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A B S T R A C T   

In this paper, stress-intensity factor solutions are presented for an embedded elliptical crack in a round bar 
subjected to tensile load. The stress-intensity factors (SIF) are presented in a tabulated form and were obtained 
from three-dimensional finite-element analyses of this crack configuration. The solutions provide the stress- 
intensity factor as a function of three dimensionless parameters representative of the crack size, the crack 
aspect ratio of the elliptical flaw and its relative position in the cross section. The dimensionless parameters cover 
ranges that allow most internal flaw shapes in practice to be considered. In order to validate the numerical model 
developed, some particular cases are compared with solutions of embedded elliptical flaws in different geome
tries available in the literature. Afterwards, a sequential methodology for fatigue crack growth is presented, 
including the conditions for the recategorization from the internal elliptical crack to a semi-elliptical surface 
crack. A comparison of the predicted crack paths with experimental results of fatigue crack propagation initiated 
from internal defects in round bars is also presented. This experimental validation shows the capability of the 
proposed SIF solutions for the study of the fatigue crack propagation initiated from internal defects in this 
geometry.   

1. Introduction 

There is a large number of applications in which internal defects, 
such as pores or inclusions, are the main cause of the fatigue cracks 
initiation in round bars. For example, the current additive 
manufacturing techniques, increasingly being used for high re
sponsibility components, are linked to the presence of internal defects, 
which are the main cause of fatigue crack initiation in these components 
[1–3]. These internal defects grow due to fatigue until they reach the 
surface of the specimen, forming a characteristic shape known as a 
fisheye. Moreover, several papers show that the inner inclusion induced 
failure with the existence of a fisheye becomes the predominant failure 
mode in High Cycle Fatigue (HCF) and Very High Cycle Fatigue (VHCF) 
regimes [4–6]. 

Since one of the most common specimens to study the fatigue life of 
materials is the cyclic uniaxial tensile test, solutions for the stress- 
intensity factor for embedded elliptical cracks in round bars subjected 
to tensile loads are needed. 

The calculation of stress-intensity factors (SIF) for embedded ellip
tical cracks in different geometries has received a great deal of attention 

in the literature over the last decades. 
The exact solution for an embedded elliptical crack in an infinite 

solid subjected to uniform uniaxial stress was first developed by Green 
[7] and Irwin [8,9]. After that, extensive research has been conducted 
on the calculation of stress-intensity factors of embedded elliptical 
cracks in plates. Varfolomeev and Vainshtok [10] developed a solution 
based on the method of weight functions to solve the SIF for different 
load cases including uniform, linear and exponential stress distributions. 
The same authors [11] present a review of the analytical solutions for 
the stress-intensity factors along the front of part-elliptical cracks 
(elliptical, semi-elliptical and quarter-elliptical), including an estima
tion of the average errors. Newman and Raju [12] provide the stress- 
intensity factor for embedded elliptical, semi-elliptical surface cracks, 
and quarter-elliptical corner cracks in plates subjected to tensile and 
bending loads. The stress-intensity factors are collected as closed form 
equations obtained from three-dimensional finite-element analyses of 
these crack configurations. Isida and Noguchi [13] also provide a solu
tion for the stress-intensity factor of finite thickness plates under tension 
containing an embedded elliptical crack located at an arbitrary position. 
The solutions, based on numerical calculations, are also presented in 
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polynomial forms for practical use. 
For the case of internal flaws in round bars, there are a great number 

of papers focused on the study of penny-shaped cracks. Nishioka and 
Atluri [14] evaluate a round bar with an embedded circular crack 
located at the center of the bar, and subjected to pure tension or pure 
bending at the ends of the bar. Benthem et al [15] also provide the stress- 
intensity factor solution for a circular embedded crack (centered) in a 
round bar, and subjected to tensile, bending and torsion loads. This last 
solution is given in the FITNET code of practice [16] and in the FKM 
guideline [17]. 

For the case of surface flaws in rounded bars under tension and 
bending, a great amount of research can be found in the literature 
[18–23]. A critical review of the most commonly used solutions can be 
found in the work of Toribio et al [24]. Existing solutions cover different 
load cases, including tensile stress, bending and torsion moments or 
even based on complex stress distributions. Shin and Cai [18] considered 
a three-parameter model to represent the crack front and provide both 
tabulated solutions and a set of practical closed-form equations obtained 
by a least-squares fitting that allow the SIF at any point of the crack front 
to be obtained. 

Carpinteri et al [23] have extensively studied this surface crack ge
ometry considering a three-parameter K-solution to represent the crack 
front as an elliptical-arc shape, and including a detailed and rigorous 
methodology for addressing crack growth in this geometry. This is 
especially interesting because of the loss of perpendicularity of the crack 
front on the surface of the part. Another interesting reference for this 
type of surface crack in a round bar is provided by Raju and Newman 
[19]. 

For this surface crack geometry, most authors replicate the crack 
shape evolution during fatigue growth from elliptical-arc or circular-arc 
shapes. Lin and Smith [25] found that the elliptical-arc surface flaw 
becomes close to the propagation of the crack fronts during a fatigue 
process. They also demonstrate that the crack growth always attempts to 
follow a preferred propagation aspect ratio no matter what the initial 

crack shape was. 
Therefore, numerous solutions for obtaining the SIF in cylindrical 

round bars when considering a surface arc-elliptical crack have been 
reported in the literature. There are also numerous papers for the 
calculation of SIF in embedded elliptical cracks in plates. However, only 
a few solutions of the stress-intensity factor for embedded elliptical 
cracks in round bars can be found in the literature [14,15,17,26–28], 
most of them focused on centered penny shaped cracks. 

Consequently, the main objective of this paper is to provide a set of 
SIF solutions for the case of embedded elliptical cracks in a round bar 
subjected to tensile loads. Moreover, to use the proposed solutions for a 
fatigue crack growth analysis, a sequential methodology including the 
procedure for the recategorization of an internal elliptical crack to a 
semi-elliptical surface crack is also presented. This recategorization 
from an embedded elliptical flaw to a surface flaw is required in order 
the fatigue crack propagation to be extended until the critical fracture 
conditions are reached. As a general rule, procedures for the recatego
rization of flaws are collected in the main design codes for the case of 
plates [28–30]. 

2. Geometry of the embedded crack in the round bar 

The geometry of the round bar and the main dimensions of a generic 
embedded elliptical crack are presented in Fig. 1. 

For an elliptical crack shape, the crack position in the cross section 
and the aspect ratio are defined by three parameters, the two semi-axes 
of the ellipse (a and c) and the width of the ligament (h). The bar is 
defined by the radius (R), and the tensile load applied at the ends of the 
bar is defined by the constant uniaxial stress (σ0). These geometric pa
rameters have been normalized, defining three new dimensionless pa
rameters that explicitly characterize the flaw shape, size and location. 
Both the bar radius and the ligament are used to normalize crack size 
and location, which is a particularity for embedded cracks: 

Fig. 1. Dimensions of an embedded elliptical crack in a round bar.  
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• (a+h)/R , which defines the relative position of the center of the 
crack relative to the center of the circular cross section. This value 
ranges from 1 for centered cracks to 0.05 for cracks close to the bar 
surface.  

• a/(a + h) , which defines the ratio of the crack size to the distance 
from the center of the ellipse to the bar surface. Its value ranges from 
0.05 to 0.95.  

• a/c , which defines the aspect ratio of the elliptical crack. Its value 
ranges from 0.2 for elongated cracks to 1.0 for circular cracks. 

The ranges chosen for the dimensionless parameters are based on 
numerical and practical considerations. The simulated crack aspect ra
tios and locations do not exhibit mesh distortion or convergence issues. 
Additionally, the wide range of simulated parameters covers most cases 
observed in practice for embedded flaws in round bars. 

3. Finite element modelling 

A numerical 3D model, using Abaqus software, has been created for 
the SIF calculations using 20-node quadratic elements with reduced 
integration (C3D20R). The choice of C3D20R is demonstrated to reduce 
computational time in comparison to C3D20. Nevertheless, for these 
second-order elements, i.e. quadratic 20-node brick elements, hour
glassing is not expected except for very coarse meshes [31], which is not 
the case in this study. Hourglass modes could appear for linear reduced- 
integration elements, such as the C3D8R, so they were discarded for this 
simulation. 

Because of its symmetry, only one-fourth of the round bar is 
modelled. The stress field is determined by assuming a linear elastic 
behavior with a Poisson ratio of 0.3 and an elastic modulus of 200 GPa. 
The stress square-root singularity near the flaw is obtained by using 
quarter-point finite elements around the crack-tip region. 

A sensitivity analysis of the mesh size and number of elements along 
the crack front was performed in order to select the optimum number of 
elements to balance accuracy and calculation time. A total of 8 elements 

were chosen to mesh the circular semi-rosette around the tip of the 
crack, and total of 100 elements were used to mesh the crack front. A 
detail of the meshing technique used is shown in Fig. 2. 

The calculation of the SIF is obtained using the path independent J- 
integral parameter. This energy-based parameter is implemented in the 
main finite element analysis codes (e.g. Abaqus) allowing for the 
calculation of three-dimensional cracks. For elastic–plastic analysis, the 
J-integral is composed of an elastic part Je and a plastic part Jp . For 
linear elastic materials, the elastic part of J-integral, Je , is related with 
the stress-intensity factor value, KI , using the following equation, 

KI =
̅̅̅̅̅̅̅̅̅̅
Je⋅E′

√
(1) 

Where E′

= E for plane stress and E′

= E/(1 − ν2) for plane strain, 
with E being Young’s modulus and ν Poisson’s ratio. Typically, plane 
strain conditions are assumed along the whole crack front, except at the 
free surfaces where plane stress conditions can be supposed. In the 
present study, where an embedded crack is solved, plane strain condi
tions can be assumed for all points along the crack front. 

4. Stress-intensity factor solutions 

In order to completely define the SIFs for the elliptical crack, the SIF 
values at the four vertices of the ellipse need to be obtained. However, 
because of the symmetry of the crack position (Fig. 1) the values of Kc1 
and Kc2 are identical, and as a consequence only one value has been 
calculated and is termed as Kc . On the contrary, the SIFs for the vertices 
a1 and a2 are different because there are placed on a different position in 
the section and, as a consequence, its values need to be distinguished 
and calculated. These values are termed as Ka1 and Ka2 respectively. 

The stress-intensity factor at the vertices of the elliptical crack, as 
shown in Fig. 1, can be expressed in the following form: 

Ka1 = Fa1⋅σ0⋅
̅̅̅̅̅
πa

√

Ka2 = Fa2⋅σ0⋅
̅̅̅̅̅
πa

√

Kc = Fc⋅σ0⋅
̅̅̅̅̅
πa

√
(2) 

Fig. 2. Detail of the meshing of the numerical model developed for an off-center embedded elliptical crack (a/c = 0.2).  

J.M. Alegre et al.                                                                                                                                                                                                                                



Theoretical and Applied Fracture Mechanics 117 (2022) 103189

4

where σ0 is the uniform axial stress, a is the crack depth, and Fa1 , Fa2 

and Fc are the geometry correction factors. These factors are a function 
of crack geometry and the radius of the round bar, and can be written as 
a function of the three geometric dimensionless parameters in a general 
form as: 

Fi = Fi

(
a + h

R
,

a
a + h

,
a
c

)

(3) 

These geometry correction factors are obtained from the 3D nu
merical calculations of the SIFs presented on Section 3, and then 
extracted from to equation (2). Tables 1 to 3 collect the calculated values 
for these geometry correction factors for positions a1 , a2 and c respec
tively. The relative position of the center of the elliptical crack (a+h)/R 
ranges from 1 (centered crack) to 0.05 (crack close to the bar surface) in 
six increments 0.05, 0.2, 0.4, 0.6, 0.8 and 1.0. The ratio a/(a + h) , which 
defines the ratio of the crack size to the distance from the crack center to 
the bar surface, ranges from 0.05 (large ligament size compared to the 
crack size) to 0.95 (small ligament size compared to the crack size) in six 
increments. And finally, the aspect ratio of the elliptical crack a/c , 
ranges from 0.2 (elongated crack) to 1.0 (circular crack) in five equal 
increments. 

5. Comparison with solutions available in the literature 

To obtain a suitable finite element model, a comparison of the pro
posed SIF solutions with others available in the literature is needed. 
With this aim, two different situations have been analyzed and 
compared with proven solutions available in the literature. 

The first situation analyzed corresponds to a centered circular crack 
in a round bar subjected to tensile loads. For comparison purpose, the 
reference solution developed by Benthem et al [15] was chosen. This 
solution is also included in the procedure FITNET [16] and in the 
guideline FKM [17]. 

Fig. 3 shows the good agreement of the current SIF results, for the 

case of a/(a + h) = 1 and a/c = 1 , compared with the solution of Ben
them. Only the values for Fa1 are presented as the values for Fa2 and Fc 
are identical for this particular case. 

Table 1 
Geometry correction factor, Fa1.  

a/c  a
(a + h)

(a + h)/R  

0.05 0.2 0.4 0.6 0.8 1.0 

0.2  0.05  0.9481  0.9481  0.9481  0.9481  0.9481  0.9481  
0.2  0.9531  0.9543  0.9582  0.9636  0.9695  –  
0.4  0.9834  0.9967  –  –  –  –  
0.6  1.0649  –  –  –  –  –  
0.8  1.2756  –  –  –  –  –  
0.95  1.9484  –  –  –  –  – 

0.4  0.05  0.8665  0.8665  0.8665  0.8665  0.8665  0.8665  
0.2  0.8689  0.8694  0.8704  0.8722  0.8744  0.8784  
0.4  0.8871  0.8918  0.9068  0.9285  0.9521  –  
0.6  0.9422  0.9635  1.0347  –  –  –  
0.8  1.0790  1.1586  –  –  –  –  
0.95  1.5754  –  –  –  –  – 

0.6  0.05  0.7812  0.7812  0.7812  0.7812  0.7812  0.7812  
0.2  0.7823  0.7825  0.7828  0.7835  0.7844  0.7862  
0.4  0.7942  0.7966  0.8029  0.8136  0.8250  0.841  
0.6  0.8317  0.8421  0.8753  0.9262  0.9822  –  
0.8  0.9405  0.9765  1.1007  1.3091  –  –  
0.95  1.2667  1.3855  1.8561  –  –  – 

0.8  0.05  0.7058  0.7058  0.7058  0.7058  0.7058  0.7058  
0.2  0.7067  0.7068  0.7069  0.7072  0.7076  0.7082  
0.4  0.7146  0.7159  0.7191  0.7246  0.731  0.7396  
0.6  0.7413  0.7474  0.7645  0.7927  0.8216  0.8532  
0.8  0.8216  0.8419  0.9063  1.0135  1.1406  –  
0.95  1.0669  1.1293  1.3360  1.7603  –  – 

1  0.05  0.6386  0.6386  0.6386  0.6386  0.6386  0.6386  
0.2  0.6388  0.6388  0.6389  0.6391  0.6394  0.6398  
0.4  0.6437  0.6446  0.6463  0.6492  0.6529  0.6582  
0.6  0.6631  0.6671  0.6769  0.6936  0.7108  0.7274  
0.8  0.7239  0.7368  0.7731  0.8347  0.8998  0.9525  
0.95  0.9143  0.9520  1.0637  1.2671  1.5391  1.8441  

Table 2 
Geometry correction factor, Fa2.  

a/c  a
(a + h)

(a + h)/R  

0.05 0.2 0.4 0.6 0.8 1.0 

0.2  0.05  0.9481  0.9481  0.9481  0.9481  0.9481  0.9481  
0.2  0.9521  0.9531  0.9564  0.9608  0.9663  –  
0.4  0.9692  0.9796  –  –  –  –  
0.6  1.0025  –  –  –  –  –  
0.8  1.0436  –  –  –  –  –  
0.95  1.0870  –  –  –  –  – 

0.4  0.05  0.8663  0.8663  0.8663  0.8663  0.8663  0.8664  
0.2  0.8679  0.8683  0.8692  0.8705  0.8726  0.8781  
0.4  0.8775  0.8808  0.8917  0.9058  0.9256  –  
0.6  0.8951  0.9101  0.9539  –  –  –  
0.8  0.9214  0.9615  –  –  –  –  
0.95  0.9662  –  –  –  –  – 

0.6  0.05  0.7804  0.7804  0.7804  0.7804  0.7804  0.7804  
0.2  0.7815  0.7813  0.7816  0.7823  0.7839  0.7866  
0.4  0.7882  0.7897  0.7941  0.7995  0.8102  0.8414  
0.6  0.8001  0.8059  0.8241  0.8499  0.8890  –  
0.8  0.8191  0.8354  0.8915  0.9675  –  –  
0.95  0.8357  0.8698  1.0040  –  –  – 

0.8  0.05  0.7067  0.7067  0.7067  0.7067  0.7067  0.7067  
0.2  0.7071  0.7071  0.7072  0.7074  0.7078  0.7087  
0.4  0.7104  0.7112  0.7131  0.7163  0.7217  0.7402  
0.6  0.7182  0.7213  0.7306  0.7421  0.7637  0.8538  
0.8  0.7304  0.7385  0.7657  0.8001  0.8611  –  
0.95  0.7409  0.7568  0.8129  0.8929  –  – 

1  0.05  0.6387  0.6386  0.6386  0.6386  0.6386  0.6386  
0.2  0.6392  0.6392  0.6393  0.6395  0.6398  0.6398  
0.4  0.6409  0.6413  0.6422  0.6439  0.6467  0.6582  
0.6  0.6462  0.6479  0.6527  0.6598  0.6719  0.7274  
0.8  0.6543  0.6589  0.6732  0.6913  0.7237  0.9525  
0.95  0.6584  0.6669  0.6959  0.7296  0.7912  1.8441  

Table 3 
Geometry correction factor, Fc.  

a/c  a
(a + h)

(a + h)/R  

0.05 0.2 0.4 0.6 0.8 1.0 

0.2  0.05  0.4221  0.4221  0.4221  0.4221  0.4221  0.4221  
0.2  0.4236  0.4242  0.4260  0.4291  0.4353  –  
0.4  0.4284  0.4363  –  –  –  –  
0.6  0.4377  –  –  –  –  –  
0.8  0.4545  –  –  –  –  –  
0.95  0.4720  –  –  –  –  – 

0.4  0.05  0.5477  0.5476  0.5478  0.5478  0.5478  0.5479  
0.2  0.5489  0.5492  0.5499  0.5510  0.5525  0.5559  
0.4  0.5550  0.5578  0.5669  0.5816  0.6100  –  
0.6  0.5666  0.5789  0.6281  –  –  –  
0.8  0.5833  0.6221  –  –  –  –  
0.95  0.6009  –  –  –  –  – 

0.6  0.05  0.6057  0.6055  0.6057  0.6057  0.6058  0.6058  
0.2  0.6064  0.6065  0.6068  0.6072  0.6079  0.6098  
0.4  0.6120  0.6135  0.6179  0.6252  0.6349  0.6582  
0.6  0.6235  0.6299  0.6514  0.6870  0.7529  –  
0.8  0.6429  0.6624  0.7376  0.9221  –  –  
0.95  0.6567  0.7067  0.9238  –  –  – 

0.8  0.05  0.6314  0.6314  0.6315  0.6315  0.6315  0.6315  
0.2  0.6318  0.6319  0.6320  0.6322  0.6325  0.6333  
0.4  0.6360  0.6370  0.6393  0.6434  0.6492  0.6623  
0.6  0.6464  0.6504  0.6623  0.6820  0.7090  0.7793  
0.8  0.6642  0.6756  0.7153  0.7835  0.9081  –  
0.95  0.6798  0.7099  0.8018  1.0052  –  – 

1  0.05  0.6386  0.6386  0.6386  0.6386  0.6386  0.6386  
0.2  0.6389  0.6389  0.6390  0.6392  0.6395  0.6398  
0.4  0.6417  0.6423  0.6436  0.6459  0.6495  0.6582  
0.6  0.6504  0.6531  0.6602  0.6725  0.6889  0.7274  
0.8  0.6660  0.6736  0.6972  0.7367  0.7926  0.9525  
0.95  0.6861  0.6965  0.7487  0.8423  1.0031  1.8441  
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The second situation used for the validation of the present SIF so
lutions considers an embedded elliptical crack, situated near the bar 
surface, and sufficiently small compared to the radius of the bar. This 
particular case agrees with a value of (a+h)/R = 0.05 , allowing the first 
column of Tables 1–3 to be verified. 

For this particular case, the SIF values are comparable with those 
corresponding to an embedded elliptical crack on a plate, situated near 
the plate surface, and also sufficiently small compared to the thickness of 
the plate. The reference solution on a plate can be taken from Varfolo
meev and Vainshtok [10], which is also included as a reference solution 
in the FKM guideline [17]. 

Moreover, the solution for an embedded crack in a plate included in 
the NASGRO software [32] has been also used for the comparison of this 
second particular case. This crack geometry included in NASGRO, 
termed as EC04, is a bivariant weight function solution that has 
improved solution limits making it possible to solve cracks situated very 
near the plate surface [32]. 

Figs. 4 to 6 shows the good agreement obtained with this solution for 
the three geometry correction factors Fa1 , Fa2 and Fc . Although the 
Varfolomeev’s solution is limited up to values a/(a + h) < 0.8 , the 
improved NASGRO solution (EC4) can be extended up to a/(a + h) < 1 . 
In this sense, a very good agreement is observed between present results 
and the NASGRO solution (EC04) for values up to a/(a + h) = 0.95 . 

Therefore, it can be assumed that the finite element results presented 
in this paper allow for an accurate SIF calculation within the fixed limits. 

6. Fatigue crack propagation initiated from internal defects 

In order to use the proposed solutions for fatigue crack growth 
analysis, a sequential methodology is presented in following paragraphs. 
The crack shape evolution is continuously updated assuming an ellip
tical crack shape during propagation, using for that the SIF values at the 
vertices of the elliptical crack. A similar procedure can be found in a 
paper of Lin and Smith [25] or in a paper of Carpinteri et al [23]. 

The sequential methodology for fatigue crack propagation starts by 
assuming an initial flaw size and position defined by the three crack 
parameters (2a , 2c , h). Using these values, three dimensionless geom
etry parameters, (a+h)/R , a/(a + h) and a/c are calculated. Then, the 
geometry correction factors at the vertices of the ellipse (Fa1 , Fa2 and Fc) 
are obtained using interpolated values collected from Tables 1–3. 

For a particular fatigue stress cycle Δσ , the stress-intensity factor 
ranges at the vertices of the elliptical crack are obtained as: 

ΔKa1 = Fa1⋅Δσ⋅
̅̅̅̅̅
πa

√

ΔKa2 = Fa2⋅Δσ⋅
̅̅̅̅̅
πa

√

ΔKc = Fc⋅Δσ⋅
̅̅̅̅̅
πa

√
(4) 

Once these SIFs are obtained, an appropriate fatigue crack growth 
law can be employed to obtain the local increments, Δa1 , Δa2 and Δc . If 
a Paris type fatigue crack growth law is applied, da/dN = C⋅ΔKn , the 
new positions of these vertices can be obtained after a user-defined block 

Fig. 3. Comparison of the current solution with the results of Banthem et 
al [15]. 

Fig. 4. Comparison of the Fa1 geometry correction factor for (a+h)/R = 0.05 , 
with the Varfolomeev and Vainshtok solution [10]. 

Fig. 5. Comparison of the Fa2 geometry correction factor for (a+h)/R = 0.05 , 
with the Varfolomeev and Vainshtok solution [10]. 

Fig. 6. Comparison of the Fc geometry correction factor for (a+h)/R = 0.05 , 
with the Varfolomeev and Vainshtok solution [10]. 
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of cycles, ΔN , by means of: 

Δa1 = ΔN⋅C⋅(ΔKa1)
n

Δa2 = ΔN⋅C⋅(ΔKa2)
n

Δc = ΔN⋅C⋅(ΔKc)
n

(5) 

The number of cycles selected for the control block (ΔN) should be 
chosen accordingly to produce sufficiently small crack propagation at 
every integration step. For this purpose, the expected number of cycles 
(N) should be divided equally into a large number of blocks. The opti
mum integration step for a numerical integration is not a fixed value, 
and its effect on results should be evaluated. For example, a value of ΔN 
= 1000 cycles could be a good initial block size, for expected lives about 
2⋅105 cycles, achieving then a number of integration steps about 200. 
After this first approach, the analyst should evaluate the effect of the 
integration step size, by reducing or increasing this value, until a small 
effect on the number of cycles is observed. 

Finally, the new crack size and crack positions are redefined ac
cording to the following relationships: 

2anew = 2a + (Δa1 + Δa2)

2cnew = 2c + 2Δc
hnew = h − Δa1

(6) 

These steps are repeated, updating the crack shape for each block of 
cycles, until the failure condition is reached or the desired number of 
cycles is completed. Failure conditions can be defined in different ways, 
such us a critical crack size, a critical ligament size or a critical stress- 
intensity factor value in the vertices of the elliptical crack. This 
sequential methodology needs to be automated in a computer code to 
make it possible to solve the fatigue crack growth evolution for a large 
number of blocks. 

An example of the application of the sequential methodology, using 
the present SIF solutions for two different initial crack aspects (a/c = 1 
and a/c = 0.2) is presented Fig. 7. The initial crack position considered 
in the example is defined by (a+h) = 0.6⋅R . It is interesting to note that 
a typical feature on this round bar geometry subjected to tensile load is 
the fact that the internal flaw quickly develops from its initial elliptical 
shape to a preferred circular shape known as fisheye. 

Fig. 8 show, as an example, the crack aspect ratio evolution for an 
initial crack position (a+h) = 0.6⋅R , and for three different initial crack 
aspects. The crack aspect ratio is represented versus the dimensionless 
parameter a/(a + h) , which value ranges from a lower limit close to zero 

for an initial small crack (a≪h) to a value of a/(a + h) = 1 when crack 
grows and approaches to the surface (h→0). As can be observed, the 
initial crack tends quickly to stabilize like a circular crack aspect. 

This preferred circular shape during fatigue propagation is also 
corroborated by experimental fatigue tests carried out on this geometry. 
Fig. 9 shows an example of the agreement obtained by applying the 
proposed SIF solutions for the prediction of the crack paths for a uniaxial 
fatigue test in a round bar. The material is a Ti6Al4V alloy fabricated by 
selective laser melting (SLM). The fatigue crack growth law is defined in 
this case using a Paris equation with material parameters C = 2.99⋅10− 8 

and exponent m = 2.9 (units in mm/cycle and MPa⋅m1/2) [33]. 

7. Recategorization of an embedded crack in a round bar 

In some cases, especially for moderate loads, the specimen failure 
occurs before the fatigue crack reaches the surface of the bar. But in 
other cases, during fatigue growth of an internal defect, the remaining 
ligament becomes progressively thinner until it breaks due plastic 
collapse. This failure of the ligament is not always critical to the overall 
integrity of the component, and, in such cases, the crack may continue 

Fig. 7. Examples of fatigue crack path predicted for two different initial crack aspect ratios (a/c = 1 and a/c = 0.2).  

Fig. 8. Fatigue crack shape evolution from three different initial crack aspect 
ratios (a/c = 1, a/c = 0.5 and a/c = 0.2). 
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its fatigue growth once the internal defect becomes a surface crack. The 
recategorization from an internal crack to a surface cracks has been 
extensively studied in the case of plates and some recommendations are 
contained in major design codes such as BS 7910 [30]. 

For the recategorization of an embedded crack to a surface crack in a 
round bar, an analogous approach to that used for plates in BS 7910 can 
be assumed, as shown in Fig. 10. In this sense, an embedded crack of size 
(2ce , 2ae) with a remaining ligament of size h, can be recategorized to a 
surface crack of size 

as = 2ae + h
2cs = 2ae + 2ce + h (7) 

Where as and 2cs are the length and depth of the surface flaw 
respectively. The transition of an embedded crack to a surface crack is 
effected instantaneously in a fatigue analysis, and consequently the 
number of cycles for this transition is not taking into account for the 
fatigue life of the component. 

Fig. 11 shows an example of the propagation of an embedded flaw 
that grows until reaches the surface and continues growing as a surface 
crack until failure conditions are reached. As can be observed, the pro
posed recategorization rule allows for a correct transition from the 
embedded to surface crack. 

8. Conclusions 

This paper presents a set of new solutions for the SIF calculation at 
the vertices of the elliptical embedded cracks in round bars subjected to 
tensile loads. The geometry correction factors are presented in a tabulated form as a function of three dimensionless parameters 

Fig. 9. Experimental and predicted fatigue crack paths initiated from an internal defect on a round bar subjected to fatigue tensile load.  

Fig. 10. Procedure for the recategorization from an embedded crack to a surface crack.  

Fig. 11. Fatigue crack growth propagation with recategorization from an 
embedded crack to a surface crack (fractography courtesy of Niendorf [5]). 
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representative of the crack and geometry. A comparison of the proposed 
SIF solutions with others particular cases available in the literature has 
been carried out, and a very good agreement is obtained. 

In order to apply the present SIF solutions for the simulation of the 
fatigue crack growth a proven and consistent methodology is used. This 
methodology allows the crack shape evolution to be updated during 
fatigue process, assuming an elliptical crack shape evolution during 
propagation. 

For this round bar geometry subjected to uniaxial fatigue loads, a 
preferred circular shape during fatigue propagation is obtained when 
the crack is initiated from internal defects. In this way, the typical 
fisheye shape generated during fatigue crack growth, characteristic of 
VHCF and HCF, can be adequately simulated using the present SIF so
lutions. A good agreement is also obtained between the numerical 
analysis, using present SIF solutions, and some experimental fatigue 
tests. 

In those cases where the flaw is close to the surface, the solutions 
provided make it possible to study the embedded crack growth until 
reaches the geometry surface. From this point on, a recategorization of 
the embedded crack to a surface crack is proposed, which is adapted 
from the procedure for crack recategorization in plates included in the 
BS 7910 design code. 

In this way, the SIF solutions provided in this paper for embedded 
elliptical cracks can be extended by using other existing solutions for 
surface elliptical-arc cracks (e.g. Shin and Cai) allowing for a complete 
study of the fatigue crack growth on round bars subjected to tensile 
loads initiated from embedded pores or defects. 
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