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ABSTRACT Resistance spot welding (RSW) is a widespread manufacturing process in the automotive
industry. There are different approaches for assessing the quality level of RSW joints. Multi-input-single-
output methods, which take as inputs either the intrinsic parameters of the welding process or ultrasonic
nondestructive testing variables, are commonly used. This work demonstrates that the combined use of both
types of inputs can significantly improve the already competitive approach based exclusively on ultrasonic
analyses. The use of stacking of tree ensemble models as classifiers dominates the classification results
in terms of accuracy, F-measure and area under the receiver operating characteristic curve metrics. Through
variable importance analyses, the results show that although the welding process parameters are less relevant
than the ultrasonic testing variables, some of the former provide marginal information not fully captured by
the latter.

INDEX TERMS Resistance spot welding, quality control, welding parameters, ultrasonic testing, tree

ensembles, stacking.

I. INTRODUCTION

Manufacturers in the automotive industry face an increas-
ingly competitive environment [1]. Remarkably, resistance
spot welding (RSW) is a critical manufacturing technology
in such sector [2], [3], since its high speed and adaptability
for automation render it suitable for mass production [4].
The number of RSW joints per vehicle is very high (around
5000 according to Xia et al. [5]), and there can be significant
variability in the quality of each of them due to the fact that
RSW is a complex process [6], [7]; more precisely, the heat
generated by an electrical current has to be substantial enough
to promote local melting and the formation of a weld nugget
at the faying interface [8], [9], while at the same time the
amount of heat is influenced by the electrical conductivity
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of the materials to be joined and by their surface condition,
as well as by the thermal conductivity of the electrodes that
are water-cooled and act as heat sinks [9].

RSW holds a promising optimization potential as a
result of the balance that it establishes between cost and
performance; remarkably, the tendency in the automotive
industry is to reduce the number of RSW joints per vehicle,
which makes the accuracy of the tools to assist in the quality
control of RSW joints [10] more critical, as the fewer the
RSW joints per vehicle, the stronger the requirements for
each of them [6].

In the literature, two main RSW quality-control modelling
approaches are found: (i) models that predict the quality
of the RSW joints from the welding parameters established
prior to or during the welding process [11]-[16], and
(i1) models that assess the quality level based on the data
of the ultrasonic oscillograms obtained after the welding
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process [6], [17], [18]. Notably, even though ultrasonic
nondestructive testing requires that human operators have
a certain degree of training, it is a promising technique
for estimating the quality of RSW joints in the automotive
industry [19], where it represents a cost-reduction oppor-
tunity [20], [21]. As a result of the competitive nature of
such sector, optimization and cost reduction are two of its
cornerstones, being thus of interest to thoroughly explore the
potential and limitations of the different machine learning
techniques to assess the quality level of RSW joints from
either pre-welding inputs (welding parameters), post-welding
inputs (ultrasonic oscillograms) or both, as well as the
possible synergies between both types of information.

In the present contribution, different classification algo-
rithms are explored and compared. Remarkably, some of the
techniques that combine several classifiers simultaneously
and that are showing a major success in a wide range
of scientific fields have been included in the analyses.
The comparison is performed using different metrics. The
accuracy (i.e., the classification rate) of the algorithms
is analyzed, but also the F-Score or F-measure —i.e., the
harmonic mean of the precision and recall- that combines
both the positive predictive value and the sensitivity in a
single measure. In addition, since in different industrial
environments type I error (false positives) and type II error
(false negatives) do not have the same impact in terms
of safety and monetary costs, the analysis was completed
with the Receiver Operating Characteristic (ROC) curve and
the Area Under the Curve (AUC) measure for non-binary
classifiers. This latter metric provides an overall comparison
of the performance of each classifier over the full range
of trade-offs between the two types of errors —and hence
between safety and economic costs—.

Il. EXPERIMENTAL PROCEDURE

A. MATERIALS AND EQUIPMENT

The chemical composition and mechanical properties of the
steel sheets welded by RSW are shown in Table 1 and Table2
respectively. Sheet thickness was 1 mm.

TABLE 1. Chemical composition of the steel sheet (wt. %).

C Mn Si P S Al

0.05 0.26 0.02 0.012 0.011 0.033

TABLE 2. Mechanical properties of the steel sheet.

Yield strength ~ Tensile strength ~ Total elongation ~ Hardness
(MPa) (MPa) (%) (HV)
192 301 40 104

The steel sheets were welded in a single-phase alternating
current (AC) 50 Hz equipment by means of water-cooled
truncated cone electrodes with 16 mm body diameter and
5 mm face diameter.
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The ultrasonic testing of the RSW joints employed a
transducer whose frequency and diameter were, respectively,
20 MHz and 4.5 mm.

B. WELDING PARAMETERS

In this study, a total of 437 joints were obtained by RSW.
The welding parameters considered include: (i) the welding
current (with values varying between 4 and 8 kA RMS);
(i1) the welding time (with values ranging between 4 and
20 cycles); (iii) the electrode force (whose value was kept
fixed at 980.7 N); (iv) the electrode material (two types [22]:
Class 2 and Class 3 of RWMA Group A); and (v) the
treatment applied to the electrode material (with three
options [23]-[25]: O61, THO2 and TF00).

C. ULTRASONIC TESTING AND QUALITY LEVELS
Ultrasonic testing was performed in accordance with the
pulse-echo method with A-scan technique and, therefore, the
obtained ultrasonic oscillogram is a plot of wave amplitude
versus time [26]. The location of the reflecting interface deter-
mines the echo positions, and the sound attenuation —which
depends on the weld nugget microstructure— determines the
height of the echoes [6].

The quality level of each RSW joint was assessed from
its ultrasonic oscillogram that, in turn, depends on the weld
nugget; recall that the weld nugget has melted and solidified
and, thus, it has a cast microstructure with coarse and colum-
nar grains that produces higher attenuation on the ultrasonic
beam than that of the parent metal. Thereupon, the thickness
of the weld nugget influences the ultrasonic oscillogram in
the following manner: the greater the thickness, the higher
the attenuation. Another parameter of the weld nugget, its
diameter, affects the ultrasonic oscillogram as well; more
precisely, given that the interface between the two steel sheets
causes the reflection of the ultrasonic beam, one-layer echoes
will appear between principal echoes if the weld nugget
diameter is smaller than the ultrasonic beam width [27].

Considering the effect of weld nugget on the ultrasonic
beam behaviour, four quality levels were established for
classifying RSW joints [6], [28]:

o Good weld. The thickness of the weld nugget is large
and its diameter is greater than the ultrasonic beam
width. Therefore, the span of the sequence of echoes
is short due to the high attenuation, and the distance
between consecutive echoes is the sum of the thickness
of each of the two steel sheets.

o Undersize weld. The diameter of the weld nugget is
smaller than the ultrasonic beam width. Thus, the portion
of the ultrasonic beam that does not pass through the
weld nugget —and whose reflection takes place at the
interface between the two steel sheets— causes one-layer
echoes between the principal echoes.

o Stick weld. The weld nugget has an adequate diameter
but a small thickness. Hence, the distance between
consecutive echoes is the sum of the thickness of each
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FIGURE 1. A total of 14 inputs were used to assess the quality level:
welding current, welding time, electrode material, treatment applied to
electrode material and the ten components of the representative vector
of each ultrasonic oscillogram.

of the two steel sheets, and the attenuation is lower than
in a good weld, so the span of the sequence of echoes is
longer.

o« No weld. There is no melted and solidified metal.
Therefore, the span of the sequence of echoes is longer
than that of a RSW joint with weld nugget, and the
distance between echoes is the thickness of one steel
sheet.

D. INPUTS FOR ASSESSING THE QUALITY LEVEL
A total of 14 inputs were considered for assessing the quality
level (Fig. 1):

o Four of the five welding parameters: welding current,
welding time, electrode material, and treatment applied
to the electrode material (the electrode force was not
considered as an input because its value was kept fixed
for all RSW joints).

o The ten components of the representative vector of
each ultrasonic oscillogram, obtained with a program
developed by Martin [29]. This 10-component vector
uses only the first six echoes of the ultrasonic oscillo-
gram [6], [17]:

— The first five components of the vector are the
relative heights of the echoes. Specifically, the nth

component (withn = 1, ..., 5) is the height of the
[n 4+ 1]th echo (h;,+1) divided by the height of the
1st echo (/).

— The last five components of the vector are the
distances between consecutive echoes: the nth

component (with n = 6,...,10) is the distance
between the [n — 4]th echo and the [n — 5]th
echo (d,—s).

E. COMPUTATIONAL METHODS

The experimental design used to assess the influence of
the individual and combined use of pre-welding and post-
welding inputs as well as the effectiveness of the differ-
ent classification tools and algorithms in exploiting such
information is as follows. The performance of a large
number of classifiers —including tree ensembles and stacking
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models— has been analyzed using stratified nested cross-
validation (10 folds). The hyperparameters of the algorithms
have been optimized through grid search in the inner loop,
and their performance has been measured in the outer loop.
In addition, variable importance analyses based on a random
forest model were conducted to determine the relative impact
of each of the inputs in the overall classification accuracy
attained.

A brief description of the main classifiers and of the
different variable importance analyses conducted is provided
below.

1) ADABOOST
Due to its great accuracy on a multitude of very diverse
problems [30], [31], boosting is one of the most popular
classification techniques. In this paper, two of the most
prominent boosting algorithms are used: Adaptive Boosting
(AdaBoost) [32] —the most popular and well-known boosting
algorithm— and the eXtreme Gradient Boosting (XGBoost)
algorithm [33], which, as a consequence of its exceptional
results, has received a lot of attention since its publication.
Boosting consists in obtaining a strong classifier from
the sequential combination of weak base learners. AdaBoost
typically uses classification trees as base classifiers (in
the present work, two types of base classifiers were used:
decision stump and J48 trees) and has been employed
in identifying and classifying weld defects [34]. At each
iteration, the training set is reweighted so that higher weights
are given to instances or data that have been previously
misclassified, remaining the previous classifiers unchanged.
This distribution of weights is denoted by D; and changes
at each iteration ¢ of the algorithm. Each time AdaBoost
trains a tree on the training sample {(x;, y;)}, where x; are
the regressors and y the output variable, it generates a weak
hypothesis /; aimed at minimizing the error of the distribution
D, through the weak classifier Eq. (1)

& = Priwp, [l (x) # yil ey

AdaBoost then estimates an «t parameter according to (2),
which weights the contribution of classifier t to the overall
strong classifier.

1_81‘

a; = log( ) 2)
t

The next step is updating the weight distribution so as
to train the next weak classifier. In the case of multi-class
classification, if the M.1 version of the algorithm [32] is used,
this weighting is performed according to (3), where I is the
indicator function.

Dyy1 (i) = Dy (i) exp(a X(hs (xi) # yi) 3

When the algorithm has built the number of trees selected,
it generates the final classification using (4), where T is the
total number of trained trees.

T
H(x) = sign (Z mh(x)) 4
=1
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2) XGBOOST

XGBoost is an algorithm that also uses boosting, but in
this case, based on the additive expansion of regression
trees. More specifically, it uses gradient-boosting decision
trees as a base, but incorporates different mechanisms to
exploit memory resources and parallelization, thus reducing
computation times efficiently [33]. XGBoost gained fame
by winning 17 of the 29 machine learning tasks proposed
in Kaggle in 2015, a fact that together with its current
high cross-platform portability, has resulted into XGBoost
receiving a lot of attention. Although it is an algorithm that
reaches its maximum potential in massive datasets —as it
makes a more efficient use of computational resources than
other algorithms— its application to small and medium-sized
datasets is also beginning to receive attention, e.g. in welding
processes [35]. From a formal perspective, and given a sample
of n data and m features, where again x; are the regressors and
y the output variable, the objective function of the algorithm
is:

n T
L= 1)+ Q) (5)
i t=1

where [ is a differentiable convex loss function that captures
the difference between the prediction and the actual data,
f¢ is the t-th tree in the additive expansion and (f;) is a
regularization function that penalizes the complexity of the
regression trees. The loss function is approximated through
the second-order Taylor expansion:

n
L0~y [l (5570 + 24 ) + 3hf? (xo}

i=1

+ Q) (6)

where g; represents the first derivative of each sample (gra-
dient) and A; indicates the second derivative of each sample
(hessian). In the specific case of multi-class classification
used in this work, the loss function is a generalization of the
logistic loss function [30].

3) RANDOM FOREST

The random forest algorithm is based on bootstrap aggre-
gation (bagging), that is, it combines the results obtained
by multiple classification trees built —deep and unpruned—
on different bootstrapped samples as a way to reduce vari-
ance and hence improve accuracy. However, it outperforms
bagging by considering just a subset of predictors (random
subspace method) at each split, which serves to decorrelate
the different trees in the forest [36], [37]. In classification
problems, the number of predictors (m) typically considered
at each split is m ~ /p, where p is the total number
of predictors. Notably, random forest models are robust
to overfitting and to the presence of correlated regressors.
In addition, even though bootstrap aggregation methods result
in improved accuracy at the expense of interpretability, they
enable the obtention of variable importance measures such
as the original individual variable importance proposed by
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Breiman [37], group variable importance [38] and conditional
variable importance [39], [40] and, thus, they have been
successfully applied to quality assessment in resistance spot
welding process [6], [16].

4) INDIVIDUAL VARIABLE IMPORTANCE

Within the framework of random forests for classification,
individual variable importance analysis is generally enacted
as follows: once the model is built, each bootstrapped sample
has a tree fitted to it and the corresponding out-of-bag (OOB)
sample —approximately one third of the observations in the
real dataset [36]—. Let us assume that such real dataset has
M predictors; to determine the relative importance of the
mth predictor, its values are randomly permuted in all the
OOB samples and then run down their corresponding trees.
As a result, each OOB observation obtains several class label
predictions —the quantity of which depends on the number
of OOB samples where it appears—; eventually, the majority
vote is taken and it is compared with the true class label
to compute the misclassification rate. The importance of
the mth predictor is subsequently calculated as the change
in classification accuracy after the permutation with respect
to the original case —mean decrease in accuracy over all
trees [37]-.

5) CONDITIONAL VARIABLE IMPORTANCE

In [39], the authors pointed that the above-described variable
importance measure showed a bias towards correlated pre-
dictors and developed an alternative measure: the conditional
variable importance, in which the dependence between a
predictor and the outcome is calculated conditionally upon
the values of other predictors. In particular, for each tree, they
propose to divide —completely bisect— the predictor space
into a multidimensional grid in accordance with the partition
induced by that tree, and it is within each such partition that
the OOB values are conditionally permuted. Eventually, the
importance of each variable is calculated as the difference
in predictive accuracy before and after the permutation, and
averaged across all trees [40] —as in Breiman’s measure—.

In the present case study, conditional variable importance
is of interest since it is particularly appropriate to address
the research question of whether an increase in predictive
accuracy may be attained as a consequence of considering
both the welding parameters and the oscillogram variables
together.

6) GROUP VARIABLE IMPORTANCE

Sometimes, rather than the individual importance of each
variable, it is the joint importance of different groups of vari-
ables that is of interest. For such cases, Gregorutti et al. [38]
proposed a group variable importance method that consists
of using the same random permutation for each variable in
the group under consideration, so that the empirical joint
distribution of the group of variables is preserved, but the link
between such group of variables, the rest of predictors and
the response is effectively broken. In the present contribution,
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two groups of variables were considered: (i) welding param-
eters and (ii) oscillogram variables.

7) ROTATION FOREST

Rotation forest is a tree-based ensemble method that seeks
both diversity and accuracy by means of feature extraction.
More specifically, rotation forest uses the C4.5 decision
tree [41] as base classifier and it is defined by three main
parameters: (i) L —the number of trees in the forest—;
(ii)) K —the number of subsets in which the feature set is
split—; and (iii) p —the proportion of the observations (X)
to select—. The training set for each classifier is built as
follows: first, the feature space is divided into K —disjoint—
subsets; then, for every such subset a nonempty subset of
classes is randomly selected and a bootstrap sample of size
75% of the data count is drawn; subsequently, Principal
Component Analysis (PCA) is run on the reduced dataset
that includes only the features in the corresponding subset
and the bootstrapped observations selected; eventually, the
PCA coefficients obtained across all subsets are rearranged
in a rotation matrix (Rf’) so as to match the original feature
order, and the classifier is built using (XR?, Y) as the training
set [42].

Remarkably, for problems with continuous real-valued
features, rotation forest was found to be significantly more
accurate on average than competing techniques from the
families of algorithms: support vector machines (SVMs),
tree-based ensembles and neural networks [43], being thus
recommended to consider it among the algorithms with the
greatest performance.

8) OTHER CLASSIFIERS

The rest of classifiers implemented can be listed and suc-
cinctly described as follows: (i) Naive Bayes is a probabilistic
classifier based on Bayes’ theorem that, despite being a
simple Bayesian model and making the assumption that given
the class each feature is independent of any other, has proven
to give good results in many real contexts [44]. (ii) Several
implementations and variants of SVM classifiers, which
maximize the width of the gap between different classes
by mapping the data into a higher-dimensional space where
the separation of the classes is simpler —recall that for the
mapping process, it is possible to use different kernels—; more
specifically, in the present contribution we used the Least
Squares Support Vector Machine classifier (LSVM) [45]
with radial basis function (RBF) kernel, the sequential
minimal optimization algorithm for training a support vector
classifier [46], [47] with radial basis function (RBF) and
the Pearson VII function-based universal kernel (PUK) [48].
(iii)) The performance of a multilayer perceptron neural
network [49], (iv) logistic regression [50], and (v) the J48
algorithm —a Java implementation of the C4.5 decision
tree [41]- was also analyzed. Eventually, commonly used
baselines based on simple decision rules such as (vi) OneR
and (vii) ZeroR were also evaluated, to compare against
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them the behavior of the more sophisticated classifiers [50]
implemented.

9) STACKING
Apart from bagging and boosting [51] —the two most
common ensemble techniques for classification— there is a
third methodology for combining classifiers on the same
dataset known as stacked generalization or stacking [52].
This approach is giving excellent and, in some cases,
close to optimal results [53]-[55], and it is also recently
starting to be successfully applied in manufacturing-related
fields [56], [57]. While the base classifiers are usually of
the same type as in the other ensemble techniques, the idea
of stacking is the opposite. Typically, stacking consists of
combining the strengths of classifiers of different nature and
based on dissimilar hypotheses to generate a more accurate
classifier. A two-level structure is then used to decide in
which cases to use the predictions of each algorithm. Initially,
different base classifiers are trained —the level-0 models—. The
predictions of these models constitute the input of another
classifier known as the metalearner or level-1 model, which
learns a good generalization of the classifiers it combines.
The primary goal of the metalearner is to detect the regions
of the classification space in which each classifier or set of
classifiers is most reliable. Although, in principle, any level-
1 generalizer that is relatively global and smooth can be
expected to perform well, in practice it is often appropriate to
use overfitting-resistant classifiers such as logistic regression
or random forests —which are the ones used in this work—
. In the implementation selected, the metalearner receives
as attributes the vector with the probabilities of each class,
a strategy that increases the generalization capacity [58].
Since to be able to generalize the results of the metalearner
it is necessary not to use the same instances as at level 0,
nested cross-validation was conducted; more specifically,
5-fold internal cross-validation was implemented within the
inner loop, being the honest evaluation of the classifier
performance conducted on the outer loop.

Ill. RESULTS

For each performance metric (accuracy, F-meaure and AUC)
an ANOVA test was conducted to check the null hypothesis
of equality of means across the 50 algorithms implemented.
In accordance with the results obtained, the null hypothesis
can be rejected in all cases at a significance level of 0.001,
which means that some algorithms perform significantly
better than the baseline classifiers.

A post hoc analysis was then performed for each metric
using Duncan’s multiple range test at a 0.1 level of sig-
nificance (a corrected paired Student’s #-test [59] was also
performed and it gave very similar results at 0.05 signif-
icance level). Recall that in Duncan’s multiple range test,
two classifiers are considered statistically different if their
difference exceeds the studentized range statistic. The results
are presented in Table 3. Differences between performance
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TABLE 3. Results of the algorithms using different input variables -welding parameters (WP) and ultrasonic oscillograms (US)- in terms of accuracy.
F-measure and AUC using stratified 10-fold nested cross-validation. Rows are ordered according to accuracy. In the “Algorithm” column, in stacking

algorithms, the metalearner is specified in parentheses. The standard deviation of each measure is shown in parentheses. The significance groups of the
post hoc analysis Duncan multiple range test for a significance level of 0.1 are also represented in the table. Two algorithms are statistically different at

that level if they do not share the same letter.

Algorithm Dataset Accuracy Groups F-measure Groups AUC Groups
Stacking(RF) RF-XGBoost US + WP 97.717 (1.87) a 09822 (0.018) a 0.9965  (0.006) a
Random Forest US +Wp 97.257 (1.45) ab 0.9778 (0.015) ab 0.9983 (0.002) a
Stacking(RF) Ensemble trees US + WP 97.257 (1.43) ab 0.9776 (0.015) ab 0.9986 (0.001) a
Adaboost(J48) US + WP 97.252 (1.80) ab 09754 (0.017) ab 09767  (0.015) abe
Stacking(Logistic) Ensemble trees US + WP 97.030 (1.53) ab 09730  (0.014) ab 0.9992  (0.001) a
Rotation Forest US + WP 97.024 (1.11) ab 0.9755 (0.013) ab 0.9983 (0.003) a
Stacking(RF) Ensemble trees us 96.802 (2.44) abc 0.9732 (0.021) ab 0.9963 (0.008) a
Stacking(Logistic) Ensemble trees us 96.564 (1.62) abed 0.9710 (0.015) abc 0.9981 (0.002) a
XGBoost US +Wp 96.564 (1.94) abed 0.9715 (0.017) abc 0.9979 (0.003) a
Stacking(RF) RF-XGBoost usS 96.353 (2.19) abed 0.9706 (0.024) abc 0.9944 (0.008) ab
Random Forest us 96.342 (2.45) abed 0.9711 (0.018) abc 0.9977 (0.002) a
Adaboost(J48) UsS 96.337 (2.67) abed 09665  (0.022) abe 0.9740  (0.020) abe
XGBoost us 96.337 (1.92) abed 0.9689 (0.016) abc 0.9973 (0.004) a
Rotation Forest UsS 95.883 (2.79) abed 0.9689 (0.016) abc 0.9979 (0.003) a
J48 US + WP 95.661 (4.48) abed 0.9668 (0.022) abc 0.9732 (0.021) abc
148 us 95.206 (4.47) abed 0.9619 (0.024) abc 0.9731 (0.020) abc
LSVM RBF Kernel us 94.286 (5.05) abed 0.9533 (0.051) abc 0.9519 (0.053) c
LSVM RBF Kernel US+ WP 94.064 (2.88) abed 0.9666 (0.019) abc 0.9657 (0.020) abc
SVM RBF Kernel us 93.832 (2.38) bed 0.9570 (0.020) abc 0.9696 (0.014) abc
Naive Bayes UsS + WP 93.351 (2.78) cd 0.9672 (0.018) abc 0.9927 (0.009) ab
Naive Bayes UsS 93.351 (3.16) cd 0.9715 (0.015) abc 0.9923 (0.008) ab
SVM Puk Kernel us 93.145 (3.01) d 0.9519 (0.035) abc 0.9696 (0.020) abc
SVM Puk Kernel US + WP 89.255 (3.37) e 0.9383 (0.031) cd 0.9576 (0.020) c
Logistic Regression US + WP 89.017 (3.18) e 0.9691 (0.018) abc 0.9946 (0.006) ab
SVM RBF Kernel US + WP 88.784 (4.24) ef 0.9439 (0.028) bed 0.9625 (0.019) be
Logistic Regression Us 87.178 (2.72) efg 0.9665 (0.012) abc 0.9918 (0.011) ab
Multilayer Perceptron Us 85.809 (3.20) fg 0.9198 (0.036) d 0.9819 (0.019) abc
Multilayer Perceptron US + WP 85.328 (4.85) g 09154 (0.029) d 09724 (0.017) abe
Rotation Forest WP 80.090 (5.90) h 0.8537 (0.057) e 0.8986 (0.043) d
XGBoost WP 79.202 (5.23) hi 0.8386  (0.060) ef 0.8846  (0.043) def
Stacking(Logistic) Ensemble trees WP 78.959 (5.73) hi 0.8412 (0.059) ef 0.8803 (0.059) defg
SVM Puk Kernel WP 78.034 (4.82) hi 0.8404 (0.044) ef 0.8497 (0.051) ghi
Stacking(RF) Ensemble trees WP 77.585 (4.63) hij 0.8350 (0.053) ef 0.8886 (0.054) de
J48 Wwp 77.130 (4.74) hijk 0.8431 (0.053) ef 0.8579 (0.055) efgh
LSVM RBF Kernel WP 76.903 (7.09) hijk 0.8291  (0.067) efg 0.8236  (0.068) i
AdaBoost(DS) UsS + WP 76.660 (2.81) hijk 0.8623 (0.020) e 0.8589 (0.066) efgh
AdaBoost(DS) us 76.660 (2.81) hijk 0.8623 (0.020) e 0.8589 (0.066) efgh
SVM RBF Kernel Wwp 76.427 (4.06) ijk 0.8358 (0.053) ef 0.8522 (0.056) ghi
Random Forest WP 75.988 4.77) ijk 0.8134  (0.064) fgh 0.8762  (0.048)  defgh
Adaboost(J48) WP 74.392 (4.29) jkl 0.7968 (0.061) hi 0.8750 (0.051) defgh
OneR US + WP 74.144 (4.46) jki 0.8529 (0.027) e 0.8491 (0.030) ghi
OneR US 74.144 (4.46) jkl 0.8529  (0.027) e 0.8491  (0.030) ghi
Stacking(RF) RF-XGBoost WP 73.689 (6.53) kl 0.7958 (0.063) hi 0.8439 (0.066) hi
Multilayer Perceptron WP 72.098 (7.67) 1 0.8031 (0.072) ghi 0.8541 (0.083) fghi
Naive Bayes Wwp 69.123 (5.92) m 0.7888 (0.053) hi 0.8123 (0.050) j
Logistic Regression WP 67.072 (6.16) m 0.7749 (0.054) i 0.8103 (0.043) i
OneR WP 59.017 (5.11) n 0.7227 (0.036) j 0.6384 (0.053) k
AdaBoost(DS) Wwp 55.354 (5.32) o 0.6645 (0.065) k 0.6163 (0.061) k
ZeroR US+ WP 50.803 (0.94) p 0.6737 (0.008) k 0.5000 (0.000) 1
ZeroR us 50.803 (0.94) p 0.6737 (0.008) k 0.5000 (0.000) 1
ZeroR WP 50.803 (0.94) P 0.6737 (0.008) k 0.5000 (0.000) 1
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FIGURE 2. Accuracy of classifiers that obtain at least 90% correct
instance classification on the problem depending on the dataset used for
training and evaluating the model. In stacking algorithms, the
metalearner is specified in parentheses.

metrics that do not share the same letter are considered
statistically significant.

These results show several relevant aspects. First, there
is a wide range of classifiers that obtain good results, i.e.,
whose performance is significantly superior to the 50%
prediction accuracy of the ZeroR baseline. The fundamental
predictive component lies in both the specific classifier
selected and in the set of input variables used to train
and validate the model. In this latter vein, the use of the
welding parameters alone allows us to correctly classify
approximately 80% of the instances using tree ensemble
algorithms. In particular, Random Forest, XGBoost and
Stacking of tree ensembles obtain the best results in terms
of accuracy. In accordance with the AUC, these algorithms
are also statistically significantly better than the rest of the
algorithms on the same dataset.

Although these results are interesting per se and allow to
conduct the quality control of the welding process exclusively
from the welding parameters, if they are compared against a
posteriori RSW joint quality analysis techniques —such as an
analysis based on ultrasonic testing—, the accuracy attained in
this latter case is significantly better. More precisely, if only
the data from ultrasonic oscillograms is used to determine
the quality of the RSW joints, a wide range of algorithms
far exceed 90% accuracy; in particular, all algorithms based
on trees, as well as several algorithms based on SVMs with
different kernels; it should be recalled that even simpler
classifiers such as Naive Bayes obtain meritorious results.
Within such a framework, it is also worth highlighting that
stacking algorithms based on tree ensembles already achieve
extremely high prediction results.

A fundamental question addressed in the present contribu-
tion is whether the joint combination of the two RSW joint
quality determination methods —i.e., the welding parameters
and the ultrasonic oscillogram variables— can improve the
automatic quality-level classification. For this purpose, the
results provided in Fig. 2 are studied. Fig. 2 shows
the accuracy results of the algorithms that obtain a 90%
accuracy with any of the regressor sets used —i.e., the
welding parameters alone, the oscillogram variables alone or
the combination of the two—, and compares the prediction
obtained in each case. A relevant result is that tree-based
algorithms —even basic trees such as J48— are able to combine
information from both sources —welding parameters and
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oscillograms— to improve the prediction by almost 1%
systematically (p-value = 0.0012 using paired z-test). This
result is significant because improving classification when
many algorithms are already performing above 95% accuracy
is challenging. Other classifiers that are not as robust
to partially redundant information, such as SVMs, have
trouble in incorporating this information effectively, being the
combination of both regressor sets even counterproductive in
some cases.

An additional aspect to highlight is the excellent perfor-
mance obtained by the stacking algorithms in the task of
assessing the quality level of RSW joints based on either the
welding parameters, the ultrasonic oscillogram variables or
both. In terms of accuracy and F-measure, the combination
of random forest together with XGBoost gives the best
results. Still, stacking based on tree ensembles (combining
random forest, rotation forest, XGBoost and adaBoost) using
as metalearner either logistic regression or random forest
also gives very competitive results. In the case of using the
area under the curve (AUC) as the performance measure, the
approach that provides the best results uses as base learners
the four tree ensembles listed above with any of the two
metalearners proposed. It should be recalled that the use of
one or the other performance metric in industrial contexts will
depend on the variation over time of the non-quality costs.
Remarkably, the results obtained show that the combination
of stacking with tree ensembles when both the welding
parameters and the variables from ultrasonic nondestructive
testing are used as inputs, provides very accurate results for
any desired range of specificity and sensitivity.

As regards the variable importance analyses conducted,
Fig. 3 shows on the top the results of the individual variable
importance proposed by Breiman [37] —which have been
obtained using the randomForestSRC R package [60]- and
on the bottom the individual conditional importance of each
variable according to Debeer and Strobl [40] —which were
calculated with the R packages party [39], [61], [62] and
permimp [40]-. Notably, Breiman’s approach provides the
importance of each variable within the model, as its random
permutation of the values of the regressor variable is supposed
to mimic the absence of such variable within the model; on its
part, the conditional variable importance approach quantifies
the contribution of each predictor conditioned to the presence
of the rest of the regressors. Recall that even though the
conditional approach induces changes in the overall ranking
of all the predictors with respect to Breiman’s method, the
most remarkable change is related to different position of
the welding process variable welding time; in fact, its higher
position in the conditional variable importance analysis may
be interpreted in relation to the 1% increase in predictive
accuracy that is attained when both the welding process and
the oscillogram variables are considered.

In relation to the group variable importance analysis, its
results are shown in Fig. 4. It serves to highlight that the set of
most discriminant regressors is by far that of the oscillogram
variables.
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FIGURE 3. On the top, the ranking of the individual variable importance
analysis following Breiman’s methodology and on the bottom the ranking
of the individual conditional variable importance in accordance

with [39], [40], [61]. Remarkably, the conditional approach evidences that
the welding process variable welding time may be the one responsible
for the increase in predictive accuracy attained when considering both
the welding process parameters and the oscillogram variables.

Group variable importance

Ultrasonic oscillogram variables

Welding parameters

0.0 01 02 03 04 05 06

FIGURE 4. Group variable importance in accordance with
Gregorutti et al. [38].

IV. CONCLUSION

In this work, the use of pre-welding inputs (welding
parameters) and post-welding inputs (ultrasonic oscillogram
variables) to determine the quality level of RSW joints has
been analyzed both individually and in combination. In the
analyses, a large number of classifiers have been compared
using stratified nested cross-validation, i.e., optimizing the
hyperparameters of the algorithms through grid search in the
inner loop, and measuring the performance in the outer loop.
The results obtained show that:

o The analysis of RSW joint quality using post-welding
variables is systematically superior to using only the
pre-welding inputs. Compared to the baseline (ZeroR)
the welding parameters increase the accuracy by an
extra 30%, while the analysis based on ultrasonic testing
improves the prediction by 45%. In particular, a large
set of algorithms are capable of obtaining very accurate
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results (an accuracy greater than 90%) using ultrasonic
testing data.

o The combined use of pre-welding and post-welding
inputs allows improving prediction in algorithms that
are less sensitive to overfitting and internal correlations
between regressors. In particular, algorithms based on
trees and tree ensembles allow statistically significant
improvements in prediction. Given the good results of
many algorithms using only ultrasonic oscillograms,
improving the outcomes is particularly challenging;
however, since in competitive industries such as the
automotive one little improvement make the differ-
ence, and in view of the low implementation cost of
tracking the welding parameters compared to using
ultrasonic oscillograms exclusively, the combination of
both approaches may be of interest for the reduction of
RSW non-quality costs.

o The variable importance analyses conducted on the
basis of random forests confirm that the information
for quality evaluation of the oscillograms is superior
to that of the welding parameters. However, welding
parameters such as welding time and the treatment
applied to the electrode material have an influence that
is still relevant and not fully captured by the ultrasonic
testing, thus being of interest to exploit this information
in a valuable way.

o The results show that stacking techniques that effec-
tively combine different classifiers to issue the final
prediction yield the best performance for all the pre-
diction metrics analyzed. The joint combination of
boosting- and bagging-based tree ensembles obtains the
best results for the problem.
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