2, {x2, ξ2} =

1

κ

(
cosh ξ1 − cosh ξ2

cosh ξ3

)
,

{x2, ξ3} = − 1

κ
sinh ξ2 sinh ξ3,

{x2, θ1} = − 1

κ
cosh ξ2

(
cos θ1 tan θ2 sinh ξ1

cosh2 ξ2
+ tanh ξ3

)
,

{x2, θ2} =
1

κ

sin θ1 sinh ξ1

cosh ξ2
,

{x2, θ3} =
1

κ

cos θ1 sinh ξ1

cos θ2 cosh ξ2
,

(4.12)

{x3, ξ1} = − 1

κ

sinh ξ1 tanh ξ3

cosh ξ2
, {x3, ξ2} = − 1

κ
cosh ξ1 sinh ξ2 tanh ξ3,

{x3, ξ3} =
1

κ

(
cosh ξ1 cosh ξ2 − cosh ξ3

)
,

{x3, θ1} =
1

κ

(
tan θ2 sinh ξ1

(
cos θ1 tanh ξ2 tanh ξ3 − sin θ1

cosh ξ3

)
+

cosh ξ1 sinh ξ2

cosh ξ3

)
,

{x3, θ2} = − 1

κ
sinh ξ1

(
sin θ1 tanh ξ2 tanh ξ3 +

cos θ1

cosh ξ3

)
,

{x3, θ3} =
1

κ

sinh ξ1

cos θ2

(
sin θ1

cosh ξ3
− cos θ1 tanh ξ2 tanh ξ3

)
.

In terms of these local coordinates on G0, it is straightforward to write down the
Poisson structure π on M0 = G0/L such that (M0, π) becomes a Poisson homogeneous
space for the above Poisson-Lie structure on G0. As explained in detail in (2.86), x̄ are
local coordinates on M0 (indeed they are the so-called parallel geodesic coordinates) and
the fundamental Poisson brackets for them are simply

{x0, xa} = −1

κ
xa, {xa, xb} = 0. (4.13)

In other words, the Poisson structure on M0 is just the restriction of the Poisson structure
on G0. If we call

p : G0 →M0

g → gL
(4.14)

then we have simply that

{f̃1, f̃2}M0(m) = {f1 ◦ p, f2 ◦ p}M0(m) = {f1, f2}G0(g) (4.15)
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where f1, f2 ∈ C∞(G)L and m = gL ∈ M0. In terms of the Poisson bivector, this just
implies that the Poisson bivector π on M0 is the pushforward of the Poisson bivector Π
on G0, i.e. π = p∗Π. Checking explicitly that (M0, π) is a Poisson homogeneous space for
(G0,Π), i.e. checking (3.21) for these two Poisson structures is quite cumbersome, but it
can indeed be done (see the last Section of Chapter 2 in which this checking is done for
the (1 + 1)-dimensional case).

4.2.1 Quantization of the κ-Minkowski Poisson homogeneous space

Let us now say something about the definition of the proper (quantum) κ-Minkowski
spacetime. By this we mean a quantization of the Poisson algebra (see Definition 3.32)
given by the fundamental brackets (4.13). In fact, performing this quantization is trivial
in this case, because for linear Poisson structures (also called Poisson structures of Lie
algebraic type) it suffices to replace the Poisson brackets by commutators, so we have

[x̂0, x̂a] = −1

κ
x̂a, [x̂a, x̂b] = 0. (4.16)

These commutation relations define the so-called κ-Minkowski spacetime. To be precise
we would need to multiply the previous expressions by the quantization parameter h, so
obtaining [x̂0, x̂

a] = −h
κ x̂

a. However, then we could set h/κ = κ′ and just work with the
new parameter κ′. For the sake of clarity, and provided that this will not affect neither
the physical interpretation of our results (recall that the relevant parameter for us is the
one appearing in the Hopf algebra deformation, but it is irrelevant for us whether this
parameter is κ or κ′) or the mathematical procedure, we choose to set the quantization
parameter h to 1 during this Thesis.

Moreover, recall from (4.12) that the Sklyanin bracket on G0 defines a Poisson com-
muting algebra on the Lorentz subgroup. This fact, together with explicit form of the rest
of the Poisson structure, which just involves Lorentz coordinates for the mixed (space-
time coordinates and Lorentz coordinates) Poisson brackets, shows that in fact the full
Poisson-Lie group can be quantized (formally replacing Poisson brackets by commutators
and taking into account the considerations above), giving rise to the quantum κ-Poincaré
group. In the next Section, when we consider the case of a non-vanishing cosmological
constant, we will see that this is no longer the case.

4.2.2 Twisted κ-Minkowski Poisson homogeneous spaces

There is another deformation of G0 related to the κ-Poincaré one. This is the so-called
twisted κ-Poincaré quantum deformation [62, 63, 64, 65], which is structurally similar
to κ-Poincaré, in the sense that it is also a coboundary one and it defines a Poisson
homogeneous space on Minkowski spacetime. The element rt defining this deformation is
obtained from (4.2) just by adding the twist term J3 ∧ P0 (note that [P0, Ja] = 0 (4.1)).
So, we have that this deformation is given by the following skew-symmetric r ∈ g0 ∧ g0

solution of the mCYBE:

rt =
1

κ
(K1 ∧ P1 +K2 ∧ P2 +K3 ∧ P3) + ϑJ3 ∧ P0, (4.17)
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where the parameter ϑ is the one associated to the twist term. The previous procedure
for constructing the associated PHS can be straightforwardly applied to this deformation,
since the cocommutator

δt(X) = adX(rt) = adX(r) + ϑ adX(J3 ∧ P0), (4.18)

takes the following explicit form (see [114])

δt(P0) = 0,

δt(P1) =
1

κ
P1 ∧ P0 − ϑ(P2 ∧ P0),

δt(P2) =
1

κ
P2 ∧ P0 + ϑ(P1 ∧ P0),

δt(P3) =
1

κ
P3 ∧ P0,

δt(K1) =
1

κ
(K1 ∧ P0 + J2 ∧ P3 − J3 ∧ P2)− ϑ(K2 ∧ P0 − J3 ∧ P1),

δt(K2) =
1

κ
(K2 ∧ P0 + J3 ∧ P1 − J1 ∧ P3) + ϑ(K1 ∧ P0 + J3 ∧ P2),

δt(K3) =
1

κ
(K3 ∧ P0 + J1 ∧ P2 − J2 ∧ P1) + ϑJ3 ∧ P3,

δt(J1) = −ϑJ2 ∧ P0,

δt(J2) = ϑJ1 ∧ P0,

δt(J3) = 0.

(4.19)

This cocomutator clearly satisfies the coisotropy condition (3.79) for the Lorentz algebra,
i.e. δ(l) ⊂ l ∧ g0. It is relevant to note here that P0 is primitive, allowing to keep the
interpretation of the deformation parameter κ as a (Planck) mass.

The Poisson homogeneous space associated to this deformation is defined by the
Poisson-Lie group (G0,Πt) whose Poisson structure is the one given by (4.12) modified by
adding the following terms to some of the fundamental brackets. It should be noted that
here only list those brackets that should be modified, the remaining ones will be the same
as those in (4.12):

{x0, x
1}t = {x0, x

1} − ϑx2,

{x0, x
2}t = {x0, x

2}+ ϑx1,

{x0, ξ1}t = {x0, ξ1} − ϑ cosh ξ1 tanh ξ2,

{x0, ξ2}t = {x0, ξ2}+ ϑ sinh ξ1,

{x0, θ1}t = {x0, θ1} − ϑcos θ1 cosh ξ1 tan θ2

cosh ξ2
,

{x0, θ2}t = {x0, θ2}+ ϑ
cosh ξ1 sin θ1

cosh ξ2
,

{x0, θ3}t = {x0, θ3}+ ϑ cosh ξ1

(
cosh ξ2 cosh ξ3 +

cos θ1

cos θ2 cosh ξ2

)
,

(4.20)
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{x1, θ3}t = {x1, θ3} − ϑ sinh ξ1 cosh ξ2 cosh ξ3,

{x2, θ3}t = {x2, θ3} − ϑ sinh ξ2 cosh ξ3,

{x3, θ3}t = {x3, θ3} − ϑ sinh ξ3,

while the twisted κ Poisson homogeneous space on (M0), denoted by (M0, πt), will be

{x0, x1}t = −1

κ
x1 − ϑx2,

{x0, x2}t = −1

κ
x2 + ϑx1,

{x0, x3}t = −1

κ
x3,

{xa, xb}t = 0.

(4.21)

This deformation has some striking differences with respect to the non-twisted one, in
particular, it is interesting to note that one spatial direction is privileged with respect to
the others, in this case x3 (although it can be rotated to any other spatial direction). The
fact that one spatial direction becomes privileged when adding the twist term should be
compared with the situation in which we introduce a non-vanishing cosmological constant
Λ because, as we will show in the following, in this case also one spatial direction becomes
privileged. Similarly to the non-twisted case, the quantization of the Poisson algebra (4.21)
can be directly performed, given that this Poisson structure is Lie algebraic, obtaining the
quantum twisted κ-Minkowski spacetime, whose defining commutation relations are

[x̂0, x̂1]t = −1

κ
x̂1 − ϑx̂2,

[x̂0, x̂2]t = −1

κ
x̂2 + ϑx̂1,

[x̂0, x̂3]t = −1

κ
x̂3,

[x̂a, x̂b]t = 0.

(4.22)

It is also a remarkable feature that the twist does not affect the commutation rules between
space coordinates, which again define a commutative subalgebra.

4.3 The κ-deformation of the (3+1) (A)dS algebra

As discussed in the Introduction (see Chapter 1), both the κ-Poincaré quantum universal
enveloping algebra Uκ(g0) and the κ-Minkowski noncommutative spacetime (4.16) were al-
ready well-known and thoroughly studied in the bibliography. However, the generalization
of these structures to the case of a non-vanishing cosmological constant was an intriguing
open problem. Only very recently, the Poisson version PV(Uκ(gΛ)) of the quantum uni-
versal enveloping algebra Uκ(gΛ) (see [114]) and the κ-(A)dS spacetime (see [115]) have
been explicitly constructed. Following the same construction as above, in this Section we
present the full Poisson version of Uκ(gΛ).
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The first step consists in proving that there is such a deformation that could be called
a κ-(A)dS one, and that it is in fact unique. In order to do that, we start at the tangent
level, so let us recall the commutation relations (2.72) for the Lie algebra gΛ, which read

[Ja, Jb] = εabcJc, [Ja, Pb] = εabcPc, [Ja,Kb] = εabcKc,

[Ka, P0] = Pa, [Ka, Pb] = δabP0, [Ka,Kb] = −εabcJc,
[P0, Pa] = −ΛKa, [Pa, Pb] = ΛεabcJc, [P0, Ja] = 0.

(4.23)

The following automorphism of gΛ will be relevant in what follows

P̃0 = P0, P̃a =
√
−ΛKa, K̃a = − 1√

−Λ
Pa, Ja = Ja. (4.24)

Now let us give a clear definition of what we understand by a κ-deformation.

Definition 4.1. Let gΛ be the Lie algebra defined by (4.23). Then a Lie bialgebra (gΛ, δ)
will be called a κ-deformation (or κ-like deformation) if it is a coboundary one, i.e. if the
cocommutator can be written as δ(X) = adXrΛ for all X ∈ gΛ, for some r ∈ gΛ ⊗ gΛ and
provided it satisfies the following two conditions:

i) P0 is primitive, i.e. δ(P0) = 0,

ii) limΛ→0 rΛ = r0, with r0 = 1
κ(K1 ∧ P1 +K2 ∧ P2 +K3 ∧ P3).

If ii) is replaced by

ii)’ limΛ→0 rΛ = rt0, with rt0 = 1
κ(K1 ∧ P1 +K2 ∧ P2 +K3 ∧ P3) + ϑJ3 ∧ P0,

then we say that it is κ-twisted-like.

Condition i) of the previous definition is necessary in order to guarantee that the
parameter κ has the dimension of mass, a key physical requirement. This is due to the
fact that Condition i) is necessary for the coproduct of the κ-Poincaré quantum algebra
to be a primitive generator, namely ∆(P0) = P0⊗1 + 1⊗P0, which is essential in order to
allow exponentials eP0/κ to emerge as the building blocks of the quantum κ-deformation
and of the dispersion relation arising from the deformed Casimir, thus implying that κ has
dimensions of a (Planck) mass. Condition ii) just states that by means of a Lie bialgebra
contraction procedure [80, 206] we recover the κ-Poincaré Lie bialgebra (4.3). So these are
the minimal assumptions one could take in order to construct a sensible generalization of
the κ Poincaré deformation when Λ 6= 0. Now we are ready to state the following

Theorem 4.1. With the above notation, there is a unique (up to Lie algebra automor-
phisms) κ-like Lie bialgebra structure on gΛ. It is defined by the skew-symmetric solution
of the mCYBE rΛ ∈ gΛ ⊗ gΛ given by

rΛ =
1

κ
(K1 ∧ P1 +K2 ∧ P2 +K3 ∧ P3 + ηJ1 ∧ J2), (4.25)
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where η =
√
−Λ. In the same way, there is a unique (up to Lie algebra automorphisms)

κ-twisted-like Lie bialgebra structure on gΛ, defined by

rtΛ =
1

κ
(K1 ∧ P1 +K2 ∧ P2 +K3 ∧ P3 + ηJ1 ∧ J2) + ϑJ3 ∧ P0. (4.26)

In contradistinction to the κ-Poincaré Lie bialgebra, these two Lie bialgebra structures
are quastriangular, and their defining r-matrices can be quantized to obtain a quantum
R-matrix.

Proof. The last part is straightforward. Quasitriangularity is directly obtained from 3.4
due to the fact that gΛ is semisimple and thus metric (see the discussion after (3.40)),
with the Killing-Cartan form defining the non-degenerate symmetric associative bilinear
form. Quantization follows directly from Theorem 5.1 of [200].

For the main part of the Theorem, we start by a long computer-assisted calculus (which
starts from a completely generic skew-symmetric r ∈ gΛ ∧ gΛ depending on 45 parameters
onto which the mCYBE is imposed). This shows that the only family of multiparametric
(A)dS r-matrices compatible with these two conditions is given by:

rΛ =
1

κ
(K1 ∧ P1 +K2 ∧ P2 +K3 ∧ P3) + P0 ∧ (β1J1 + β2J2 + β3J3)

+ α3J1 ∧ J2 − α2J1 ∧ J3 + α1J2 ∧ J3 ,
(4.27)

together with the following quadratic relations among the parameters:

β1α3 − β3α1 = 0, β1α2 − β2α1 = 0, β2α3 − β3α2 = 0,

α2
1 + α2

2 + α2
3 =

(η
κ

)2
.

(4.28)

Notice that the term P0 ∧ (β1J1 + β2J2 + β2J3) in (4.27) is given by the superposition of
three twists (recall from (4.23) that [P0, Ja] = 0) and therefore these three terms would
lead to the (A)dS generalization of the twisted κ-Poincaré, completely defined by (4.17).
The equations (4.28) have a neat geometrical interpretation: non-twisted solutions (with
parameters αi) are given by the vector of a point in the sphere with radius η/κ, while
twisted solutions (with parameters βi) are defined by another vector orthogonal to the
former. Note also that equations (4.28) are valid for Λ = 0 (η = 0); in this Poincaré case
α1 = α2 = α3 = 0 and the twists parameters are free.

In order to solve the equations (4.28), let us firstly consider the non-twisted case with
β1 = β2 = β3 = 0. Then the only non-vanishing equation in (4.28) defines a sphere of
radius R = η/κ, so we can write

α3 = R cos θ, α2 = −R sin θ sinϕ, α1 = R sin θ cosϕ, (4.29)

where θ ∈ [0, π], ϕ ∈ [0, 2π). Now, the solution (4.27) reads

rΛ =
1

κ
(K1 ∧ P1 +K2 ∧ P2 +K3 ∧ P3)

+
η

κ
(cos θJ1 ∧ J2 + sin θ sinϕJ1 ∧ J3 + sin θ cosϕJ2 ∧ J3) .

(4.30)
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The last term within the r-matrix (4.30) is represented by a point on the 2D sphere
parametrized by (4.29), and it is straightforward to prove that the Lie algebra generator

J̃3 = sin θ cosϕJ1 − sin θ sinϕJ2 + cos θJ3 , (4.31)

becomes primitive under the deformation defined by the r-matrix (4.30), i.e δ(J̃3) = 0.
Now, since there exists an automorphism of gΛ (4.23) that corresponds to the rotation
providing the new J̃3 generator (4.31), we can apply it to the r-matrix (4.30), and we find
the following transformed r-matrix (tildes will be omitted for the sake of simplicity)

rΛ =
1

κ
(K1 ∧ P1 +K2 ∧ P2 +K3 ∧ P3 + ηJ1 ∧ J2) . (4.32)

This shows that we can simply take θ = 0 in (4.30) with no loss of generality, and we
arrive at the only possible solution for the r-matrix which has previously been considered
as the one generating the (non-twisted) κ-(A)dS deformation [80, 114, 145, 146]. Moreover,
this computation provides a neat geometrical intuition of the fact discussed in [160] that
a rotation generator becomes privileged when Λ 6= 0. Also, this proves that, modulo
Lie algebra automorphisms, the (A)dS r-matrix (4.32) is the only (non-twisted) skew-
symmetric solution of the mCYBE which generalizes the κ-Poincaré deformation.

For the twisted case we have that (β1, β2, β3) 6= (0, 0, 0). With no loss of generality we
can assume that β3 6= 0. By taking into account (4.28) and (4.29) we find that

β1 = β3 tan θ cosϕ, β2 = −β3 tan θ sinϕ, (4.33)

(θ 6= π/2) which inserted in (4.30) gives

rΛ =
1

κ
(K1 ∧ P1 +K2 ∧ P2 +K3 ∧ P3) + β3P0 ∧ (tan θ cosϕJ1 − tan θ sinϕJ2 + J3)

+
η

κ
(cos θJ1 ∧ J2 + sin θ sinϕJ1 ∧ J3 + sin θ cosϕJ2 ∧ J3).

(4.34)

Now, if we consider the rotated basis such that θ = 0 and rename the twist parameter as
β3 = −ϑ we arrive at

rΛ =
1

κ
(K1 ∧ P1 +K2 ∧ P2 +K3 ∧ P3 + ηJ1 ∧ J2) + ϑJ3 ∧ P0 . (4.35)

The κ-twisted-like r-matrix is just the quasitriangular r-matrix presented in [113] as
the one arising from a Drinfel’d double structure of the (A)dS Lie algebra (see also [114]).
The Poincaré Λ → 0 limit of this r-matrix, rt0, along with its Galilean counterpart were
studied in [207].

Once the existence and uniqueness (up to Lie algebra automorphisms) of the κ-like
deformation have been proved, we proceed to its explicit construction. First of all, from
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(4.25) the cocommutator δ(X) = adXr for all X ∈ g0 is directly obtained and it reads

δ(P0) = δ(J3) = 0, δ(J1) =
η

κ
J1 ∧ J3, δ(J2) =

η

κ
J2 ∧ J3,

δ(P1) =
1

κ
(P1 ∧ P0 − ηP3 ∧ J1 − η2K2 ∧ J3 + η2K3 ∧ J2),

δ(P2) =
1

κ
(P2 ∧ P0 − ηP3 ∧ J2 + η2K1 ∧ J3 − η2K3 ∧ J1),

δ(P3) =
1

κ
(P3 ∧ P0 + ηP1 ∧ J1 + ηP2 ∧ J2 − η2K1 ∧ J2 + η2K2 ∧ J1),

δ(K1) =
1

κ
(K1 ∧ P0 + P2 ∧ J3 − P3 ∧ J2 − ηK3 ∧ J1),

δ(K2) =
1

κ
(K2 ∧ P0 − P1 ∧ J3 + P3 ∧ J1 − ηK3 ∧ J2),

δ(K3) =
1

κ
(K3 ∧ P0 + P1 ∧ J2 − P2 ∧ J1 + ηK1 ∧ J1 + ηK2 ∧ J2).

(4.36)

Here it becomes clear that the su(2) ' so(3) Lie subalgebra generated by the rotation
generators {J1, J2, J3} defines a sub-Lie bialgebra structure, which becomes non-trivial
when the cosmological constant is different from zero, a fact that will be relevant in the
sequel.

Now we have all the ingredients needed to construct the unique κ-Poisson-Hopf (A)dS
algebra (see Definition (3.25)), which is the Poisson version PV(Uκ(gΛ)) of Uκ(gΛ), defined
by (4.25). The Poisson version of the ‘quantum duality principle’ (see [19, 208, 59, 205]
and references below) implies that the Poisson structure we are looking for is just a Poisson
structure on the dual group G∗Λ, the unique connected and simply-connected Lie group
such that Lie(G∗Λ) = g∗Λ, where g∗Λ is the dual Lie algebra to (4.36). This dual algebra can
be found in [114, 146]. Introducing an algebraic basis {Xα, La, Ra} in g∗Λ, such that

〈Xα, Pβ〉 = δαβ , 〈La,Kb〉 = δab , 〈Ra, Jb〉 = δab , (4.37)

this dual Lie algebra is defined by the following commutation relations

[
R1, R2

]
= 0,

[
R1, R3

]
=
√
−Λ
κ R1,

[
R2, R3

]
=
√
−Λ
κ R2,[

R1, X1
]

= −
√
−Λ
κ X3,

[
R1, X2

]
= 1

κL
3,

[
R1, X3

]
= − 1

κ(L2 −
√
−ΛX1),[

R2, X1
]

= − 1
κL

3,
[
R2, X2

]
= −

√
−Λ
κ X3,

[
R2, X3

]
= 1

κ(L1 +
√
−ΛX2),[

R3, X1
]

= 1
κL

2,
[
R3, X2

]
= − 1

κL
1,

[
R3, X3

]
= 0,[

R1, L1
]

= −
√
−Λ
κ L3,

[
R1, L2

]
= Λ

κX
3,

[
R1, L3

]
= 1

κ(
√
−ΛL1 +−ΛX2),[

R2, L1
]

= −Λ
κ X

3,
[
R2, L2

]
= −

√
−Λ
κ L3,

[
R2, L3

]
= 1

κ(
√
−ΛL2 −−ΛX1),[

R3, L1
]

= Λ
κX

2,
[
R3, L2

]
= −Λ

κX
1,

[
R3, L3

]
= 0,[

La, X0
]

= 1
κL

a,
[
La, Lb

]
= 0,

[
La, Xb

]
= 0,[

Xa, X0
]

= 1
κX

a,
[
Xa, Xb

]
= 0,

[
X0, Ra

]
= 0 ,

(4.38)

Notice that, by quantum duality, the automorphism (4.24) of gΛ leads to the following
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automorphism (whenever Λ 6= 0) of gΛ

X̃0 = X0, X̃a =
1√
−Λ

La, L̃a = −
√
−ΛXa, R̃a = Ra, (4.39)

which keeps the commutation relations (5.57) invariant and shows the interchanging be-
tween the Xa and La generators.

As it should be, the limit κ → ∞ produces an abelian Lie algebra and so its Lie
group is also abelian, thus giving rise to the undeformed, or primitive, coproduct ∆(X) =
X ⊗ 1 + 1⊗X for all X ∈ gΛ.

Therefore, at the Poisson level, this deformation induces a non-abelian group G∗Λ whose
multiplication is dual to the coproduct for the Poisson-Hopf algebra PV(Uκ(gΛ)). Now we
need to find a faithful representation in order to construct the group element by exponen-
tiation, and from here compute the group multiplication. The adjoint representation will
work, but note that as we are interested in real representations, the cases of Λ < 0 and
Λ > 0 need to be treated separately. For clarity, we omit the explicit expressions here,
but they can be found in Chapter 5 where the quantum duality principle will be used
to construct the non-trivial momentum spaces associated to these deformations. Now,
if ρ : g∗Λ → End(R10) stands for the appropriate adjoint representation, we can always
locally write a group element as

g∗ = (θ, p, χ) =eθ3ρ(R3)eθ2ρ(R2)eθ1ρ(R1)ep1ρ(X1)ep2ρ(X2)ep3ρ(X3)×

× eχ1ρ(L1)eχ2ρ(L2)eχ3ρ(L3)ep0ρ(X0).
(4.40)

where {p0, p1, p2, p3, χ1, χ2, χ3, θ1, θ2, θ3} are exponential coordinates of the second kind on
the dual group G∗Λ. A long but straightforward computer-assisted computation (in [205]
the details of the procedure are explained in detail) leads to the group law for G∗Λ, which
once dualized allows us to write down the coproduct map for the Poisson-Hopf P(Uκ(gΛ))
algebra. Explicitly, after the identification pα = Pα, χa = Ka, θa = Ja, we have that the
coproduct

∆κ : P(Uκ(gΛ))→ P(Uκ(gΛ))⊗ P(Uκ(gΛ)) (4.41)

takes the following form:

∆κ(J3) = J3 ⊗ 1 + 1⊗ J3,

∆κ(J1) = J1 ⊗ e
√
−ΛJ3/κ + 1⊗ J1, (4.42)

∆κ(J2) = J2 ⊗ e
√
−ΛJ3/κ + 1⊗ J2,
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∆κ(P0) = P0 ⊗ 1 + 1⊗ P0,

∆κ(P1) = P1 ⊗ cosh(
√
−ΛJ3/κ) + e−P0/κ ⊗ P1 −

√
−ΛK2 ⊗ sinh(

√
−ΛJ3/κ)

−
√
−Λ

κ
P3 ⊗ J1 −

Λ

κ
K3 ⊗ J2 −

Λ

κ2

(√
−ΛK1 − P2

)
⊗ J1J2e

−
√
−ΛJ3/κ

+
Λ

2κ2

(√
−ΛK2 + P1

)
⊗
(
J2

1 − J2
2

)
e−
√
−ΛJ3/κ,

∆κ(P2) = P2 ⊗ cosh(
√
−ΛJ3/κ) + e−P0/κ ⊗ P2 +

√
−ΛK1 ⊗ sinh(

√
−ΛJ3/κ) (4.43)

−
√
−Λ

κ
P3 ⊗ J2 + zΛK3 ⊗ J1 +

Λ

κ2

(√
−ΛK2 + P1

)
⊗ J1J2e

−
√
−ΛJ3/κ

+
Λ

2κ2

(√
−ΛK1 − P2

)
⊗
(
J2

1 − J2
2

)
e−
√
−ΛJ3/κ,

∆z(P3) = P3 ⊗ 1 + e−P0/κ ⊗ P3 +
1

κ

(
−ΛK2 +

√
−ΛP1

)
⊗ J1e

−
√
−ΛJ3/κ

−z
(
−ΛK1 −

√
−ΛP2

)
⊗ J2e

−
√
−ΛJ3/κ,

∆κ(K1) = K1 ⊗ cosh(
√
−ΛJ3/κ) + e−P0/κ ⊗K1 + P2 ⊗

sinh(
√
−ΛJ3/κ)√
−Λ

−1

κ
P3 ⊗ J2 −

√
−Λ

κ
K3 ⊗ J1 −

1

κ2

(
−ΛK2 +

√
−ΛP1

)
⊗ J1J2e

−
√
−ΛJ3/κ

− 1

2κ2

(
−ΛK1 −

√
−ΛP2

)
⊗
(
J2

1 − J2
2

)
e−
√
−ΛJ3/κ,

∆κ(K2) = K2 ⊗ cosh(
√
−ΛJ3/κ) + e−P0/κ ⊗K2 − P1 ⊗

sinh(
√
−ΛJ3/κ)√
−Λ

(4.44)

+
1

κ
P3 ⊗ J1 −

√
−Λ

κ
K3 ⊗ J2 −

1

κ2

(
−ΛK1 −

√
−ΛP2

)
⊗ J1J2e

−
√
−ΛJ3/κ

+
1

2κ2

(
−ΛK2 +

√
−ΛP1

)
⊗
(
J2

1 − J2
2

)
e−
√
−ΛJ3/κ,

∆κ(K3) = K3 ⊗ 1 + e−P0/κ ⊗K3 + z(
√
−ΛK1 − P2)⊗ J1e

−
√
−ΛJ3/κ

+
1

κ
(
√
−ΛK2 + P1)⊗ J2e

−
√
−ΛJ3/κ.

Notice that this coproduct is written in a ‘bicrossproduct-type’ basis that generalizes the
one corresponding to the (2+1) P(Uκ(gΛ)) algebra [111, 144].

As it can be easily checked, the κ-Poincaré coproduct (4.5) is obtained from the above
expressions in the limit Λ → 0. A direct comparison between both sets of expressions
makes it evident that the degree of complexity of the κ-deformation is greatly increased
when the cosmological constant Λ is turned on. In fact, the P(Uκ(gΛ)) algebra can be
thought of as a two-parametric deformation, which is ruled by a ‘quantum’ deformation
parameter κ (the Planck scale) and a ‘classical’ deformation parameter Λ (the cosmological
constant) which has a well-defined geometrical meaning. As we will show in the Chapter
5, the roles of the two deformation parameters are interchanged when the dual Poisson-
Lie group is considered, in the spirit of the ‘semidualization’ approach to (2+1) quantum
gravity [159, 209].

There are several differences between the coproducts (4.42)-(4.44) and (4.5) that have
to be emphasized. First, ∆κ(Ka) and ∆κ(Pa) are structurally similar when Λ 6= 0, in
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contrast with (4.5). Second, translations in (4.43) do not close a Hopf subalgebra, since
when Λ 6= 0 the coproducts ∆κ(Pa) contain boosts and rotations as well. Finally, in the
non-vanishing cosmological constant case the rotation sector (4.42) is deformed, whilst
in (4.5) all of the coproducts for Ja are primitive ones. These three features are induced
by the interplay between the cosmological constant Λ and the quantum deformation κ,
and the first two will be essential for the construction of the curved momentum space
when Λ 6= 0, which will be topic of the first part of Chapter 5.

The unique Poisson brackets compatible with the previous coproduct ∆κ as a Poisson-
Hopf algebra P(Uκ(gΛ)) are given, by Drinfeld’s theorem [210], as the unique Poisson-Lie
structure on G∗Λ whose tangent Lie bialgebra is given by the dual of gΛ (2.72), as explained
in the (1+1)-dimensional example at the end of Chapter 2. This dual Lie bialgebra is not
coboundary, so we do not have a canonical way to compute it, in particular there is no
Sklyanin bracket (3.44) defined on G∗Λ. However, by following the computational approach
introduced in [205] and assuming that such Poisson bivector is at most quadratic in the
functions appearing in the coproduct, such Poisson structure was explicitly computed in
[114]. For the sake of brevity, we omit the details of such computation, but we do write
down explicitly the fundamental brackets:

{J1, J2} =
e2z
√
−ΛJ3 − 1

2z
√
−Λ

− z
√
−Λ

2

(
J2

1 + J2
2

)
, {J1, J3} = −J2, {J2, J3} = J1,

{J1, P1} = z
√
−ΛJ1P2, {J1, P2} = P3 − z

√
−ΛJ1P1, {J1, P3} = −P2,

{J2, P1} = −P3 + z
√
−ΛJ2P2, {J2, P2} = −z

√
−ΛJ2P1, {J2, P3} = P1,

{J3, P1} = P2, {J3, P2} = −P1, {J3, P3} = 0,

{J1,K1} = z
√
−ΛJ1K2, {J1,K2} = K3 − z

√
−ΛJ1K1, {J1,K3} = −K2,

{J2,K1} = −K3 + z
√
−ΛJ2K2, {J2,K2} = −z

√
−ΛJ2K1, {J2,K3} = K1,

{J3,K1} = K2, {J3,K2} = −K1, {J3,K3} = 0,

{Ka, P0} = Pa, {P0, Pa} = −ΛKa, {P0, Ja} = 0,

{K1, P1} =
1

2z

(
cosh(2z

√
−ΛJ3)− e−2zP0

)
+
z3Λ2

4
e−2z

√
−ΛJ3

(
J2

1 + J2
2

)2
+
z

2

(
P 2

2 + P 2
3 − P 2

1

)
+
−zΛ

2

[
K2

2 +K2
3 −K2

1 + J2
1

(
1− e−2z

√
−ΛJ3

)
+ J2

2

(
1 + e−2z

√
−ΛJ3

)]
,

{K2, P2} =
1

2z

(
cosh(2z

√
−ΛJ3)− e−2zP0

)
+
z3Λ2

4
e−2z

√
−ΛJ3

(
J2

1 + J2
2

)2
+
z

2

(
P 2

1 + P 2
3 − P 2

2

)
+
−zΛ

2

[
K2

1 +K2
3 −K2

2 + J2
1

(
1 + e−2z

√
−ΛJ3

)
+ J2

2

(
1− e−2z

√
−ΛJ3

)]
,

{K3, P3} =
1− e−2zP0

2z
+
z

2

[
(P1 +

√
−ΛK2)2 + (P2 −

√
−ΛK1)2 − P 2

3 + ΛK2
3

]
−zΛe−2z

√
−ΛJ3

(
J2

1 + J2
2

)
,
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{P1,K2} = z
(
P1P2 − ΛK1K2 −

√
−ΛP3K3 − ΛJ1J2e

−2z
√
−ΛJ3

)
,

{P2,K1} = z
(
P1P2 − ΛK1K2 +

√
−ΛP3K3 − ΛJ1J2e

−2z
√
−ΛJ3

)
,

{P1,K3} =
1

2

√
−ΛJ1

(
1− e−2z

√
−ΛJ3

[
1 + z2Λ

(
J2

1 + J2
2

)])
+ z

(
P1P3 − ΛK1K3 +

√
−ΛK2P3

)
,

{P3,K1} =
1

2

√
−ΛJ1

(
1− e−2z

√
−ΛJ3

[
1 + z2Λ

(
J2

1 + J2
2

)])
+ z

(
P1P3 − ΛK1K3 −

√
−ΛP2K3

)
,

{P2,K3} =
1

2

√
−ΛJ2

(
1− e−2z

√
−ΛJ3

[
1 + z2Λ

(
J2

1 + J2
2

)])
+ z

(
P2P3 − ΛK2K3 −

√
−ΛK1P3

)
,

{P3,K2} =
1

2

√
−ΛJ2

(
1− e−2z

√
−ΛJ3

[
1 + z2Λ

(
J2

1 + J2
2

)])
+ z

(
P2P3 − ΛK2K3 +

√
−ΛP1K3

)
,

{K1,K2} = − sinh(2z
√
−ΛJ3)

2z
√
−Λ

− z
√
−Λ

2

(
J2

1 + J2
2 + 2K2

3

)
− z3(−Λ)3/2

4
e−2z

√
−ΛJ3

(
J2

1 + J2
2

)2
,

{K1,K3} =
1

2
J2

(
1 + e−2z

√
−ΛJ3

[
1 +−z2Λ

(
J2

1 + J2
2

)])
+ z
√
−ΛK2K3,

{K2,K3} = −1

2
J1

(
1 + e−2z

√
−ΛJ3

[
1 +−z2Λ

(
J2

1 + J2
2

)])
− z
√
−ΛK1K3,

{P1, P2} = Λ
sinh(2z

√
−ΛJ3)

2z
√
−Λ

− z
√
−Λ

2

(
2P 2

3 − Λ(J2
1 + J2

2 )
)
− z3Λ5/2

4
e−2z

√
−ΛJ3

(
J2

1 + J2
2

)2
,

{P1, P3} = −1

2
ΛJ2

(
1 + e−2z

√
−ΛJ3

[
1 +−z2Λ

(
J2

1 + J2
2

)])
+ z
√
−ΛP2P3,

{P2, P3} =
1

2
ΛJ1

(
1 + e−2z

√
−ΛJ3

[
1 +−z2Λ

(
J2

1 + J2
2

)])
− z
√
−ΛP1P3. (4.45)

Regarding this Poisson structure it is worth stressing that, in contradistinction to (4.6),
the full Lorentz sector has now deformed Poisson brackets. These expressions make the
parallelism between translations and boosts evident also at the Poisson bracket level, and
show the interplay between deformed rotations and the rest of the quantum algebra.

The deformed quadratic Casimir for the P(Uκ(gΛ)) Poisson-Hopf algebra reads [114]

Cκ = 2κ2
[
cosh(P0/κ) cosh(

√
−ΛJ3/κ)− 1

]
− Λ cosh(P0/κ)(J2

1 + J2
2 )e−

√
−ΛJ3/κ

− eP0/κ
(
P2 − ΛK2

) [
cosh(

√
−ΛJ3/κ)− Λ

2κ2
(J2

1 + J2
2 )e−

√
−ΛJ3/κ

]
− 2ΛeP0/κ

[
sinh(

√
−ΛJ3/κ)√
−Λ

T3 +
1

κ

(
J1T1 + J2T2 +

√
−Λ

2κ
(J2

1 + J2
2 )T3

)
e−
√
−ΛJ3/κ

]
,

(4.46)

where Ta = εabcKbPc. Again, the Λ→ 0 limit of (4.45) is just (4.6), and comparing (4.46)
to its ‘flat’ limit (4.7) gives a clear idea of the kind of deformation we are dealing with.
This deformed invariant (4.46) (compare it with the undeformed one (2.80) to see clearly
the complexity increment) will be very relevant in the first part of Chapter 5, since it
is connected to the deformed dispersion relation that can be deduced from the curved
momentum space with cosmological constant that we will construct.
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Indeed, what we have obtained is a commutative Poisson-Hopf algebra P(Uκ(gΛ)),
whose quantization has to be performed in order to obtain the proper quantum univer-
sal enveloping algebra Uκ(gΛ). Once this had been completed, a (presumably nonlinear
and complicated) change of basis should exist between the kinematical basis and the
Cartan-Weyl or Cartan-Chevalley basis used in [62, 74, 75, 76]. Nevertheless, most of the
physically relevant features of this quantum deformation can already be extracted from
the kinematical Poisson-Hopf structure here obtained.

4.4 The κ-(A)dS noncommutative spacetime

Similarly to the flat case, once the Poisson-Hopf P(Uκ(gΛ)) algebra has been studied,
we focus on the construction of the associated noncommutative spacetime. In this case,
as we will show in the following, the PHS so obtained is much more complicated than
its vanishing constant version, the κ-Minkowski spacetime previously presented. This is
the main reason why this noncommutative spacetime has only recently been constructed,
in contradistinction to the κ-Minkowski spacetime, which as explained above has been
extensively studied since its introduction.

The first step in the construction, as usual, is the introduction of local coordinates
on GΛ following the strategy described in §2.3, such that the diagram (2.86) becomes
commutative. Coordinates defined by the inverse map of (2.88) satisfy all these conditions,
and are the ones we will use. These coordinates satisfy that x̄ ∈ C∞(G)H , so they define
a set of coordinates on the coset space, i.e. x̄ : MΛ = GΛ/L→ R4. They are precisely the
geodesic parallel coordinates on MΛ introduced in §2.2.

Before constructing the Poisson homogeneous space associated to the κ-deformation
of GΛ, we need to check that this PHS fulfills the coisotropy condition (3.79). This can
be checked directly from (4.36) and so we have that

δ(l) ⊂ l ∧ gΛ, (4.47)

where l = Lie(L) and gΛ = Lie(GΛ). In this case, similarly to the κ-Minkowski spacetime,
this PHS will not be a Poisson subgroup PHS, but a coisotropic one, since the Lorentz
group L is not a Poisson subgroup of GΛ.

The procedure to equip the manifolds GΛ and MΛ with relevant Poisson structures
is the same that we used in the Minkowski case. If we call (GΛ,Π) to the κ-Poisson-Lie
structure on GΛ and (MΛ, π) to the Poisson structure in MΛ that makes

α : GΛ ×MΛ →MΛ

(g, g′L)→ gg′L
(4.48)

a Poisson homogeneous space, then Π is given by the Sklyanin bracket (3.44) defined by
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the r-matrix (4.25). The Sklyanin bracket in this particular case reads

{f1, f2} =
1

κ

3∑
a=1

((
XL
Kaf1X

L
Paf2 −XL

Paf1X
L
Kaf2

)
−
(
XR
Kaf1X

R
Paf2 −XR

Paf1X
R
Kaf2

))
+ η

((
XL
J1
f1X

L
J2
f2 −XL

J2
f1X

L
J1
f2

)
−
(
XR
J1
f1X

R
J2
f2 −XR

J2
f1X

R
J1
f2

))
.

(4.49)

Similarly, π can be obtained from (4.49) just by particularizing it to the L-invariant
functions. We have that

{f̃1, f̃2}MΛ
(m) = {f1 ◦ p, f2 ◦ p}MΛ

(m) = {f1, f2}GΛ
(g) (4.50)

where f1, f2 ∈ C∞(G)L, m = gL ∈MΛ and

p : GΛ →MΛ

g → gL
(4.51)

is the canonical projection. In terms of the Poisson bivector, this just implies that the
Poisson bivector π on MΛ is the pushforward of the Poisson bivector Π on G0, i.e. π =
p∗Π. In order to write down the explicit fundamental brackets, left- and right-invariant
vector fields for GΛ have to be obtained (through a really cumbersome computer-assisted
computation). They are extremely complicated, so we do not present them in this work.
Moreover, the fundamental brackets on GΛ are also really cumbersome, so we shall omit
their complete expressions since they do not provide any meaningful information for our
purposes. However, we do write down the fundamental brackets associated to (4.50), i.e.
the Poisson structure π on MΛ, which read

{x0, x1} = −1

κ

tanh(ηx1)

η cosh2(ηx2) cosh2(ηx3)
,

{x0, x2} = −1

κ

tanh(ηx2)

η cosh2(ηx3)
,

{x0, x3} = −1

κ

tanh(ηx3)

η
,

(4.52)

{x1, x2} = −1

κ

cosh(ηx1) tanh2(ηx3)

η
,

{x1, x3} =
1

κ

cosh(ηx1) tanh(ηx2) tanh(ηx3)

η
,

{x2, x3} = −1

κ

sinh(ηx1) tanh(ηx3)

η
,

(4.53)

These expressions can be thought of as a (complicated) cosmological constant deformation
of the (Poisson) κ-Minkowski spacetime (4.13) in terms of the parameter η. Moreover, a
striking feature of the κ-(A)dS spacetime suddenly arises from them: brackets between
space coordinates do not vanish, in contradistinction with the κ-Minkowski case (and also
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with the (2+1) κ-(A)dS spacetime presented in [111], which can be obtained from (4.52)–
(4.53) by projecting x3 → 0). In order to stress the relationship with the κ-Minkowski
expressions, we can take the power series expansion of (4.52) in terms of η, and we get

{x0, x1} = −1

κ
(x1 + o[η2]),

{x0, x2} = −1

κ
(x2 + o[η2]),

{x0, x3} = −1

κ
(x3 + o[η2]),

(4.54)

whose zeroth-order in η is just the κ-Minkowski spacetime, whilst the first order defor-
mation in η of the space subalgebra (4.53) defines the following homogeneous quadratic
algebra

{x1, x2} = −1

κ
(η (x3)2 + o[η2]),

{x1, x3} =
1

κ
(η x2x3 + o[η2]),

{x2, x3} = −1

κ
(η x1x3 + o[η2]).

(4.55)

This essential novelty of the κ-(A)dS spacetime deserves further discussion. Firstly,
note that the quadratic Poisson algebra arising in (4.55) and given by

{x1, x2} = −η
κ

(x3)2, {x1, x3} =
η

κ
x2x3, {x2, x3} = −η

κ
x1x3, (4.56)

can be identified [211, 212] as a subalgebra of the semiclassical limit of Woronowicz’s
quantum SU(2) group [213, 214] (see also [215, 216]). We also recall that the brackets

{x1, x2} = f
∂F

∂x3
, {x2, x3} = f

∂F

∂x1
, {x3, x1} = f

∂F

∂x2
, (4.57)

always define a three-dimensional Poisson algebra for any choice of the smooth functions
f and F , and the Casimir function for (4.57) is just the function F [217]. Therefore, the
algebra (4.56) can directly be obtained by taking

F (x1, x2, x3) = (x1)2 + (x2)2 + (x3)2, f(x1, x2, x3) = −1

2

η

κ
x3. (4.58)

This implies that two-dimensional spheres

S = (x1)2 + (x2)2 + (x3)2, (4.59)

define symplectic leaves for the Poisson structure (4.56). Moreover, it is straightforward
to check that the Poisson brackets (4.53) arise in the Sklyanin bracket just from the
J1 ∧ J2 term of the r-matrix (4.32). This explains why the Poisson algebra (4.56) is
naturally linked to the semiclassical limit of the quantum SU(2) subgroup of the κ-(A)dS
deformation, albeit realized on the 3-space coordinates. In this respect, we recall that the
su(2) subalgebra generated by {J1, J2, J3} becomes a quantum su(2) subalgebra when the
full quantum deformation is constructed [114], a fact that can already be envisaged from
the cocommutator (4.36) where the su(2) generators define a sub-Lie bialgebra.
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4.4.1 Quantization of the κ-(A)dS Poisson homogeneous space

Furthermore, the algebra (4.56) can be quantized as

[x̂1, x̂2] = − η

κ
(x̂3)2, [x̂1, x̂3] =

η

κ
x̂3x̂2, [x̂2, x̂3] = − η

κ
x̂1x̂3, (4.60)

since associativity is ensured by the Jacobi identity, which can be checked by considering
the ordered monomials (x̂1)l (x̂3)m (x̂2)n. The Casimir operator for (4.60) can be proven
to be

Ŝη/κ = (x̂1)2 + (x̂2)2 + (x̂3)2 +
η

κ
x̂1x̂2, (4.61)

which defines the ‘quantum spheres generated by the noncommuting κ-(A)dS local coor-
dinates. Thus space coordinates become noncommutative, while at first order in η the
time-space sector is kept invariant with respect to the κ-Minkowski case. Moreover, the
space-space brackets (4.56) are just a subalgebra of the quantum SU(2) group. So, at first
order in the quantum parameter η, the quantum κ-AdS spacetime is given by the following
commutation relations

[x̂0, x̂a] = − 1

κ
x̂a,

[x̂1, x̂2] = − η

κ
(x̂3)2, [x̂1, x̂3] =

η

κ
x̂3x̂2, [x̂2, x̂3] = − η

κ
x̂1x̂3.

(4.62)

From this explicit form it is perfectly clear that the noncommutativity between space and
time coordinates is different from the noncommutativity between space-space coordinates,
because of the factor η in the last ones. It should be noticed that when considering propa-
gation of particles on noncommutativity spacetime this cosmological constant contribution
could be non-negligible.

Now, the quantum κ-(A)dS spacetime for any order in η should be obtained as the
quantization of the full Poisson algebra (4.52)-(4.53), which is by no means a trivial task
due to the noncommutativity of the space coordinates given by (4.53). However, by
considering the five ambient coordinates (s4, s0, s) defined by (2.98) and fulfilling the
constraint (2.96), we get that their Sklyanin bracket leads to the following quadratic
algebra

{s0, sa} = −1

κ
sas4, {s4, sa} =

η2

κ
sas0,

{s1, s2} = −η
κ

(s3)2, {s1, s3} =
η

κ
s2s3, {s2, s3} = −η

κ
s1s3,

{s0, s4} = −η
2

κ

(
(s1)2 + (s2)2 + (s3)2

)
,

(4.63)

which is, at most, quadratic in the cosmological constant parameter η. Since the subalge-
bra generated by the three ambient space coordinates s is formally the same as (4.56), its
quantization would give the same result as (4.60), but now with ŝ instead of x̂. By taking
into account this fact and by considering the ordered monomials (ŝ0)k (ŝ1)l (ŝ3)m (ŝ2)n (ŝ4)j ,
a long but straightforward computation shows that the following quadratic brackets give
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rise to an associative algebra (i.e. Jacobi identities are satisfied) which becomes the full
quantization of the Poisson brackets (4.63)

[ŝ0, ŝa] = −1

κ
ŝaŝ4, [ŝ4, ŝa] =

η2

κ
ŝ0ŝa, [ŝ0, ŝ4] = −η

2

κ
Ŝη/κ,

[ŝ1, ŝ2] = −η
κ

(ŝ3)2, [ŝ1, ŝ3] =
η

κ
ŝ3ŝ2, [ŝ2, ŝ3] = −η

κ
ŝ1ŝ3,

(4.64)

and defines the κ-(A)dS spacetime for all orders in η. Here Ŝη/κ is given by

Ŝη/κ = (ŝ1)2 + (ŝ2)2 + (ŝ3)2 +
η

κ
ŝ1ŝ2 , (4.65)

and this operator is the analogue of the quantum sphere (4.61) in quantum ambient
coordinates, since (4.65) is just the Casimir operator for the subalgebra spanned by ŝ,
namely [Ŝη/κ, ŝa] = 0. However, Ŝη/κ does not commute with the remaining quantum
ambient coordinates

[Ŝη/κ, ŝ0] =
1

κ

(
ŝ4 Ŝη/κ + Ŝη/κ ŝ4

)
− η2

κ2
ŝ0 Ŝη/κ,

[Ŝη/κ, ŝ4] = −η
2

κ

(
ŝ0 Ŝη/κ + Ŝη/κ ŝ0

)
+
η2

κ2
Ŝη/κ ŝ4.

(4.66)

In fact, the Casimir operator for the full κ-(A)dS quantum space (4.64) is found to be

Σ̂η,κ = (ŝ4)2 + η2(ŝ0)2 − η2

κ
ŝ0ŝ4 − η2Ŝη/κ, (4.67)

which is just the quantum analogue of the pseudosphere (2.96) that defines the (A)dS
space.

Indeed, the quantization of the algebra (4.63) that we have obtained should coincide
with the corresponding subalgebra of the full κ-(A)dS quantum group relations obtained
by applying the usual FRT approach [33] onto the quantum matrix group arising from
(2.91). Note that the ambient coordinates are entries of this matrix and the quantum
R-matrix for the κ-(A)dS quantum algebra should be derived from the one associated to
the Drinfel’d-Jimbo deformation [19, 31] of the corresponding complex simple Lie algebra.

We would like to stress that from a physical perspective the relevant parameter ap-
pearing in the κ-(A)dS 3-space (4.60) is just η/κ, which is actually very small. This fact
could preclude the need of considering higher order terms in the algebras (4.54)-(4.55)
for all physically relevant purposes. Therefore, the noncommutative algebra (4.62) should
suffice in order to provide the essential information concerning the novelties introduced by
the κ-(A)dS spacetime with respect to the κ-Minkowski one. In particular, the changes
introduced by the cosmological constant in the representation theory of the latter [95, 96]
are worth studying as a first step, and we recall that the irreducible representations for a
complex C∗-version of the algebra (4.60) were presented in [215] (see also [216]).

Some words concerning the (2+1)-dimensional counterpart of the results here presented
are in order, since it is well-known that the κ-(A)dS deformation leads to a vanishing
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commutation rule [x̂1, x̂2] = 0 for the space coordinates (see [111]). This can easily be
explained by taking into account that in (2+1) dimensions the κ-(A)dS r-matrix reads

rΛ =
1

κ
(K1 ∧ P1 +K2 ∧ P2) , (4.68)

and the term J1 ∧ J2 which generates the space-space noncommutativity (4.60) in (3+1)
dimensions cannot exist.

Let us finish this first part of the Chapter by recalling that the result here presented
solves an important problem, both from the theoretical and phenomenological points of
view. In particular, the noncommutative κ-(A)dS spacetime, constructed by quantizing
its semiclassical counterpart, is shown to have a quadratic subalgebra of local spatial
coordinates whose first order brackets in terms of the cosmological constant parameter
define a quantum sphere, while the commutators between time and space coordinates
preserve the same structure of the κ-Minkowski spacetime. When expressed in ambient
coordinates, the quantum κ-(A)dS spacetime is shown to be defined as a noncommutative
pseudosphere. Moreover, we have proven that this is the only possible generalization to
the case of non-vanishing cosmological constant of the well-known κ-Minkowski spacetime,
under minimal physical assumptions.

4.4.2 Twisted κ-(A)dS Poisson homogeneous space

Similarly to the case of vanishing cosmological constant, we want to finish the discussion
considering the twisted-κ-deformation of GΛ defined by (4.26). Since it again provides a
coisotropic Lie bialgebra for the Lorentz subalgebra l ⊂ gΛ, as can be directly checked
from the cocommutator

δt(P0) = 0,

δt(P1) = z(P0 ∧ P1 − ηP3 ∧ J1 + η2K2 ∧ J3 − η2K3 ∧ J2)− ϑ(P0 ∧ P2 + η2K1 ∧ J3),

δt(P2) = z(P0 ∧ P2 − ηP3 ∧ J2 − η2K1 ∧ J3 + η2K3 ∧ J1) + ϑ(P0 ∧ P1 − η2K2 ∧ J3),

δt(P3) = z(P0 ∧ P3 + ηP1 ∧ J1 + ηP∧J2 + η2K1 ∧ J2 − η2K2 ∧ J1)− ϑη2K3 ∧ J3,

δt(K1) = z(P0 ∧K1 − P2 ∧ J3 + P3 ∧ J2 − ηK3 ∧ J1) + ϑ(−P0 ∧K2 + P1 ∧ J3),

δt(K2) = z(P0 ∧K2 + P1 ∧ J3 − P3 ∧ J1 − ηK3 ∧ J2) + ϑ(P0 ∧K1 + P2 ∧ J3),

δt(K3) = z(P0 ∧K3 − P1 ∧ J2 + P2 ∧ J1 + ηK1 ∧ J1 + ηK2 ∧ J2) + ϑP3 ∧ J3,

δ(J3) = 0,

δ(J1) = ηJ1 ∧ J3 − ϑP0 ∧ J2,

δ(J2) = ηJ2 ∧ J3 + ϑP0 ∧ J1,

(4.69)

the same construction as before can be mimicked.

As it happened with the twisted κ-Minkowski spacetime (4.21), the computation of
the Sklyanin bracket shows that the twist does not affect the Poisson brackets between
space coordinates, which are again (4.53), and the twisted brackets involving x0 and the
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space coordinates xa are given by

{x0, x1}t = −1

κ

tanh(ηx1)

η cosh2(ηx2) cosh2(ηx3)
− ϑ cosh(ηx1) tanh(ηx2)

η
,

{x0, x2}t = −1

κ

tanh(ηx2)

η cosh2(ηx3)
+ ϑ

sinh(ηx1)

η
,

{x0, x3}t = −1

κ

tanh(ηx3)

η
,

(4.70)

which again provide a nonlinear algebra deformation of the twisted κ-Minkowski whose
zeroth-order in η leads to (4.21). We omit the complete Poisson-Lie structure (GΛ,Πt)
compatible with this PHS due to its complexity.

4.5 Noncommutative space of worldlines

While the construction of maximally symmetric Lorentzian spacetimes with constant cur-
vature as homogeneous spaces of its Lie group of isometries is well-known, the fact that
their set of time-like (or space-like) geodesics has the structure of a smooth manifold is
much less common in the literature. Recall that for a generic spacetime M , i.e. a smooth
manifold endowed with a Lorentzian metric, the space of oriented geodesics is a quite
complicated object. In fact, it is a topological space but not necessarily Hausdorff, and
even when this is the case the topological manifold could not admit a smoothable atlas
and henceforth could not be a smooth manifold. These problems have been previously
considered in the literature (see, for instance, [218] and [219], where the space of null
geodesics is described). For manifolds whose geodesics are closed many results are known
(see [220]).

However, in the case of M being a simply connected pseudo-Riemannian space of
constant curvature, or a rank one Riemannian symmetric space, its set of oriented time-
like geodesics L(M) is a smooth homogeneous manifold. From now on we will refer
to time-like geodesics as worldlines, because they are precisely the worldlines for a free
massive particle moving in the appropriate spacetime. In [221] all symplectic, complex
and metric structures were described, and we recall that in [222] all homogeneous spaces
of worldlines corresponding to kinematical groups were studied in detail, including the
pseudo-Riemannian metrics defined on them, and in [144] the (2+1) Lorentzian spaces
of worldlines were considered. In particular, for the Poincaré case it was found that an
invariant foliation exists in the space of worldlines and that the resulting homogeneous
space is of negative curvature (see [222] for details). This result provides a neat geometrical
description of the hyperbolic nature of the space of velocities in special relativity, and all
these classical geometric notions should admit some rigorous generalization to the quantum
(noncommutative) setting.

In the rest of this Chapter, we investigate the Poisson homogeneous space associated
to the κ-Poincaré group (G0,Π) acting on the homogenous space of time-like geodesics
of Minkowski spacetime, which we call (W, π). This homogeneous space W is the coset
space of the Poincaré group divided by the stabilizer of the worldline that passes through
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the origin of Minkowski space with zero velocity. This stabilizer can be easily computed
and turns out to be the full subgroup of rotations of the Poincaré group together with
time translations, which we hereafter denote by H and parametrize by

H = expφ1ρ(J1) expφ2ρ(J2) expφ3ρ(J3) exp y0ρ(P0). (4.71)

The Lie algebra h of H is given by (2.76). While the parametrization in terms of coordi-
nates for MΛ has been worked out in detail in §2.2, the corresponding one for the space
of worldlines is more subtle, due to the fact that the coordinates xa and ξa defined by the
inverse of (2.88) do not define a set of coordinates in the coset spaceW = G/H, since they
do not satisfy that the diagram (2.86) is commutative and so (xa, ξa) are not H-invariant
functions on G, which is equivalent to say that they are not functions on W = G/H, i.e.
(xa, ξa) 6∈ C∞(G)H = C∞(W). Therefore, we introduce a different set of local coordinates

(ηa, yα, φa) : U ⊂ G0 → R10 (4.72)

by the inverse map of the following exponentiation

GW = exp η1ρ(K1) exp y1ρ(P1) exp η2ρ(K2) exp y2ρ(P2) exp η3ρ(K3) exp y3ρ(P3)

× expφ1ρ(J1) expφ2ρ(J2) expφ3ρ(J3) exp y0ρ(P0).
(4.73)

In this way it is straightforward to check that we have well-defined coordinates

(yα, ηa) : U ′ ⊂ W = G/H → R6 (4.74)

on W = G/H, as they are invariant by right multiplication by an element of H.

Now the Poincaré group element has the form

GW =

(
1 0̄
f̄T L

)
, (4.75)

where L is the same matrix as in (2.92), i.e. the Lorentz subgroup, and f̄ are functions
given by

f0(yα, ηa) = y1 sinh η1 + cosh η1
(
y2 sinh η2 + cosh η2(y0 cosh η3 + y3 sinh η3)

)
,

f1(yα, ηa) = y1 cosh η1 + sinh η1
(
y2 sinh η2 + cosh η2(y0 cosh η3 + y3 sinh η3)

)
,

f2(yα, ηa) = y2 cosh η2 + sinh η2(y0 cosh η3 + y3 sinh η3),

f3(yα, ηa) = y0 sinh η3 + y3 cosh η3 .

(4.76)

We stress that the previous construction allows us to obtain the explicit relationships
among the local coordinates of the Poincaré group G0 in both parametrizations, namely

x̄ = f̄(yα, ηa), ξa = ηa, θa = φa. (4.77)

Note that the position coordinates xa on the Minkowski spacetime M0 = G0/L cannot be
naively identified with the ‘position’ coordinates ya on the space of worldlines, since they
only coincide when all rapidities vanish (i.e. for an observer at rest). Moreover, in the
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representation (4.75) the action of the Poincaré group on the space of worldlines is not
linear.

The space of worldlines W has also a metric structure which is rather different from
the flat Lorentzian metric on the Minkowskian spacetime M (2.100). In particular, the
metric on W is degenerate, and an invariant foliation under the Poincaré group action
arises in such a manner that a ‘subsidiary’ metric restricted to each leaf of the foliation
has to be considered [222]. It can be shown that in terms of the coordinates ya and ηa the
degenerate ‘main’ metric g(1) on W has a line element

ds2
(1) = (cosh η2)2(cosh η3)2(dη1)2 + (cosh η3)2(dη2)2 + (dη3)2. (4.78)

This is a Riemannian metric of negative constant curvature, whose value is just −1/c2

(in this work we are using units in which c = 1), which only involves rapidities, and
thus provides the relative rapidity between two free motions. This, in turn, shows that
the three-velocity space is hyperbolic. The invariant foliation is determined by a uniform
motion with η = η0 = constant and the ‘subsidiary’ metric g(2) defined on each leaf reads

ds2
(2) = (dy1)2 + (dy2)2 + (dy3)2, η = η0, (4.79)

that is, each leaf is isometric to the three-dimensional Euclidean space. We also point
out that in the three-velocity space the geodesic distance χ corresponding to the relative
speed from an observer at rest and one with a uniform motion with rapidity η is given by

coshχ = cosh η1 cosh η2 cosh η3. (4.80)

Finally, notice that in the low rapidity regime (i.e. take c → ∞), the expressions (4.78)
and (4.80) reduce to the usual ones for velocities in classical mechanics

ds2
(1) = (dη1)2 + (dη2)2 + (dη3)2, χ2 = (η1)2 + (η2)2 + (η3)2. (4.81)

4.6 The κ-Poincaré homogeneous space of worldlines

In the sequel we show that the noncommutativity in the space of worldlines induced by
the κ-deformation of Poincaré symmetries can be obtained by mimicking the previous con-
struction of the Poisson homogeneous Minkowski spacetime, but taking into account the
appropriate isotropy subgroup of worldlines. These results have been recently presented
in [61].

As a first step, we have to check whether the κ-Poincaré Lie bialgebra structure (4.3)
is coisotropic with respect to the Lie subalgebra of the isotropy subgroup of time-like
worldlines h = span{P0, Ja} (2.76). This is indeed the case, since we have that δ(P0) =
δ(Ja) = 0 and the coisotropy condition (3.79) is trivially satisfied. Furthermore, in this
case the stronger Poisson-subgroup condition [60] δ(h) ⊂ h ∧ h is also trivially fulfilled.
We stress that this does not occur for the κ-Minkowski isotropy subalgebra l, and implies
that after quantization the isotropy subgroup h is promoted to a Hopf subalgebra (again,
this is not the case for the Lorentz sector of the κ-deformation).
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This fact provides a first signature that the κ-deformation is more naturally realized
on the space of worldlines than on Minkowski spacetime. As a consequence, the coisotropy
condition guarantees that the homogeneous Poisson structure on the space of worldlines
W can be obtained as a canonical projection from the coboundary Poisson structure on G
induced by the r-matrix (4.2). This is directly connected with the precise ordering (4.73)
chosen for the construction of GW (4.75), which is the one that provides the appropriate
description of the projected Poisson structure onto W.

Indeed, left- and right-invariant vector fields (2.23) for GW have to be computed (we
omit their explicit expressions for the sake of brevity), and the Sklyanin bracket (4.11) for
the κ-Poincaré r-matrix (4.2) has to be written in terms of such vector fields expressed
in terms of the local Poincaré coordinates {ya, ηa, φa, y0}. With all these ingredients at
hand, the explicit form of the κ-Poincaré Poisson homogeneous space of worldlines is just
given by the canonical projection of the Skyanin bracket to the coordinates ya and ηa of
the space W, and reads

{y1, y2} =
1

κ

(
y2 sinh η1 − y1 tanh η2

cosh η3

)
,

{y1, y3} =
1

κ

(
y3 sinh η1 − y1 tanh η3

)
,

{y2, y3} =
1

κ

(
y3 cosh η1 sinh η2 − y2 tanh η3

)
,

{y1, η1} =
1

κ

(
cosh η1 cosh η2 cosh η3 − 1

)
cosh η2 cosh η3

,

{y2, η2} =
1

κ

(
cosh η1 cosh η2 cosh η3 − 1

)
cosh η3

,

{y3, η3} =
1

κ

(
cosh η1 cosh η2 cosh η3 − 1

)
,

{ya, ηb} = 0, a 6= b, {ηa, ηb} = 0 .

(4.82)

These expressions for the Poisson version of the noncommutative space of worldlines show
that this noncommutative space contains a commutative subalgebra of rapidities ηa, while
the ‘position’ worldline coordinates ya are noncommutative. The Poisson bracket between
a given rapidity ηa and its corresponding ‘position’ ya does not vanish and depends on
the geodesic distance function (4.80).

The structure of these Poisson brackets forW becomes more symmetric and manifestly
spatially isotropic if they are expanded as power series in the coordinates of W up to
second-order, namely

{ya, yb} =
1

κ

(
ηayb − ηbya

)
+O(y,η)3, {ηa, ηb} = 0,

{ya, ηb} = δab
1

2κ

(
(η1)2 + (η2)2 + (η3)2

)
+O(y,η)3.

(4.83)

We stress that the quadratic terms in (4.83) are the ones coming from the non-relativistic
limit c→∞, since they are just the angular momenta (ηayb−ηbya) and the relative speed
χ2 (4.81). Note also that the linearization of the brackets (4.83) in terms of the local
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coordinates ya and ηb vanish, in contradistinction to the κ-Minkowski spacetime (4.13),
which is a purely linear bracket having no higher-order terms in the coordinates.

If we now compute the κ-Poincaré Sklyanin bracket relations between y0 (which does
not belong to W) and the coordinates of the space of worldlines we obtain

{y0, y1} = −1

κ

(
y1 − y2 sinh η1 tanh η2

cosh η3
− y3 sinh η1 tanh η3

)
,

{y0, y2} = −1

κ

(
y2 + y1 sinh η1 tanh η2

cosh η3
− y3 cosh η1 sinh η2 tanh η3

)
,

{y0, y3} = −1

κ

(
y3 + y1 sinh η1 tanh η3 + y2 cosh η1 sinh η2 tanh η3

)
,

{y0, η1} = −1

κ

sinh η1

cosh η2 cosh η3
,

{y0, η2} = −1

κ

cosh η1 sinh η2

cosh η3
,

{y0, η3} = −1

κ
cosh η1 cosh η2 sinh η3,

(4.84)

which means that the smooth functions on W enlarged with y0 (i.e. the coset G/R
where R is the rotations subgroup) still define a Poisson subalgebra where C∞(W) is a
non-abelian ideal. All these properties are fully consistent with the transformation (4.76)
which provides the Minkowski spacetime coordinates xα in terms of the ones for W and
y0. Indeed, if we use the transformation (4.76) to compute the Poisson structure given
by (4.82) and (4.84) for the four Minkowski coordinates xα ≡ fα, we just obtain the
defining relations of the Poisson version of the κ-Minkowski spacetime (4.13). This is
a direct consequence of the fact that both the noncommutative κ-Minkowski spacetime
and the noncommutative space of κ-Poincaré worldlines are just two realizations in two
different geometric contexts of the very same noncommutative structure provided by the
κ-deformation.

4.6.1 Quantum κ-Poincaré worldlines

At this point, the space of quantum worldlines would be defined by the quantization of the
Poisson algebra of worldline coordinates (4.82), which can be obtained by substituting the
Poisson brackets into commutators with exactly the same expressions (4.82), but now in
terms of the noncommutative quantum worldline coordinates ŷa and η̂a. Indeed, no order-
ing ambiguities appear when the Poisson bracket (4.82) is transformed into a commutator:
the quantum rapidities η̂a commute, and this implies that the crossed commutators [ŷa, η̂b]
have no ordering problems. Finally, at the r.h.s. of the commutators [ŷa, ŷb], the ŷa coor-
dinates are always multiplied by a function depending on the η̂b coordinates with b 6= a,
which means that the latter commute with the former and no quantization ambiguities do
exist.

Moreover, the fact that the Poisson brackets {ya, ηb} only involve the ηa coordinates
provides a natural ansatz for a new set of classical variables whose quantization is straight-
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forward. Let us consider the following diffeomorphism

q1 =
cosh η2 cosh η3

cosh η1 cosh η2 cosh η3 − 1
y1, p1 = η1,

q2 =
cosh η3

cosh η1 cosh η2 cosh η3 − 1
y2, p2 = η2,

q3 =
1

cosh η1 cosh η2 cosh η3 − 1
y3, p3 = η3,

(4.85)

which is well-defined whenever (η1, η2, η3) 6= (0, 0, 0) since its Jacobian determinant

|J(y,η)| = cosh η2(cosh η3)2

(cosh η1 cosh η2 cosh η3 − 1)3
, (4.86)

is different from zero everywhere on such a domain (note again the presence of the geodesic
distance χ (4.80) in all these expressions). In fact, in terms of the elements of g(1) (4.78)
the expressions above take the simple form

qa =

√
g

(1)
aa

coshχ− 1
ya, |J(y,η)| =

√
det g(1)

(coshχ− 1)3
, (4.87)

where in this case sum over repeated indices should not be assumed. These expressions
neatly shows the interconnection among the Poisson homogeneous structure underlying the
quantum deformation and the (hyperbolic) geometry of the space of velocities of special
relativity.

Surprisingly enough, in terms of these new coordinates on W the noncommutative
(Poisson) algebra of the worldline coordinates turns out to be

{qa, qb} = {pa, pb} = 0, {qa, pb} =
1

κ
δab. (4.88)

Obviously, the chosen notation (qa, pa) for these new coordinates is not arbitrary, since
what we have found is that the homogeneous Poisson structure induced by the κ-Poincaré
r-matrix on the space or worldlines is just a symplectic structure on W (without the
origin). Note that the diffeomorphism (4.85) is defined everywhere but in a point is a
direct consequence of the fact that a Poisson-Lie group is never symplectic [35], because
it always vanishes at the identity and this property descends to the quotient through
canonical projection. Hence, outside the origin eH of W (the projection of the identity
element e of G0 to the coset space) we have obtained a symplectic form onto W given by

ω = κ
3∑

a=1

dqa ∧ dpa , (4.89)

and in this way our new worldline coordinates (q,p) have a direct interpretation as canoni-
cal phase space coordinates. Notice that while the change ya

{ya,ηa} → qa is clearly suggested

by the precise form of the fundamental brackets (4.82), the fact that the new coordinates
qa Poisson commute, which is essential for them in order to be Darboux coordinates, is
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a quite surprising result. Also, it is worth stressing that the symplectic structure (4.89)
is the result of the κ-deformation of the Poincaré symmetry, and this explains why the
deformation parameter κ explicitly appears within the symplectic form. Note that taking
the limit κ→∞ implies that the Poisson-Lie structure on the Poincaré group becomes the
trivial one and the space of worldlines (4.82) and (4.88) (as well as the spacetime (4.13))
becomes commutative.

Obviously, the quantization of the symplectic algebra (4.88) is straightforward in terms
of canonical worldline position operators q̂ and their conjugate momenta p̂, and taking
into account that κ−1 plays exactly the same role as the Planck constant. Therefore, all
quantum gravity effects amenable to be described through the κ-deformation should be
fully understood as a standard deformation-quantization on the space of worldlines with
deformation parameter κ−1, just in the same way as ordinary quantum mechanics arises
as a deformation-quantization (with parameter ~) on the classical mechanical phase space.

4.6.2 Remarks

In this second part of the Chapter we have proposed that quantum deformations of spaces
of worldlines arising as quantizations of Poisson homogeneous spaces of kinematical groups
should also be considered as noncommutative spaces amenable to describe quantum gravity
effects. We have shown that this is a completely general construction that can be applied
to any quantum deformation provided that the coisotropy condition (3.79) of its associated
Lie bialgebra with respect to the isotropy subalgebra of worldlines is fulfilled. In this way,
a non-trivial Poisson homogenous structure on the space of worldlines can be introduced,
and from the latter the noncommutativity between worldline coordinates arises in a natural
way.

Furthermore, when this construction is applied to the κ-deformation of Poincaré sym-
metries, the quantum space of worldlines so obtained turns out to be isomorphic to three
copies of the Heisenberg-Weyl algebra, where the constant κ−1 plays the role of ~. This is a
straightforward consequence of the symplectic structure of the space of worldlines induced
by the κ-Poincaré Poisson-Lie structure. This result suggests that the κ-deformation is a
natural one for the space of worldlines, an idea enforced by the fact that the isotropy sub-
group of worldlines behaves as a Poisson-Lie subgroup under this deformation. Moreover,
the fact that the κ-Poincaré r-matrix (4.2) is connected in a natural way to a symplectic
structure on the space of worldlines seems quite natural if we realize that the relativistic
Newton-Wigner position operators [223] are defined in terms of the Poincaré Lie algebra
generators as

Qa =
1

2P0
Ka +Ka

1

2P0
, (4.90)

since in this way the canonical brackets [Qa, Pb] = δab are obtained in terms of the gener-
ators of the Poincaré Lie algebra (4.1). Therefore, the bivector

B = Q1 ∧ P1 +Q2 ∧ P2 +Q3 ∧ P3, (4.91)

should define a symplectic form under the appropriate realization, and if we substi-
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tute (4.90) into this expression we get

B =

(
1

2P0
Ka +Ka

1

2P0

)
∧ Pa, (4.92)

which implies that both the symplectic bivector B and the κ-Poincaré r-matrix (4.2) are
closely related (recall that P0 is one of the generators of the the stabilizer of the origin of
the space of worldlines).

Consequently, the noncommutative spaces of worldlines seem to provide a privileged
arena in order to explore the physical role of the κ-deformation. In particular, once the
canonical coordinates have been found, noncommutativity in the space of worldlines could
be rephrased in more physical terms as the impossibility of determining simultaneously
and with infinite precision the six (q,p) coordinates of a given worldline. In this respect,
note that (4.85) implies that, before introducing the quantum deformation, the p coordi-
nates are just the usual rapidities η and the ‘positions’ q for a worldline are defined as
the product of Poincaré coordinates y associated to translations with certain functions
depending on η. Indeed, the precise physical meaning of the coordinates (4.85) has to be
studied in detail.

The construction here presented is fully general and can thus be applied to any other
quantum deformation (provided it is coisotropic with respect to the isotropy subgroup of
worldlines) of any kinematical group. This opens the path to several future investigations,
and the first of them consists in the construction of the noncommutative space of worldlines
associated with the κ-deformation of the (A)dS groups studied in the first part of this
Chapter. As has been proved, this κ-(A)dS deformation is significantly more complicated
than its Λ→ 0 limit, at least when considering the noncommutative spacetime. It would
be interesting to check if this is also the case when considering noncommutative spaces of
worldlines, or on the other hand, it is possible to find ‘symplectic’ coordinates and thus
the results would be somehow similar.

Finally, the model here introduced provides a purely kinematical framework for a
schematic theory of quantum (‘noncommutative’) free observers, and strongly suggests
that if the quantum deformation is assumed to encode quantum gravity effects, the latter
are simply reflected as a canonical Heisenberg-Weyl noncommutativity on the (phase)
space of worldlines, which is the simplest possible algebraic framework to deal with.
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Chapter 5

Curved momentum spaces from
quantum groups

In this Chapter, the concept that quantum symmetries describe theories with nontrivial
momentum space properties is generalized to the case of a non-vanishing cosmological
constant Λ. In particular, the momentum space associated to the κ-deformation of the de
Sitter algebra is explicitly constructed as a dual Poisson-Lie group manifold parametrized
by Λ. Such momentum space includes both the momenta associated to spacetime trans-
lations and the ‘hyperbolic’ momenta associated to boost transformations, and has the
geometry of (half of) a higher-dimensional de Sitter manifold. Known results for the mo-
mentum space of the κ-Poincaré algebra are smoothly recovered in the limit Λ→ 0, where
hyperbolic momenta decouple from translational momenta. It should be stressed that the
approach here presented is general and can be applied to other quantum deformations of
kinematical symmetries.

In §5.1 we illustrate the construction we will perform during this Chapter in the sim-
pler case of a vanishing cosmological constant, thus constructing the curved momentum
space associated to the κ-Poincaré deformation. Sections §5.2 and §5.3 consider the low
dimensional (1+1) and (2+1) cases, which are simpler, while in §5.4 the physical (3+1)-
dimensional case is analyzed. More in detail, the Poisson version of the κ-dS Hopf algebra
in (1+1) and in (2+1) dimensions is defined in section 5.2, where it is shown that the
main differences with respect to the corresponding κ-Poincaré structures fully arise in the
(2+1) setting: whilst in the vanishing cosmological constant limit the translation genera-
tors {P0, P1, P2} close a Hopf subalgebra, this is no longer the case for the κ-dS algebra,
since the cosmological constant mixes the translation and Lorentz sectors within both the
coproduct map and the deformed Casimir function. Thus, for non-vanishing Λ it seems
natural to consider an enlarged momentum space including also the dual coordinates to the
Lorentz generators. This idea allows us to construct the curved (generalized) momentum
manifold in the non-vanishing cosmological constant setting as the full dual Poisson-Lie
group manifold, whose explicit construction can be achieved through the Poisson version of
the ‘quantum duality principle’, which has been already used in §3.8 (see [19, 208, 59, 205]
and references therein).

The κ-dS dual Poisson-Lie groups are explicitly constructed in section 5.3. In (1+1)

123
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dimensions the dual group coordinates are those associated to both the spacetime transla-
tions and boosts, and a certain linear action of the dual group on the origin of momentum
space generates (half of) a (2+1)-dimensional dS manifold MdS3 , spanned by the orbit of
the group passing through the origin. In this case, the fact that boosts have the same
role in the momentum space as translation generators can be understood since their co-
products have the same formal structure. In (2+1) dimensions one spatial rotation comes
into play and the structure of the κ-dS Hopf algebra is apparently much more involved.
Nevertheless, the construction of the full dual Poisson-Lie group G∗Λ gives the clue for the
full geometrical description of the associated momentum space. The dual Lie algebra and
its associated Poisson-Lie group are explicitly constructed in section 5.3.2, and the cor-
responding linear action on the enlarged momentum space can be defined in such a way
that the dual rotation generates the isotropy subgroup of the origin of the momentum
space. As a consequence, we find that a (4+1)-dimensional space of momenta associated
to translations and boosts arises as a dual group orbit passing through the origin, and
such a space again has the geometry of (half of) a dS manifold MdS5 . Moreover, in the
vanishing cosmological constant limit, the Lorentz sector completely decouples both in
the dispersion relation and in the coproduct, thus recovering the well-known κ-Poincaré
momentum space.

A similar construction for the (3+1)-dimensional case is performed in §5.4, where the
main difference come from the extra term on the κ-(A)dS r-matrix, which involves the
rotation sector,and as it was already emphasized in the previous Chapter. However, the
qualitative description of the momentum space is similar. The Chapter ends with some
remarks regarding the construction of curved momentum space and its interest from the
phenomenological point of view §5.5.

5.1 The κ-Poincaré momentum space

The starting point for the construction is the Poisson version P(g3+1
0 ) (hereafter we

omit the dimensional superindex) of the (3+1) κ-Poincaré algebra g0 in the so-called
bicrossproduct basis [64]. This is the Poisson-Hopf algebra defined by the fundamental
Poisson brackets (4.6) together with the coproduct ∆κ : P(g0)→ P(g0)⊗P(g0) given by
(4.5).

This quantum deformation of the Poincaré algebra posses two deformed Casimir func-
tions, Cκ given by (4.7) and Wκ defined by (4.8). The first one is specially relevant
because it constitutes the keystone for the interpretation of κ-Poincaré algebra as the
modified kinematical symmetry underlying a class of deformed dispersion relations that
arise in several quantum gravity contexts [103, 121].

When dealing with Hopf algebra kinematical symmetries, the coproduct can be inter-
preted as the composition law for observables. In particular, the coproduct (4.5) is such
that the κ-deformation induces a nonlinear composition rule for momenta in interaction
vertices. As we are going to show, it is because of this deformed composition rule that
curvature in the κ-Poincaré momentum space emerges. In more technical terms, the cur-
vature of the momentum space arises as a consequence of the non cocommutativity of the
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coproduct map for the translation generators, and such a curved momentum space can be
explicitly constructed as follows.

Firstly, the non cocommutativity of the κ-translations can be characterized by writing
the cocommutator δ : g0 → g0 ⊗ g0, which is just the skew-symmetric part of the first
order deformation in 1/κ of the coproduct. Namely we have

δ(P0) = 0,

δ(P1) =
1

κ
(P1 ∧ P0) ,

δ(P2) =
1

κ
(P2 ∧ P0) , (5.1)

δ(P3) =
1

κ
(P3 ∧ P0) .

This cocommutator map endows the Poincaré algebra g0 with a Lie bialgebra structure.
Moreover, the cocommutator δ : g0 → g0 ⊗ g0 completely characterizes the Hopf algebra
deformation through the first order information it encodes (see [35, 34, 205] and references
therein for details).

Secondly, the dual tδ : g∗0⊗g∗0 → g∗0 of the cocommutator map defines the Lie algebra g∗0
of the dual Poisson-Lie group G∗0. In the κ-Poincaré case, if we denote by {X0, X1, X2, X3}
the generators in g∗0 such that

〈Xα, Pβ〉 = δαβ , (5.2)

then their dual Lie brackets are given by[
X0, Xa

]
= −1

κ
Xa,

[
Xa, Xb

]
= 0. (5.3)

Note that in the limit κ → ∞ all the coproducts are primitive, ∆(X) = X ⊗ 1 + 1 ⊗X.
As a consequence, δ vanishes and the dual Lie algebra (and group) is abelian. It is also
worth recalling that the dual Lie algebra of the translations sector given by (5.33) is just
the so-called κ-Minkowski spacetime [63, 64, 65, 139]. Obviously, the restriction to (1+1)
and (2+1) dimensions of (5.33) leads to the lower dimensional κ-Minkowski spacetimes.

5.1.1 Dual Poisson-Lie group and curved momentum space

The dual Poisson-Lie groupG∗Λ can be explicitly constructed starting from the 5-dimensional
faithful representation ρ of the dual Lie algebra g∗0, given by:

ρ(Q) = p0 ρ(X0)+p1 ρ(X1)+p2 ρ(X2)+p3 ρ(X3) =
1

κ


0 p1 p2 p3 p0

p1 0 0 0 p1

p2 0 0 0 p2

p 0 0 0 p3

p0 −p1 −p2 −p3 0

 (5.4)

In terms of these local dual group coordinates {p0, p1, p2, p3}, then the dual Lie group
element can be constructed through the exponentiation

G∗0(p0, p1, p2, p3) = exp
(
p1ρ(X1)

)
exp

(
p2ρ(X2)

)
exp

(
p3ρ(X3)

)
exp

(
p0ρ(X0)

)
, (5.5)
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which explicitly reads

G∗0(p) =


cosh(p0/κ) + 1

2κ2 e
p0/κ p2 p1

κ
p2

κ
p3

κ sinh(p0/κ) + 1
2κ2 e

p0/κ p2

p1

κ e
p0/κ 1 0 0 p1

κ e
p0/κ

p2

κ e
p0/κ 0 1 0 p2

κ e
p0/κ

p3

κ e
p0/κ 0 0 1 p3

κ e
p0/κ

sinh(p0/κ) − 1
2κ2 e

z p0 p2 −p1

κ −p2

κ −p3

κ cosh(p0/κ) − 1
2κ2 e

p0/κ p2

 .

(5.6)

The significance of the dual Poisson-Lie group relies on the fact that the coproduct
(4.5) is just the group law for G∗0 (see [205] for details). In fact, if we multiply two matrices
of the type (5.6) we get another group element

G∗0(p′′) = G∗0(p) ·G∗0(p′) . (5.7)

It can be straightforwardly checked that the group law p′′ = f(p, p′) reads:

p′′0 = p0 + p′0, p′′i = pi + e−zp
′
0 pi, (5.8)

which is consistent with (5.33) in the sense that X0 generates a dilation and the Xi

generators correspond to (dual) translations.

Now, by making use of the Poisson version of the quantum duality principle (see [19,
208, 59] and the Section 3.8 for the (1+1)-dimensional example), the group multiplication
law (5.8) can be immediately rewritten in algebraic terms as the comultiplication map ∆κ

through the identification of the two copies of the dual group coordinates as

p ≡ p⊗ 1, p′ ≡ 1⊗ p. (5.9)

In this algebraic language, the multiplication law for the group G∗0 can be written as a
co-product in the form:

∆z(p0) ≡ p′′0 = p0 ⊗ 1 + 1⊗ p0, ∆z(pa) ≡ p′′a = pa ⊗ 1 + e−zp0 ⊗ pa. (5.10)

This coproduct is just the one for the translation sector of the κ-Poincaré algebra once
the following identification between the dual group coordinates and the generators of the
κ-Poincaré algebra is performed:

p0 ≡ P0, p1 ≡ P1, p2 ≡ P2, p3 ≡ P3. (5.11)

Moreover, the unique Poisson-Lie structure on G∗0 that is compatible with the coproduct
(5.10) and has the undeformed Poincaré Lie algebra as its linearization is given by the
κ-Poincaré Poisson brackets for the translation sector (see Section 3.8).

Under this approach, the κ-Poincaré momentum space admits a straightforward geo-
metric interpretation [121]. The entries of the fourth column in G∗0 can be rewritten as
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the following Si functions:

S0 = sinh(p0/κ) +
1

2
ep0/κ z2 p2,

S1 =
p1

κ
ep0/κ,

S2 =
p2

κ
ep0/κ, (5.12)

S3 =
p3

κ
ep0/κ,

S4 = cosh(p0/κ) − 1

2
ep0/κ z2 p2 .

Surprisingly enough, these satisfy the defining relation of the (3+1)-dimensional dS space:

− S2
0 + S2

1 + S2
2 + S2

3 + S2
4 = 1. (5.13)

This means that the κ-Poincaré momentum space parametrized by the ambient coordinates
(S0, S1, S2, S3, S4) can be obtained as the orbit arising from a linear action of the Lie group
matrix G∗0(p) onto a five-dimensional ambient Minkowski space and passing through the
point (0, 0, 0, 0, 1). Namely:

G∗ · (0, 0, 0, 0, 1)T = (S0, S1, S2, S3, S4)T . (5.14)

Moreover, the ambient coordinates fulfil the condition:

S0 + S4 = ep0/κ > 0, (5.15)

which means that only half of the (3+1)-dimensional dS space is generated through the
action (5.14). We will denote this manifold as MdS4 . Note that in the limit κ → ∞ the
dual Lie group G∗0 generated by (5.33) is abelian.

5.2 The κ-dS Poisson-Hopf algebra

Let us start by reviewing the structural properties of the κ-deformation of the (1+1) and
(2+1) dS algebra, which will be presented by considering the cosmological constant Λ > 0
as an explicit parameter whose Λ → 0 limit provides automatically the expressions for
the κ-Poincaré algebra. In this way, the specific features of the construction leading to
the κ-Poincaré momentum space will become transparent, and the proposed path to its
non-vanishing cosmological constant generalization will arise in a natural way.

In the subsection on the (1+1)-dimensional case we just briefly present the essential
formulas, postponing a more in-depth discussion of the relevant features of the κ-dS algebra
to the following subsection focussing on the (2+1)-dimensional case.

5.2.1 The (1+1) κ-dS algebra

The Poisson version of g1+1
Λ (2.83) is the (undeformed) Poisson-Hopf P(g1+1

Λ ) algebra in
(1+1) dimensions defined by the brackets

{K,P0} = P1, {K,P1} = P0, {P0, P1} = −ΛK, (5.16)
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where K is the generator of boost transformations, P0 and P1 are the time and space
translation generators and the (undeformed) coproduct is given by ∆0(X) = X⊗1+1⊗X,
with X ∈ {K,P0, P1}. The Poisson version P(Uκ(g1+1

Λ )) of the (1+1) κ-dS quantum
algebra [142] is a Hopf algebra deformation of (5.16), given by

{K,P0} = P1, {K,P1} =
sinh (P0/κ)

1/κ
, {P0, P1} = −ΛK, (5.17)

with deformed coproduct map

∆(P0) = P0 ⊗ 1 + 1⊗ P0,

∆(P1) = P1 ⊗ eP0/2κ + e−P0/2κ ⊗ P1, (5.18)

∆(K) = K ⊗ eP0/2κ + e−P0/2κ ⊗K.

The deformed Casimir function for (5.17) is

Cκ =

(
sinh (P0/2κ)

1/2κ

)2

− P 2
1 + ΛK2. (5.19)

The so-called bicrossproduct-type basis [64] for this algebra is given through the nonlinear
change

P0 → P0, P1 → eP0/2κ P1, K → eP0/2κK, (5.20)

so that the algebra becomes

{K,P0} = P1, {K,P1} =
1− exp(−2P0/κ)

2/κ
− 1

2κ
(P 2

1 −ΛK2), {P0, P1} = −ΛK,

(5.21)
with associated coproduct map

∆(P0) = P0 ⊗ 1 + 1⊗ P0,

∆(P1) = P1 ⊗ 1 + e−P0/κ ⊗ P1, (5.22)

∆(K) = K ⊗ 1 + e−P0/κ ⊗K.

In this basis, the deformed Casimir reads

Cz =

(
sinh (P0/2κ)

1/2κ

)2

− eP0/κ(P 2
1 − ΛK2). (5.23)

We point out that for Λ = 0 (the κ-Poincaré case), the momentum sector given by P0 and
P1 generates an abelian Hopf subalgebra, and the Λ = 0 Casimir function provides the
well-known (1+1) κ-Poincaré deformed dispersion relation (see e.g. [87]). Note also that
the coproduct (5.22) does not depend on Λ, although this property will not hold in higher
dimensions.



5.2. THE κ-DS POISSON-HOPF ALGEBRA 129

5.2.2 The (2+1) κ-dS algebra

In (2+1) dimensions, the Poisson version P(g2+1
Λ ) of g1+1

Λ (2.79) dS algebra takes the form

{J, Pa} = εabPb, {J,Ka} = εabKb, {J, P0} = 0,

{Pa,Kb} = −δabP0, {P0,Ka} = −Pa, {K1,K2} = −J,
{P0, Pa} = −ΛKa, {P1, P2} = Λ J.

(5.24)

The two quadratic Casimir functions for (5.57) are

C = P 2
0 −P2 − Λ(J2 −K2), W = −JP0 +K1P2 −K2P1, (5.25)

where P2 = P 2
1 +P 2

2 and K2 = K2
1 +K2

2 . Recall that C comes from to the Killing–Cartan
form and is related to the energy of a point particle, whileW is the Pauli–Lubanski vector.
The undeformed Poisson-Hopf algebra structure on P(g2+1

Λ ) is given by ∆0 : P(g2+1
Λ ) →

P(g2+1
Λ )⊗ P(g2+1

Λ ), X → X ⊗ 1 + 1⊗X.

The (2+1) κ-dS Poisson-Hopf algebra P(Uκ(g2+1
Λ )) in the bicrossproduct basis is the

Hopf algebra deformation with parameter κ given by [143, 144, 68]

{J, P0} = 0, {J, P1} = P2, {J, P2} = −P1,

{J,K1} = K2, {J,K2} = −K1, {K1,K2} = − sin(2
√

ΛJ/κ)

2
√

Λ/κ
,

{P0, P1} = −ΛK1, {P0, P2} = −ΛK2, {P1, P2} = Λ sin(2
√

ΛJ/κ)

2
√

Λ/κ
,

{K1, P0} = P1, {K2, P0} = P2, (5.26)

{P2,K1} =
1

κ
(P1P2 − ΛK1K2) {P1,K2} =

1

κ
(P1P2 − ΛK1K2) ,

{K1, P1} =
κ

2

(
cos(2

√
ΛJ/κ)− e−2P0/κ

)
+

1

2κ

(
P 2

2 − P 2
1

)
− Λ

2κ

(
K2

2 −K2
1

)
,

{K2, P2} =
κ

2

(
cos(2

√
ΛJ/κ)− e−2P0/κ

)
+

1

2κ

(
P 2

1 − P 2
2

)
− Λ

2κ

(
K2

1 −K2
2

)
,

and with deformed coproduct map

∆(P0) = P0 ⊗ 1 + 1⊗ P0, ∆(J) = J ⊗ 1 + 1⊗ J,

∆(P1) = P1 ⊗ cos(
√

ΛJ/κ) + e−P0/κ ⊗ P1 + ΛK2 ⊗
sin(
√

ΛJ/κ)√
Λ

,

∆(P2) = P2 ⊗ cos(
√

ΛJ/κ) + e−P0/κ ⊗ P2 − ΛK1 ⊗
sin(
√

ΛJ/κ)√
Λ

, (5.27)

∆(K1) = K1 ⊗ cos(
√

ΛJ/κ) + e−P0/κ ⊗K1 + P2 ⊗
sin(
√

ΛJ/κ)√
Λ

,

∆(K2) = K2 ⊗ cos(
√

ΛJ/κ) + e−P0/κ ⊗K2 − P1 ⊗
sin(
√

ΛJ/κ)√
Λ

,

which explicitly depends on the cosmological constant Λ. The deformed Casimir function
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for this Poisson-Hopf algebra reads

Cκ =2κ2
[
cosh(P0/κ) cos(

√
ΛJ/κ)− 1

]
−

− eP0/κ
(
P2 − Λ K2

)
cos(
√

Λ J/κ)− 2 Λ eP0/κ sin(
√

ΛJ/κ)√
Λ

R3,
(5.28)

with R3 = ε3bcKbPc. Note that the projection to the κ-dS algebra in (1+1) dimensions is
obtained by setting to zero the generators {P2,K2, J}.

The (2+1) κ-Poincaré Poisson-Hopf algebra P(Uκ(g2+1
0 )) is smoothly recovered in the

Λ→ 0 limit and in this ‘flat’ case the momentum sector {P0, P1, P2} generates an abelian
Hopf subalgebra with coproduct

∆(P0) = P0 ⊗ 1 + 1⊗ P0,

∆(P1) = P1 ⊗ 1 + e−P0/κ ⊗ P1, (5.29)

∆(P2) = P2 ⊗ 1 + e−P0/κ ⊗ P2.

Such a nonlinear superposition law for momenta is the essential footprint of a curved
momentum space, which can be explicitly constructed by following the procedure presented
in [121].

Essentially, the κ-Poincaré momentum space is a three-dimensional manifold generated
by the action on a certain ambient space of the three-dimensional dual Lie group G∗Λ whose
Lie algebra g∗Λ,[

X0, X1
]

= −z X1,
[
X0, X2

]
= −z X2,

[
X1, X2

]
= 0, (5.30)

is defined as the dual of the skew-symmetric part of the first order deformation in 1/κ of the
coproducts (5.29) (see (5.32)). The Lie algebra (5.30) is the so-called (2+1) κ-Minkowski
noncommutative spacetime [63, 64]. Moreover, when Λ = 0 the deformed Casimir function

Cκ = 2κ2 [cosh(P0/κ)− 1]− eP0/κ (P 2
1 + P 2

2 ), (5.31)

provides the κ-Poincaré deformed dispersion relation in (2+1) dimensions. The same
construction can be straightforwardly generalized to the (3+1) κ-Poincaré algebra (see
[121] and references therein).

The main obstruction to a similar construction when Λ 6= 0 is readily seen by inspection
of (5.27). In fact, in the κ-dS case the momentum sector {P0, P1, P2} is no longer a Hopf
subalgebra, since the coproduct of spatial momenta includes all the generators {J,K1,K2}
of the Lorentz sector (note that this is not the case in (1+1) dimensions, where the
coproduct does not depend on Λ). Moreover, the deformed Casimir Cκ contains the Lorentz
generators as well, and this feature is also present in the (1+1) case (see (5.23)). These
two observations hold true also in the (3+1) κ-dS Poisson-Hopf algebra that has been
explicitly presented in (4.45).

We already mentioned that the Hopf-algebraic deformations of spacetime symmetries
can be endowed with a phenomenological interpretation. Specifically, the Casimir Cκ of
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the algebra determines the dispersion relation of free particles, while the coproduct of the
translation generators determines the rules of conservation of energy and spatial momen-
tum in interactions [87]. Therefore, when Λ 6= 0 we can say that both the conservation rules
in interactions and the deformed dispersion relation involve an enlarged set of ‘momenta’,
including also the angular momentum and the ‘hyperbolic’ momenta corresponding, re-
spectively, to the rotation and to boost transformations (hyperbolic rotations). In this
framework, it seems natural to propose that when Λ 6= 0 the (curved) momentum space
is defined by an enlarged space parametrized by the six coordinates that are dual to the
generators of the full quantum algebra. Nevertheless, a simple inspection at the coprod-
ucts (5.27) shows that the role of the J generator is somewhat different from that of K1

and K2, since the latter have coproducts which are formally equivalent to those of P1 and
P2. All these aspects will have a clear interpretation once the explicit construction of the
κ-dS momentum space is performed in the following section.

5.3 Momentum space for the κ-dS Poisson-Hopf algebra

As anticipated above, in this section the momentum space for the κ-dS Poisson algebra
with non-vanishing cosmological constant will be constructed as the full dual Poisson-Lie
group G∗Λ, whose Lie algebra g∗Λ is provided by the dual of the cocommutator map δ
generated by the coproduct of all the κ-dS generators in the bicrossproduct basis, includ-
ing the Lorentz sector. This construction will be firstly illustrated in (1+1) dimensions.
While this case is simpler, it does not allow us to appreciate the richness of structure
characterising higher-dimensional models. The consistency and geometric features of our
approach will be made fully explicit in the second subsection, where we demonstrate the
full construction for the (2+1)-dimensional case.

5.3.1 The (1+1) case

The cocommutator map for the full κ-dS algebra can be read from the skew-symmetric
part of the first order deformation in 1/κ of the coproduct (5.22), namely

δ(P0) = 0, δ(P1) =
1

κ
P1 ∧ P0, δ(K) =

1

κ
K ∧ P0. (5.32)

If we denote by {X0, X1, L} the generators dual to, respectively, {P0, P1,K}, the dual Lie
algebra g∗Λ is given by the Lie brackets

[
X0, X1

]
= −1

κ
X1,

[
X0, L

]
= −1

κ
L,

[
X1, L

]
= 0. (5.33)

A generic element Q of this Lie algebra for Λ 6= 0 can be written as the 4× 4 matrix

Q = p0X
0 + p1X

1 + χL =
1

κ


0 p1

√
Λχ p0

p1 0 0 p1√
Λχ 0 0

√
Λχ

p0 −p1 −
√

Λχ 0

 (5.34)



132 CHAPTER 5. CMS FROM QUANTUM GROUPS

If we denote as {p0, p1, χ} the local group coordinates which are dual, respectively, to
{X0, X1, L}, then the group element of the dual Lie group G∗Λ is given by:

G∗Λ = exp
(
p1X

1
)

exp (χL) exp
(
p0X

0
)
. (5.35)

A straightforward computation leads to the following explicit matrix

G∗Λ =


cosh(p0/κ) + 1

2κ2 e
p0/κ(p2

1 + Λχ2) p1

κ

√
Λχ
κ sinh(p0/κ) + 1

2κ2 e
p0/κ(p2

1 + Λχ2)
ep0/κp1

κ 1 0 ep0/κp1

κ
ep0/κ

√
Λχ

κ 0 1 ep0/κ
√

Λχ
κ

sinh(p0/κ) − 1
2κ2 e

p0/κ(p2
1 + Λχ2) −p1

κ −
√

Λχ
κ cosh(p0/κ) − 1

2κ2 e
p0/κ(p2

1 + Λχ2)

 ,

(5.36)
from which the coproduct (see [205]) can be directly obtained by multiplying two group
matrices, and reads

∆(p0) = p0⊗ 1 + 1⊗ p0, ∆(p1) = p1⊗ 1 + e−p0/κ⊗ p1, ∆(χ) = χ⊗ 1 + e−p0/κ⊗χ.
(5.37)

As the quantum duality principle indicates, this coproduct is just the one (5.22) for the
κ-dS algebra once one identifies the dual group coordinates and the generators of the κ-dS
Poisson-Hopf algebra as follows:

p0 ≡ P0, p1 ≡ P1, χ ≡ K. (5.38)

Moreover, by following the technique presented in [205] it can be shown that the unique
Poisson-Lie structure on G∗Λ that is compatible with the coproduct (5.37) and has the
undeformed dS Lie algebra (5.16) as its linearization is given by the Poisson brackets

{χ, p0} = p1, {χ, p1} =
1− exp(−2p0/κ)

2/κ
− 1

2κ
(p2

1 − Λχ2), {p0, p1} = −Λχ,

(5.39)
which is exactly the κ-dS algebra (5.21) under the identification (5.38). The Casimir
function for this Poisson bracket is

Cz =

(
sinh (p0/2κ)

1/2κ

)2

− ep0/κ(p2
1 − Λχ2). (5.40)

In this way, the composition law for the momenta with κ-dS symmetry (5.22) has been
reobtained as the group law (5.37) for the coordinates of the dual Poisson-Lie group G∗Λ,
and the κ-dS Casimir function (5.23) can be interpreted as an on-shell relation (5.40) for
these coordinates.

We stress that the main novelty with respect to the κ-Poincaré case described in §3.8
(see also §4.1 for the (3+1)-dimensional case) is the fact that the dual Lie group G∗Λ is
now three-dimensional, and the momentum space associated to κ-dS is parametrized by
the three coordinates {p0, p1, χ}, and not only by the momenta associated to spacetime
translations. Moreover, both in the coproduct (5.37) and the Casimir function (5.40) the
role of the parameters χ and p1 turns out to be identical, which supports the role of
the former as an additional ‘hyperbolic’ momentum for quantum symmetries with non-
vanishing cosmological constant.
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An explicit geometric interpretation of this enlarged momentum space can be obtained
along the same lines of [121] by observing that the entries of the fourth column in G∗Λ,
given by

S0 = sinh(p0/κ) +
1

2κ2
ep0/κ (p2

1 + Λχ2),

S1 =
ep0/κ p1

κ
,

S2 =
ep0/κ

√
Λχ

κ
, (5.41)

S3 = cosh(p0/κ) − 1

2κ2
ep0/κ (p2

1 + Λχ2),

satisfy the defining relation for the (2+1)-dimensional dS space,

− S2
0 + S2

1 + S2
2 + S2

3 = 1. (5.42)

Moreover, if we consider a linear action of the Lie group G∗Λ onto a four-dimensional
ambient Minkowski space with coordinates (S0, S1, S2, S3), we have that

G∗Λ · (0, 0, 0, 1)T = (S0, S1, S2, S3)T , (5.43)

which means that the (2+1)-dimensional dS space is generated through G∗Λ as the orbit
that passes through the point (0, 0, 0, 1) in the ambient space, corresponding to the origin
of the (generalized) momentum space. Note that the orbit passing through the point
(0, 0, 0, α), with α 6= 0, would satisfy −S2

0 + S2
1 + S2

2 + S2
3 = α2. Moreover, we have that

the condition
S0 + S3 = ep0/κ > 0, (5.44)

is automatically obeyed, so that only half of the (2+1)-dimensional dS space is generated
as an orbit of the free action of G∗Λ, and we will denote this manifold as MdS3 . Finally,
when Λ = 0 the ambient coordinate S2 vanishes, as well as the realization ρ(L) of the dual
of the boost generator, thus recovering the well-known interpretation of the κ-Poincaré
momentum space as (half of) a (1+1)-dimensional dS space, i.e., MdS2 .

5.3.2 The (2+1) case

The very same procedure described in the previous section can be applied to the con-
struction of the momentum space associated to the (2+1) κ-dS Poisson-Hopf algebra
P(Uκ(g2+1

Λ )). The skew symmmetrized first order in 1/κ of the coproduct (5.27) is given
by the cocommutator map

δ(P0) = δ(J) = 0,

δ(P1) =
1

κ
(P1 ∧ P0 + ΛK2 ∧ J),

δ(P2) =
1

κ
(P2 ∧ P0 − ΛK1 ∧ J), (5.45)

δ(K1) =
1

κ
(K1 ∧ P0 + P2 ∧ J),

δ(K2) =
1

κ
(K2 ∧ P0 − P1 ∧ J).
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Denoting by {X0, X1, X2, L1, L2, R} the generators dual to, respectively, {P0, P1, P2,K1,K2, J},
the Lie brackets defining the Lie algebra g∗ of the dual Poisson-Lie group G∗Λ are

[X0, X1] = − 1
κ X

1, [X0, X2] = − 1
κ X

2, [X1, X2] = 0,

[X0, L1] = − 1
κ L

1, [X0, L2] = − 1
κ L

2, [L1, L2] = 0,

[R,X2] = − 1
κ L

1, [R,L1] = 1
κ ΛX2, [L1, X2] = 0,

[R,X1] = 1
κ L

2, [R,L2] = − 1
κ ΛX1, [L2, X1] = 0,

[R,X0] = 0, [L1, X1] = 0, [L2, X2] = 0.

(5.46)

A general Lie algebra element Q for Λ 6= 0 can be represented as the 6× 6 matrix

ρ(Q) =p0ρ(X0) + p1ρ(X1) + p2ρ(X2) + χ1ρ(L1) + χ2ρ(L2) + θρ(R) =

=
1

κ



0 p1 p2

√
Λχ1

√
Λχ2 p0

p1 0 0 0 −
√

Λθ p1

p2 0 0
√

Λθ 0 p2√
Λχ1 0 −

√
Λθ 0 0

√
Λχ1√

Λχ2

√
Λθ 0 0 0

√
Λχ2

p0 −p1 −p2 −
√

Λχ1 −
√

Λχ2 0


(5.47)

If we denote as {p0, p1, p2, χ1, χ2, θ} the local group coordinates which are dual, re-
spectively, to {X0, X1, X2, L1, L2, R}, then a Lie group element sufficiently closed to the
identity G∗Λ can be written as

G∗Λ = exp (θρ(R)) exp
(
p1ρ(X1)

)
exp

(
p2ρ(X2)

)
×

× exp
(
χ1ρ(L1)

)
exp

(
χ2ρ(L2)

)
exp

(
p0ρ(X0)

)
,

(5.48)

and its explicit expression can be straightforwardly computed, although we omit it here
for the sake of brevity. By multiplying two of these generic group elements, the group law
for G∗Λ can be directly derived and written as the following coproduct map for the six dual
group coordinates:

∆(p0) = p0 ⊗ 1 + 1⊗ p0, ∆(θ) = θ ⊗ 1 + 1⊗ θ,

∆(p1) = p1 ⊗ cos(
√

Λ θ/κ) + e−p0/κ ⊗ p1 + Λχ2 ⊗
sin(
√

Λ θ/κ)√
Λ

,

∆(p2) = p2 ⊗ cos(
√

Λ θ/κ) + e−p0/κ ⊗ p2 − Λχ1 ⊗
sin(
√

Λ θ/κ)√
Λ

, (5.49)

∆(χ1) = χ1 ⊗ cos(
√

Λ θ/κ) + e−p0/κ ⊗ χ1 + p2 ⊗
sin(
√

Λ θ/κ)√
Λ

,

∆(χ2) = χ2 ⊗ cos(
√

Λ θ/κ) + e−p0/κ ⊗ χ2 − p1 ⊗
sin(
√

Λ θ/κ)√
Λ

.

Again, under the identification

p0 ≡ P0, p1 ≡ P1, p2 ≡ P2, χ1 ≡ K1, χ2 ≡ K2, θ ≡ J, (5.50)



5.3. MOMENTUM SPACE FOR THE κ-DS POISSON-HOPF ALGEBRA 135

this is exactly the coproduct for the κ-dS Poisson-Hopf algebra given in (5.27), and the
unique Poisson-Lie structure on G∗Λ that is compatible with (5.50) and has the Poisson
version P(g2+1

Λ ) of the dS Lie algebra g2+1
Λ (5.24) as its linearization is the deformed

Poisson algebra given by (5.27).

In order to provide a geometric interpretation of the six-dimensional generalized mo-
mentum space manifold, we proceed similarly to the (1+1) case and consider the action of
G∗Λ onto an ambient space. The entries of the sixth column in the matrix realization (5.48)
are

S0 = sinh(p0/κ) +
1

2κ2
ep0/κ

(
p2

1 + p2
2 + Λ

(
χ2

1 + χ2
2

))
,

S1 =
ep0/κ

κ

(
cos(
√

Λ θ/κ) p1 −
√

Λ sin(
√

Λ θ/κ)χ2

)
,

S2 =
ep0/κ

κ

(
cos(
√

Λ θ/κ) p2 +
√

Λ sin(
√

Λ θ/κ)χ1

)
,

S3 =
ep0/κ

κ

(
− sin(

√
Λ θ/κ) p2 +

√
Λ cos(

√
Λ θ/κ)χ1

)
, (5.51)

S4 =
ep0/κ

κ

(
sin(
√

Λ θ/κ) p1 +
√

Λ cos(
√

Λ θ/κ)χ2

)
,

S5 = cosh(p0/κ) − 1

2κ2
ep0/κ

(
p2

1 + p2
2 + Λ

(
χ2

1 + χ2
2

))
,

and satisfy the condition

− S2
0 + S2

1 + S2
2 + S2

3 + S2
4 + S2

5 = 1, (5.52)

which is the defining relation for the (4+1)-dimensional dS space. Therefore, by assuming
that the space of generalized momenta is the group manifold for the dual group G∗Λ, we
can conclude that a linear action of the Lie group G∗Λ onto a six-dimensional ambient
Minkowski space with coordinates (S0, S1, S2, S3, S4, S5) allows us to obtain a (4+1) dS
space as the orbit that passes through the point in the ambient space with coordinates
(0, 0, 0, 0, 0, 1), which is the origin of the (generalized) momentum space. Moreover, we
have that S0 +S5 = ep0/κ > 0, so only half of the dS space is generated in this way, and we
will denote this manifold as MdS5 . Therefore, the (1+1) construction can be generalized
to this (2+1) setting, although some distinctive features of the latter are worth to be
stressed.

Firstly, given that in the (2+1) case one has six symmetry generators, one would
naively expect that the generalized momentum space be a six dimensional manifold, given
that in the (1+1) case the dimensionality of the manifold corresponds to the number of
symmetry generators. Instead, we demonstrated the emergence of a five-dimensional orbit
under the action of G∗Λ. The reason for this is the completely different role that the dual
rotation (R, θ) plays with respect to the dual boosts (Li, χi), both in the coproduct and
in the action (5.51). In particular, it is immediate to check that the isotropy subgroup
of the point (0, 0, 0, 0, 0, 1) is just the one given by G∗0 = exp (θρ(R)). Therefore, the
full momentum space for the κ-dS algebra in (2+1) dimensions is the six-dimensional
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manifold MdS5 × S1, where the rotation coordinate θ is the one parametrizing S1 while
(pi, χi) parametrize MdS5 .

Secondly, under the identification (5.50) the deformed Casimir is written as the fol-
lowing function on the generalized momentum space:

Cκ =2κ2
[
cosh(p0/κ) cos(

√
Λθ/κ)− 1

]
−

− ep0/κ
(
p2

1 + p2
2 − Λ(χ2

1 + χ2
2)
)

cos(
√

Λθ/κ)− 2 Λ ep0/κ sin(
√

Λθ/κ)√
Λ

R3,
(5.53)

which involves all the translation and Lorentz momenta. Nevertheless, if we specialize this
function onto the five-dimensional orbit MdS5 by taking the S1 coordinate θ = 0, we get

Cκ = 2κ2 [cosh(p0/κ)− 1]− ep0/κ
(
p2

1 + p2
2 − Λ(χ2

1 + χ2
2)
)
, (5.54)

which is an on-shell relation that is just a higher dimensional generalization of the one
obtained in the (1+1) κ-dS case, (5.40). In this way, the striking equivalence between
the role played by the momenta associated to space translations and boosts is manifestly
shown.

Finally, the (2+1) κ-Poincaré construction is again straightforwardly recovered in the
limit Λ → 0, where the action (5.51) provides S3 = S4 = 0 and the representation (5.47)
is only defined for {X0, X1, X2}, thus giving rise to (half of) a (2+1) dS space as an
orbit under the action of the corresponding three-dimensional dual group. Summarizing,
in (2+1) dimensions the momentum space for κ-dS is found to be the six-dimensional
manifold MdS5×S1, while its κ-Poincaré limit was known to be the three-dimensional one
MdS3 .

5.4 Curved momentum spaces in (3+1) dimensions

In the previous section we have presented the construction of the curved momentum space
corresponding to the (1+1) and (2+1)-dimensional κ-(A)dS quantum algebra, which was
presented in [145]. However, the curved momentum space corresponding to the (3+1)
κ-(A)dS quantum algebra [62, 74, 75, 76] deserves further attention, since completely new
features arise when the cosmological constant Λ 6= 0, while for the vanishing cosmological
constant the construction is completely analogous.

5.4.1 The (3+1) κ-(A)dS momentum space

By mimicking the procedure used in the previous Sections, the first step for the construc-
tion of the curved momentum spaces of the κ-(A)dS algebras is to obtain the cocommutator
map δ associated to the κ-deformed coproduct map with non-vanishing cosmological con-
stant. This can be found by extracting the first order deformation in 1/κ of the coproduct
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(4.42)-(4.44), which has a skew-symmetric part given by [114]

δ(P0) = 0, δ(J3) = 0,

δ(J1) =
1

κ

√
−ΛJ1 ∧ J3, δ(J2) =

1

κ

√
−ΛJ2 ∧ J3,

δ(P1) =
1

κ

(
P1 ∧ P0 + ΛJ2 ∧K3 − ΛJ3 ∧K2 +

√
−ΛJ1 ∧ P3

)
,

δ(P2) =
1

κ

(
P2 ∧ P0 + ΛJ3 ∧K1 − ΛJ1 ∧K3 +

√
−ΛJ2 ∧ P3

)
,

δ(P3) =
1

κ

(
P3 ∧ P0 + ΛJ1 ∧K2 − ΛJ2 ∧K1 −

√
−ΛJ1 ∧ P1 −

√
−ΛJ2 ∧ P2

)
, (5.55)

δ(K1) =
1

κ

(
K1 ∧ P0 + J2 ∧ P3 − J3 ∧ P2 +

√
−ΛJ1 ∧K3

)
,

δ(K2) =
1

κ

(
K2 ∧ P0 + J3 ∧ P1 − J1 ∧ P3 +

√
−ΛJ2 ∧K3

)
,

δ(K3) =
1

κ

(
K3 ∧ P0 + J1 ∧ P2 − J2 ∧ P1 −

√
−ΛJ1 ∧K1 −

√
−ΛJ2 ∧K2

)
.

This expression is just (4.36) whit η =
√
−Λ. The differences between the (A)dS and

Poicaré deformations leave their traces in the cocommutator map. In particular, we stress
that δ(P ) and δ(K) are structurally similar when Λ 6= 0, and δ(P ) does not close a sub-
Lie bialgebra since it includes the full Lorentz sector. As a consequence, the main idea
introduced in the previous Sections for the construction of curved momentum spaces for
the κ-(A)dS algebras in (2+1) dimensions becomes fully applicable: when Λ 6= 0 the
momentum space has to be enlarged by including the angular momenta associated to the
rotation symmetries and the ‘hyperbolic’ momenta associated to boosts.

This means that the momentum space arises as the orbit of an appropriate action of
the dual Poisson-Lie group G∗Λ, whose Lie algebra g∗Λ is obtained by dualizing δ. In terms
of an algebraic basis for g∗Λ denoted by {X0, X1, X2, X3, L1, L2, L3, R1, R2, R3} such that

〈Xα, Pβ〉 = δαβ , 〈La,Kb〉 = δab , 〈Ra, Ja〉 = δab , (5.56)

the commutation relations for g∗Λ read[
R1, R2

]
= 0,

[
R1, R3

]
= 1

κ

√
−ΛR1,

[
R2, R3

]
= 1

κ

√
−ΛR2,[

R1, X1
]

= − 1
κ

√
−ΛX3,

[
R1, X2

]
= 1

κL
3,

[
R1, X3

]
= − 1

κ(L2 −
√
−ΛX1),[

R2, X1
]

= − 1
κL

3,
[
R2, X2

]
= − 1

κ

√
−ΛX3,

[
R2, X3

]
= 1

κ(L1 +
√
−ΛX2),[

R3, X1
]

= 1
κL

2,
[
R3, X2

]
= − 1

κL
1,

[
R3, X3

]
= 0,[

R1, L1
]

= − 1
κ

√
−ΛL3,

[
R1, L2

]
= 1

κΛX3,
[
R1, L3

]
= 1

κ(
√
−ΛL1 − ΛX2),[

R2, L1
]

= − 1
κΛX3,

[
R2, L2

]
= − 1

κ

√
−ΛL3,

[
R2, L3

]
= 1

κ(
√
−ΛL2 + ΛX1),[

R3, L1
]

= 1
κΛX2,

[
R3, L2

]
= − 1

κΛX1,
[
R3, L3

]
= 0,[

La, X0
]

= 1
κL

a,
[
La,Kb

]
= 0,

[
La, Xb

]
= 0,[

Xa, X0
]

= 1
κX

a,
[
Xa, Xb

]
= 0,

[
X0, Ra

]
= 0 .

(5.57)
From these expressions it is easy to see that in g∗Λ there exists a seven-dimensional solvable
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Lie subalgebra generated by

[X0, Xa] = −1

κ
Xa, [X0, La] = −1

κ
La, [Xa, Lb] = 0, [Xa, Xb] = 0, [La, Lb] = 0.

(5.58)
This subalgebra is Λ–independent, and the dual of the rotation sector generates a three-
dimensional solvable subgroup

[
R1, R2

]
= 0,

[
R1, R3

]
=

1

κ

√
−ΛR1,

[
R2, R3

]
=

1

κ

√
−ΛR2 . (5.59)

In the limit Λ→ 0 this turns out to be abelian, which is the dual counterpart of the fact
that limΛ→0 ∆κ(Ja) = Ja ⊗ 1 + 1⊗ Ja.

We stress that first order in η =
√
−Λ noncommutative κ-(A)dS spacetime (4.62)

would be given by the dual of the translations sector, namely

[X0, Xa] = −1

κ
X̂a, [Xa, Xb] = 0. (5.60)

This is indeed Λ-independent but, as shown in the previous Chapter, when the all-orders
quantum group is computed, the quantum space-time with non-vanishing Λ is a nonlinear
algebra whose higher order contributions explicitly depend on the cosmological constant.

The κ-AdS curved momentum space

In the sequel we separately analyze the κ-AdS and κ-dS dual Poisson-Lie groups and
construct the associated momentum spaces, since their geometric properties are different.
A matrix representation ρ for the Lie algebra (5.57) when Λ < 0 can be found to be

ρ(Q) =
∑
α

pαρ(Xα) +
∑
a

χa L
a +

∑
a

θaR
a =

=
1

κ



0 p1 p2 p3 −
√
−Λχ1

√
−Λχ2

√
−Λχ3 p0

p1 0 0
√
−Λθ2 0 −

√
−Λθ3

√
−Λθ1 p1

p2 0 0
√
−Λθ1 −

√
−Λθ3 0 −

√
−Λθ2 p2

p3 −
√
−Λθ2 −

√
−Λθ1 0

√
−Λθ1

√
−Λθ2 0 p3√

−Λχ1 0 −
√
−Λθ3

√
−Λθ1 0 0 0

√
−Λχ1

−
√
−Λχ2 −

√
−Λθ3 0

√
−Λθ2 0 0

√
−Λθ1 −

√
−Λχ2

−
√
−Λχ3

√
−Λθ1 −

√
−Λθ2 0

√
−Λθ2 −

√
−Λθ1 0 −

√
−Λχ3

p0 −p1 −p2 −p3

√
−Λχ1 −

√
−Λχ2 −

√
−Λχ3 0


(5.61)

If we denote as {pα, pa, χa, θa, } the local dual group coordinates that correspond, re-
spectively, to {Xα, La, Ra}, a representation of the Lie group G∗Λ can be explicitly obtained
as:

G∗Λ(θ, p, χ) = eθ3D(R3)eθ2D(R2)eθ1D(R1)ep1D(X1)ep2D(X2)ep3D(X3)×

× eχ1D(L1)eχ2D(L2)eχ3D(L3)ep0D(X0).
(5.62)
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Moreover, a long but straightforward computation shows that if we multiply two G∗Λ
elements:

G∗Λ(θ′′, p′′, χ′′) = G∗Λ(θ, p, χ) ·G∗Λ(θ′, p′, χ′), (5.63)

the group law

θ′′ = f(θ, θ′, p, p′, χ, χ′), p′′ = g(θ, θ′, p, p′, χ, χ′), χ′′ = h(θ, θ′, p, p′, χ, χ′), (5.64)

can be explicitly obtained and it can be exactly written as the coproduct (4.42)-(4.44) for
Λ > 0, provided the identification

θa ≡ Ja, pα ≡ Pα, χa ≡ Ka, (5.65)

is assumed and by following the convention (5.9).

Now, the κ-AdS momentum space can be constructed by considering the left action
of the group element G∗Λ(θ, p, χ) on an 8-dimensional ambient space. The points that
can be reached from the origin O ≡ (0, 0, 0, 0, 0, 0, 0, 1) under such action are those with
coordinates (S0, S1, S2, S3, S4, S5, S6, S7) given by:

G∗Λ · (0, 0, 0, 0, 0, 0, 0, 1)T = (S0, S1, S2, S3, S4, S5, S6, S7)T . (5.66)

These can explicitly be written as:

S0 = sinh(p0/κ) +
1

2κ2
ep0/κ

(
p2 + Λχ2

)
,

S1 = A
(
p1 B

+
21 +

√
−Λ

(
C + χ2 B

−
21

))
,

S2 = A
(
p2 B

+
12 +

√
−Λ

(
D − χ1 B

−
12

))
,

S3 =
ep0/κ

κ

(
p3 − z

√
−Λ

(
θ1 p1 + θ2 p2 +

√
−Λ (θ1 χ2 − θ2 χ1)

))
,

S4 = A
(
−p2 B

−
21 +

√
−Λ

(
D + χ1 B

+
21

))
, (5.67)

S5 = A
(
−p1 B

−
12 +

√
−Λ

(
C − χ2 B

+
12

))
,

S6 = −
√
−Λ ep0/κ

κ

(
χ3 − z

(
θ2 p1 − θ1 p2 +

√
−Λ (θ1 χ1 + θ2 χ2)

))
,

S7 = cosh(p0/κ)− 1

2κ2
ep0/κ

(
p2 + Λχ2

)
,

where we have defined:

A =
1

2κ
e(p0−θ3

√
−Λ)/κ,

B±ij = − Λ

κ2
(θ2
i − θ2

j ) + e2
√
−Λθ3/κ ± 1, i ∈ {1, 2}, (5.68)

C =
2

κ

(
θ2

√
−Λ

(
θ1

κ

(
−p2 +

√
−Λ χ1

)
− χ3

)
+ θ1 p3

)
,

D =
2

κ

(
θ1

√
−Λ

(
θ2

κ

(
−p1 −

√
−Λ χ2

)
+ χ3

)
+ θ2 p3

)
.
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Note that, when evaluated at (θ1, θ2, θ3) = (0, 0, 0), the last four functions give A →
1

2κe
p0/κ, B+

ij → 2, B−ij → 0, C → 0 and D → 0.

We would like to stress that the Λ→ 0 limit of these expressions makes S4, S5 and S6

vanish, and for the remaining ambient coordinates we get exactly the κ-Poincaré curved
momentum space (5.12). In other words, this means that for Λ = 0 the matrix (5.62)
is a reducible representation of the dual κ-Poincaré group, which is consistent with the
fact that the ambient space has been enlarged when the cosmological constant has been
introduced.

From (5.67) we can deduce the geometrical properties of the κ-AdS momentum space.
In fact, it is straightforward to check that the following relations hold:

− S2
0 + S2

1 + S2
2 + S2

3 − S2
4 − S2

5 − S2
6 + S2

7 = 1, S0 + S7 = ep0/κ > 0. (5.69)

This means that, if we consider an R4,4 ambient space, the κ-AdS momentum space is
(half of a) SO(4, 4) quadric. From the expressions (5.67) it is also straightforward to check
that the subgroup of dual rotations,

G0 = eθ3D(R3)eθ2D(R2)eθ1D(R1) , (5.70)

leaves the pointO invariant. The action of the remaining 7-parameter subgroup (generated
by the Lie subalgebra (5.58)) is obtained by evaluating (5.67) at (θ1, θ2, θ3) = (0, 0, 0):

S0 = sinh(p0/κ) +
1

2κ2
ep0/κ

(
p2 + Λχ2

)
,

S1 =
p1

κ
ep0/κ,

S2 =
p2

κ
ep0/κ,

S3 =
p3

κ
ep0/κ,

S4 =

√
−Λχ1

κ
ep0/κ, (5.71)

S5 = −
√
−Λχ2

κ
ep0/κ,

S6 = −
√
−Λχ3

κ
ep0/κ,

S7 = cosh(p0/κ)− 1

2κ2
ep0/κ

(
p2 + Λχ2

)
.

These expressions encode the essential information concerning the non-vanishing cosmo-
logical constant generalization of (5.12), since dual rotations leave the point O invariant.
Therefore, we can think of the κ-AdS momentum space (5.69) as the 7-dimensional orbit
in R4,4 that can be parametrized through (5.71) in terms of the dual translation and boost
coordinates, while the dual rotation coordinates θ do not play any role in the description
of the curved momentum space.

We recall that the deformed Poisson brackets for the κ-AdS algebra would be (4.45)
for Λ < 0, and (5.65) allows them to be interpreted as a Poisson–Lie structure on the



5.4. CURVED MOMENTUM SPACES IN (3+1) DIMENSIONS 141

dual Lie group G∗Λ for which the multiplication on G∗Λ (i.e. the coproduct (4.42)-(4.44) for
the κ-AdS algebra) is a Poisson map. If we now apply the identification (5.65) onto the
deformed Casimir function (4.46) and afterwards we project it onto the curved momentum
space parametrized by the p and χ coordinates by setting θi → 0, we obtain

Cκ = 2κ2 (cosh(p0/κ)− 1)− ep0/κ
(
p2 − Λχ2

)
, (5.72)

which could be considered as the deformed dispersion relation that corresponds to the
(3+1) κ-AdS momentum space.

The κ-dS curved momentum space

As it could be expected, if we apply the construction presented in the previous Section to
the case Λ > 0 we obtain the same kind of geometric construction for the κ-dS momentum
space, that should generalize the (2+1) results presented in the previous Section. The only
aspect we have to be careful about is the appearance of complex quantities when Λ > 0,
due to the presence of

√
−Λ in some of the expressions (for instance, see (5.55)). This is

not a major obstacle to the construction of the momentum space, since, as we are going to
show, all the complex contributions are linked to the dual of the rotation subgroup, which
is again the isotropy subgroup of the origin of the momentum space. So they disappear
when we consider the projection to the submanifold parametrized by momenta and boost
coordinates.

The matrix representation of the algebra (5.57) when Λ > 0 is to be

Q = p0X
0 + p1X

1 + p2X
2 + p3X

3 + χ1L
1 + χ2L

2 + χ3L
3 + θ1T

1 + θ2R
2 + θ3R

3 =

= z



0 p1 p2 p3

√
Λχ1

√
Λχ2

√
Λχ3 p0

p1 0 0 i
√

Λθ1 0 −
√

Λθ3

√
Λθ2 p1

p2 0 0 i
√

Λθ2

√
Λθ3 0 −

√
Λθ1 p2

p3 −i
√

Λθ1 −i
√

Λθ2 0 −
√

Λθ2

√
Λθ1 0 p3√

Λχ1 0 −
√

Λθ3

√
Λθ2 0 0 i

√
Λθ1

√
Λχ1√

Λχ2

√
Λθ3 0 −

√
Λθ1 0 0 i

√
Λθ2

√
Λχ2√

Λχ3 −
√

Λθ2

√
Λθ1 0 −i

√
Λθ1 −i

√
Λθ2 0

√
Λχ3

p0 −p1 −p2 −p3

√
Λχ1

√
Λχ2

√
Λχ3 0


(5.73)

Again, the left linear action of (5.62) onto the point O = (0, 0, 0, 0, 0, 0, 0, 1) gives rise
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to an orbit whose points have ambient coordinates in R1,7 given by:

S0 = sinh(p0/κ) +
1

2κ2
ep0/κ

(
p̄2 + Λχ̄2

)
,

S1 = A
(
p1 B

+
21 + i

√
Λ
(
C + χ2 B

−
21

))
,

S2 = A
(
p2 B

+
12 + i

√
Λ
(
D − χ1 B

−
12

))
,

S3 =
1

κ
ep0/κ

(
p3 − i

√
Λ

κ

(
θ1 p1 + θ2 p2 + i

√
Λ (θ1 χ2 − θ2 χ1)

))
,

S4 = A
(
i p2 B

−
21 +

√
Λ
(
D + χ1 B

+
21

))
, (5.74)

S5 = A
(
−i p1 B

−
12 −

√
Λ
(
C − χ2 B

+
12

))
,

S6 =
√

Λ z ep0/κ

(
χ3 −

1

κ

(
θ2 p1 − θ1 p2 + i

√
Λ (θ1 χ1 + θ2 χ2)

))
,

S7 = cosh(p0/κ)− 1

2κ2
ep0/κ

(
p̄2 + Λχ̄2

)
,

where A,B±ij , C,D are the same functions appearing in (5.68). It is straightforward to
check that such coordinates obey the constraints:

− S2
0 + S2

1 + S2
2 + S2

3 + S2
4 + S2

5 + S2
6 + S2

7 = 1, S0 + S7 = ep0/κ > 0, (5.75)

so that we obtain (half of) the (6+1) dS space as the curved momentum space for the
κ-dS quantum algebra.

Again, the isotropy subgroup forO is generated by the subgroup of dual rotations (5.70),
and each point of the curved momentum space can be charaterized by the seven momenta
and rapidities by evaluating (5.74) at (θ1, θ2, θ3) = (0, 0, 0):

S0 = sinh(p0/κ) +
1

2κ2
ep0/κ

(
p̄2 + Λχ̄2

)
,

S1 =
p1

κ
ep0/κ,

S2 =
p2

κ
ep0/κ,

S3 =
p3

κ
ep0/κ,

S4 =

√
Λχ1

κ
ep0/κ, (5.76)

S5 =

√
Λχ2

κ
ep0/κ,

S6 =

√
Λχ3

κ
ep0/κ,

S7 = cosh(p0/κ)− 1

2κ2
ep0/κ

(
p̄2 + Λχ̄2

)
.

Note that these ambient space coordinates (5.76) are all real, since all the complex con-
tributions in (5.74) are linked to the action of the dual rotation subgroup.
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Finally, the projection of the deformed Casimir onto the curved momentum space
reads:

Cκ = 2κ2 [cosh(p0/κ)− 1]− ep0/κ
(
p̄2 − Λχ̄2

)
, (5.77)

which can be interpreted as the dispersion relation for the Λ > 0 case. Also, the Λ →
0 Poincaré limit of all of these expressions is straightforward, and leads to the results
presented in §5.1.

5.5 Remarks

As mentioned in the Introduction, deformed special relativity (DSR) theories are char-
acterized by the presence of an energy scale that plays the role of a second relativistic
invariant besides the speed of light. Such an energy scale allows the geometry of momen-
tum space to be nontrivial, and in fact it is a general feature of DSR models that the
manifold of momenta has nonzero curvature.

In this Chapter we have shown that the curved momentum space construction can be
extended to cases where also a non-vanishing spacetime cosmological constant is present.
We explored in particular the momentum space of the κ-deformation of the (A)dS algebra,
and we showed that a curved generalized-momentum space can be constructed, that in-
cludes not only the momenta associated to spacetime translations but also the hyperbolic
momenta associated to boost transformations. The procedure is an adaptation of the one
that was successfully used to show that the momentum space of the κ-Poincaré algebra
has the geometry of (half of) a dS manifold and is generated by the orbits of the dual
Poisson-Lie group. The construction here presented can be applied to any other Hopf
algebra deformation of kinematical symmetries with non-vanishing Λ, although the orbit
structure of the momentum space so obtained will indeed depend on the chosen quantum
deformation.

The construction in (1+1) dimensions is quite straightforward once one realizes that
the boosts and spatial translations play a very similar role in the structure of the algebra
and coalgebra. We indeed found that the generalized-momentum manifold is a (2+1)-
dimensional dS manifold, whose coordinates are the local group coordinates associated to
spacetime translations and boosts.

The situation in (2+1) dimensions is more intricate, due to the presence of a rota-
tion generator in the algebra, that significantly complicates its structure. However the
rotation generator has a peculiar role in the structure of the algebra and coalgebra, while
boosts still behave similarly to spatial translations. We were indeed able to construct the
generalized momentum space of the (2+1) κ-dS algebra whose coordinates are the local
group coordinates associated to spacetime translations and boosts, and we showed that
this is half of a (4+1)-dimensional dS manifold, for which the dual rotation generates the
isotropy subgroup of the origin.

It is worth mentioning that the formalism here presented, in which Λ is considered as
an explicit ‘classical’ deformation parameter (and this fact is connected with the so-called
‘semidualization’ approaches in (2+1) quantum gravity [159, 224]), suggests the possibility
of performing the same construction of the generalized momentum space for the κ-AdS
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(Anti de Sitter) algebra by taking Λ < 0. It turns out that one can indeed work out fully
the κ-AdS counterpart of the results described above. The main difference between the
κ-dS and κ-AdS cases arises from the dual group representation (5.47), which has to be
modified in the Λ < 0 case in order to have a real representation of the corresponding
dual Lie group G∗Λ. The latter can be explicitly constructed and leads to an action on the
point (0, 0, 0, 0, 0, 1) that generates the quadric

− S2
0 + S2

1 + S2
2 − S2

3 − S2
4 + S2

5 = 1, (5.78)

which is no longer the MdS5 momentum space, but a pseudosphere. Nevertheless, the
Λ → 0 limit of this action annihilates the S3 and S4 coordinates, thus giving rise to the
same κ-Poincaré limit as the one previously obtained from the κ-dS algebra, as it should
be. This analysis provides the first example where quantum effects do not produce a
momentum space with dS geometry, but something different - we found that the κ-AdS
algebra has a momentum manifold with SO(3, 3) invariance.

Going from the (2+1)-dimensional case to the one with (3+1) dimensions entails deal-
ing with a deformed rotation sector, which is still classical in lower dimensional models.
Specifically, the coalgebra of the rotations is modified in (3+1) dimensions, in such a way
that one of the rotation generators takes a special role compared to the others (see Chapter
4). This might raise worries that the model breaks spatial isotropy. However, just as the
deformed boost transformations do not break relativistic invariance, but simply deform
the laws of transformation between inertial frames, the deformed rotations could imply
that the concept of isotropy has to be adapted to fit within the new transformation rules.
What the observational consequences of this deformed isotropy could be is still a matter
of investigation.

Despite these novel features, the analysis of the generalized momentum space of the κ-
dS algebra in (3+1) dimensions led to a higher dimensional version of the results for (1+1)
and (2+1) dimensions: the momentum space is half of a 6 + 1-dimensional dS manifold
and the rotations are the isotropy group of its origin. The lower-dimensional results are
recovered via canonical projection from this construction.

Finally, we generalized our construction to the case of the κ-AdS algebra, which can
be defined starting from the κ-dS algebra and changing the sign to the cosmological con-
stant parameter. While the difference between the two models is minimal at the level
of the algebra and coalgebra, we found that the momentum space is characterized by a
qualitatively different geometry. This is because the change of sign of the cosmological
constant produces the appearance of complex quantities due to the presence of

√
−Λ fac-

tors. This (3+1)-dimensional case confirms the results for (2+1) dimensions, in the sense
that the κ-AdS algebra has a momentum manifold with SO(4, 4) invariance, confirming
that quantum deformation effects do not necessarily produce a momentum space with dS
geometry, as it seemed to be in the literature available so far.



Chapter 6

Poisson Minkowski spacetimes
from Drinfel’d doubles

The two preceding chapters of this Thesis have been devoted to the κ-(A)dS deformation.
Let us now change our point of view and consider different deformations. Among all the
possible different deformations of the isometry groups of maximally symmetric spacetimes
of constant curvature, the ones coming from Drinfel’d double structures of these groups
are specially interesting, because they provide quasitriangular r-matrices compatible with
the Fock-Rosly approach to quantization of (2 + 1)-gravity [48, 110].

In this Chapter we present all the possible different Drinfel’d double (DD) structures
for the Poincaré and Euclidean Lie groups, and we show that the plurality of DD struc-
tures for the Poincaré group is completely lost when considering the Euclidean group
instead. In fact, we will show how whereas there are eight non-isomorphic DD structures
for the Poincaré Lie group, there is only one for the Euclidean group. Moreover, the only
DD structure for the Euclidean group is the trivial one, whose existence is guaranteed
from the semi-direct product structure (see Chapter 3). In addition, we also study the
centrally extended (1 + 1)-Poincaré group and we find that it posses two non-isomorphic
DD structures.

The corresponding analysis for the other two Lorentzian groups (dS and (A)dS) was
performed in [110], and we will also study here the corresponding contraction procedure,
leading to Poincaré and Euclidean structures. In addition to that, we will obtain the
quasitriangular r-matrix associated to any of this DD structures and wee will construct
their associated noncommutative spacetimes.

With all the above in mind, the main objectives of this Chapter are:

• Firstly, to fill the gap concerning Lorentzian DD structures by constructing explicitly
the full set of DD structures for the (2+1)-dimensional Poincaré group. This will be
based on the classifications given in [225] and [226], and thus completing in this way
the previous works [110, 109, 112, 111] in which all the DD structures for the (2+1)
(anti-)de Sitter Lie algebras have been presented. The connection between the latter
results and the Poincaré DD structures here presented will also be analysed through
Lie bialgebra contraction techniques.

145
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• To construct the Poisson Minkowski spacetimes corresponding to the five coisotropic
Lie bialgebras that come from the Poincaré DD structures that we have previously
obtained. Two of them will be of Poisson subgroup type, and the features of their
associated noncommutative Minkowski spacetimes will be analysed.

• To address the (1+1)-dimensional case by enlarging the (1+1) Poincaré algebra
with a (non-trivial) central generator in order to have an extended even-dimensional
Lie algebra. Surprisingly enough, this extended algebra can be endowed with two
different DD structures, whose Poisson Minkowski spacetimes are also constructed.
This completes the study of DDs for the Poincaré group, since it is well-known
that in (3+1) and higher dimensions the Poincaré Lie algebra does not admit any
DD structure due to the lack of a nondegenerate symmetric bilinear form, which is
essential for the definition of an appropriate pairing.

• Finally, to perform a similar analysis for the (2+1)-dimensional Euclidean group,
that could clarify the differences of Euclidean and Lorentzian theories in which DD
structures play a prominent role, as it is the case for (2+1) gravity.

The structure of the Chapter is as follows: in §6.1 we present the trivial DD structure
D(sl(2,R)) and its associated PHS. In §6.2 we introduce the eight non-isomorphic DD
structures for g2+1

0 = p(2 + 1), while in §6.3 study each of these DD structures together
with their respective PHS. In §6.4 we study the contraction of the DD r-matrices previously
obtained from the ones for the DD structure of the (A)dS groups. The analogous analysis
is performed in §6.5 for the case of the extended (1+1)-Poincaré group. In §6.6 we study
the DD structure for the (2+1) Euclidean group, and in §6.7 the contraction of r-matrices
from the ones coming from DD structures for the isometry group of the group of isometries
of the hyperbolic space is performed. In §6.8 we construct all the Euclidean PHS from the
classification in Appendix A and identify the one coming from a DD structure. Finally,
we conclude with some remarks in §6.9. All these new results are contained in the papers
[169, 170].

6.1 The (2+1) Poincaré algebra as D(sl(2,R))

To the best of our knowledge, the only DD structure for the (2+1) Poincaré algebra
g2+1

0 ≡ p(2 + 1) that has been studied so far in the literature is the ‘trivial’ one, i.e. the
one that comes from the trivial (δ = 0) Lie bialgebra structure of the three-dimensional
sl(2,R) ' so(2, 1) algebra [112, 123] (for its Euclidean counterpart coming from su(2) see
[159, 227, 228, 229]).

Let us write down explictly the (2+1) Poincaré Lie algebra g2+1
0 , which is the particular

case Λ = 0 of (2.79), with commutators given by

[J, Pa] = εabPb, [J,Ka] = εabKb, [J, P0] = 0,

[Ka, Pb] = δabP0, [Ka, P0] = Pa, [K1,K2] = −J,
[P0, Pa] = 0, [P1, P2] = 0,

(6.1)
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The two quadratic Casimir elements for this algebra are

C1 = P 2
0 − P 2

1 − P 2
2 , C2 = 1

2

(
J P0 + P0 J +K2 P1 + P1K2 − (K1 P2 + P2K1)

)
, (6.2)

where C1 = C (2.80) and C2 =W (2.81) written in a symmetric form.

It is well-known that all the Lie bialgebra structures for the (2+1) Poincaré algebra
g2+1

0 are coboundary ones [230]. The complete classification of nonisomorphic classes of
r-matrices for p(2 + 1), which is reviewed in Appendix A, is due to Stachura [166] (recall
that the (3+1) classification was done by Zakrzewski in [230]).

In this section we recall the construction in detail of this DD structure, which is usually
called D(sl(2,R)) = D(so(2, 1)), and we will also provide all the technical aspects of the
(2+1) Poincaré group that will be needed in the rest of the Chapter.

6.1.1 The ‘trivial’ Drinfel’d double structure

Let us consider the trivial δ = 0 Lie bialgebra structure for the g = sl(2,R) algebra, which
means that g∗ is the three-dimensional abelian algebra. If we take the following basis for
sl(2,R)

[Y0, Y1] = 2Y1, [Y0, Y2] = −2Y2, [Y1, Y2] = Y0, (6.3)

together with a vanishing cocommutator map δ(Yi) = 0, then the DD relations (3.51) lead
to the 6-dimensional Lie algebra a with brackets

[Y0, Y1] = 2Y1, [Y0, Y2] = −2Y2, [Y1, Y2] = Y0,

[y0, y1] = 0, [y0, y2] = 0, [y1, y2] = 0,

[y0, Y0] = 0, [y0, Y1] = y2, [y0, Y2] = −y1,

[y1, Y0] = 2y1, [y1, Y1] = −2y0, [y1, Y2] = 0,

[y2, Y0] = −2y2, [y2, Y1] = 0, [y2, Y2] = 2y0.

(6.4)

The change of basis

J = −1
2(Y1 − Y2), K1 = 1

2(Y1 + Y2), K2 = −1
2Y0,

P0 = y1 − y2, P1 = 2y0, P2 = y1 + y2,
(6.5)

shows that this algebra is isomorphic to the (2+1) Poincaré algebra (6.1), and the canonical
pairing (3.48) for the kinematical generators is given by

〈J, P0〉 = −1, 〈K1, P2〉 = 1, 〈K2, P1〉 = −1, (6.6)

with all other entries equal to zero. Notice that the pairing is directly related with the
Casimir C2 (6.2), and so it is just the bilinear form induced by the Killing-Cartan form
that defines the Lorentzian metric on Minkowski spacetime.

Therefore, p(2 + 1) can be thought of as a DD Lie algebra a, which under the inverse
change of basis

Y0 = −2K2, Y1 = −J +K1, Y2 = J +K1,

y0 = 1
2P1, y1 = 1

2(P0 + P2), y2 = 1
2(−P0 + P2),

(6.7)
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provides the canonical classical r-matrix (3.53):

r =
2∑
i=0

yi ⊗ Yi = −P0 ⊗ J − P1 ⊗K2 + P2 ⊗K1. (6.8)

By adding the tensorised Casimir C2 (6.2), the r-matrix can be skew-symmetrized and
yields

r′ = 1
2(−P0 ∧ J − P1 ∧K2 + P2 ∧K1), (6.9)

which is just Class (IV) in the Stachura classification [166] of (2+1) Poincaré r-matrices
(see (A.11) in Appendix A where the translation of this classification in terms of the
kinematical basis we are using throughout the paper is presented).

The r-matrix (6.9) is composed by three non-commuting twists, and the DD structure
above described induces a quantum Poincaré algebra whose cocommutator map induced
by r′ is given by 3.4.1 and reads

δD(J) = δD(K1) = δD(K2) = 0, (6.10)

δD(P0) = P1 ∧ P2, δD(P1) = P0 ∧ P2, δD(P2) = P1 ∧ P0. (6.11)

Consequently, the corresponding quantum Poincaré algebra for which δD(J) gives the
first order deformation will have a non-deformed coproduct for the Lorentz sector, and
the quantum deformation will be concentrated in the addition law for the translations
sector.

It is also immediate to check that this Lie bialgebra is trivially coisotropic with respect
to the Lorentz subalgebra h = span{J,K1,K2}, since δD(h) = 0 and the Lorentz subgroup
is a (trivial) Poisson subgroup. Therefore, the canonical projection of the PL structure
on P (2 + 1) generated by r′ (6.9) onto the Minkowski spacetime M2+1

0 will give rise to a
Poisson homogeneous Minkowski spacetime of Poisson subgroup type, whose quantisation
will provide the noncommutative spacetime associated with this DD structure.

6.1.2 An so(2, 1) noncommutative Minkowski spacetime

Note that the DD structure presented above is the one associated to the semidirect product
(associated to the coadjoint action of the Lorentz algebra h2+1 ' so(2, 1)) structure for
the Lie algebra p(2 + 1), and so we can apply Theorem 3.7. In this way we know that the
resulting Poisson homogeneous space defined by the Sklyanin bracket for the r-matrix (6.9)
will be Lie algebraic and indeed isomorphic to so(2, 1). It could be also explicitly computed
by projecting the Poisson structure ΠD on the Poincaré group G2+1

0 to Minkowski space
M2+1

0 , as usual. In this way we obtain the Poisson structure ΠD on G2+1
0

{x0, x1} = −x2, {x0, x2} = x1, {x1, x2} = x0, (6.12)

while the remaining Poisson brackets vanish. Hence, the canonical projection of the ΠD

brackets to the spacetime coordinates {x0, x1, x2} gives rise to the Poisson Minkowski
spacetime πD associated with this DD structure. Thus, the relations (6.12) define the
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Poisson Minkowski spacetime (M2+1, πD), which is a Lie-algebraic Poisson spacetime iso-
morphic to the so(2, 1) algebra, as commented before. By construction, this spacetime
is covariant under the co-action defined by the Poincaré group element G2+1

0 (2.114) and
can be straightforwardly quantized, since no ordering ambiguities appear either in the
Poisson bracket (6.12) or in the coproduct induced by the group multiplication of two
G2+1

0 matrix elements. Note also that the Poisson brackets for the Lorentz coordinates
vanish, in accordance with the fact that we have a trivial Lorentz Poisson subgroup with
cocommutator δD(h) = 0.

This DD spacetime, together with its Euclidean E3 counterpart giving rise to an so(3)
algebra, have been previously studied in the literature (see [159, 123, 227, 228, 229]). Both
of them are Lie-algebraic spacetimes, and the representation theory of the corresponding
algebra (so(2, 1) in the M2+1 case and so(3) in the E3 one) characterises their physical
properties. On the other hand, we recall that the very same DD construction applied to
the Drinfel’d-Jimbo Lie bialgebra structure for sl(2,R) was shown in [112] to give rise to
a DD which is isomorphic to the (2+1)-dimensional anti-de Sitter algebra in which the
deformation parameter η defining a non-trivial Lie bialgebra structure δ is related to the
cosmological constant in the form Λ = −η2.

6.2 Nonisomorphic Drinfel’d double structures for p(2 + 1)

The DD structure studied in the previous section is by no means the unique one, and
the three following sections will be devoted to the other seven DD structures that can be
found for the (2+1) Poincaré algebra, together with their associated Poisson Minkowski
spacetimes. The existence of all these DD structures can be traced back to the work [225],
where all the non-isomorphic three-dimensional real Lie bialgebra structures are classi-
fied, and to [226] where all six-dimensional non-isomorphic real DD structures were also
classified.

In the notation from [225] we will be interested in the Lie bialgebra structures for three-
dimensional real Lie algebras whose double Lie algebra a is isomorphic to so(2, 1)nad∗R3 '
p(2 + 1). There the cocommutator δ (3.50) for each three-dimensional Lie bialgebra is
given by a classical r-matrix (which is denoted by χ) for a given three-dimensional real
Lie algebra g, plus a non-coboundary contribution to the cocommutator which is denoted
by δ̃, namely

δ(ea) = [1⊗ ea + ea ⊗ 1, χ] + δ̃(ea), a = 0, 1, 2. (6.13)

In this notation, the DD structure described in the previous section (which is not included
in [225] since the cases with trivial three-dimensional cocommutator are not considered)
would be of the form (g, g∗) = (sl2,Abelian3) with χ = 0, δ̃ = 0. Also, this case would
correspond in [226] to the DD denoted as (8|1), and in the rest of the Chapter we will call
it ‘Case 0’.

A very careful inspection and comparison of both classifications leads to the following
seven additional non-trivial three-dimensional Lie bialgebra structures having p(2 + 1) as
double Lie algebra:
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• Case 1: (g, g∗) = (r3(1), sl2) with χ = αe0 ∧ e1, δ̃(e1) = e0 ∧ e2 (which corresponds
to Nr. (3) from [225] and f(8|5.iii) from [226], where the notation f() denotes the
dual DD structure).

• Case 2: (g, g∗) = (r3(1), n3) with χ = 0, δ̃(e1) = e0 ∧ e2 (Nr. 10 from [225] and
(5|2.ii) from [226]).

• Case 3: (g, g∗) = (r′3(1), n3) with χ = 0, δ̃(e2) = λe0 ∧ e1 (Nr. 13 from [225] and
(4|2.iii|b) from [226]). Note that in [225] there is a misprint stating that δ̃(e1) =
λe0 ∧ e2.

• Case 4: (g, g∗) = (s3(0), r′3(1)) with χ = αe0 ∧ e1, δ̃(e0) = λe1 ∧ e2 (Nr. (14’) from
[225] and (70|4|b) from [226]).

• Case 5: (g, g∗) = (r′3(1), r3(−1)) with χ = ωe1∧e2, δ̃(e2) = λe0∧e1 (ωλ > 0) (Nr. 14
from [225] and f(60|4.i|b) from [226]). Note that in [225] there is a misprint stating
that δ̃(e1) = λe0 ∧ e2.

• Case 6: (g, g∗) = (r3(1), r3(−1)) with χ = ωe1 ∧ e2 (ω > 0), δ̃(e1) = e0 ∧ e2 (Nr. 11
from [225] and f(60|5.i) from [226]).

• Case 7: (g, g∗) = (s3(0), r3(1)) with χ = e0 ∧ e1, δ̃ = 0 (Nr. (11’) from [225] and
(70|5.i) from [226]).

Thus, we have in total eight different DD structures whose commutation rules are
displayed in Table 6.1. Notice that the double constructed from (g, g∗) is always isomor-
phic to the one arising from (g∗, g). These eight DD structures for the (2+1) Poincaré
algebra are nonisomorphic in the sense that for any pair of them there does not exist an
algebra isomorphism that leaves the pairing (3.48) (and, therefore, the canonical classical
r-matrix (3.53)) invariant. In the following section we will write all these DD structures in
the kinematical basis (6.1), where the expression of each canonical r-matrix will be differ-
ent, and will fall into a given class within the Stachura classification described in Appendix
A. This reflects the fact that the inequivalence of 6-dimensional DD structures is translated
into the inequivalence of the associated three-dimensional Lie bialgebra structures.

6.3 Drinfel’d double Poincaré r-matrices and Poisson Minkowski
spacetimes

In the sequel we present, for each DD structure of the (2+1) Poincaré group given in
Table 6.1, an invertible transformation to the kinematical basis (6.1) in which the canon-
ical quasitriangular r-matrix (3.53) is given. Also, the Poisson homogeneous Minkowski
spacetime arising from the DD r-matrices is explicitly computed for the five cases in which
the Lie bialgebra is coisotropic with respect to the Lorentz subalgebra.
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Table 6.1: The eigth non-equivalent DD Lie algebras which are isomorphic to the (2+1) Poincaré
algebra. The parameter ω can be rescaled to any non-zero real number of the same sign, while λ
is an essential parameter different from zero. In Case 5 they must obey ωλ > 0. In Case 6 we have
ω > 0.

Case 0 Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7

[Y0, Y1] 2Y1 Y1 Y1 Y1 −Y2 Y1 Y1 −Y2

[Y0, Y2] −2Y2 Y2 Y2 Y1 + Y2 Y1 Y1 + Y2 Y2 Y1

[Y1, Y2] Y0 0 0 0 0 0 0 0

[y0, y1] 0 y0 0 λy2 0 λy2 0 0

[y0, y2] 0 y1 y1 0 −y0 0 y1 −y0

[y1, y2] 0 y2 0 0 λy0 − y1 2ωy0 2ωy0 −y1

[y0, Y0] 0 −Y1 0 0 −Y2 0 0 Y2

[y0, Y1] y2 −Y2 −Y2 0 λY2 − y2 0 −Y2 0

[y0, Y2] −y1 0 0 −λy1 Y0 − λY1 + y1 −λY1 0 0

[y1, Y0] 2y1 Y0 + y1 y1 y1 + y2 0 −2ωY2 + y1 + y2 −2ωY2 + y1 y2

[y1, Y1] −2y0 −y0 −y0 −y0 −Y2 −y0 −y0 Y2

[y1, Y2] 0 −Y2 0 λY0 − y0 Y1 − y0 λY0 − y0 0 −y0

[y2, Y0] −2y2 y2 y2 y2 0 2ωY1 + y2 2ωY1 + y2 −Y0 − y1

[y2, Y1] 0 Y0 Y0 0 y0 0 Y0 −Y1 + y0

[y2, Y2] 2y0 Y1 − y0 −y0 −y0 0 −y0 −y0 0

6.3.1 Case 1

An isomorphism between the DD Lie algebra and p(2 + 1) in terms of the kinematical
basis (6.1) reads

J = y0 + y1 + y2, K1 = y0 + y1, K2 = −y1 − y2, (6.14)

P0 = y0 + y1 + Y0 − Y1 + Y2, P1 = y0 + y1 + Y0 − Y1, P2 = y0 − Y1 + Y2.

From the canonical pairing (3.48) we get the same (6.6) up to a global sign:

〈J, P0〉 = 1, 〈K1, P2〉 = −1, 〈K2, P1〉 = 1. (6.15)

By inserting the inverse of the basis transformation (6.14) into (3.53), the following clas-
sical r-matrix is found

r1 =
2∑
i=0

yi ⊗ Yi = K1 ∧ J +K1 ∧K2 + J ⊗ P0 +K2 ⊗ P1 −K1 ⊗ P2. (6.16)

And by subtracting the tensorized Casimir C2 (6.2) from (6.16), one obtains the skew-
symmetric r-matrix

r′1 = K1 ∧ J +K1 ∧K2 +
(
−P0 ∧ J − P1 ∧K2 + P2 ∧K1

)
, (6.17)



152 CHAPTER 6. DDS OF THE POINCARÉ AND EUCLIDEAN GROUPS

which is a solution of the modified CYBE, that belongs to Class (I) in [166]. In particular,
if we apply the automorphism given by

J → J, K1 → K1, K2 → K2, Pi →
√

2Pi, i = 0, 1, 2, (6.18)

to r′1, we recover (A.5) with α = 1 (up to a global constant
√

2). The cocommutator
derived from (3.57) is

δD(J) = K2 ∧ J,
δD(K1) = J ∧K1 +K2 ∧K1,

δD(K2) = J ∧K2,

δD(P0) = J ∧ P1 + P2 ∧K1 +K2 ∧ P1 + 2P1 ∧ P2,

δD(P1) = J ∧ P0 +K2 ∧ P0 + P2 ∧K1 + 2P0 ∧ P2,

δD(P2) = P0 ∧K1 +K1 ∧ P1 + 2P1 ∧ P0.

(6.19)

Therefore, from the viewpoint of the construction of Poisson homogeneous Minkowski
spacetimes, the Poincaré deformation induced by r′1 is of Poisson subgroup type, since
δD(h) ⊂ h ∧ h and the Lorentz subalgebra closes a sub-Lie bialgebra structure.

By making use of the results given in [160], the DD r-matrix (6.17) can be thought of
as a particular case of a more general solution of the modified CYBE that contains two
independent real parameters α1, β1, namely

r′1,(α1,β1) = α1 (J ∧K1 +K2 ∧K1) + β1 (P0 ∧ J + P1 ∧K2 +K1 ∧ P2) , (6.20)

although only for the case with α1 = β1 the DD structure is recovered. This embed-
ding allows for a more clear interpretation of the contributions coming from each term of
the r-matrix. In particular, the associated Poisson Minkowski spacetime can be obtained
by computing the Sklyanin bracket for (6.20) and afterwards by projecting to the Pois-
son subalgebra generated by the spacetime coordinates {x0, x1, x2}. A straightforward
computation shows that the final result is

{x0, x1} = −α1x
2(x0 + x1) + 2β1x

2,

{x0, x2} = α1x
1(x0 + x1)− 2β1x

1,

{x1, x2} = α1x
0(x0 + x1)− 2β1x

0,

(6.21)

which is a noncommutative quadratic Poisson Minkowski spacetime, whose linear part is
ruled by the parameter β1 (and is just proportional to the one in Case 0 (6.9)) and comes
from the dual of the cocommutator (6.19). The quadratic part of the bracket comes from
the α1-contribution to the r-matrix, which is a triangular solution of the CYBE (a twist)
of the type considered in [231] in (3+1) dimensions. Moreover, this twist is the one that
generates the non-zero cocommutator for the Lorentz sector, thus being responsible of
the Poisson subgroup structure of the isotropy subgroup. Hence, the Poisson Minkowski
spacetime (6.21) can be regarded as a quadratic generalization of the Lie-algebraic one
(6.12). As it is detailed in the Appendix, note that this is the only r-matrix for p(2 + 1)
having a term living in h∧h. We also remark that the quantization of this Poisson structure
is far from being trivial, due to the ordering problems arising from the quadratic terms.
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6.3.2 Case 2

Now the Lie algebra isomorphism is given by

J = y2 + Y0 + Y1, K1 = −y2 − Y0, K2 = Y0 + Y1, (6.22)

P0 = y0 − y1 − Y2, P1 = −y0 + Y2, P2 = −y0 + y1,

and the canonical pairing is again (6.6). The inverse of the basis transformation into (3.53)
leads to

r2 = P2 ∧ J +K2 ∧ P0 +K2 ∧ P2 + P2 ⊗K1 − P1 ⊗K2 − J ⊗ P0. (6.23)

This r-matrix can be straightforwardly skew-symmetrized through the tensorized Casimir
C2 (6.2) yielding

r′2 = P2 ∧ J − P0 ∧K2 − P2 ∧K2 + 1
2(P0 ∧ J − P1 ∧K2 + P2 ∧K1), (6.24)

and it can be shown to belong to Class (IIa) in [166] by applying the following automor-
phism to r′2

J → −2J −K1 +
√

2K2, P0 → −2
(
2P0 +

√
2P1 + P2

)
,

K1 →
(
1 + 1√

2

)
J +K1 −

(
1 + 1√

2

)
K2, P1 →

(
2−
√

2
)
P0 −

(
2−
√

2
)
P1 + 2P2,

K2 → −
(
1− 1√

2

)
J −K1 −

(
1− 1√

2

)
K2, P2 →

(
2 +
√

2
)
P0 +

(
2 +
√

2
)
P1 + 2P2, (6.25)

which leads to the r-matrix (A.14) with parameters ρ = α = 1 and term a = 0, namely

r′2 = K2 ∧ P0 + J ∧ P1 −K1 ∧ P2. (6.26)

In this form, Case 2 can be clearly interpreted as the superposition of the ‘space-like’
κ-Poincaré deformation [80, 143], coming from the r-matrix K2 ∧ P0 + J ∧ P1, along with
a twist K1 ∧ P2.

Next, by computing δD, it can be shown that this DD structure generates a Poisson
Minkowski spacetime fulfilling the coisotropy condition δD(h) ⊂ h ∧ g. By taking into
account [160], we find that the embedding of (6.24) into a more general solution of the
modified CYBE is given by

r′2,(α2,β2) = α2 (P0 ∧K2 + P2 ∧K2) + β2

(
J ∧ P2 + 1

2 (J ∧ P0 + P1 ∧K2 +K1 ∧ P2)
)
,

(6.27)

with α2, β2 ∈ R (the DD case corresponds to α2 = β2). The Poisson Minkowski spacetime
turns out to be

{x0, x1} = 0, {x0, x2} = −α2

(
x0 − x2

)
, {x1, x2} = −β2

(
x0 − x2

)
, (6.28)

which is linear and thus can be straightforwardly quantized.
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6.3.3 Case 3

The Lie algebra isomorphism reads

J =
1

λ
(y0 + y1)− Y0 + Y2, K1 = − 1

λ
y1 + Y0 − Y1, K2 = − 1

λ
y2 + Y0 − Y2, (6.29)

P0 = y0 + y2 + λY1, P1 = y0 + λY1, P2 = −y0 − y2,

and leads again to (6.15). The DD r-matrix is found to be

r3 =J ∧ P2 +K2 ∧ P0 +K2 ∧ P2 − P2 ⊗K1 + P1 ⊗K2 + J ⊗ P0+

+
1

λ

(
P0 ∧ P1 + 2(P0 ∧ P2 + P2 ∧ P1) + P0 ⊗ P0 − P1 ⊗ P1 − P2 ⊗ P2

)
,

(6.30)

which by making use of the tensorised version of both Casimirs C1 and C2 (6.2) can be
transformed into:

r′3 = −P2 ∧ J − P0 ∧K2 − P2 ∧K2 +
1

2
(−P0 ∧ J + P1 ∧K2 − P2 ∧K1)+

+
1

λ

(
P0 ∧ P1 + 2(P0 ∧ P2 + P2 ∧ P1)

)
.

(6.31)

This r-matrix is shown to belong to Class (IIa) in [166] by applying to r′3 the composition
of the automorphism (6.25) and

J → −J, K1 → −K1, K2 → K2, P0 → P0, P1 → −P1, P2 → P2.
(6.32)

In this way we obtain (A.14) with ρ = α = 1 but now with a term proportional to 1/λ.
Hence the difference between Cases 2 and 3 relies on the 1/λ term, which precludes the
coisotropy condition δD(h) ⊂ h ∧ g to hold since, for instance,

δD(J) = P0 ∧K1 + P1 ∧ J + P1 ∧K2 + P2 ∧K1 +
1

λ
(P0 ∧ P2 + 2P1 ∧ P0). (6.33)

Therefore, this condition is only fulfilled in the limit λ→∞, which leads to the previous
Case 2. Therefore the Poisson Minkowski spacetime for this case will not be constructed.

6.3.4 Case 4

The isomorphism

J = λy0 − Y0, K1 = λy0 + y1 + Y0, K2 = y2 + λY2, (6.34)

P0 = y0 − Y1, P1 = −Y2, P2 = Y1,

leads again to the (2+1) Poincaré algebra with pairing (6.6). The classical r-matrix is
now

r4 = P2 ∧ J − J ⊗ P0 − P1 ⊗K2 + P2 ⊗K1 + λ(P0 ⊗ P0 − P1 ⊗ P1 − P2 ⊗ P2 + P0 ∧ P2),
(6.35)
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which can be fully skew-symmetrized by making use of both Casimirs C1 and C2 (6.2)
yielding

r′4 = P2 ∧ J + 1
2(P0 ∧ J − P1 ∧K2 + P2 ∧K1) + λP0 ∧ P2. (6.36)

This r-matrix belongs to Class (IIIb) in [166], since r′4 turns out to be proportional to the
r-matrix (A.10) with ρ = 1 and term a 6= 0 under the automorphism

J → iK2, K1 → iJ, K2 → −K1, P0 → −iP1, P1 → P2, P2 → iP0.
(6.37)

Again, due to the presence of the non-zero essential parameter λ (i.e., a 6= 0), this case
does not fulfil the coisotropy condition (3.79).

6.3.5 Case 5

Here we have two different subcases due to the constraint ωλ > 0 (see Table 6.1): either
ω > 0 and λ > 0 or ω < 0 and λ < 0. Although the isomorphism is different for each
subcase, we shall show that the resulting r-matrices are the same in both of them.

As stated in [225], ω can be rescaled to any non-zero value of the same sign and λ is
an essential parameter. Therefore, if we set ω = 1/2 and hence λ > 0, the isomorphism is
given by

J =
1√
λ

(−y1 + Y1), K1 = − 1

λ
y0 − Y0, K2 =

1√
λ

(y1 + Y1 − Y2), (6.38)

P0 = −
√
λ (y2 + Y1), P1 = −

√
λ y2, P2 = y0,

and the pairing is (6.15). On the other hand, if ω = −1/2 and λ < 0, then

J = − 1√
−λ

(y1 + Y1), K1 = − 1

λ
y0 − Y0, K2 =

1√
−λ

(y1 − Y1 + Y2), (6.39)

P0 =
√
−λ (y2 − Y1), P1 =

√
−λ y2, P2 = y0,

together with the same pairing (6.15).

Both subcases lead to the same classical r-matrix

r5 = P1 ∧ J − P2 ⊗K1 + P1 ⊗K2 + J ⊗ P0 +
1

λ
(P1 ∧ P0 + P0 ⊗ P0 − P1 ⊗ P1 − P2 ⊗ P2) ,

(6.40)

which, by making use of both Casimirs, can be written in the skew-symmetric form

r′5 = P1 ∧ J +
1

2
(−P0 ∧ J + P1 ∧K2 − P2 ∧K1) +

1

λ
P1 ∧ P0, (6.41)

which is proportional to the r-matrix (A.10) with ρ = −1 and term a 6= 0, so belonging
to Class (IIIb) in [166]. As in Case 4, the parameter λ precludes the coisotropy condition
(3.79) to be satisfied.
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6.3.6 Case 6

As the parameter ω > 0 can be rescaled to any positive real number, hereafter we take
ω = 1/2. An isomorphism between the kinematical basis and the DD one is given by

J = Y1 + y2, K1 = Y0, K2 = y2,

P0 = −y1, P1 = −Y2 + y1, P2 = y0, (6.42)

with pairing (6.6). The corresponding inverse isomorphism gives rise to the classical r-
matrix

r6 = P0 ∧K2 + P2 ⊗K1 −K2 ⊗ P1 − P0 ⊗ J, (6.43)

and with the aid of C2 we obtain

r′6 = P0 ∧K2 + 1
2(−P0 ∧ J + P1 ∧K2 + P2 ∧K1). (6.44)

By making use of the automorphism

J → J, K1 → −K1, K2 → −K2, P0 → P0, P1 → −P1, P2 → −P2,
(6.45)

we find that r′6 coincides (up to a factor 1/2) with the r-matrix (A.10) of Class (IIIb) with
ρ = 1 but now with the term a = 0. This is a coisotropic Lie bialgebra, whose Poisson
Minkowski spacetime reads

{x0, x1} = 0, {x0, x2} = −x0 + x1, {x1, x2} = 0, (6.46)

and its quantization is straightforward.

Notice that Cases 4 and 6 are, obviously, related since they are within the same Class
(IIIb) with parameter ρ = 1. In fact, if we write r′4 (6.36) under the automorphism (6.37),
its limit λ→ 0 leads to r′6 (6.44) expressed under the map (6.45).

6.3.7 Case 7

Finally, the kinematical and DD basis are now related through

J = y0, K1 = −Y2, K2 = −Y1 − y0,

P0 = Y0 − y1, P1 = −y1, P2 = y2, (6.47)

with pairing (6.15). The inverse isomorphism provides the classical r-matrix

r7 = P2 ∧ J +K1 ⊗ P2 −K2 ⊗ P1 − P0 ⊗ J. (6.48)

By subtracting C2 we find

r′7 = P2 ∧ J + 1
2(−P0 ∧ J + P1 ∧K2 − P2 ∧K1), (6.49)
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Table 6.2: The (2+1) Poincaré r-matrices and Poisson subgroup/coisotropy condition for each of
the eight DD structures on p(2+1) as well as the corresponding class in the Stachura classification.

Case Classical r-matrix r′i δD (h) Class [166]

0 1
2
(−P0 ∧ J − P1 ∧K2 + P2 ∧K1) = 0 (IV)

1 K1 ∧ J +K1 ∧K2 + (−P0 ∧ J − P1 ∧K2 + P2 ∧K1) ⊂ h ∧ h (I)

2 P2 ∧ J − P0 ∧K2 − P2 ∧K2 + 1
2
(P0 ∧ J − P1 ∧K2 + P2 ∧K1) ⊂ h ∧ g (IIa)

3 −P2 ∧ J − P0 ∧K2 − P2 ∧K2 + 1
2
(−P0 ∧ J + P1 ∧K2 − P2 ∧K1) 6⊂ h ∧ g (IIa)

+ 1
λ

(
P0 ∧ P1 + 2(P0 ∧ P2 + P2 ∧ P1)

)
4 P2 ∧ J + 1

2
(P0 ∧ J − P1 ∧K2 + P2 ∧K1) + λP0 ∧ P2 6⊂ h ∧ g (IIIb)

5 P1 ∧ J + 1
2

(−P0 ∧ J + P1 ∧K2 − P2 ∧K1) + 1
λ
P1 ∧ P0 6⊂ h ∧ g (IIIb)

6 P0 ∧K2 + 1
2
(−P0 ∧ J + P1 ∧K2 + P2 ∧K1) ⊂ h ∧ g (IIIb)

7 P2 ∧ J + 1
2
(−P0 ∧ J + P1 ∧K2 − P2 ∧K1) ⊂ h ∧ g (IIIb)

which, under the automorphism

J → J, K1 → −K2, K2 → K1, P0 → P0, P1 → −P2, P2 → P1,
(6.50)

turns out to correspond again to Case (IIIb) with r-matrix (A.10) such that ρ = −1
and the a term vanishes. Note that r′7 (6.49), written under the automorphism (6.50), is
recovered from r′5 (6.41) by taking the limit λ→∞. The coisotropy condition is fulfilled
and the associated Poisson Minkowski spacetime is given by

{x0, x1} = 0, {x0, x2} = 0, {x1, x2} = −(x0 + x2), (6.51)

whose quantization is also straightforward.

Therefore, by starting from the classification of Lie bialgebras given in [225], we have
obtained eight DD for the (2+1) Poincaré group. Table 6.2 summarizes our results: five
of the classical r-matrices give rise to coboundary Lie bialgebras compatible with our
algebraic conditions for δD(h) (3.79), which guarantee that the Poisson bracket between
Minkowski coordinates close a Poisson subalgebra. Among them, only Case 0 (trivially)
and Case 1 turn out to be of Poisson subgroup type. The noncommutative spacetimes
obtained from these DD structures are summarized in Table 6.3.

6.4 Contraction from (A)dS r-matrices

Since the complete study of DD structures for the (A)dS Lie algebras g2+1
Λ in (2+1)

dimensions was performed in [110], it is therefore natural to study the behavior of the
associated DD r-matrices under the Lie algebra contraction to the Poincaré Lie algebra,
that corresponds in kinematical terms to the Λ→ 0 limit. Note that the classification of
classical r-matrices for all real forms of o(4;C), in particular for o(4), o(3, 1) and o(2, 2),
has been given in [167, 168].
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Table 6.3: The (2+1) Poisson Minkowski spacetimes arising from coisotropic DD structures [169].

Case {x0, x1} {x0, x2} {x1, x2}

0 −x2 x1 x0

1 −α1x
2(x0 + x1) + 2β1x

2 α1x
1(x0 + x1)− 2β1x

1 α1x
0(x0 + x1)− 2β1x

0

2 0 −α2(x0 − x2) −β2(x0 − x2)

6 0 −x0 + x1 0

7 0 0 −(x0 + x2)

We recall that the classification of (A)dS DD r-matrices in [110] was carried out in
a basis with generators denoted {J0, J1, J2, P0, P1, P2}. There are four DD structures for
so(3, 1) (cases A, B, C and D), and three for AdS so(2, 2) (cases E, F and G). Depending on
the case considered, the relationship of this basis with the kinematical one used throughout
the present paper is established by means of the following isomorphisms:

Cases A, C, E, F, G: J0 → J, J1 → −K2, J2 → K1, Pa → Pa, . (6.52)

Cases B, D: J0 → J, J1 →
1

η
P2, J2 → −

1

η
P1,

P0 → −P0, P1 → ηK1, P2 → ηK2, η =
√

Λ.

(6.53)

By applying these transformations onto the brackets (2.3) in [110], we find that the com-
mutation relations for the (2+1) (A)dS Lie algebras adopt the form

[J,K1] = K2, [J,K2] = −K1, [K1,K2] = −J,
[J, P0] = 0, [J, P1] = P2, [J, P2] = −P1,

[K1, P0] = P1, [K1, P1] = P0, [K1, P2] = 0,

[K2, P0] = P2, [K2, P1] = 0, [K2, P2] = P0,

[P0, P1] = −ΛK1, [P0, P2] = −ΛK2, [P1, P2] = ΛJ.

(6.54)

Therefore, when Λ < 0 we recover the AdS Lie algebra so(2, 2), for Λ > 0 the dS algebra
so(3, 1), and the contraction Λ→ 0 gives the Poincaré Lie algebra in a basis which is just
(6.1). Now, by using (6.83) and (6.84), we rewrite in the kinematical basis (6.54) all the
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DD (A)dS r-matrices obtained in [110], namely

dS ≡ so(3, 1) (Λ > 0) : r′A =
√

ΛK1 ∧K2 + 1
2(−P0 ∧ J − P1 ∧K2 + P2 ∧K1),

r′B = 1√
Λ
P2 ∧ P1 + 1

2(−P0 ∧ J + P1 ∧K2 − P2 ∧K1),

r′C = 1
2(P0 ∧K2 + P1 ∧ J − P2 ∧K1),

r′D =
√

Λ J ∧K1 + 1√
Λ
P2 ∧ P0 + (1+µ2)

2µ P1 ∧K2+

+ (µ2−1)
2µ (−P2 ∧ J + P0 ∧K1), µ > 0.

AdS ≡ so(2, 2) (Λ < 0) : r′E =
√
−Λ J ∧K1 + 1

2(−P0 ∧ J − P1 ∧K2 + P2 ∧K1),

r′F = 1
2(P0 ∧K2 + P1 ∧ J − P2 ∧K1),

r′G = (1+ρ2)
4 (P0 ∧K2 + P1 ∧ J)− ρ

2 P2 ∧K1+

+ (1−ρ2)

4
√
−Λ

(Λ J ∧K2 + P0 ∧ P1), −1 < ρ < 1.

(6.55)

Now let us analyse the vanishing cosmological constant limit Λ → 0 of all these ex-
pressions. Firstly, we obtain that

lim
Λ→0

r′A = lim
Λ→0

r′E = 1
2(−P0 ∧ J − P1 ∧K2 + P2 ∧K1) ≡ r′0,

which is just the Poincaré r-matrix (6.9) of Case 0 coming from the DD of sl(2,R) and
trivial cocommutator. Secondly, we have that

lim
Λ→0

r′C = lim
Λ→0

r′F = 1
2(P0 ∧K2 + P1 ∧ J − P2 ∧K1) ∝ r′2,

which thus corresponds to Case 2 with the r-matrix expressed in the form (6.26). This, in
turn, means that we have obtained a common DD r-matrix for the (A)dS and Poincaré Lie
algebras that is just a twisted version of the ‘space-like’ κ-(A)dS and κ-Poincaré r-matrices
studied in [111].

Finally, cases B, D and G seem to give rise to divergencies in the limit Λ → 0. How-
ever we can rescale globally these r-matrices (the multiplication of a given r-matrix by a
constant is also an r-matrix) in such a way that the limit does exist, namely

lim
Λ→0

√
Λ r′B = P2 ∧ P1, lim

Λ→0

√
Λ r′D = P2 ∧ P0, lim

Λ→0

√
−Λ r′G =

(1− ρ2)

4
P0 ∧ P1.

None of these limits provides a Poincaré r-matrix coming from a DD structure, and all of
them belong to Class (V) in [166] (see (A.12)).

6.5 The extended (1+1) Poincaré algebra as a Drinfel’d
double

Since the (1+1) Poincaré algebra

[K,P0] = P1, [K,P1] = P0, [P1, P0] = 0, (6.56)
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is odd-dimensional, no DD structure (3.51) can be defined within it. Nevertheless, if we
consider the non-trivial central extension of the Poincaré Lie algebra iso(1, 1) = p(1 + 1)
given by

[K,P0] = P1, [K,P1] = P0, [P1, P0] = F, [F, ·] = 0, (6.57)

we will show in the sequel that the new central generator F allows the introduction of two
non-equivalent DD structures. This extended algebra is also called the Nappi-Witten Lie
algebra [232] and plays a relevant role in (1+1) gravity [233]. Casimir operators for the
algebra (6.57) are given by

C1 = P 2
0 − P 2

1 + F K +K F, C2 = F, (6.58)

and the first of them already suggests the existence of a non-degenerate symmetric bilinear
form underlying possible DD structures.

The corresponding (1+1)-dimensional Poincaré group with a nontrivial central ex-
tension, ISO(1, 1) = P (1 + 1), is obtained by considering the faithful representation
ρ : p(1 + 1)→ End(R4) given by

ρ(F ) =


0 0 0 0
0 0 0 0
0 0 0 0
−2 0 0 0

 , ρ(K) =


0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

 ,

ρ(P0) =


0 0 0 0
1 0 0 0
0 0 0 0
0 0 1 0

 , ρ(P1) =


0 0 0 0
0 0 0 0
1 0 0 0
0 −1 0 0

 , (6.59)

along with local coordinates on the Lie group {φ, ξ, x0, x1} associated with the generators
{F,K, P0, P1}, respectively. Hence we obtain the group element

G = exp (φ ρ(F )) exp
(
x0 ρ(P0)

)
exp

(
x1 ρ(P1)

)
exp (ξ ρ(K)) , (6.60)

namely,

G =


1 0 0 0
x0 cosh ξ sinh ξ 0
x1 sinh ξ cosh ξ 0

x0 x1 − 2φ −x1 cosh ξ + x0 sinh ξ x0 cosh ξ − x1 sinh ξ 1

 . (6.61)

From it, left- and right-invariant vector fields on the P (1 + 1) group are found to be

∇LF = ∂φ, ∇LK = ∂ξ,

∇LP0
= cosh ξ

(
x1 ∂φ + ∂x0

)
+ sinh ξ ∂x1 ,

∇LP1
= sinh ξ

(
x1 ∂φ + ∂x0

)
+ cosh ξ ∂x1 ,

(6.62)

∇RK = 1
2

(
(x0)2 + (x1)2

)
∂φ + x1∂x0 + x0∂x1 + ∂ξ,

∇RF = ∂φ, ∇RP0
= ∂x0 , ∇RP1

= x0∂φ + ∂x1 . (6.63)
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In this context, we define the (1+1) Minkowski spacetime M1+1 and its extended

counterpart M
1+1

(see [234]) as the following quotients by the Lorentz subalgebra l and
by the trivially extended one h:

M1+1 = P (1 + 1)/L, l = Lie(L) = so(1, 1)⊕ R = span{K,F}, coordinates: x0, x1.

M
1+1

= P (1 + 1)/L, l = Lie(L) = so(1, 1) = span{K}, coordinates: x0, x1, φ.
(6.64)

6.5.1 Two-dimensional real Lie bialgebras and their Drinfel’d double
structures

The only two-dimensional non-abelian real Lie algebra is the so-caled b2 algebra with
bracket

[Y1, Y2] = Y2. (6.65)

It is also known that there exists, up to isomorphism, three real Lie bialgebra structures
δ for this algebra, which are the ‘trivial one’ with δ(Yi) = 0 plus the two non-trivial ones
given in [225]. As we will show in what follows, two of these Lie bialgebras have the
centrally extended (1+1) Poincaré algebra (6.57) as its DD algebra. Explictly, with the
notation used in [225] these two Lie bialgebras are:

• Case 0: (g, g∗) =
(
b2,R2

)
with χ = 0, δ̃ = 0.

• Case 1: (g, g∗) = (b2, b2) with χ = e0 ∧ e1, δ̃ = 0.

The remaining two-dimensional real Lie bialgebra structure was shown in [235] to have
as its DD Lie algebra a central extension of sl(2,R), which is just the centrally extended
(1+1) (A)dS Lie algebra. Note that the classification of nonisomorphic four-dimensional
real DD structures was also given in [236].

Commutation rules for these two DD structures for p(1 + 1) are given in Table 6.4, and
in the following we will present these two structures in the kinematical basis, together with
the associated classical r-matrices and (extended) noncommutative Minkowski spacetimes.
We recall that the extended noncommutative Minkowski spacetimes studied in [234] come
from a (different) trivial central extension of the (1+1) Poincaré group.

6.5.2 Case 0

A Lie algebra isomorphism is given by

K = −Y1, P0 =
1√
2

(y2 + Y2), P1 =
1√
2

(y2 − Y2), F = −y1, (6.66)

that from (3.48) gives the following non-zero entries for the pairing

〈K,F 〉 = 1, 〈P0, P0〉 = 1, 〈P1, P1〉 = −1. (6.67)
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Table 6.4: The two non-equivalent DD Lie algebras which are isomorphic to the extended (1+1)
Poincaré algebra.

Case 0 Case 1

[Y1, Y2] Y2 Y2

[y1, y2] 0 y1

[y1, Y1] 0 −Y2

[y1, Y2] 0 0

[y2, Y1] y2 y2 + Y1

[y2, Y2] −y1 −y1

By inserting the inverse isomorphism in (3.53) we obtain the classical r-matrix

r0 =

2∑
i=1

yi ⊗ Yi = K ⊗ F +
1

2
(P0 ⊗ P0 − P1 ⊗ P1 + P0 ∧ P1) , (6.68)

and by subtracting the tensorized Casimirs C1 (6.58) we obtain the skew-symmetric r-
matrix

r′0 =
1

2
(K ∧ F + P0 ∧ P1). (6.69)

The DD cocommutator reads

δD(K) = 0, δD(F ) = 0,

δD(P0) = −1
2 (P0 ∧ F + P1 ∧ F ) ,

δD(P1) = −1
2 (P0 ∧ F + P1 ∧ F ) .

(6.70)

Since δD(K) = δD(F ) = 0, we have that, trivially, δD(l) ⊂ l∧ l and the associated Poisson
Minkowski spacetime is a Poisson subgroup one. Obviously, δD(l) ⊂ l ∧ l and the Poisson
extended Minkowski spacetime is of Poisson subgroup type as well.

A two-parameter generalization of the r-matrix (6.69) fulfilling the modified CYBE is
given by

r′0,(α0,β0) = α0K ∧ F + β0P0 ∧ P1, (6.71)

with α0, β0 ∈ R. The associated fundamental Poisson brackets for the coordinates {x0, x1, φ}
(see (6.64)) are obtained from the Sklyanin bracket and turn out to be

{x0, x1} = 0, {φ, x0} = β0x
0 + α0x

1, {φ, x1} = α0x
0 + β0x

1, (6.72)

which are linear and can be straightforwardly quantized. Hence, although the Minkowski
coordinates {x0, x1} Poisson-commute, the extended Minkowski spacetime {x0, x1, φ} de-
fines a noncommutative structure, thus suggesting that the role of central extensions in
noncommutative spacetimes deserves a deeper analysis along the lines presented in [234].
Notice also that for the DD spacetime, obtained when α0 = β0, the Poisson algebra (6.72)
is isomorphic to b2 ⊕ R such that b2 = span{φ, x0 + x1} and R = span{x0 − x1}.
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6.5.3 Case 1

The Lie algebra isomorphism is now given by

K = −Y1, P0 =
1√
2

(y2 + Y1 + Y2), P1 =
1√
2

(y2 + Y1 − Y2), F = −y1 + Y2, (6.73)

and the pairing is exactly (6.67).

The inverse of the above isomorphism inserted into (3.53) gives rise to the classical
r-matrix

r1 = F ⊗K +
1√
2

(K ∧ P0 + P1 ∧K) +
1

2
(P1 ∧ P0 + P0 ⊗ P0 − P1 ⊗ P1) , (6.74)

and by subtracting the tensorized Casimir C1 (6.58) we obtain the skew-symmetric r-
matrix

r′1 =
1

2
(F ∧K + P1 ∧ P0) +

1√
2

(P1 ∧K +K ∧ P0). (6.75)

The DD cocommutator is

δD(K) =
1√
2

(−K ∧ P0 +K ∧ P1) , δD(F ) = 0,

δD(P0) =
1√
2

(P0 ∧ P1 +K ∧ F ) +
1

2
(P0 ∧ F + P1 ∧ F ) ,

δD(P1) =
1√
2

(P0 ∧ P1 +K ∧ F ) +
1

2
(P0 ∧ F + P1 ∧ F ) ,

(6.76)

which is of ‘true’ coisotropic type for both Minkowski and extended Minkowski spacetimes
(6.64).

The r-matrix (6.75) can be generalized to the following two-parameter solution of the
modified CYBE

r′1,(α1,β1) = α1(K ∧ F + P0 ∧ P1) + β1(K ∧ P1 + P0 ∧K), (6.77)

with α1, β1 ∈ R (the DD case corresponds to set β1 =
√

2α1). The associated fundamental
Poisson brackets for the coordinates x0, x1, φ are given by

{x0, x1} = −β1(x0 + x1),

{φ, x0} = α1(x0 + x1) + 1
2β1

(
x0 + x1

)2
,

{φ, x1} = α1(x0 + x1) + 1
2β1(x0 + x1)(x0 − x1). (6.78)

Therefore the first bracket defines the Poisson Minkowski spacetime and can be trivially
quantized. We remark that this comes from the β1-term in (6.77), which is a solution
of the CYBE, that corresponds to the so-called ‘null-plane’ noncommutative Minkowski
spacetime studied in [237] (see [238] for its (3+1) generalization). In light-cone coordinates
x± = x0 ± x1 the Poisson structure takes the simpler form

{x+, x−} = 2β1x
+. (6.79)
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Interestingly enough, the Poisson extended Minkowski spacetime defined by the three
brackets (6.78) is quadratic and cannot be straightfordwardly quantized. Notice that the
α1-term in the r-matrix (6.77) is just the one for the above Case 0 (6.69) and, conse-
quently, (6.77) can be regarded either as a generalization of Case 0 with additional defor-
mation parameter β1, or as a generalized ‘null-plane’ Minkowski spacetime with additional
parameter α1.

6.6 Drinfel’d double Euclidean r-matrices and Poisson ho-
mogeneous spaces

Once the complete set of DD structures for the Poincaré group has been clarified, it
certainly makes sense to study the DD structures for the Euclidean group in 3-dimensions,
both because of its inherent interest related with the construction of Poisson Euclidean
spaces and also for the possibility of comparing DD structures for these two closely related
Lie algebras. So let us consider the Euclidean Lie algebra e(3) = iso(3) in terms of
generators of rotations Ji and translations Pi (i = 1, 2, 3). The commutation rules read

[Ji, Jj ] = εijkJk, [Ji, Pj ] = εijkPk, [Pi, Pj ] = 0, i, j, k = 1, 2, 3. (6.80)

The two quadratic Casimir elements for this algebra are given by

C1 = P 2
1 + P 2

2 + P 2
3 , C2 = J1 P1 + J2 P2 + J3 P3. (6.81)

The Euclidean space in three dimensions, E3, can be constructed as the homogeneous
space of the Euclidean isometry group ISO(3) = E(3) having the subgroup H = SO(3) as
the isotropy subgroup of the origin, that is, E3 ≡ ISO(3)/SO(3). Hence we have that a =
iso(3) = e(3) = span{J1, J2, J3, P1, P2, P3}, and h = Lie(H) = so(3) = span{J1, J2, J3}. If
we denote t = span{P1, P2, P3}, we have that e(3) = h⊕ t as a vector space.

According to the classification [225] there is no ‘non-trivial’ DD structure for E(3).
However, E(3) has the ‘trivial’ DD structure induced by its semidirect product form.
Notice that E(3) = SO(3) n R3 is the semidirect product of the rotation subgroup and
the translations, inherited by its Lie algebra e(3) = so(3) ⊕S R3, and this is just the DD
structure arising in correspondence with the Lie bialgebra structure (g, δ) = (so(3), δ ≡ 0).
It is straightforward to check that such unique DD structure for e(3) is given by the
isomorphism Yi = Ji and yi = Pi, and thus we have ckij = εijk and f ikj = 0. In this way
we obtain

r =
∑
i

Pi ⊗ Ji , C2 =
∑
i

Ji ⊗ Pi ,

so the skew-symmetric component of the r-matrix reads

r′ = r − C2 =
∑
i

Pi ∧ Ji, (6.82)

while the induced pairing has as non-vanishing entries 〈Pi, Ji〉 = 1. This DD structure is
the Euclidean analogue of the Case 0 in the Poincaré clasification, and is directly related



6.7. CONTRACTION OF DD R-MATRICES 165

to the semidirect product structure of both Lie groups. The striking difference between
the Euclidean and the Poincaré Lie groups is that while in the latter there is a plurality
of DD structures (eight non-isomorphic ones), in the former only one does exist.

With the classification of r-matrices for the three-dimensional Euclidean Lie group [166]
at hand, which is given in Appendix A, we can easily identify the only three-dimensional
Euclidean DD r-matrix (6.82) with the one in Class (II) (A.14) in [166]. Quite inter-
estingly, exactly as it happened for the Poincaré case, the ‘trivial’ DD r-matrix is the
one corresponding to the only non-parametric family of coboundary PL structures on the
three-dimensional Euclidean group.

Regarding different dimensions, no DD structure exists for the Euclidean group. In
higher dimensions than three, this is due to the lack of existence of a non-degenerate
associative symmetric bilinear form. In the two-dimensional case, the statement follows
because there are only three non-isomorphic DD structures [225], two of them isomorphic
to the non-trivially centrally extended Poincaré group and the other one isomorphic to the
non-trivially centrally extended AdS group. Therefore, no centrally extended Euclidean
group can be endowed with a DD.

6.7 Contraction of Drinfel’d double r-matrices from so(3, 1)

The complete study of DD structures for the Lie algebra so(3, 1) was carried out in [110].
In what follows we analyze the contraction of such structures to the Euclidean case. This
contraction procedure can be understood in geometric terms as the zero-curvature limit
of the three-dimensional hyperbolic space whose isometry group is just SO(3, 1).

The classification of so(3, 1) DD r-matrices in [110] was performed in the usual Chern-
Simons basis {J0, J1, J2, P0, P1, P2}. It turns out that there are four DDs for so(3, 1), called
cases A, B, C and D in [110]. For the cases A and C the relationship with the geometrical
basis used throughout the present paper is established by means of the isomorphism given
by

J0 → −J1, J1 → 1
η P3, J2 → 1

η P2, P0 → P1, P1 → η J3, P2 → η J2, (6.83)

where η is a non-zero real parameter. And for the cases B and D the isomorphism reads

Js → Js+1, Ps → Ps+1, s = 0, 1, 2. (6.84)

By applying these two isomorphisms, we find that the commutation relations for the Lie
algebra so(3, 1) adopt the form

[Ji, Jj ] = εijkJk, [Ji, Pj ] = εijkPk, [Pi, Pj ] = −η2εijkJk, i, j, k = 1, 2, 3.
(6.85)

In this basis, the two quadratic Casimir elements for so(3, 1) can be written as

C1 = P 2
1 + P 2

2 + P 2
3 − η2

(
J2

1 + J2
2 + J2

3

)
, C2 = J1 P1 + J2 P2 + J3 P3. (6.86)
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Now we consider the three-dimensional hyperbolic space as the homogeneous space of
the isometry group SO(3, 1) with isotropy subgroup H = SO(3), H3 ≡ SO(3, 1)/SO(3),
provided that a = so(3, 1) = span{J1, J2, J3, P1, P2, P3} and h = Lie(H) = so(3) =
span{J1, J2, J3}. The hyperbolic space H3 has negative constant sectional curvature equal
to −η2, so that the parameter η is related with the radius of the space R through η = 1/R.
The ‘flat’ contraction to the Euclidean algebra and space thus corresponds to applying the
limit η → 0 (R → ∞). In this manner, the commutation rules 6.85 and Casimirs (5.27)
reduce to the Euclidean ones (6.80) and (6.81), respectively.

Next, by using (6.83) and (6.84) in the results given in [110] we obtain the following
four DD r-matrices for so(3, 1):

r′A = 1
η P3 ∧ P2 + 1

2(P1 ∧ J1 − P2 ∧ J2 − P3 ∧ J3),

r′B = −ηJ2 ∧ J3 + 1
2(P1 ∧ J1 + P2 ∧ J2 + P3 ∧ J3),

r′C = 1
2

(
1
η P3 ∧ P1 + ηJ1 ∧ J3 + P2 ∧ J2

)
,

r′D = J1 ∧ P2 − J2 ∧ P1 +
(1 + µ2)

2µ
P3 ∧ J3 +

(µ2 − 1)

2ηµ

(
η2J1 ∧ J2 − P1 ∧ P2

)
, µ > 0.

(6.87)

In principle, only the r-matrix r′B has a well defined flat limit η → 0. Nevertheless, we can
scale the remaining cases in order to obtain four contracted Euclidean r-matrices; these
are

lim
η→0

η r′A = P3 ∧ P2, lim
η→0

r′B = 1
2(P1 ∧ J1 + P2 ∧ J2 + P3 ∧ J3),

lim
η→0

η r′C =
1

2
P3 ∧ P1, lim

η→0
η r′D =

(1− µ2)

2µ
P1 ∧ P2, µ > 0. (6.88)

Consequently, the cases A, C and D give rise to Euclidean r-matrices belonging to Class
(III) (A.15) of [166], meanwhile the case B gives exactly the complete Class (II) (A.14).
Note that this Class is the one obtained from the DD structure for the Euclidean group
(6.82). We recall that previously in this Chapter (see [169]), it was found that four (A)dS
(two for dS and two for AdS) DD r-matrices contract to two DD Poincaré r-matrices
(Cases 0 and 2).

We remark that the initial pairing for the cases A, B and C for the so(3, 1) DD
structures in the basis (6.87) has the non-vanishing entries 〈Pi, Ji〉 = 1, which does not
depend on η, so that it remains unchanged under contraction. In contrast, the pairing for
case D diverges under the limit η → 0.

6.8 Euclidean Poisson homogeneous spaces

In the previous sections we have studied the DD structures for the Euclidean group in
three dimensions and we have identified to which of the coboundary PL structures they
correspond. Now we present the full construction of Poisson homogeneous Euclidean
spaces, based in the classification presented in Apendix A. In order to perfom that, we
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first need to introduce suitable coordinates on the Euclidean group and we write a generic
element Q of the Lie algebra e(3) as

Q = x1P1 + x2P2 + x3P3 + θ1J1 + θ2J2 + θ3J3 =


0 0 0 0
x1 0 −θ3 θ2

x2 θ3 0 −θ1

x3 −θ2 θ1 0

 . (6.89)

Next we introduce the coordinates on the Lie group as the ones associated to each Lie
algebra generator through the exponential map

g = exp(x1P1) exp(x2P2) exp(x3P3) exp(θ1J1) exp(θ2J2) exp(θ3J3),

and then we compute left- and right-invariant vector fields in these coordinates, thus
obtaining

XL
J1

=
cos θ3

cos θ2

(
∂θ1 − sin θ2∂θ3

)
+ sin θ3∂θ2 ,

XL
J2

=
sin θ3

cos θ2

(
−∂θ1 + sin θ2∂θ3

)
+ cos θ3∂θ2 ,

XL
J3

=∂θ3 ,

XL
P1

= cos θ2 cos θ3∂x1 +
(
sin θ1 sin θ2 cos θ3 + cos θ1 sin θ3

)
∂x2−

−
(
cos θ1 sin θ2 cos θ3 − sin θ1 sin θ3

)
∂x3 ,

XL
P2

=− cos θ2 sin θ3∂x1 −
(
sin θ1 sin θ2 sin θ3 − cos θ1 cos θ3

)
∂x2+

+
(
cos θ1 sin θ2 sin θ3 + sin θ1 cos θ3

)
∂x3 ,

XL
P3

= sin θ2∂x1 − cos θ2
(
sin θ1∂x2 − cos θ1∂x3

)
,

(6.90)

for the left-invariant vector fields, and

XR
J1

= −x3∂x2 + x2∂x3 + ∂θ1 ,

XR
J2

= x3∂x1 − x1∂x3 + cos θ1∂θ2 +
sin θ1

cos θ2

(
sin θ2∂θ1 − ∂θ3

)
,

XR
J3

= −x2∂x1 + x1∂x2 + sin θ1∂θ2 +
cos θ1

cos θ2

(
− sin θ2∂θ1 + ∂θ3

)
,

XR
P1

= ∂x1 ,

XR
P2

= ∂x2 ,

XR
P3

= ∂x3 ,

(6.91)

for the right-invariant vector fields. Thus we have all the ingredients to study explicitly
the Poisson homogeneous Eucliean spaces. The final result is as follows.

Class (II). This is the only r-matrix coming from a DD structure. Its cocommutator
reads

δ(Ji) = 0, δ(P1) = 2P2 ∧ P3, δ(P2) = −2P1 ∧ P3, δ(P3) = 2P1 ∧ P2, (6.92)
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which shows that its associated PHS is of Poisson subgroup type in a trivial way (this is
consistent with the fact that the r-matrix (A.14) is the analogue of the Poincaré Case 0
studied previously in this Chapter, see Table 6.2). The associated PHS is given by the
fundamental Poisson bracket

{xi, xj} = 2εijkx
k, (6.93)

which is so isomorphic to the so(3) Lie algebra, while its Poincaré counterpart was iso-
morphic to so(2, 1), as shown in Table 6.3. As a matter of fact, if we compute the
full Sklyanin bracket we get that the remaining group coordinates Poisson commute
{xi, θj} = {θi, θj} = 0.

Class (III). This family of r-matrices are solutions of the CYBE, and its cocommutator
reads

δa(J1) = −a13P1 ∧ P2 + a12P1 ∧ P3,

δa(J2) = −a23P1 ∧ P2 + a12P2 ∧ P3, δa(Pi) = 0,

δa(J3) = −a23P1 ∧ P3 + a13P2 ∧ P3.

(6.94)

This cocommutator is not coisotropic with respect to the isotropy subgroup of rotations
(apart from the trivial case r = a = 0), and we shall not write down the Poisson brackets
for the group coordinates as we are only interested in describing coisotropic PHS.

Class (I). This multiparametric family of r-matrices is composed by solutions of the form
of Class (III) plus some new terms. They satisfy the CYBE iff α = 0. The cocommutator
reads

δ(J1) = α(−P3 ∧ J1 + P1 ∧ J3)− ρ(P3 ∧ J2 + P2 ∧ J3) + δa(J1),

δ(J2) = α(−P3 ∧ J2 + P2 ∧ J3) + ρ(P3 ∧ J1 + P1 ∧ J3) + δa(J2), δ(J3) = δa(J3),

δ(P1) = αP1 ∧ P3 + ρP2 ∧ P3, δ(P2) = αP2 ∧ P3 − ρP1 ∧ P3, δ(P3) = 0,

(6.95)

proving that they are coisotropic deformations if the a-terms vanish, but they are never
of Poisson subgroup type. So, in the case with a = 0 the associated Poisson Euclidean
spaces read

{x1, x2} = 0, {x1, x3} = αx1 − ρx2, {x2, x3} = αx2 + ρx1. (6.96)

The distinguished behavior of the third coordinate becomes evident both in the cocom-
mutator and in the Poisson bracket, in contrast what happens in the DD noncommutative
space (6.93).

In this way we have exhausted the construction of Poisson homogeneous Euclidean
spaces, and it has been shown how two of the three classes of coboundary PL structures
on the Euclidean group generate coisotropic Poisson homogeneous spaces, one of them
being the only DD structure.

6.9 Remarks

In this Chapter we have presented the DD structure for the Poincaré group in (2+1) di-
mensions, for its non-trivial central extension in (1+1) dimensions and for the Euclidean
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group in three dimensions. For every nonisomorphic DD structure we have worked out an
explicit isomorphism between the canonical basis in the double and the Poincaré or Eu-
clidean kinematical basis. Moreover, for the cases in which the Poisson-Lie on the group
satisfy the coisotropy condition (3.79) with respect to the relevant subgroup, we have
constructed the associated DD Poisson spaces. In this way, we have obtained five (2+1)-
dimensional Poisson Minkowski spacetimes (see Table (6.3)), two 2-dimensional (possibly
extended) Poisson Minkowski spacetimes and only one 3-dimensional Riemannian Poisson
space. All these Poisson spaces have been constructed from the canonical Poisson-Lie
structure on the respective group provided by the Sklyanin bracket for the canonical qua-
sitriangular r-matrix arising from the DD structures. These results complete the chart of
DD structures for the Poincaré and Euclidean groups, since they do not exist in (N + 1)
dimensions with N ≥ 3 (Poincaré) or in N -dimensions with N ≥ 4 (Euclidean). Recall
that DD structures on the 2 dimensional extended Euclidean group are not possible since
the Poincaré and (A)dS ones exhaust the three non-isomorphic 4-dimensional DD struc-
tures, as explained above. An easy way to see that these higher dimensional Lie groups
do not admit DD structures is by noticing that their Lie algebras do not admit associative
scalar products (see Theorem 3.5). The existence of these scalar products was studied for
higher dimensional kinematical groups in [203].

In the (2+1)-dimensional Lorentzian and in the 3-dimensional Euclidean cases, DD
structures have a remarkable interest due to their connection with the Chern-Simons
approach to gravity in (2+1) dimensions or its euclidean version, in which the gauge group
is identified with the isometry group. Indeed, it is the existence of a DD structure that
guarantees the Fock-Rosly conditions for the r-matrix defining the Poisson structure on
the phase space of the theory. We have explicitly constructed the eight nonisomorphic DD
structures on iso(2, 1), displayed in Table 6.2, meanwhile in [110] the four nonisomorphic
DD structures for so(3, 1) and the three ones for so(2, 2) were deduced. We have also
presented the only DD structure on iso(3). Therefore, the results presented in this Chapter
complete the study of DD structures on the three Lorentzian kinematical groups in (2+1)
dimensions, and shows how to connect Poincaré DD structures with (A)dS ones through
the contraction induced by the vanishing cosmological constant limit Λ→ 0, and similarly
for the Euclidean version, in which the relevant contraction is from the DD structures on
the group of isometries of the 3-dimensional hyperbolic space, when the curvature of this
space tends to zero. In particular, it is found that only two of the eight Poincaré DD
r-matrices (Cases 0 and 2) can be obtained through such a contraction procedure. For
the Euclidean case, the only DD r-matrix can also be obtained through contraction.

As mentioned before, for each DD structure we have also investigated whether the
corresponding Lie bialgebra was coisotropic with respect to the relevant subalgebra, i.e.
if the condition δD(h) ⊂ h ∧ g, and so it defines a Poisson homogeneous space. For the
(2+1) Poincaré case, the result is that five out of the eight DD structures do fulfill this
condition, as shown in Table 6.2, thus providing five (noncommutative) Poisson Minkowski
spacetimes. Only two of them (Cases 0 and 1) fulfill the stronger requirement of being
generated by a Lorentz Poisson subgroup, i.e δD(h) ⊂ h∧h. Case 0 is the DD obtained from
a sl(2,R) Lie bialgebra with a trivial cocommutator map, and was previously known in the
(2+1) quantum gravity literature. Interestingly enough, Case 1 gives rise to a quadratic
Poisson Minkowski spacetime which, to the best of our knowledge, has not been considered
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previously in the literature and whose quantization deserves further study. The remaining
three coisotropic DD structures (Cases 2, 6 and 7) provide noncommutative spacetimes
of Lie-algebraic type, whose quantization is straightforward. For the Euclidean case, the
only DD structure satisfy the coisotropy condition and defined a Poisson homogeneous
space of Lie-algebraic type. The Euclidean DD (the ‘rotation double’ or the ‘su(2) double’
[163, 227, 228, 229]) is the analogue of the Case 0 Poincaré DD (the ‘Lorentz double’
[123]). These DD structures are structurally similar since both of them are canonically
induced by the semidirect product structure of the group of isometries (see Theorem 3.7).
Regarding the rest of the DD structures, it is worth stressing that the large plurality for
the Poincaré group is lost in its Euclidean counterpart, and this is clearly due to the
flexibility of the Lorentz sector in order to give rise to DDs.

In (1+1) dimensions, only three nonisomorphic DD structures do exist and two of
them correspond to the centrally extended (1+1) Poincaré Lie algebra p(1 + 1). The re-
maining four-dimensional DD Lie algebra leads to so(2, 1) ' gl(2,R) (see [235, 236]),
which is the centrally extended Lie algebra of isometries of (1+1) (A)dS spacetimes.
For the two Poincaré structures the coisotropy condition holds and (extended) Poisson
Minkowski spacetimes can be explicitly constructed. Moreover, in Case 0 the noncom-
mutative Minkowski space is generated by a commutative Poisson subgroup, while the
extended space is of Lie-algebraic type. Case 1 gives rise to the ‘null-plane’ noncommuta-
tive Minkowski spacetime, and its extended version is again defined by a quadratic Poisson
algebra. Therefore, the study of DD structures for (1+1) Lorentzian groups has been also
completed.

Non-existence of DD structures for kinematical groups can be deduced by non-existence
of a non-degenerate, symmetric, and ‘associative’ bilinear form, as mentioned previously.
We stress that, in contradistinction with the rich variety of DD structures on the (2+1)
Poincaré algebra, it is easy to see that in the (3+1) case no DD structures can be found,
since no such bilinear form exists for iso(3, 1) (see [202, 201]). Furthermore, neither the
static, nor the Galilean and Newton-Hooke kinematical algebras admit any DD structure
in (2+1) and (3+1) dimensions, and that neither Carroll nor the Euclidean Lie algebras
admit DD structures in (3+1) and 4 dimensions, respectively. Thus, we have that the
Galilean limit of all the DD r-matrices for iso(2, 1) obtained in this paper would lead
(in case that such a limit does converge) to Galilean r-matrices which would not come
from a DD structure. In this respect, we also point out that DD structures for the twice
extended (2+1) Galilei algebra do exist, and one of them was fully constructed in [239],
thus providing a meaningful connection with previous quantum group models for Galilean
(2+1) gravity [240, 53]. Indeed, it could happen that this ‘exotic’ Galilean DD could be
obtained as the appropriate contraction of a relativistic DD structure for a twice (trivially)
extended (2+1) Poincaré algebra, a problem that would also deserve some attention in
the future.

Moreover, although no DD structure exists for iso(3, 1), the problem of the classifica-
tion of DD structures on both so(4, 1) and so(3, 2) is worth to be faced, and should be
based in the classification of Lie bialgebra structures for 5-dimensional real Lie algebras.
We recall that a first DD structure on so(3, 2) was fully worked out in the kinematical basis
in [113, 114]. In fact, as proved in [203], for kinematical Lie algebras in (N+1) dimensions
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(N ≥ 4), only for so(N + 1, 1), so(N + 2) and so(N, 2) such a suitable non-degenerate
bilinear form does exist. Therefore these three Lie algebras could admit DD structures in
higher dimensions.
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Chapter 7

Dual Poisson homogeneous spaces

The main aim of this Chapter is to study the dual notion, in the sense of Poisson-Lie
groups, of the well-known theory of reductive and symmetric homogeneous spaces, that was
introduced in §2.1.6 and §2.1.7 of Chapter 2, respectively. We also study the consequences
of these two notions for the uncertainty relations arising noncommutative spacetimes.

More in detail, in §7.1 we introduce the motivating ideas in order to consider the
notions treated in the rest of the Chapter. Section §7.2 is devoted to introduce the notion
of coreductive and cosymmetric Lie bialgebras, and from them the notion of dual (reductive
and symmetric) Poisson homogenous spaces M∗ = G∗/T ∗ will follow. As we will see in
§7.3, these new concepts are meaningful for a novel approach to the Lie bialgebra structures
for Lorentzian Lie algebras, since coisotropy and coreductivity conditions provide strong
constraints on the r-matrices generating (A)dS and Poincaré Lie bialgebras in (2+1) and
(3+1) dimensions. In particular, the well-known κ-deformation of the (A)dS and Poincaré
Lie algebras, introduced in Chpater 4, will be analyzed from this viewpoint. The fact
that all the dual spaces for the κ-deformation cannot be endowed with a G∗-invariant
metric, leads to the consideration of alternative approaches in order to unveil some of
their geometric properties.

With this aim, in §7.4 we discuss the geometry of dual PHS from the viewpoint of
K-structures on manifolds, which allows the definition of their curvature, torsion and
Ricci tensors. Finally, in Section 7.5 the connection between the coreductivity condition
for a given Lie bialgebra and the properties of the uncertainty relations that would arise
from the noncommutative spacetime coordinates of the associated quantum homogeneous
space is discussed in terms of the representation theory of the full dual algebra g∗ and its
restriction to the first order noncommutative space. In §7.6 some final remarks close the
Chapter.

7.1 Introduction

Let us consider a connected Lie group G and one of its Lie subgroups H, that for simplicity
we assume that is connected. Recall from Definition 2.15 that the smooth manifold M is
called a G-homogeneous space if it is equipped with a transitive action α : G ×M → M

173
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(see Definition 2.5 and (2.10)). If we set g = Lie(G), its subalgebra h = Lie(H) and its
complement t then, as vector spaces,

g = h⊕ t , (7.1)

and the most generic Lie brackets for a Lie algebra g with decomposition (7.1) will be of
the form

[h, h] ⊂ h , [h, t] ⊂ h + t , [t, t] ⊂ h + t . (7.2)

Recall from Definition 2.18 of Chapter 2, that a homogeneous space M = G/H is said
to be a reductive space if the splitting (7.1) is left invariant by the adjoint action of H,
which means that (recall that we assume H to be connected)

[h, t] ⊂ t . (7.3)

In other words, this means that t is an H-invariant complement of h in g. Finally, if
in addition to (7.3), the following relation holds

[t, t] ⊂ h , (7.4)

then M = G/H is called a symmetric homogeneous space (see Definition 2.20), which
ensures that the reductive splitting (7.1) is endowed with a Z2-grading assigning grade 0
to elements of h and 1 to elements of t, defined by means of the involutive automorphism

σ(t) = −t and σ(h) = h . (7.5)

(see [175, 173] for a complete treatment on the subject). Summarizing, each one of the
three conditions listed above (isotropy with respect to H, reductivity and symmetry)
removes one specific type of contribution to the most generic Lie algebra brackets for g,
namely:

[h, h] ⊂ h+ Ct subgroup , [h, t] ⊂ AAh reductive space + t , [t, t] ⊂ h+ Ct symmetric space . (7.6)

As explained in §3.5 of Chapter 3, in order to endow M with a PHS π, we start
from a Poisson-Lie structure Π onto G and we impose that the homogeneous space action
α : G×M →M is a Poisson map. Moreover, the (noncommutative) Poisson homogeneous
structure π onto M can be obtained as the canonical projection of Π provided that the
unique Lie bialgebra (g, δ) associated to (G,Π) is coisotropic with respect to the Lie algebra
h of H, namely, if

δ(h) ⊂ h ∧ g. (7.7)

As we will see, this coisotropy condition can be interpreted as the Lie subalgebra condition
for the dual translation generators t∗ within the dual Lie algebra g∗ induced by the Lie
bialgebra cocommutator:

[t∗, t∗] ⊂ t∗. (7.8)

By construction, the bracket (7.8) will be just the linearization of the (in general, nonlin-
ear) algebra defining the Poisson homogeneous space (PHS) given by (M,π) (and, after
quantization, of the quantum homogeneous space given by the comodule algebra Mh).
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As stated before, the aim of this Chapter is to analyse the consequences of imposing
the notions of (co)reductivity and (co)symmetry for the dual Lie algebra g∗ associated
to a given Lie bialgebra structure (g, δ). Firstly, imposing the Lie bialgebra (g, δ) to be
coreductive (i.e., imposing g∗ to be reductive) will be tantamount to say that

[t∗, h∗] ⊂ h∗, (7.9)

where h∗ is the dual Lie algebra of the isotropy subalgebra h of M . Therefore, any
coisotropic and coreductive Lie bialgebra (g, δ) implies the existence of a reductive PHS
M∗ = G∗/T ∗ which can be considered as the dual to M = G/H through δ, where G∗ is
the dual Poisson-Lie group and T ∗ is the subgroup of G∗ generated by the dual translation
generators t∗. Note that the dimension of M∗ (resp. M) is the one of the isotropy subgroup
of M (resp. M∗).

The dual reductive space M∗ can be thus considered to be ‘paired’ to the initial reduc-
tive space M through the Lie bialgebra (g, δ), and its geometry can be characterized -for
instance- by making use of the theory of K-structures (see Example 2.2), since in general
the dual spaces M∗ cannot be endowed with a G∗-invariant metric, but maybe some of
them could be endowed with some interesting geometry. Moreover, we will show that
coreductivity is essential for the representation theory of the (linearized) quantum homo-
geneous space (7.8), since the fact that g∗ is reductive implies that the restriction of the
representations of the full g∗ onto the noncommutative space t∗ provides representations
of the latter. In this way, coreductivity arises both as a relevant property for noncom-
mutative spaces and also in order to introduce new non-trivial dual geometric objects.
Finally, the space M∗ turns out to be a symmetric reductive space provided that g∗ is a
symmetric reductive Lie algebra, which implies that

[h∗, h∗] ⊂ t∗. (7.10)

This notion of cosymmetry completes the duality framework between M and M∗ and,
when satisfied, implies that the canonical connection on M∗ is torsionless (see Theorem
2.7).

7.2 Coreductivity, cosymmetry and dual homogeneous spaces

If we consider PL structures on a group G with reductive Lie algebra g = h⊕ t, then the
generic form for a given cocommutator δ will be

δ(h) ⊂ h ∧ h + h ∧ t + t ∧ t ,

δ(t) ⊂ h ∧ h + h ∧ t + t ∧ t ,
(7.11)

onto which the co-Jacobi and cocycle conditions have to be imposed (conditions (B2) and
(B3) from Definition 3.6 in §3.3). Note that the notion of Lie bialgebra is self-dual: for
any Lie bialgebra (g, δ) there exists a dual Lie bialgebra (g∗, η) where g∗ is defined by tδ,
and the dual cocommutator map η is given by dualizing the Lie algebra relations in g.
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Essentially, the correspondence between PL groups and Lie bialgebras is based on the
fact that the dual map tδ coincides with the linearization (in terms of the local coordinates
on G) of the PL bracket Π. This can be made explicit by introducing a basis for the dual
Lie algebra g∗ given by h∗ = span{ξ̂i} and t∗ = span{x̂j} together with the following
pairing with the generators of g, where h = span{Hi} and t = span{Tj}:

〈ξ̂i, Hj〉 = δij , 〈ξ̂i, Tj〉 = 0 , 〈x̂i, Hj〉 = 0 , 〈x̂i, Tj〉 = δij . (7.12)

In such a basis, cocommutators (7.11) imply the following dual Lie bracket δ∗:

[h∗, h∗] ⊂ h∗ + t∗ , [h∗, t∗] ⊂ h∗ + t∗ , [t∗, t∗] ⊂ h∗ + t∗ , (7.13)

which are obviously subjected to the nonlinear equations for the structure constants that
arise from Jacobi identity (or co-Jacobi if we think in terms of δ).

Remember from Definition 3.18 that a necessary condition for a PHS is the coisotropy
condition (3.79), namely

δ(h) ⊂ h ∧ h + h ∧ t +���t ∧ t . (7.14)

In terms of the dual Lie algebras it is tantamount to say that t∗ is a sub-Lie algebra, so
we have that

[t∗, t∗] ⊂ t∗, (7.15)

Therefore, the coisotropy condition stated as (7.15) is just a dual counterpart of the
isotropy condition for the subalgebra h and implies that the basis elements x̂j dual to the
translations Ti close a Lie subalgebra (7.15) within the dual Lie bracket g∗. As we will
see in the sequel, coreductivity and cosymmetry can be thought of as further refinements
of the notion of coisotropic Lie bialgebras that will arise when reductivity and symmetry
are implemented at the level of the dual Lie algebra g∗.

7.2.1 Coreductive Lie bialgebras and dual reductive homogeneous spaces

By following this line of thought, the dual to the reductivity condition (7.3) for g, which
we will call the coreductivity condition for δ, is obtained by imposing that no h ∧ t term
is contained in δ(t), namely

δ(t) ⊂ h ∧ h +��
�h ∧ t + t ∧ t , (7.16)

which admits a neat interpretation when expressed in terms of the dual Lie algebra g∗

[t∗, t∗] ⊂ t∗ +@@h
∗

coisotropy , [t∗, h∗] ⊂@@t∗ coreductivity + h∗ , [h∗, h∗] ⊂ t∗ + h∗ , (7.17)

which is thus constrained to be a reductive Lie algebra. As we will see in Section 7, the
coreductivity condition will give rise to a strong constraint for the uncertainty relations
associated to the noncommutative coordinates on the quantum group Gq associated to δ.

As a consequence, each coisotropic and coreductive Lie bialgebra structure (g, δ) can
be used to define a reductive homogeneous space which is ‘dual’ to M = G/H. Since the
dual Lie algebra g∗ is of the form

[t∗, t∗] ⊂ t∗ , [t∗, h∗] ⊂ h∗ , [h∗, h∗] ⊂ t∗ + h∗ , (7.18)
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(plus the corresponding Jacobi identities), if we call G∗ and T ∗ the Lie groups whose Lie
algebras are given by g∗ ≡ span{x̂, ξ̂} and t∗ ≡ span{x̂}, respectively, we will define the
dual reductive homogeneous space of M with respect to the coreductive Lie bialgebra (g, δ)
as the coset space defined by M∗ = G∗/T ∗, where now T ∗ will play the role of the isotropy
subgroup and the space M∗ will be parametrized by the local coordinates associated to
the dual Lie algebra generators ξ̂, which we will denote as ξ∗. Note that the dimension of
M∗ is just the dimension of the vector space h∗, which in general does not coincide with
the dimension of M .

Moreover, M∗ is by construction a Poisson homogeneous space, whose Poisson bracket
π∗ on C∞(M∗) will be given by the canonical projection of the dual PL structure Π∗ onto
the ξ∗ coordinates of M∗. Recall that Π∗ has as its linearization the dual Lie bialgebra
structure (g∗, η) whose cocommutator map comes from the commutation rules of the
reductive Lie algebra g and is of the form

η(t∗) ⊂ t∗ ∧ t∗ + t∗ ∧ h∗ ,

η(h∗) ⊂ t∗ ∧ t∗ + h∗ ∧ h∗ .
(7.19)

Indeed, this Lie bialgebra is coisotropic for the subalgebra t∗ (which generates the isotropy
subgroup of the dual space), since

η(t∗) ⊂ t∗ ∧ g∗. (7.20)

We stress that once the coreductivity condition (7.18) is imposed, the full construction
is self-dual, and the dual PHS of M∗ with respect to the Lie bialgebra (g∗, η) will be just
M = G/H. Thus, the coreductivity condition establishes a one-to-one correspondence
(mediated by Lie bialgebras) between two different Poisson homogeneous spaces M and
M∗ with coordinates x and ξ∗, respectively, which have in general different dimensionality
and geometric properties.

7.2.2 Cosymmetric Lie bialgebras

A further definition can be considered in a natural way, and we will say that a coreductive
Lie bialgebra is cosymmetric if the dual reductive homogeneous space M∗ is a symmetric
space. This implies the existence of the following involutive automorphism σ∗ leaving
invariant the generators of the isotropy subgroup t∗, namely

σ∗(t∗) = t∗ , σ∗(h∗) = −h∗ . (7.21)

Now, if the dual Lie algebra g∗ (7.18) has to be invariant under σ∗, then the cosymmetry
condition for (g, δ) implies that the Lie brackets for g∗ have to be of the form

[t∗, t∗] ⊂ t∗ , [t∗, h∗] ⊂ h∗ , [h∗, h∗] ⊂ t∗ , (7.22)

which means that
δ(h) ⊂��

�h ∧ h + h ∧ t . (7.23)

In this way a symmetric and reductive dual Lie algebra is obtained, and in which t∗

(resp. h∗) play completely interchanged roles with respect to their duals t (resp. h).
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In the following section all these notions will be exemplified by considering coreductive
and cosymmetric structures for maximally symmetric Lorentzian homogeneous spaces in
(2+1) and (3+1) dimensions.

7.3 Coreductive Lorentzian Lie bialgebras

It is useful to remember here (see §2.3 for the details) the description of the three maximally
symmetric (3+1)-dimensional Lorentzian spacetimes of constant curvature as coset spaces

• Λ < 0: Anti de Sitter spacetime AdS3+1 ≡ SO(3, 2)/SO(3, 1).

• Λ = 0: Minkowski spacetime M3+1 ≡ ISO(3, 1)/SO(3, 1).

• Λ > 0: de Sitter spacetime dS3+1 ≡ SO(4, 1)/SO(3, 1).

The Lie brackets (see §2.2) of the Lie algebras so(3, 2), so(4, 1) and iso(3, 1) in terms
of the cosmological constant, and written in the kinematical basis, are given by

[Ja, Jb] = εabcJc, [Ja, Pb] = εabcPc, [Ja,Kb] = εabcKc,

[Ka, P0] = Pa, [Ka, Pb] = δabP0, [Ka,Kb] = −εabcJc,
[P0, Pa] = −ΛKa, [Pa, Pb] = Λ εabcJc, [P0, Ja] = 0,

(7.24)

Recall that we denote this family of Lie algebras by gΛ. The decomposition of gΛ (as a
vector space) is given by

gΛ = l⊕ t, l = span{K,J} ' so(3, 1), t = span{P0,P}, (7.25)

where l is the Lorentz subalgebra (2.75). Therefore, (A)dS and Minkowski spacetimes,
which we will denote as MΛ, are symmetric reductive homogeneous with t being the trans-
lations subalgebra, and the commutation rules (7.24) can be schematically summarized in
the form

[l, l] ⊂ l , [l, t] ⊂ t , [t, t] ⊂ Λ h . (7.26)

In the Minkowski (Λ → 0) case we have [t, t] = 0, which means that t generates a nor-
mal subgroup and we have the well-known semidirect product structure for the Poincaré
algebra g0.

7.3.1 Lorentzian Lie bialgebras

It seems natural to investigate how the conditions of coisotropy, coreductivity and cosym-
metry define a very specific subset within the family of all possible Lie bialgebra structures
for Lorentzian Lie algebras gΛ with commutation rules of the form (7.26) (see [230, 166,
160, 167, 162] for classification approaches to Lorentzian Lie bialgebras).

It is well-known [230] that in (2+1) and (3+1) dimensions all (A)dS and Poincaré Lie
bialgebras (gΛ, δ) are coboundary ones, which means that all of them can be obtained
through r-matrices in the form

δ(X) = adX(r), ∀X ∈ gΛ (7.27)



7.3. COREDUCTIVE LORENTZIAN LIE BIALGEBRAS 179

with r ∈ gΛ ⊗ gΛ being a skew-symmetric solution of the modified Classical Yang-Baxter
Equation (mCYBE). Let us consider a generic r-matrix in the schematic form

r ⊂ α l ∧ l + β l ∧ t + γ t ∧ t, (7.28)

with {α, β, γ} denoting generic tensor coefficients for each component of the r-matrix.
Then it is straightforward to prove that the cocommutator (7.27) arising from (7.28) and
the commutation rules (7.24) will be of the form

δ(l) ⊂ α l ∧ l + β l ∧ t + γ t ∧ t, (7.29)

δ(t) ⊂ β Λ l ∧ l + α l ∧ t + γ Λ l ∧ t + β t ∧ t , (7.30)

where the cosmological constant parameter that distinguishes between the (A)dS and
Poincaré cases appears explicitly.

From these expressions the following conclusions can be immediately derived:

1. A Lorentzian Lie bialgebra is coisotropic (δ(l) ⊂ l ∧ g) iff γ = 0.

2. For coisotropic Lie bialgebras (γ = 0), coreductivity (δ(t) ⊂ h∧ h+ t∧ t) is obtained
iff α = 0. Therefore, coreductive Lorentzian Lie bialgebras are given exclusively by
r-matrices of the form

r ⊂ β l ∧ t, (7.31)

and whose coefficients β are constrained by the modified CYBE. This automatically
precludes Lie bialgebras such that δ(l) ⊂ l ∧ l with δ(l) 6= 0 to be coreductive, and
these are just Lie bialgebras associated to Poisson homogeneous spaces MΛ = G/L
for which L is a Poisson-Lie subgroup [60].

3. Cosymmetry for coreductive Lorentzian Lie bialgebras (δ(l) does not contain l ∧
l) is obtained iff α = 0. Therefore, in this case if we have both coisotropy and
coreductivity then cosymmetry is automatically verified.

4. Note that the answer to the question whether coreductivity implies coisotropy is Lie
algebra dependent: for Λ = 0 it is negative, while for Λ 6= 0 the answer is positive.

5. The same abovementioned conclusions can be extracted for Lie bialgebras corre-
sponding to so(5) and iso(4), with l replaced by h = so(4), since they are structurally
equivalent to the Lorentzian ones with the cosmological constant being replaced by
the inverse of the square of the radius of the sphere (see [143]).

We recall that classifications of r-matrices for the (2+1) Poincaré and (A)dS Lie al-
gebras have been presented, respectively, in [166, 167, 168], while for the (3+1) Poincaré
case a classification can be found in [230]. Nevertheless, we remark that most of these
results are not written in the kinematical basis (7.26). In the sequel we comment on some
(2+1) and (3+1) Lorentzian examples, thus making more explicit the previous definition
and constructions. As have been already noted, coisotropy and coreductivity are quite
restrictive properties and will select a very specific class of Lorentzian PHS.
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7.3.2 Dual Poisson homogenous spaces and the κ-Lie bialgebra in (2+1)
dimensions

Let us firstly illustrate the previous construction of coreductive Lie bialgebras and their
dual homogeneous spaces with the analysis of the Lie bialgebra associated to the κ-
deformation of the (2+1) dimensional Lorentzian algebras. This Lie bialgebra is coisotropic,
coreductive and cosymmetric since it is generated by the r-matrix (see Chapter 4)

r =
1

κ
(K1 ∧ P1 +K2 ∧ P2), (7.32)

which is indeed of the form (7.31). We recall that in (2+1) dimensions the Lie brackets
of the Lie algebra gΛ take the form (see §2.2)

[J, Pa] = εabPb, [J,Ka] = εabKb, [J, P0] = 0,

[Ka, Pb] = δabP0, [Ka, P0] = Pa, [K1,K2] = −J,
[P0, Pa] = −ΛKa, [P1, P2] = ΛJ.

(7.33)

The cocommutator map obtained from (7.32) reads

δ(P0) = δ(J) = 0,

δ(P1) =
1

κ
(P1 ∧ P0 + ΛK2 ∧ J),

δ(P2) =
1

κ
(P2 ∧ P0 − ΛK1 ∧ J), (7.34)

δ(K1) =
1

κ
(K1 ∧ P0 + P2 ∧ J),

δ(K2) =
1

κ
(K2 ∧ P0 − P1 ∧ J),

which is indeed coisotropic (3.79) with respect to the Lorentz Lie subalgebra

l = span {K1,K2, J} ' so(2, 1). (7.35)

Therefore, if we denote the dual generators to {P0, P1, P2,K1,K2, J} by, respectively,
{x̂0, x̂1, x̂2, ξ̂1, ξ̂2, θ̂}, the Lie brackets defining the (solvable) Lie algebra g∗ of the dual
Poisson-Lie group G∗Λ are straightforwardly deduced from (7.34) and read

[x̂0, x̂1] = − 1
κ x̂

1, [x̂0, x̂2] = − 1
κ x̂

2, [x̂1, x̂2] = 0,

[x̂0, ξ̂1] = − 1
κ ξ̂

1, [x̂0, ξ̂2] = − 1
κ ξ̂

2, [ξ̂1, ξ̂2] = 0,

[θ̂, x̂2] = − 1
κ ξ̂

1, [θ̂, ξ̂1] = 1
κ Λ x̂2, [ξ̂1, x̂2] = 0,

[θ̂, x̂1] = 1
κ ξ̂

2, [θ̂, ξ̂2] = − 1
κ Λ x̂1, [ξ̂2, x̂1] = 0,

[θ̂, x̂0] = 0, [ξ̂1, x̂1] = 0, [ξ̂2, x̂2] = 0.

(7.36)
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On the other hand, the dual cocommutator map η is obtained as the dual of the Lie
bracket (7.33) for the gΛ algebra, namely

η(x̂0) = ξ̂1 ∧ x̂1 + ξ̂2 ∧ x̂2,

η(x̂1) = −θ̂ ∧ x̂2 + ξ̂1 ∧ x̂0,

η(x̂2) = θ̂ ∧ x̂1 + ξ̂2 ∧ x̂0,

η(θ̂) = Λ x̂1 ∧ x̂2 − ξ̂1 ∧ ξ̂2, (7.37)

η(ξ̂1) = −Λ θ̂ ∧ ξ̂2,

η(ξ̂2) = Λ θ̂ ∧ ξ̂1.

Note that Λ plays now the role of a deformation parameter for the dual cocommutator,
although in this case the Λ→ 0 limit does not lead to the zero cocommutator.

We recall that the Poisson homogeneous Lorentzian spacetimes (MΛ, π) associated to
the κ-PL structure defined by (7.32) are explicitly given by the Poisson structure (see [144]
for details)

{x0, x1}π = −1

κ

tan
√

Λx1

√
Λ cos2(

√
Λx2)

, {x0, x2}π = −1

κ

tan(
√

Λx2)√
Λ

, {x1, x2}π = 0,

(7.38)
which in the limit Λ → 0 gives rise to the Poisson version of the well-known (2+1) κ-
Minkowski noncommutative spacetime

{x0, x1}π = −1

κ
x1, {x0, x2}π = −1

κ
x2, {x1, x2}π = 0. (7.39)

Note that (7.38) is just the projection to (2+1) dimensions of (4.52) and (4.53). More-
over, since the (A)dS and Minkowski spacetimes are obtained as cosets by the Lorentz
isotropy subgroup generated by l = span{J,K1,K2}, we have that t∗ = span{x̂0, x̂1, x̂2}
and the generators of l∗ are {ξ̂1, ξ̂2, θ̂}. Therefore, the commutation rules for g∗ (7.36) are
of the form

[t∗, t∗] ⊂ t∗ , [t∗, l∗] ⊂ l∗ , [l∗, h∗] ⊂ Λ t∗ . (7.40)

As a consequence, the reductive homogeneous spaces M∗Λ which are dual to the Lorentzian
spacetimes MΛ through the Lie bialgebra δ, would be defined as M∗Λ = G∗Λ/T

∗ where T ∗

is the subgroup of G∗ generated by the dual translations {x̂0, x̂1, x̂2}. This is the so-called
κ-Minkowski subgroup [63, 64, 65] and whose Lie algebra coincides with (7.39) (note that
this algebra does not depend on Λ). In the limit Λ → 0 (the Minkowski case) the ξ̂
generators form an abelian subalgebra of infinitesimal translations on the dual space M∗0 .

Also, we stress that G∗Λ with Lie algebra g∗ (7.36) is by no means a semisimple Lie
group, and the dual isotropy subgroup T ∗ is a solvable one. Therefore, the associated
Killing-Cartan form for the dual group G∗ is degenerate, and no guarantee of the existence
of a G∗-invariant (indefinite) metric onto M∗Λ is expected. In fact, it is easy to prove by
direct computation that for the particular case of the (2+1)-dimensional κ-Lie bialgebra,
the dual space M∗Λ cannot be endowed with such a metric, just by noticing that G-invariant
metrics on reductive spaces are in one-to-one correspondence (see Proposition 2.4) with
AdH -invariant non-degenerate symmetric bilinear forms 〈·, ·〉 on l∗ = Lie(L∗), i.e.

〈[Z,X], Y 〉+ 〈X, [Z, Y ]〉, ∀X,Y ∈ l∗, Z ∈ t∗ (7.41)
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where t∗ = Lie(T ∗). This implies that, in general, the geometric features of the three-
dimensional dual spaces M∗Λ will be quite different from their Lorentzian counterparts
MΛ.

Nevertheless, we stress that M∗ are Poisson homogeneous spaces whose Poisson struc-
ture π∗ can be also obtained as the canonical projection of the dual PL bracket Π∗ with as-
sociated Lie bialgebra is (g∗, η) given by (7.19). The latter is, by construction, coisotropic
with respect to the dual isotropy subalgebra generated by the generators of t∗. Recall
also that π∗ is defined on C∞(M∗) × C∞(M∗), and the coordinates on M∗ are the local
coordinates associated to the ξ̂ generators.

In the particular case of the κ-deformation, the dual Lie bialgebra (g∗, η) given by (7.36)
and (7.37) is not a coboundary one since there is no r-matrix defined within g∗ ⊗ g∗ that
could generate η. Despite of this fact (which implies that no Sklyanin bracket is available
for the construction of Π∗) its full dual PL bracket Π∗ can be computed through the
method based on a Poisson version of the quantum duality principle [19, 208, 147, 59]
which was introduced in [205] (see expressions (11) in [145]). The canonical projection
of this bracket onto the {K∗1 ,K∗2 , J∗} coordinates, which are just the local coordinates
associated to the ξ̂ = {ξ̂1, ξ̂2, θ̂} generators, respectively, gives the π∗ bracket for the dual
PHS WΛ, which reads

{J∗,K∗1}π∗ = K∗2 , {J∗,K∗2}π∗ = −K∗1 , {K∗1 ,K∗2}π∗ = −sin(2
√

ΛJ∗/κ)

2
√

Λ/κ
. (7.42)

Here it is worth remarking that, due to the non-coboundary nature of (g∗, η), the con-
struction of the PL bracket Π∗ on G∗ from which (7.42) is obtained as a projection, was
performed in [145] by imposing its Poisson map compatibility with the coalgebra structure
provided by the group multiplication, and its computation is by no means a trivial one.
For that reason, the coordinates employed to describe G∗ were fixed in such a way that
they are well-defined functions on the coset space M∗Λ = G∗Λ/T

∗, since the commutation
rules of the dual generators of translations and boosts guarantee an appropriate ordering
in the exponentiation of the dual group G∗ (see (5.57)). We also stress that getting a
common description in terms of ‘dual’ coordinates of two different coset spaces and of
their corresponding non-coboundary PHS is, in general, a difficult problem.

The dual Poisson homogeneous space M∗Λ = G∗Λ/T
∗ endowed with (7.42) deserves

several comments:

• As expected, the linearization of (7.42) coincides with the dual of the cocommutator
η (7.37), or equivalently with the Poisson version of the commutation rules for the
Lorentz Lie algebra sector in (7.33).

• When 1
κ 6= 0, the bracket (7.42) is a cosmological constant deformation of the so(2, 1)

algebra, that is recovered in the limit Λ→ 0. This is similar to what occurs in (7.38),
which in the case 1

κ 6= 0 is just a Λ-deformation of the κ-Minkowski Lie algebra (see
also [144]).

• Therefore, we can say that the Poisson algebra (MΛ, π) (7.38) is a cosmological
constant deformation of the Lie algebra (7.39), while the dual Poisson homogeneous
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space (M∗Λ, π
∗) (7.42) is a Λ-deformation of the Lie algebra generated by the dual

coordinates to the translations in M∗, which is a Poisson analogue of the Lorentz
subalgebra (7.33).

Summarizing, we realize that given any (2+1) dimensional Lorentzian Lie bialgebra, its
dual homogeneous space M∗Λ will have as its Poisson bracket π∗ either the Lorentz Lie al-
gebra or a deformation of it. As we will see in the sequel, all these are structural properties
imposed by the coreductivity constraint, and will also appear in (3+1) dimensions.

7.3.3 The (3+1) dimensional case

In (3+1) dimensions the r-matrix for the κ-deformation of Lorentzian Lie algebras is given
by (see Chapter 4)

r =
1

κ

(
K1 ∧ P1 +K2 ∧ P2 +K3 ∧ P3 +

√
−Λ J1 ∧ J2

)
, (7.43)

which is always coisotropic. However, due to the presence of the
√
−Λ J1 ∧ J2 term, only

for Λ = 0 this r-matrix gives rise to a coreductive (and thus cosymmetric) Lie bialgebra
structure, as seen directly from the cocommutator (4.36) with η =

√
−Λ. This means that

reductive duals of (A)dS spaces are excluded in (3+1) dimensions. On the contrary, the
dual (M∗0 , π

∗) of the κ-Minkowski Poisson homogeneous space (M0, π) can be constructed
as a reductive space. This M∗0 space will be 6-dimensional, since G∗ is 10-dimensional and
the isotropy subgroup for W0 will be generated by the {x̂0, x̂1, x̂2, x̂3} generators dual to
the Pα translations.

In this case the κ-Minkowski [63, 64, 65] PHS (M0, π) obtained by projecting the
Sklyanin bracket for the r-matrix (7.43) onto the spacetime coordinates can be proven to
be given (see Chapter 4) by the (3+1)-dimensional generalization of (7.44), namely

{x0, x1}π = −1

κ
x1, {x0, x2}π = −1

κ
x2, {x0, x3}π = −1

κ
x3, {xa, xb}π = 0.

(7.44)
On the other hand, the Poisson homogeneous structure (M∗0 , π

∗) has to be obtained as the
canonical projection onto the ξ∗ sector of the corresponding PL structure on G∗, which
was explicitly constructed in [114] by following the method introduced in [205]. It is
straightforward to check that this projection gives rise to a Poisson structure π∗ which is
a (undeformed) Poisson version of the Lorentz Lie algebra, namely

{J∗a , J∗b }π∗ = εabcJ
∗
c , {J∗a ,K∗b }π∗ = εabcK

∗
c , {K∗a ,K∗b }π∗ = −εabcJ∗c . (7.45)

which again generalizes the Λ → 0 case of the (2+1)-dimensional one (7.42). As it was
mentioned in the previous section, this Poisson homogeneous structure (M∗0 , π

∗) is well
defined because {J∗a ,K∗a} are, by construction, suitable coordinates on the coset space M∗0 .
This statement can be explicitly checked from in (5.57), since the vanishing commutation
relations among dual generators of boosts and translations ensures that the ordering in the
exponentiation is the suitable one for the description of the coset space in terms of local
coordinates. As a consequence, the noncommutative spacetime arising from quantizing π∗

will be just isomorphic to the Lorentz Lie algebra so(3, 1), whose representation theory is
well-known [241].
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7.4 On the geometry of dual Poisson homogeneous spaces

In the previous Section we have dealt with the Poisson geometry of the space M∗ since,
by construction, these spaces are naturally endowed with a Poisson structure compatible
with the left action of G∗. The general method for constructing such Poisson homoge-
neous structure on M∗ has been given, and some interesting examples have been worked
out in detail. However, while on the spacetimes MΛ the pseudo-riemannian structure co-
exists with the Poisson structure in a natural way, the first one describing the classical
geometry (general relativity) and the second one describing semi-classical quantum cor-
rections, we have seen that, in general, the dual PHS M∗Λ do not admit a G-invariant
pseudo-riemannian metric. Therefore, alternative approaches for the characterization of
the geometric properties of the dual PHS are needed.

A natural approach is to consider the general setting of K-structures on manifolds, by
following [181] and [173] (see Example 2.2). Let M∗ be the PHS dual to a coreductive Lie
bialgebra (g, δ), and let w be the dimension of M∗. Consider the frame bundle F (M∗)
viewed as a principal bundle over M∗ with structure group GL(w,R). With this notation,
a K-structure is a reduction of F (M∗) to the subgroup K of GL(w,R). A connection
in the principal bundle defined by the K-structure on M∗ induces a linear connection on
the tangent bundle of the manifold M∗ which is said to be adapted to the K-structure.
Associated to each connection we have its torsion and curvature, which indeed give infor-
mation not only about the geometry but also the topology of the manifold, and this will
be the route we propose in order to extract some explicit geometric information about the
space M∗.

Recall the notions of the torsion and curvature tensors T and R of a given connection,
defined in §2.1.5. It should be stressed that such connections are far from being unique
(so having different associated torsion and curvature forms), but in the particular case of
reductive spaces the so-called canonical connection having a particularly simple form can
be defined (see §2.1.6).

Let us consider the dual PHS corresponding to the coreductive Lie bialgebra (g, δ)
defined as the coset space M∗ = G∗/T ∗. We know that g∗ = Lie(G∗) admits a reductive
decomposition of the form g∗ = h∗⊕ t∗ where t∗ = Lie(T ∗), so we can identify TwM

∗ ' h∗.
We define the Lie bracket projection onto the subspaces associated to this decomposition
as

[X,Y ] = [X,Y ]h∗ + [X,Y ]t∗ , (7.46)

for all X,Y ∈ g∗, where [·, ·]h∗ stands for the projection to the subspace h∗ of the Lie
bracket [·, ·] on g∗. With this notation, the so-called canonical connection for the dual PHS
corresponding to a coreductive Lie bialgebra fulfills the following relations (see Theroem
2.5)

T (X,Y )eT ∗ = − [X,Y ]h∗ ,

(R(X,Y )Z)eT ∗ = − [[X,Y ]t∗ , Z] ,

∇T = 0,

∇R = 0.

(7.47)
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The last two identities are a direct consequence of the fact that every G∗-invariant tensor
field is parallel transported by the canonical connection. Here should be noticed that
the canonical connection just defined is complete for every dual PHS corresponding to a
coreductive Lie bialgebra.

In the case of M∗ being the dual PHS corresponding to a cosymmetric Lie bialgebra
(g, δ), further simplifications arise for the torsion and curvature tensors by taking into
account that [l∗, l∗] ⊂ t∗ (see Theorem 2.7), and therefore

T (X,Y )eT ∗ = 0,

(R(X,Y )Z)eT ∗ = − [[X,Y ] , Z] ,

∇T = 0,

∇R = 0,

(7.48)

for all X,Y, Z ∈ h∗. In general, the fact that the torsion tensor vanishes identically if (g, δ)
is cosymmetric means that the canonical connection on M∗ coincides with the Levi-Civita
connection associated to a G∗-invariant Riemannian metric (provided it exists).

As an example, let (g, δ) be the κ-Lie bialgebra in (2+1) dimensions given by (7.34).
A straightforward computation gives that the only non vanishing components of the cur-
vature tensor are (

R(ξ̂a, θ̂), θ̂
)

0
=

Λ

κ2
ξ̂a, (7.49)

while the Ricci tensor has the only non-vanishing component given by(
R(θ̂, θ̂)

)
0

= 2
Λ

κ2
. (7.50)

Therefore, the dual space M∗ associated to the κ-Lie bialgebra in (2+1) dimensions turns
out to be Ricci flat iff the corresponding model spacetime MΛ is flat, i.e. only in the
Minkowski case where Λ = 0 (the limit κ → ∞ corresponds to the trivial PHS structure
with abelian dual group G∗). The scalar curvature of M∗Λ cannot be defined at this stage
because we have not endowed M∗Λ with a metric. Note that although we have previously
proved that M∗Λ does not admit a G∗-invariant metric, such G∗-invariance condition -which
in fact is quite restrictive- could perhaps be relaxed.

For the (3 + 1) dimensional κ-Poincaré deformation, whose dual Lie algebra was pre-
sented in [146], it is straightforward to check that l∗ is a commutative Lie subalgebra, so
the Riemann tensor for the dual space M∗0 , with Poisson structure given in (7.45), vanishes
identically.

7.5 Coreductivity and uncertainty relations

The main physical motivation for the introduction of noncommutative spacetimes is based
on the widely shared idea that some quantum gravity effects could be described (in an
effective or dynamical way) by the introduction of a ‘quantum’ geometry in which space-
time coordinates are replaced by noncommutative operators (see for instance [20, 21, 26,
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22, 242, 30, 234] and references therein). In particular, quantum homogeneous spaces
Mq are noncommutative spacetimes covariant under quantum groups Gq (co)actions. We
have seen that the dual Lie algebra g∗ provides the first order of the noncommutative
algebra defining Gq, while the first order of the noncommutative spacetime’s commuta-
tion relations Mq is given by the t∗ subalgebra of dual translations. In this framework,
the noncommutativity of the algebra of coordinates of spacetime events implies the exis-
tence of Heisenberg-type uncertainty relations in the case of simultaneous measurements
of different components of the noncommutative coordinates x̂ (and their functions).

We have seen that the coisotropy condition (3.79) for a given Lie bialgebra guarantees
that the ‘quantum’ spacetime coordinates x̂ close a subalgebra within the dual Lie algebra
g∗ of quantum group coordinates, and that t∗ generates the isotropy subgroup of the
dual homogeneous space M∗. Moreover, by definition, the coreductivity constraint (7.16)
imposes onto g∗ the condition of being a reductive Lie algebra, and this fact will be
reflected in the representation theory of g∗, a fact which, as we will show now, has far-
reaching consequences from a physical viewpoint.

Let us firstly assume that the dual Lie algebra g∗ can be endowed with a C∗-algebra
structure, and let us consider a unitary irreducible representation of this algebra on a
Hilbert space of physical states denoted by |ψ〉. Then, if coreductivity does not hold and
we allow for elements of x̂ to appear on the right-hand-side of the commutation rules [x̂, ξ̂]
in the dual Lie algebra, namely,

[x̂, x̂] ⊂ x̂ , [x̂, ξ̂] ⊂ ξ̂ + x̂ , [ξ̂, ξ̂] ⊂ ξ̂ + x̂, (7.51)

then there will exist at least one uncertainty relation of the form

∆x̂∆ξ̂ ≥ 1

2
〈ξ̂〉+

1

2
〈x̂〉 , where ∆ŷ =

√
〈ŷ2〉 − 〈ŷ〉2 . (7.52)

Now, let us consider the subset of states such that ξ̂|ψ〉 = 0. Since by definition such states
have vanishing uncertainty and ∆ξ̂ = 〈ψ|ξ̂2|ψ〉 − 〈ξ̂〉2 = 0, then relations (7.52) impose
singular constraints onto the expectation values of the momenta of x̂. In particular, (7.52)
implies that either 〈ψ|x̂|ψ〉 = 0 or ∆x̂ → ∞. If we consider the representation space for
the Lie subalgebra [x̂, x̂] ⊂ x̂ alone, there could be some states such that 〈x̂〉 = 0, but these
ones most certainly do not exhaust, in general, the set of all possible states. Similarly,
there could be sequences of states for the subalgebra generated by x̂ whose uncertainty is
divergent, but, again, they will not be generic ones.

On the contrary, if the coreductivity condition holds this implies that we have com-
mutation rules of the type

[x̂, ξ̂] ⊂ ξ̂, (7.53)

which give rise to uncertainty relations of the form

∆x̂∆ξ̂ ≥ 1

2
〈ξ̂〉 . (7.54)

Now, if we consider the set of eigenstates of ξ̂ with vanishing eigenvalue, ξ̂|ψ〉 = 0, then
on these states the previous crossed uncertainty relations do not constrain in any way the
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momenta of the spacetime observables x̂. This argument can be illustrated with a well-
known example: the theory of unitary irreducible representations (UIR) of the Poincaré
Lie algebra. Note that the UIR of null-vector type are the ones with zero eigenvalues
for the generators of the subalgebra of translations (the ξ̂ operators in (7.53)), and in
this case the representation theory for the isotropy subgroup (the x̂ operators) completely
decouples with the one for the translation generators (see [241] for details).

In summary, if there are x̂ contributions on the right-hand-side of [x̂, ξ̂], the subset of
states for the g∗ algebra such that ξ̂|ψ〉 = 0 cannot provide with the full set of representa-
tion states for the noncommutative spacetime subalgebra x̂. Therefore, the coreductivity
condition allows us to get a physical insight of the subalgebra x̂ on its own, and consider
it as the keystone for the construction of a noncommutative algebra of functions on a
quantum homogeneous space Mq.

A more specific illustration of this argument can be extracted from the recent work [96],
where the representation theory for the κ-Minkowski spacetime has been thouroughly stud-
ied. In the simpler (1+1)-dimensional case, the commutation relations between the non-
commutative coordinates over the full quantum (1+1) Poincaré group are (see also [206])

[â0, â1] = iλ â1 , [ξ̂, â0] = −iλ sinh ξ̂ , [ξ̂, â1] = iλ
(

1− cosh ξ̂
)
, (7.55)

Note that the linearization of these relations leads to

[â0, â1] = iλ â1 , [ξ̂, â0] = −iλ ξ̂ , [ξ̂, â1] = 0 , (7.56)

which exactly coincides with the (1+1)-dimensional version of (7.36) provided that z =
−iλ and we identify the quantum group translation coordinates as x̂0 = â0 and x̂1 = â1.
Again, (7.56) illustrates the fact that the dual Lie algebra g∗ (7.36) provides just the
linearization of the full quantum group relations.

As it is shown in [96], finite translation (âµ) and Lorentz rapidity (ξ̂) operators can
be represented as differential operators on a Hilbert space of functions on the Cartesian
product between the Lorentz group and R in the following way:

â0 = iλ

(
1

2
+ q

∂

∂q

)
+ iλ

(
1

2
cosh ξ + sinh ξ

∂

∂ξ

)
,

â1 = q + iλ

(
1

2
sinh ξ + (cosh ξ − 1)

∂

∂ξ

)
, (7.57)

while ξ is the coordinate associtated with the eigenvalues of the multiplicative operator ξ̂.
The meaning of our uncertainty-relation argument is made clear in [96], where it is shown
that there exists a sequence of well-normalized product wavefunctions Q(ξ), such that for
any function of q, f(q), all the expectation values

〈Q(ξ)f(q)|(â1)n(â0)m|Q(ξ)f(q)〉 , (7.58)

tend to the following:

〈f(q)|(ŷ1)n(ŷ0)m|f(q)〉 , (7.59)
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where now ŷµ provide a faithful representation of the commutation relations of the κ-
Minkowski quantum homogeneous space:

ŷ0 = iλ

(
1

2
+ q

∂

∂q

)
,

ŷ1 = q . (7.60)

In this way we see that, by choosing a product state between this sequence of functions
Q(ξ) (which tend, in an appropriate way, to a function localized at ξ = 0) and an arbitrary
wavefunction f , we can reproduce the expectation values of any polynomial in ŷ0 and ŷ1,
and so we can define the whole wealth of possible states on the κ-Minkowski algebra as a
limit of states on the κ-Poincaré group, in which the rapidity (ξ) contribution is sent to
zero in a controlled way.

7.6 Remarks

Summarizing, given a Poisson homogeneous space (M,π), where M = G/H and the
Poisson-Lie structure Π on G is characterized by the Lie bialgebra (g, δ), the coisotropy,
coreductivity and cosymmetry conditions for δ are given as the following constraints

δ(h) ⊂��
�h ∧ h cosymmetry + h ∧ t +���t ∧ t coisotropy ,

δ(t) ⊂ h ∧ h +��
�h ∧ t coreductivity + t ∧ t ,

(7.61)

thus leading to a dual Lie algebra g∗ which is reductive and symmetric

[t∗, t∗] ⊂ t∗+@@h
∗

coisotropy , [t∗, h∗] ⊂@@t∗ coreductivity +h∗ , [h∗, h∗] ⊂ t∗+@@h
∗

cosymmetry ,
(7.62)

As we have seen, these conditions allows the construction of a reductive and symmetric
dual Poisson homogeneous space (M∗, π∗) where M∗ = G∗/T ∗ and π∗ is the canonical
projection onto M∗ of the Π∗ bracket on C∞(G∗) with associated Lie bialgebra given by
(g∗, η).

As we have seen through explicit examples, coreductivity and cosymmetry provide
a novel insight into the classification problem of Lie algebra structures (and therefore,
of PL groups and PHS, as well as their quantum analogues) which -to the best of our
knowledge- had not been considered yet. As far as quantum deformations of Lorentzian
Lie algebras are concerned, we have shown that the coreductivity condition impose strong
constraints: for instance, non-trivial Poisson-subgroup homogeneous spacetimes are pre-
cluded in general, and the (A)dS cases with non-vanishing cosmological constant also face
strong obstructions in the (3+1) dimensional case. In particular, the κ-Poincaré Lie bial-
gebra is coreductive in any dimension, while the κ-(A)dS Lie bialgebra is only coreductive
in (2+1) dimensions.

We would also like to stress that the notion of dual reductive PHS completes the set of
structures that can be defined onto a group G, a homogeneous space M and their duals G∗

and M∗. In order to summarize this global and self-dual picture, we can consider the well-
known example of the Poincaré group G, its associated Minkowski spacetime M = G/L,
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the coisotropic and coreductive PL structure on G provided by the κ-deformation, together
with their duals G∗ and M∗. In this way we have four Poisson structures:

1. Π: The PL structure on the Poincaré group associated to the Lie bialgebra (g, δ)
given by the r-matrix which corresponds to the κ-deformation.

2. π: The Poisson homogeneous structure on the Minkowski spacetime M = G/L
(the Poisson κ-Minkowski spacetime), whose bracket is obtained through canonical
projection from Π, since δ is coisotropic with respect to l = Lie(L).

3. Π∗: The PL structure on the dual Poincaré group G∗, whose associated Lie bialgebra
is (g∗, η). As we have shown, the Killing-Cartan form for G∗ is degenerate (G∗ is a
solvable Lie algebra), and no G∗-invariant metric does exist.

4. π∗: Since the Lie bialgebra (g, δ) is coreductive, the dual reductive homogeneous
spaceM∗ = G∗/T ∗, whose isotropy subgroup is generated by the dual of the Poincaré
translations T ∗, can be defined. Since the dual Lie bialgebra (g∗, η) is coisotropic,
the bracket π∗ can be thus obtained through canonical projection form Π∗, and
provides a Poisson κ-Lorentz space. Despite that such dual PHS cannot be endowed
with a G∗-invariant metric, its geometry can be analysed from the viewpoint of
K-structures and turns out to be torsionless and with vanishing curvature tensor.

Finally, we recall that the corresponding quantum homogeneous spacetimes will be
just the quantizations of the Poisson spaces (M,π) and (M∗, π∗). As we have seen, it
turns out that the coreductivity condition for δ guarantees that the representation theory
of the algebra obtained from (M,π) after quantization will not depend on the rest of the
quantum group Gq, and the same would happen with the quantum analogue of (M∗, π∗).



190 CHAPTER 7. DUAL POISSON HOMOGENEOUS SPACES



Chapter 8

Conclusions and open problems

Finally, we would like to summarize the most relevant original results presented in this
Thesis, together with some of the future research lines that arise as natural continuations
of this work.

8.1 Conclusions

The main results presented within this Thesis are the following:

1. We have generalized the well-known κ-Poincaré quantum deformation to the case of
a non-vanishing cosmological constant, proving that this generalization, called the
κ-(A)dS deformation, is unique under the assumption that the time generator is
primitive, which implies that the deformation parameter has mass units, a necessary
requirement from a physical point of view.

2. We have explicitly constructed the Poisson-Lie group associated to the κ-(A)dS
deformation, together with its covariant Poisson homogeneous space, called κ-(A)dS
spacetime. The first order in the cosmological constant parameter η =

√
−Λ of this

Poisson homogeneous space is quadratic and we have presented its quantization,
namely

[x̂0, x̂a] = −1

κ
x̂a,

[x̂1, x̂2] = − η

κ
(x̂3)2, [x̂1, x̂3] =

η

κ
x̂3 x̂2, [x̂2, x̂3] = −η

κ
x̂1 x̂3.

(8.1)

From these expressions we directly see that, in contradistinction to the κ-Minkowski
case, space coordinates x̂a do not commute among themselves but close a homoge-
neous quadratic algebra which, defines a quantum sphere related to the quantum
SU(2) ' SO(3) subalgebra of the (3+1)-dimensional κ-(A)dS quantum group. In
general, we have shown that the κ-(A)dS spacetime is a smooth deformation of the
κ-Minkowski one in terms of the cosmological constant parameter η.
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3. The quantization to all orders in η of the κ-(A)dS spacetime has been also obtained.
In order to achieve this result we have introduced ambient space coordinates sα in
terms of which the commutation relations are again homogeneous quadratic. We
have also shown that the Casimir operator Σ̂η,κ is the quantum analogue of the
pseudosphere defining the (A)dS spacetime.

4. We have introduced a novel construction to study the consequences of quantum
group symmetries for the homogeneous space of worldlines, which can be identified
with inertial observers. This construction can be performed for every spacetime
whose space of time-like geodesics is a homogeneous space, and for every quantum
deformation which is coisotropic with respect to the stabilizer subgroup of a time-like
geodesic.

5. As an application of this framework, we have explicitly studied the Poisson homo-
geneous space of worldlines associated to the κ-Minkowski spacetime, finding that
the Poisson structure is almost a symplectic one, which therefore implies that its
quantization is straightforward. Therefore, we have constructed a quantum homo-
geneous space of worldlines which is covariant under the κ-Poincaré quantum group,
and which is the noncommutative version of the space of worldlines of the Minkowski
spacetime.

6. The momentum space associated to the κ-(A)dS quantum group has explicitly been
constructed, and we have shown that in order to extend the method applied so far
to the κ-Poincaré quantum group, ‘momentum’ coordinates associated to Lorentz
boosts and spatial rotations have to be included. Moreover, we have shown that
the geometry of the momentum space for this quantum deformation is dimension
dependent, since for lower dimensions it is (half of) a higher dimensional dS space,
while in (3+1) dimensions it depends on the sign of the cosmological constant Λ: it
maintains this geometry for Λ ≥ 0, but for Λ < 0 the momentum manifold has an
SO(4, 4) invariance group.

7. The technique employed to construct the momentum space associated to a quantum
deformation makes use of the Poisson version of the ‘quantum duality principle’ and
therefore, as a subsidiary result, we have constructed the full dual κ-(A)dS Poisson-
Lie group.

8. We have studied, based on its previous classification and by using a kinematical basis
in which the physical meaning of the results are apparent, all the possible Drinfel’d
double structure of the Poincaré group in (2+1) dimensions. We have constructed
the eight non-isomorphic Minkowski Poisson homogeneous spacetimes canonically
defined by these Drinfel’d double structures, finding that only one of these Poisson
structures is quadratic, while the remaining ones are linear.

9. The only Drinfel’d double structure of the Euclidean group in three dimensions have
also been analyzed. This Drinfel’d double is the ‘rotation double’, the analogous
structure to the Lorentz double for the Poincaré case. Although these two structures
are induced by the semidirect product structure of these groups, in the Poincaré case
there exists a plurality of Drinfel’d double structures which is absent in the Euclidean
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case. These results have been compared with the ones for the (A)dS groups, and we
have found that not every (A)dS Drinfel’d double structure survives the contraction
limit Λ→ 0.

10. For the nontrivially centrally extended (1+1)-Poincaré group, the two existing non-
isomorphic Drinfel’d doubles were also analyzed and their canonical Poisson homo-
geneous spaces constructed. In higher dimensions, we have shown that most of the
kinematical groups cannot have any Drinfel’d double structure, being the (A)dS
groups the most important exception.

11. Based on the coisotropy condition for a Lie bialgebra, which guarantees that the
associated homogeneous space is indeed a Poisson homogeneous space, we have in-
troduced two new types of Lie bialgebras called coreductive and cosymmetric ones.
The intuition behind them is that one can see the coisotropy condition as the condi-
tion for the existence of a dual homogeneous space, and so coreductive and cosym-
metric Lie bialgebras are those for which these dual homogeneous spaces are indeed
reductive and symmetric, respectively.

12. We have considered, as an explicit example, the κ-Poincaré and κ-(A)dS Lie bial-
gebras, and we have constructed the associated dual homogeneous spaces. We have
explicitly proven that, in contradistinction to their associated spacetimes, they do
not admit invariant metrics. For this reason, in order to study their geometry we
have made use of the theory of K-structures, and thus we have analyzed the canon-
ical connections on these spaces, finding that they are flat (in the sense that the
Riemann tensor vanishes identically) if and only if the associated spacetimes are
flat.

13. Finally, we have found that these dual homogeneous spaces are relevant from a
physical point of view, since they are related to the uncertainty relations of the asso-
ciated noncommutative spacetime operators. In this sense, the notion of coreductive
and cosymmetric quantum deformations provide a way to classify noncommutative
spacetimes covariant under quantum group symmetries in terms of their type of
associated uncertainty relations.

8.2 Open problems

Some interesting open problems suggested by the results presented in this Thesis are the
following:

1. This Thesis has been focused in the three maximally symmetric Lorentzian space-
times of constant curvature, Minkowski and (anti-)de Sitter. It certainly would
be interesting to consider their non-relativistic limit and thus construct noncom-
mutative spaces for the Galilean and Newton-Hooke groups, together with their
noncommutative spaces of worldlines and curved momentum spaces.

2. The introduction of noncommutative spaces of worldlines opens an interesting win-
dow from a phenomenological point of view. Since worldlines of free massive particles
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can be identified with inertial observers, these spaces can be a first step in the di-
rection of proposing an explicit rigorous mathematical model of quantum observers
with quantum group symmetry. The consequences of noncommuting positions and
momenta for quantum observers, together with its associated uncertainty relations,
could imply physical limits (different, although necessarily related, from those in-
duced by a noncommutative spacetime) in our ability to probe the physical world,
which would be induced by the Planck scale deformation parameter.

3. The well-known connection between Drinfel’d doubles and the non-abelian version of
Poisson-Lie T -dual σ-models (see [236, 243, 244, 245, 246, 247, 248] and references
therein) indicate that the study of the ‘eightfold’ Poisson-Lie T -plurality for the
(2+1) Poincaré group certainly deserves some attention, as well as the comparison
with the case with Euclidean signature.

4. Finally, a natural generalization of Poisson-Lie groups are the so-called dynamical
Poisson-Lie groups [249, 250, 251, 252], which have been already employed in the
context of gauge fixing in (2+1) gravity [253, 254]. The analysis of their usefulness
in constructing ‘dynamical’ noncommutative spacetimes certainly deserves further
study.



Appendix A

Poisson-Lie structures on (2 + 1)D
Poincaré and 3D Euclidean groups

The classification of equivalence classes (under automorphisms) of Poisson-Lie structures
on the (2 + 1)-dimensional Poincaré and 3-dimensional Euclidean groups is due to P.
Stachura, who presented it in [166]. In this Appendix we summarize these results and
write them in the notation employed throughout the Thesis.

Since for both the (2 + 1)-dimensional Poincaré and 3-dimensional Euclidean groups
all Poisson-Lie structures are coboundary ones, the classification of Poisson-Lie structures
on them is equivalent to the classification of skew-symmetric solutions of the mCYBE
(see Proposition 3.3). Using the fact that both the (2 + 1)-dimensional Poincaré and 3-
dimensional Euclidean Lie algebras are symmetric Lie algebras (see Definition 2.21), one
can decompose any element r ∈ g ∧ g, where g = p(2 + 1) or g = e(3), as

r = a+ b+ c, a ⊂ t ∧ t, b ⊂ t ∧ h, c ⊂ h ∧ h, (A.1)

where g = h⊕t is the AdH -invariant splitting of Proposition 2.5, and call t = span {e1, e2, e3}
and h = span {k1, k2, k3}. With this notation one can simplify the mCYBE (3.36) given
by

adX [[r, r]] = 0 (A.2)

for all X ∈ g, and obtain the set of equations

[[a, b]] = p η̃, 2[[a, c]] + [[b, b]] = µΩ, [[b, c]] = [[c, c]] = 0, η̃ ∈
3∧
t, Ω ∈

2∧
t⊗ h,

(A.3)
depending of two arbitrary real parameters µ, p ∈ R. The cases with p = 0 correspond
to solutions leading to coisotropic Lie bialgebras with respect to h, and so to coisotropic
Poisson homogeneous spaces M = G/H.

A.1 Poisson-Lie structures on the (2+1) Poincaré group

In this case g = p(2 + 1) ' so(2, 1) nR3. In order to translate this classification in terms
of the kinematical basis we have used throughout the Thesis (and in particular in (6.1)),
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the appropriate isomorphism is given by the map

e1 = P0, e2 = P1, e3 = P2, k1 = −J, k2 = −K2, k3 = K1, (A.4)

with {e1, e2, e3, k1, k2, k3} being the basis used in [166]. Then t = span{P0, P1, P2} ' R3

and h = span{J,K1,K2} ' so(2, 1). The cases with p = 0 correspond to solutions giving
rise to coisotropic Lie bialgebras with respect to h ' so(2, 1), and so they give rise to
2-dimensional Poisson-Minkowski spacetimes M = P (2 + 1)/SO(2 + 1).

There exist eight equivalence classes of Poisson-Lie structures on the (2+1)-dimensional
Poincaré group, defined by:

Class (I):

c = 1√
2
K1 ∧ (J +K2), b = α(−P0 ∧ J − P1 ∧K2 + P2 ∧K1), a = 0. (A.5)

Here α = {0, 1}, µ = 2α2, p = 0. This is the only case in the classification with c 6= 0, so
hereafter c = 0.

Class (IIa):

b = ρP2 ∧K1−α(P1 ∧J +P0 ∧K2), a = a01P0 ∧P1 + a02P0 ∧P2 + a12P1 ∧P2, (A.6)

with α = {0, 1}, ρ ≥ 0, α2 + ρ2 6= 0, µ = −2α2, p ∈ R, and where from now on
{a01, a02, a12} denote free real parameters. Note that the automorphism (6.32) transforms
ρ ≥ 0 into ρ ≤ 0.

Class (IIb):

b = −ρP0∧J−α(P1∧K1 +P2∧K2), a = a01P0∧P1 +a02P0∧P2 +a12P1∧P2, (A.7)

with α = {0, 1}, ρ ≥ 0, α2 + ρ2 6= 0, µ = 2α2, p ∈ R.

Class (IIc):

b =
α√
2

(
−P2 ∧ (J +K2) + (P0 − P1) ∧K1

)
− ρ(P0 − P1) ∧ (J +K2),

a = a01P0 ∧ P1 + a02P0 ∧ P2 + a12P1 ∧ P2,
(A.8)

with α = {0, 1}, ρ ≥ 0, α2 + ρ2 6= 0, µ = 0, p ∈ R.

Class (IIIa):

b =
1√
2

(P0 − P1) ∧K1, a = a01P0 ∧ P1 + a02P0 ∧ P2 + a12P1 ∧ P2, (A.9)

with µ = 0, p ∈ R.

Class (IIIb):

b = −P0 ∧ J − (ρ− 1)P1 ∧ J − (ρ+ 1)P0 ∧K2 + P1 ∧K2 + ρP2 ∧K1,

a = a01P0 ∧ P1 + a02P0 ∧ P2 + a12P1 ∧ P2,
(A.10)
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with ρ ∈ R∗, µ = 2ρ2, p ∈ R.

Class (IV):
b = −P0 ∧ J − P1 ∧K2 + P2 ∧K1, a = 0, (A.11)

with µ = 2, p = 0.

Class (V):
b = 0, a = a01P0 ∧ P1 + a02P0 ∧ P2 + a12P1 ∧ P2, (A.12)

with µ = 0, p = 0.

As it is shown in Table 6.2, we have proven that only four of the above classes contain
DD structures. Among them, only Class (IV) is by itself a DD, while Classes (I), (IIa)
and (IIIb) contain DD structures for some specific values of the parameters.

A.2 Poisson-Lie structures on the 3D Euclidean group

In this case g = e(3) ' so(3) nR3. In order to translate this classification in terms of the
kinematical basis we have used in particular in §6.6, the appropriate isomorphism is given
by the map

ei = Pi, ki = Ji, i = 1, 2, 3 (A.13)

with {e1, e2, e3, k1, k2, k3} being the basis used in [166]. Then t = span{P1, P2, P3} ' R3

and h = span{J1, J2, J3} ' so(3). The cases with p = 0 correspond to solutions giving
rise to coisotropic Lie bialgebras with respect to h ' so(3), and so they give rise to
2-dimensional Poisson-Riemannian spacetimes M = E(3)/SO(3).

There exist there equivalence classes of Poisson-Lie structures on the 3-dimensional
Euclidean group, all of them with c = 0,defined by:

Class (I)

b = α(P1 ∧ J2 − P2 ∧ J1) + ρP3 ∧ J3, a = a12P1 ∧ P2 + a13P1 ∧ P3 + a23P2 ∧ P3,

with α = {0, 1}, ρ ≥ 0, α2 + ρ2 6= 0, µ = −2α2, p ∈ R, and where from now on
{a12, a13, a23} denote three free real parameters.

Class (II)
b = P1 ∧ J1 + P2 ∧ J2 + P3 ∧ J3, a = 0, (A.14)

with µ = 2 and p = 0.

Class (III)
b = 0, a = a12P1 ∧ P2 + a13P1 ∧ P3 + a23P2 ∧ P3, (A.15)

with µ = 0 and p = 0.
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[94] M. Dimitrijević, L. Jonke, and A. Pachol. Gauge theory on twisted κ-Minkowski: old
problems and possible solutions. Symmetry, Integr. Geom. Methods Appl., 10:063,
2014. arXiv:1403.1857, doi:10.3842/SIGMA.2014.063. (Cited in page 8).

[95] A. Agostini. κ-Minkowski representations on Hilbert spaces. J. Math. Phys.,
48(5):052305, 2007. arXiv:hep-th/0512114, doi:10.1063/1.2738360. (Cited in
pages 8, 112).

[96] F. Lizzi, M. Manfredonia, F. Mercati, and T. Poulain. Localization and reference
frames in κ-Minkowski spacetime. Phys. Rev. D, 99(8):085003, 2019. arXiv:1811.

08409, doi:10.1103/PhysRevD.99.085003. (Cited in pages 8, 112, 187, 187, 187).

[97] F. Mercati and M. Sergola. Light cone in a quantum spacetime. Phys. Lett. B,
787:105–110, 2018. arXiv:1810.08134, doi:10.1016/j.physletb.2018.10.031.
(Cited in page 8).

[98] G. Amelino-Camelia. Testable scenario for Relativity with minimum-length.
Phys. Lett. B, 510(1-4):255–263, 2001. arXiv:hep-th/0012238, doi:10.1016/

S0370-2693(01)00506-8. (Cited in pages 8, 10).

http://arxiv.org/abs/1106.5710
http://dx.doi.org/10.1088/0264-9381/30/14/145002
http://arxiv.org/abs/1507.02612
http://dx.doi.org/10.1016/j.physletb.2015.09.042
http://arxiv.org/abs/hep-th/9409014
http://dx.doi.org/10.1016/0370-2693(95)00223-8
http://dx.doi.org/10.1016/0370-2693(95)00223-8
http://arxiv.org/abs/1502.02972
http://dx.doi.org/10.1007/JHEP07(2015)055
http://arxiv.org/abs/1104.0206
http://dx.doi.org/10.4171/JNCG/129
http://dx.doi.org/10.4171/JNCG/129
http://arxiv.org/abs/hep-th/0307149
http://arxiv.org/abs/hep-th/0307149
http://dx.doi.org/10.1140/epjc/s2003-01309-y
http://arxiv.org/abs/hep-th/0612170
http://arxiv.org/abs/hep-th/0612170
http://dx.doi.org/10.1016/j.physletb.2007.02.056
http://arxiv.org/abs/1403.1857
http://dx.doi.org/10.3842/SIGMA.2014.063
http://arxiv.org/abs/hep-th/0512114
http://dx.doi.org/10.1063/1.2738360
http://arxiv.org/abs/1811.08409
http://arxiv.org/abs/1811.08409
http://dx.doi.org/10.1103/PhysRevD.99.085003
http://arxiv.org/abs/1810.08134
http://dx.doi.org/10.1016/j.physletb.2018.10.031
http://arxiv.org/abs/hep-th/0012238
http://dx.doi.org/10.1016/S0370-2693(01)00506-8
http://dx.doi.org/10.1016/S0370-2693(01)00506-8


BIBLIOGRAPHY 207

[99] G. Amelino-Camelia. Doubly-special relativity: first results and key open problems.
Int. J. Mod. Phys. D, 11(10):1643–1669, 2002. arXiv:gr-qc/0210063, doi:10.

1142/S021827180200302X. (Cited in page 8).

[100] G. Amelino-Camelia. Relativity in spacetimes with short-distance structure gov-
erned by an observer-independent (Planckian) length scale. Int. J. Mod. Phys.
D, 11(1):35–59, 2002. arXiv:gr-qc/0012051, doi:10.1142/S0218271802001330.
(Cited in pages 8, 10).

[101] J. Magueijo and L. Smolin. Lorentz Invariance with an Invariant Energy Scale.
Phys. Rev. Lett., 88(19):190403, 2002. arXiv:hep-th/0112090, doi:10.1103/

PhysRevLett.88.190403. (Cited in page 8).

[102] J. Kowalski-Glikman and S. Nowak. Doubly special relativity theories as different
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Drinfel’d double. Class. Quantum Gravity, 36(2):025003, 2019. arXiv:1809.09207,
doi:10.1088/1361-6382/aaf3c2. (Cited in pages 13, 146, 158, 166).

[170] A. Ballesteros, I. Gutierrez-Sagredo, and F. J. Herranz. Drinfel’d double struc-
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[182] D. Bernard. Sur la géométrie différentielle des G-structures. Ann. l’institut Fourier,
10:151–270, 1960. doi:10.5802/aif.99. (Cited in page 27).

[183] A. Fujimoto. On the structure tensor of $G$-structure. Mem. Coll. Sci. Univ. Kyoto.
Ser. A Math., 33(1):157–169, 1960. doi:10.1215/kjm/1250776063. (Cited in page
27).

[184] S. S. Chern. The geometry of G-structures. Bull. Am. Math. Soc., 72(2):167–219,
1966. (Cited in page 27).

[185] H. Weyl. Raum · Zeit · Materie. Springer Berlin Heidelberg, Berlin, Heidelberg,
1923. doi:10.1007/978-3-642-98950-6. (Cited in page 28).

[186] H. Cartan. La transgression dans un groupe de Lie et dans un espace fibré principal.
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deformed Poincaré symmetry. J. Math. Phys., 50(5):052503, 2009. arXiv:0806.

4121, doi:10.1063/1.3131682. (Cited in pages 146, 149, 170).

[230] S. Zakrzewski. Poisson Structures on the Poincaré Group. Commun. Math. Phys.,
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