
DOCTORAL THESIS

Machine Learning to Study and
Predict Malfunctioning in Robot

Software
Nuño Basurto Hornillos

Doctoral Program «Industrial Technologies and Civil Engineering»

Supervisors

Álvaro Herrero Cosío

Carlos Cambra Baseca

September, 2021

La memoria titulada “Machine Learning to Study and Predict Malfunctioning
in Robot Software” que presenta D. Nuño Basurto Hornillos para optar al
Grado de Doctor por la Universidad de Burgos en el programa de doctorado en
Tecnologías Industriales e Ingeniería Civil, ha sido realizada bajo la dirección del
Dr. Álvaro Herrero Cosío y del Dr. Carlos Cambra Baseca, del Departamento
de Ingeniería Informática de la Universidad de Burgos.

Vº. Bº. del Director:

Dr. Álvaro Herrero
Cosío

Vº. Bº. del Codirector:

Dr. Carlos Cambra
Baseca

Vº. Bº. del doctorando:

D. Nuño Basurto
Hornillos

En Burgos, a 30 de septiembre de 2021

A todos aquellos que siempre habéis creido en mi, que nunca dudasteis que lo
conseguiría.

Agradecimientos
En primer lugar, me gustaría agradecer a la Universidad de Burgos por
concederme la posibilidad de llevar a cabo mi Tesis Doctoral.

La elaboración de una tesis doctoral es un largo camino en el cual te vas
encontrando varios obstáculos. En mi caso particular, estos vienen dados por
problemas en el código o por la dificultad de publicar ciertos artículos en revistas
y sus largos tiempos de revisión. Ante dichos obstáculos uno va encontrando
el apoyo de varias personas, la primera de ellas digna de una mención especial
es Álvaro Herrero, quien me apoyó y tutorizó durante la realización de la tesis.
Junto a él otros miembros del Grupo de Investigación GICAP como mi otro
tutor Carlos Cambra y Ángel Arroyo me han ayudado en este proceso.

En mi tiempo de estancia en el extranjero en primer lugar en la ciudad de
Breslavia (Polonia), recibí la ayuda de un grandísimo investigador como es Michał
Woźniak, quien me abrió los ojos a nuevas formas de desarrollar algoritmos desde
un punto de vista diferente. En segundo lugar agradecer a Alfredo Jiménez
por recibirme en Burdeos (Francia), con el cual he podido estudiar otro tipo de
conjutos de datos, obteniendo así una mayor versatilidad a la hora de afrontar
el análisis de datos.

Fuera del mundo académico es tambien necesario reconocer la importancia
del apoyo de la gente, siendo necesario mencionar a mi entorno familiar y a
mis amigos. Por todos es sabido la dificultad de compaginar la vida social y
las intensas horas de investigación, pero son esas personas las que cobran una
especial importancia ayudando a evadirte de todo y así poder mirar hacia delante.
Entre esta gente aquí comentada, hacer especial hincapié en Andrea, una persona
que me apoyó desde el principio a embarcarme en la tesis doctoral.

iii

Acknowledgements
First of all, I would like to thank the University of Burgos for giving me the
opportunity to carry out my doctoral thesis.

The elaboration of a doctoral thesis is a long way in which you find several
obstacles. In my particular case, there were problems with the code or the
difficulty of getting certain articles published in journals. Faced with these
obstacles one finds the support of several people, the first of them worthy of
special mention is Álvaro Herrero, who supported and supervised me during the
development of the thesis. Together with him, other members of the GICAP
Research Group such as, my other supervisor Carlos Cambra and Ángel Arroyo
have helped me in this process.

During my time abroad, firstly in the city of Wrocław (Poland), I received
the help of a very great researcher, Michał Woźniak, who opened my eyes to
new ways of developing algorithms from a different point of view. Secondly, I
would like to thank Alfredo Jiménez for welcoming me in Bordeaux (France),
with whom I have been able to approach other type of data sets, thus obtaining
a greater versatility when dealing with data analysis.

Outside the academic world it is also important to acknowledge the
importance of people’s support, so it is worth mentioning the importance of my
family and friends. Everyone knows how difficult it is to combine social life and
intense hours of research, that is when these people become especially important,
helping you to get away from everything and thus be able to look ahead. Among
these people mentioned here, I would like to make special emphasis on Andrea,
a person who supported me from the beginning to engage on my doctoral thesis.

v

Resumen
La industria 4.0 es un paradigma que despierta un interés creciente, siendo uno
de sus objetivos la automatización de los sistemas de producción, lo que implica
la incorporación de sistemas robóticos modernos. El mantenimiento de estos
sistemas es clave para la productividad de las empresas, teniendo que minimizar
el tiempo de inactividad. El desarrollo de una herramienta capaz de predecir
cuándo van a ocurrir los fallos es clave para el devenir de esta industria.

En la presente tesis doctoral se han elaborado varias estrategias con el objetivo
de poder llevar a cabo una satisfactoria monitorización y detección de anomalías
que afectan al software de un sistema robótico, empleando para ello técnicas de
aprendizaje automático.

En primer lugar, se han aplicado novedosas técnicas exploratorias para
analizar los conjuntos de datos bajo estudio, relacionados con el rendimiento de
distintos componentes software de un robot.

Uno de los mayores retos a acometer con esta tipología de datos es el
desbalanceo existente, dado que las anomalías ocurren en una minoría de
ocasiones en comparación con el funcionamiento de un robot en un estado
normal. Para mejorar el rendimiento de los diferentes clasificadores se han
aplicado varios algoritmos de balanceo de datos.

Adicionalmente, para lograr una mejor optimización de los algoritmos se
han aplicado técnicas de imputación bajos diferentes perspectivas. La primera
perspectiva de una índole más tradicional aborda la problemática bajo el uso
de regresiones a cada uno de los atributos de manera individualizada. Por otro
lado, se propone un sistema híbrido de imputación el cual mezclaba el uso de
técnicas de clustering con técnicas de regresión, llevando a cabo las regresiones
por cada uno de los clusters obtenidosde forma independiente.

Con la combinación de todas estas técnias, se han obtenido interesantes
resultados, permitiendo la satisfactoria monitorización del rendimiento de
sistemas robóticos, así como la detección automática de anomalías que afectan a
este.

vii

Abstract
Industry 4.0 is a paradigm causing an increasing interest, being one of its
objectives the automation of production systems, leading to the incorporation
of modern robotic systems. The maintenance of these, is a keystone for the
productivity of companies, minimizing the downtime. The development of a tool
capable of predicting when failures will happen is essential for the future of this
industry.

In this doctoral thesis, several strategies have been developed with the aim
of being able to carry out a satisfactory monitoring and detection of failures
affecting the software of a robotic system, using Machine Learning techniques.

Firstly, novel exploratory techniques have been applied in order to analyze
the studied data about the performance of several software components of a
robot.

One of the major challenges to be tackled regarding this type of data is the
existing imbalance, as anomalies take place in a minority of times compared to
the operation of a robot in a normal state. To improve the performance of some
classifiers, several balancing algorithms have been applied.

Additionally, in order to achieve a better optimization of the algorithms,
imputation techniques have been applied under different perspectives. The first
one is more traditional, addresses the problem under the use of regressions for each
one of the attributes individually. On the other hand, a hybrid imputation system
is proposed that mixes the use of clustering techniques with regression techniques,
carrying out the regressions for each of the clusters obtained independently.

Thanks to the combination of all these techniques, interesting results have
been obtained, enabling a success full monitoring of robot performance, as well
as the automatic detection of anomalies affecting it.

ix

Contents

Agradecimientos iii

Acknowledgements v

Resumen vii

Abstract ix

Contents xi

List of Figures xiii

List of Tables xv

1 Introduction 1
1.1 Previous Work . 1
1.2 Objectives . 3
1.3 Methodology . 3
1.4 Data selection . 5
References . 7

2 Thesis Format 11
2.1 Selected papers . 11
2.2 Other Journal papers . 13
2.3 Conference papers . 13

3 Conclusions and Future Work 15
3.1 Conclusions . 15
3.2 Future Work . 15

Papers 18

I A Visual Tool for Monitoring and Detecting Anomalies in
Robot Performance 19
I.1 Introduction . 19
I.2 Novel Visualization Techniques for HUEPs 21
I.3 Analysing Performance Anomalies in Robots 23
I.4 Experiments and Obtained Results 26
I.5 Conclusions and Future Work 32
References . 33

xi

Contents

II Improving the Detection of Robot Anomalies by Handling
Data Irregularities 37
II.1 Introduction . 37
II.2 Proposed Framework for Anomaly Detection 40
II.3 Real-life Case Study . 44
II.4 Experiments and Results 48
II.5 Conclusions and Future Work 58
References . 59

III Imputation of Missing Values Affecting the Software
Performance of Component-based Robots 63
III.1 Introduction . 63
III.2 Imputation Methods . 65
III.3 Real-life Case Study . 68
III.4 Experiments and Results 70
III.5 Conclusion . 77
References . 78

IV A Hybrid Machine Learning System to Impute and Clas-
sify a Component-Based Robot 81
IV.1 Introduction . 81
IV.2 State of the art . 82
IV.3 Hybrid Intelligent System 83
IV.4 Component-based Robot 89
IV.5 Experiments and results 89
IV.6 Conclusions and Future Work 93
References . 94

xii

List of Figures

1.1 Methodology Workflow. Adapted from [Para2019]. 4
1.2 Overview of the robot system architecture. 6
1.3 Structure of the dataset under analysis. Extracted from paper II 6

I.1 HUEP novel formulation comprising the proposed Visualization
Extension. Adapted from [Herrero2019]. 22

I.2 Overview of the robot system architecture. 24
I.3 HUEP visualizations for A1Trial41 dataset. Agglomerative witch

5 clusters + projection techniques. a) PCA, b) MLHL, c) t-SNE,
and d) CCA. 27

I.4 3D visualizations for A1Trial41 dataset: a) PCA, b) MLHL, c)
t-SNE, and d) CCA. 28

I.5 EHUEP visualizations for A1AllTrials dataset. Agglomerative
with 10 clusters + projection techniques. a) PCA, b) CMLHL, c)
t-SNE, and d) CCA. 29

I.6 EHUEP visualizations for A2Trial36 dataset. K-means and
Agglomerative with 3 clusters + projection techniques. a) CCA
+ k-means, b) CCA + Agglomerative, c) t-SNE + k-means, and
d) t-SNE + Agglomerative. 29

I.7 EHUEP visualizations for A2Trial36 dataset. K-means and
Agglomerative with 9 clusters + projection techniques. a) CCA
+ k-means, b) CCA + Agglomerative, c) t-SNE + k-means, and
d) t-SNE + Agglomerative. 30

I.8 EHUEP visualizations for A2AllTrials dataset. Agglomerative
with 4 clusters + visualization techniques. a) PCA, b) MLHL, c)
t-SNE, and d) CCA. 31

I.9 3D visualizations for A2AllTrials dataset. a) PCA, b) MLHL, c)
t-SNE, and d) CCA. 32

II.1 Synthetic data generation by SMOTE. 42
II.2 Structure of the dataset under analysis. 46
II.3 AUC values per anomaly in the one-trial experiments. 51
II.4 Boxplot of the obtained AUC values in the all-trials experiments:

a) per balancing method and b) per MV ratio. 56
II.5 Boxplot of the obtained AUC values per anomaly in the all-trials

experiments in each data source. a) Features, b) Counters, c)
Features + Counters, and d) All data sources. 57

III.1 Robot system architecture comprising analyzed modules. 68
III.2 Boxplot of the MSE values (all imputation methods) on the

ArmController component per attribute. 72

xiii

List of Figures

III.3 Boxplot of the execution time (all components) on the ArmCon-
troller component per method 73

III.4 Boxplot of the MSE values (all imputation methods) on the
LegDetector component per attribute 75

III.5 Boxplot of the execution time (all components) on the LegDetector
component per method . 76

IV.1 Hybrid system novel formulation. 84
IV.2 Dendrogram with 30 leaf nodes (‘Euclidean’ distance, ‘Complete’

linkage method). 90
IV.3 Bar plot showing the differences between RBFN and N-LR in the

different metrics. a) F-Score, b) AUC and c) g-mean. 92
IV.4 Radar diagrams are obtained from the results for each clustering

technique with its different algorithms. Each one shows the results
with different clusters a) k=2 and b) k=3. 92

xiv

List of Tables

1.1 Brief description of each anomaly. 8

I.1 Characteristics of the datasets analyzed in present paper. 26

II.1 Selected anomalies to be analyzed. 45
II.2 Occurrences of each anomaly and distribution per trials. In bold,

the trials selected for the one-trial experiments. 46
II.3 Missing values in the dataset per anomaly and data source, with

its percentage to total values. 47
II.4 Class distribution of data per anomaly and trial in the dataset. . 47
II.5 Size of the different datasets per anomaly and data source. . . . 49
II.6 Obtained F1 values per anomaly and data-balancing method in

the one-trial experiments. 50
II.7 Obtained AUC values per anomaly and data-balancing method in

the one-trial experiments. 50
II.8 p-values obtained by the non-parametric Wilcoxon Signed-Ranked

Test pairwaise on the one-trial experiments per balancing method
for the F1 values. 52

II.9 p-values obtained by the non-parametric Wilcoxon Signed-Ranked
Test pairwaise on the one-trial experiments per balancing method
for the AUC values. 52

II.10 Obtained AUC values per anomaly and data-balancing method.
All-trial experiments with 0%, 10%, 25%, and 50% MV ratio. . . 54

II.11 p-values obtained by the non-parametric Wilcoxon Signed-Ranked
Test pairwaise on the all-trials experiments per balancing method
for the AUC values. 55

II.12 p-values obtained by the non-parametric Wilcoxon Signed-Ranked
Test pairwaise on the all-trials experiments per MV ratio for the
AUC values. 55

III.1 Explanation of the dataset attributes. 69
III.2 Occurrences of each anomaly and distribution per trials. 70
III.3 Average MSE value per method and dataset attribute on the

ArmController component. 71
III.4 Average execution time per method and dataset attribute on the

ArmController component. 72
III.5 Average MSE value per method and dataset attribute on the

LegDetector component . 74
III.6 Average execution time per method and dataset attribute on the

LegDetector component . 74

xv

List of Tables

III.7 Summary of the best-performing imputation method per compo-
nent attribute in terms of both error and execution time. 76

IV.1 Metrics values for each of the balancing methods. 93

xvi

Chapter 1

Introduction

The number of autonomous mobile robots has been steadily increasing in recent
times 1, several sectors are affected by this, such as logistics, cleaning or medicine.

Robotic systems require significant maintenance aimed at minimizing
downtime, thus increasing productivity. Performance improvements in both
hardware and software are much needed. there are a number of novel research
papers dealing with these problems in robotics, where anomaly detection in
robotic systems is addressed [1] [2] [3].

The research carried out in this thesis uses a dataset of a component-based
autonomous robot, in which several anomalies have been induced by software.
These anomalies do not prevent the robot from carrying out the aim task, but
penalize the counters of the system, more in detail in section 1.4. We have
also used a novel methodology validated in this field of study, as detailed in
section 1.3

1.1 Previous Work

A complete Machine Learning framework is proposed throughout the different
papers of this thesis, comprising different three-dimensional visualization , data
imputation techniques or analysis of the validity of applying different data
balancing methods.

Anomaly detection has been used in a wide variety of fields, not only in
those related to robotics [4] [5] [6]. At the end of the last century, the first
research on the use of machine learning techniques in robots was carried out [7].
Subsequently, their application to a variety of types of learning has been proposed:
supervised [8], unsupervised [9] and reinforcement [10]. Several problems related
to robotics have been discussed, such as communications [11] and control [12] [13]
problems. The approach taken so far was mainly concerned with the problems
caused on the hardware [8]. Whereas the problems related to the detection
of anomalies in the software have hardly been given any attention. Dealing
with these problems is a challenge given the lack of available open data sets,
even though it is a problem of relative importance. In addition, the presence of
Missing Values is a constant in the data collected.

When anomaly detection is conducted in a supervised learning context, the
presence of high levels of unbalance is common, since they appear in a smaller
number of occasions than the normal state of the data. This leads to the use of
balancing techniques is absolutely necessary for good classification ratios [14] [15].
A variety of data balancing techniques have been explored in this thesis.

1International Federation of Robotics. Mobile Robots Revolutionize Industry (August
2021). URL:https://ifr.org/ifr-press-releases/news/mobile-robots-revolutionize-industry

1

1. Introduction

The balancing techniques can be divided into three types, oversampling,
undersampling and hybrids. Oversampling, deals with the generation of new
instances of the minority class, in order to obtain a more balanced data set,
it is important to highlight the presence of Sytethic Minority Over-sampling
Techniques (SMOTE) [16] [17] and its varieties [18]. On the other hand, the use
of undersampling techniques tries to reduce the instances of the majority class
in order to obtain this balancing,it has an impact on the loss of information.
Finally, hybrid techniques use both approaches at the same time, eliminating
instances of the majority class and generating new ones in the minority class.

According to the classification of missing data proposed in [19], in this
research the problem is missing completely at random, because the probability
that a MV is located in one or more attributes of any instance does not depend on
particular circumstances (past values or other missing values). The imputation
carried out is a Single Imputation, where the method fills one value for each
MV [20]. To optimize the imputed values, it is necessary to do a regression
work. In the present research, the applied techniques are: multiple-regression
(linear and nonlinear) [21], regression trees [22] and Artificial Neural Networks
(ANN), more precisely the Radial Basis Function Network (RBFN) [23] and
The Multilayer Perceptron (MLP).

For the imputation of MV, many different methods have been previously
proposed, including those based on AI [24]. Nevertheless, little effort has been
devoted so far to research on the goodness of ML methods when facing such
problem in robotics contexts. One of these scant research works is [25], whose
author proposed a probabilistic approach using incomplete data for classification
(failure detection). Data samples were classified by calculating, from the data
samples that are not missing, the a-priori probability of MV. This proposal was
applied to datasets containing only anomalies affecting the hardware and that
are outdated (coming from 1999). Advancing the previous proposals, the present
work is the first approach to impute MV in a dataset from a component-based
robot in order to improve subsequent classification by using data balancing
techniques. In order to validate such pioneer proposal, a complete benchmark
involving many ML methods has been performed.

In the first approach to this dataset [26] it was shown how data selection could
improve the performance of the classifiers, in particular this data selection was
done by considering the amount of missing values found in the data. This process
has led to the study of other approaches that have been presented throughout
this thesis, such as the use of a variety of imputation techniques.

The authors Wienke et al. [27], propose a novel publicly available dataset [28]
based on software-induced anomaly detection on a component-based robot.
Showing the data collected by the different component indicators. The approach
used in the research [29], which is used on the data set exposed above, is the
use of supervised learning techniques to obtain a performance improvement in
anomaly detection on it. For this purpose they apply a variety of balancing
techniques as well as the use of two different classifiers.

Subsequently, they present a doctoral dissertation in which the research is
carried out on this data set, showing a set of tools for the systematization of
resource control. In addition, the study the detection of anomalies in real time

2

Objectives

for the automation of reactions, through the use of Machine Learning techniques,
is performed.

1.2 Objectives

In this doctoral thesis have been developing and validating the application of
different machine learning techniques in the field of robotics.

The first and most necessary objective deals with the location of a dataset
to work with, which must be novel and well-documented.

The review of the state of the art is another objective to be addressed, in
order to understand what are the approaches used in this field and then and
the most important machine learning techniques used. In this way, it makes
possible to develop a work with a valid basis, as well as the application of novel
techniques.

To carry out the application of a large number of techniques, as well as to
validate them. It is important to later make a fair comparison of these and to
realize the differences in behavior at each moment.

1.3 Methodology

During the present research, the application of a novel methodology to improve
the cost-efficiently monitoring for industrial 4.0 has been applied [30].

This methodology denominated Analyze, Sense, Preprocess, Predict, Imple-
ment and Deploy (ASPPID) 1.1, it covers several stages, such as the acquisition
of detection equipment or the evaluation of the captured data. The research vali-
dates the use on an industrial dataset, where faults are detected in an alignment
process resulting in a highly unbalanced dataset, similar to the one presented in
this thesis.

1.3.1 Analyze

The methodology faces the problem of the lack of knowledge to exploit the data,
so an analysis of the objective problem must be carried out before attempting to
collect the data, in this way it will be possible to focus the collection of data
to achieve the desired result. The use of the contract is proposed, where the
problem for which an improvement is to be made, the costs of the project, the
objective and the time required among others are formally defined. Finally, in
this phase the different participants make a brainstorming giving different points
of view of how to achieve the objective, in this way the ideas are compiled and a
schedule is established with which to work.

For this first phase, the first thing was the search for a data set that would
suit our needs, it had to be novel and focused on a large data imbalance. After
several searches, the one discussed in this thesis was found [27] and analyzed in
a first publication [26].

In the first publication collected in this thesis I, using unsupervised learning,
it was possible to observe a general visualization of the problem, seeing its

3

1. Introduction

Figure 1.1: Methodology Workflow. Adapted from [30].

distribution and the ability of different algorithms to understand the differences
between the classes.

1.3.2 Sense

After the analysis of the problem, the next step is to prepare the system to collect
the required data, this is done through the use of sensors. Can be performed
under several scenarios.

Thanks to the work done by the authors of the dataset, the completion of this
phase was easier, since the dataset was well differentiated between the different
components and the various data sources existing in each one.

1.3.3 Preprocess

In this step, data preparation is carried out with the objective of building a model
to achieve the project’s goal. This is done by using different techniques such as
cleaning, data scaling, imputation, noise identification or data transformation.

For data preprocessing different approaches have been taken in the other
three remaining papers, the second II one focused in the elimination of missing
values, while the other two papers III IV show different imputation algorithms
approach to perform the treatment of those absent data.

4

Data selection

1.3.4 Predict

During the realization of this phase, the interpretability of the model has to be
worked on, in order to improve the implementation with respect to the imposed
objective. Within the variety of existing scenarios it is important to work with
class balancing techniques for an appropriate modeling.

Similar to what was discussed in the previous phase, several data balancing
techniques have been proposed in the last three papers II III IV, with the aim of
analyzing which ones obtain the best performance in each of the situations.

1.3.5 Implement

During the previous phases, a model was generated and validated in the present
phase. It is important that this phase is well documented.

In the implementation of the different proposed models, the use of an SVM
classifier has always been chosen to validate the problem, thus allowing a fair
comparison between the different approaches.

1.3.6 Deploy

All the knowledge acquired and used throughout the whole process has to be
compiled in documents, so that the knowledge obtained can be transmitted to
the rest of the people.

All the knowledge generated throughout the different treatments of the
dataset is compiled in all the published papers 2, obtaining a certain consistency
in them as time goes by.

1.4 Data selection

This paper proposes the use of a component-based dataset [28]. The development
of this dataset has been carried out by the University of Bielefeld (Germany).

This robotic system is composed by several components, all of them added to
the base PatrolBot, which is powered by the platform GuiaBot by the company
OmronAdept Technologies.

The robot is equipped with different items, such as an arm, a laser for
detecting people or two RGBD cameras for object recognition, among others.
The sensor components provide with information about the environment. On
the other hand, there are some other actuator components to manipulate
the environment. All these components communicate thanks to the RSB
middleware [31]. The so-called Robotics Service Bus (RSB) use event-based,
message-oriented communication. There is a tool (rsbag) that collects RSB
information that can be used for analysis. This can record some parts of the
communication subsystem or the whole system. For the exchange of information
between the bus and the user code there are different participants; the listener
if the information goes from the bus to the usercode and informer otherwise.
This information are events encoded as notifications. For the coordination of the
sensor and actuator components, the BonSAI framework is used. It is in charge

5

1. Introduction

of creating RSB participants when a state or transition depends on them. A
Finite State Machine (FSM) is applied to represent and control execution flows.
A visual summary of the above can be seen in Figure 1.2.

Figure 1.2: Overview of the robot system architecture. Extracted from paper I

The dataset is divided into the values collected by each of the different
components, within each component there are three different types of datasets:
features, counters and events. The data collected, are the different states of the
component at a moment in time, the temporal periodicity is the same in features
and counters, but not in events. The data of features are the data of events but
put in the temporal arrangement of counters, so we discard the use of events
and only use the other two. For a fair understanding of the structure comprising
this dataset, see Figure 1.3.

Figure 1.3: Structure of the dataset under analysis. Extracted from paper II

The different components have anomalies induced in them by software, this
implies that the system counters are penalized, but it does not prevent the
component from carrying out the task, for example, the legdetector component

6

References

is affected by the legDetectorSkippable anomaly which performs an analysis
several times of the subject’s legs, even though it has performed well at first.

This data set has been induced with different anomalies by software, this
does not imply that the task is not carried out but that the performance is
affected in the system counters, for example the component in charge of leg
detection performs several scans instead of just one. The purpose of inducing
these anomalies is to be able to detect future incidents in the components. In the
data set, the time instants in which anomalies have been triggered are reflected
and a labeling of the anomalies can be obtained.

There are 71 trials in which the experimentation has been repeated, these
always reproduce the experiment in the same order making the data set consistent.
Anomalies are not induced in all trials, only in some cases. The authors define
those data sets that are suitable for experimentation because for various reasons
some are either invalid or have unidentified anomalies.

The scenario in which the robot acts tries to imitate the behavior of a waiter,
where it has to detect a human, have the ability to communicate with him, move
around a defined space, have the ability to detect objects as well as pick up a
glass and serve it to the customer.

The anomalies which affect to the different components are the followings:
armServerAlgo, legDetectorSkippable, objectBuilderSkippable, clafuSleep, pock-
etSphinxLeak, btlAngleAlgo, bonsaiParticipantLeak, bonsaiTalkTimeout and
facerecSkippable, clockShift and spreadLatency. All of them except the last two
affect a single component, making it easier to isolate them for handling.

As previously mentioned, the anomalies are induced in various ways, but in
the end the objective is that the meters are affected. Throughout the thesis we
have specialized in the analysis of two main anomalies, armServerAlgo, which
affects the armcontrol component and legDetectorSkippable which affects the
legDetector component. The case of the latter has already been discussed, in
the case of the former the anomaly affects the component leading it to perform
different unnecessary movements in the arm. The anomalies are of different
natures, mathematical and logical as in the case of armServerAlgo, or skippable
communication in the case of legDetectorSkippable, and other anomalies affect
resources leak, on the configuration, threading or inter-process communication.
Table 1.1 provides an abbreviated description of the way in which each anomaly
acts.

Further details are provided in the different sections of the data explanation
in the papers II.3 III.3 IV.4. On the other hand, this data set is much more
in-depth in the original author’s research [27] [32].

References

[1] Khalastchi, E. and Kalech, M. “On Fault Detection and Diagnosis in
Robotic Systems”. In: ACM Comput. Surv. vol. 51, no. 1 (Jan. 2018),
pp. 1–24.

7

1. Introduction

Table 1.1: Brief description of each anomaly. Extracted from paper II.

Code Name Description

A1 armServerAlgo Certain movements of the arm are performed from known
valid poses

A2 legDetectorSkippable The ‘legdetector’ processed each scan multiple times
A3 objectbuilderSkippable The person tracking performed transformations for each

person multiple times
A4 clafuSleep The results are returned only after a delay of 5 seconds
A5 pocketSphinxLeak The speech recognition component accumulates memory

for each sound
A6 btlAngleAlgo Adds a mathematical error used to track people
A7 bonsaiParticipantLeak Participants are not cleaned up properly
A8 bonsaiTalkTimeout Configuring a wrong RSB scope for the text-to-speech

engine
A9 fecrecSkippable Temporarily removes a throttling of the main loop of the

‘facerec’ component

[2] Dares, M. et al. “Development of AGV as Test Bed for Fault Detection”. In:
2020 6th International Conference on Control, Automation and Robotics
(ICCAR). 2020, pp. 379–383.

[3] Janarthanan, R., Doss, S., and Balamurali, R. “Robotic-based nonlinear
device fault detection with sensor fault and limited capacity for communi-
cation”. In: Journal of Ambient Intelligence and Humanized Computing
2020 11:12 vol. 11, no. 12 (Apr. 2020), pp. 6373–6385.

[4] Xu, X., Liu, H., and Yao, M. “Recent Progress of Anomaly Detection”. In:
Complexity vol. 2019 (2019).

[5] Ranshous, S. et al. “Anomaly detection in dynamic networks: a survey”.
In: Wiley Interdisciplinary Reviews: Computational Statistics vol. 7, no. 3
(2015), pp. 223–247.

[6] Jove, E. et al. “A fault detection system based on unsupervised techniques
for industrial control loops”. In: Expert Systems vol. 0, no. 0 (2019), e12395.

[7] Dorigo, M. and Schnepf, U. “Genetics-based machine learning and behavior-
based robotics: a new synthesis”. In: IEEE Transactions on Systems, Man,
and Cybernetics vol. 23, no. 1 (Jan. 1993), pp. 141–154.

[8] Lu, H. et al. “Motor Anomaly Detection for Unmanned Aerial Vehicles
Using Reinforcement Learning”. In: IEEE Internet of Things Journal vol. 5,
no. 4 (Aug. 2018), pp. 2315–2322.

[9] Jayaratne, M., de Silva, D., and Alahakoon, D. “Unsupervised Machine
Learning Based Scalable Fusion for Active Perception”. In: IEEE
Transactions on Automation Science and Engineering vol. 16, no. 4 (Oct.
2019), pp. 1653–1663.

[10] Kober, J., Bagnell, J. A., and Peters, J. “Reinforcement learning in robotics:
A survey”. In: The International Journal of Robotics Research vol. 32,
no. 11 (2013), pp. 1238–1274.

8

References

[11] H. Alsamhi, s., Ma, O., and Ansari, M. S. “Survey on artificial intelligence
based techniques for emerging robotic communication”. In: Telecommuni-
cation Systems vol. 72, no. 3 (Nov. 2019), pp. 483–503.

[12] Zhao, D., Ni, W., and Zhu, Q. “A framework of neural networks based
consensus control for multiple robotic manipulators”. In: Neurocomputing
vol. 140 (2014), pp. 8–18.

[13] Xiao, B. and Yin, S. “Exponential Tracking Control of Robotic Manipula-
tors With Uncertain Dynamics and Kinematics”. In: IEEE Transactions
on Industrial Informatics vol. 15, no. 2 (Feb. 2019), pp. 689–698.

[14] Susan, S. and Kumar, A. “The balancing trick: Optimized sampling of
imbalanced datasets—A brief survey of the recent State of the Art”. In:
Engineering Reports vol. 3, no. 4 (Apr. 2021), e12298.

[15] Dudjak, M. and Martinović, G. “An empirical study of data intrinsic
characteristics that make learning from imbalanced data difficult”. In:
Expert Systems with Applications vol. 182 (Nov. 2021), p. 115297.

[16] Chawla, N. V. et al. “SMOTE: synthetic minority over-sampling technique”.
In: Journal of artificial intelligence research vol. 16 (2002), pp. 321–357.

[17] Fernandez, A. et al. “SMOTE for Learning from Imbalanced Data: Progress
and Challenges, Marking the 15-year Anniversary”. In: Journal of Artificial
Intelligence Research vol. 61 (Apr. 2018), pp. 863–905.

[18] Fernández, A. et al. “Data Level Preprocessing Methods”. In: Learning
from Imbalanced Data Sets. Cham: Springer International Publishing, 2018.
Chap. 5, pp. 79–221.

[19] Schafer, J. L. “Multiple imputation: a primer”. In: Statistical methods in
medical research vol. 8, no. 1 (1999), pp. 3–15.

[20] Plaia, A. and Bondi, A. “Single imputation method of missing values in
environmental pollution data sets”. In: Atmospheric Environment vol. 40,
no. 38 (2006), pp. 7316–7330.

[21] Yale, U. of. Multiple Linear Regression. 2017.
[22] Moisen, G. G. Classification and Regression Trees. 2018.
[23] Lippmann, R. P. “Pattern classification using neural networks”. In: IEEE

Communications Magazine vol. 27, no. 11 (Nov. 1989), pp. 47–50.
[24] Arroyo, A. et al. “Neural Models for Imputation of Missing Ozone Data in

Air-Quality Datasets”. In: Complexity vol. 2018 (Mar. 2018).
[25] Twala, B. “Robot execution failure prediction using incomplete data”.

In: 2009 IEEE International Conference on Robotics and Biomimetics
(ROBIO). Dec. 2009, pp. 1518–1523.

[26] Basurto, N. and Herrero, Á. “Data Selection to Improve Anomaly Detection
in a Component-Based Robot”. In: 14th International Conference on Soft
Computing Models in Industrial and Environmental Applications (SOCO
2019). Ed. by Martínez Álvarez, F. et al. Cham: Springer International
Publishing, 2020, pp. 241–250.

9

1. Introduction

[27] Wienke, J., Meyer zu Borgsen, S., and Wrede, S. “A Data Set for Fault
Detection Research on Component-Based Robotic Systems”. In: Towards
Autonomous Robotic Systems. Ed. by Alboul, L., Damian, D., and Aitken,
J. M. Vol. 9716. Cham: Springer International Publishing, 2016, pp. 339–
350.

[28] Wienke, J. and Wrede, S. A Fault Detection Data Set for Performance
Bugs in Component-Based Robotic Systems.

[29] Wienke, J. and Wrede, S. “Autonomous fault detection for performance
bugs in component-based robotic systems”. In: Intelligent Robots and
Systems (IROS), 2016 IEEE/RSJ International Conference on. IEEE.
2016, pp. 3291–3297.

[30] Para, J. et al. “Analyze, Sense, Preprocess, Predict, Implement, and Deploy
(ASPPID): An incremental methodology based on data analytics for cost-
efficiently monitoring the industry 4.0”. In: Engineering Applications of
Artificial Intelligence vol. 82 (June 2019), pp. 30–43.

[31] Wienke, J. and Wrede, S. “A middleware for collaborative research in
experimental robotics”. In: 2011 IEEE/SICE International Symposium on
System Integration (SII). Dec. 2011, pp. 1183–1190.

[32] Wienke, J. “Framework-level resouce awareness in robotics and intelligent
systems”. PhD dissertation. Bielefeld University, 2018.

10

Chapter 2

Thesis Format
The thesis has been prepared in the form of a compendium of articles. In
addition, the thesis is eligible for the international doctoral degree. The articles
which are part of the thesis are listed below.

2.1 Selected papers

Paper I

The paper focuses on the study of anomalies for the software of a component-
based robot. To deal with the problem, the use of the Hybrid Unsupervised
Exploratory Plots visualization technique is proposed, improving it by using
other projectionist techniques, such as Curvilinear Component Analysis (CCA)
and t-Distributed Stochastic Neighbor Embedding (t-SNE). The use of this
technique allows obtaining interesting improvements in the detection of robot
anomalies.

• Authors: Nuño Basurto, Carlos Cambra, Álvaro Herrero

• Title: A Visual Tool for Monitoring and Detecting Anomalies in Robot
Performance

• Journal: Pattern Analysis and Applications - Tentatively Accepted

• Year/Rank: 2021 JCR 74/139 (COMPUTER SCIENCE, ARTIFICIAL
INTELLIGENCE) - Q3

• DOI: Not available

Paper II

It proposes the use of different mechanisms for the improvement of detection
rates in robot anomalies. Focusing on the different ways to deal with missing
values and high unbalance between classes. For the validation of the results
the cross validation strategy is used together with the Support Vector Machine
classifier.

• Authors: Nuño Basurto, Carlos Cambra, Álvaro Herrero

• Title: Improving the Detection of Robot Anomalies by Handling Data
Irregularities

• Journal: Neurocomputing - Published

11

2. Thesis Format

• Year/Rank: 2021 JCR 30/139 (COMPUTER SCIENCE, ARTIFICIAL
INTELLIGENCE) - Q1

• DOI: 10.1016/J.NEUCOM.2020.05.101

Paper III

The application of regression models is proposed in the paper in order to improve
fault detection. For this purpose, a classical technique like linear regressions
is used and other more innovative ones such as neural networks and decision
trees. The main objective is to obtain a higher quality in the data set through
the imputation of missing values.

• Authors: Nuño Basurto, Ángel Arroyo, Carlos Cambra, Álvaro Herrero

• Title: Imputation of Missing Values Affecting the Software Performance
of Component-based Robots

• Journal: Computers and Electrical Engineering - Published

• Year/Rank: 2020 JCR 44/112 (COMPUTER SCIENCE, INTERDISCI-
PLINARY APPLICATIONS) - Q2

• DOI: 10.1016/j.compeleceng.2020.106766

Paper IV

This research proposes the use of a Hybrid Intelligent System divided into four
stages, with the objective to obtain a higher classification ratios. In the first two
steps, the combination of clustering and regression techniques is carried out in
order to impute missing values, followed by data balancing and classification.

• Authors: Nuño Basurto, Ángel Arroyo, Carlos Cambra, Álvaro Herrero

• Title: A Hybrid Machine Learning System to Impute and Classify a
Component-Based Robot

• Journal: Logic Journal of the IGPL - Accepted

• Year/Rank: 2021 JCR 2/21 (LOGIC) - Q1

• DOI: Not Avaliable

In addition to the papers presented here, there are other journal and
conference publications, which are detailed in the following sections.

12

https://www.doi.org/10.1016/J.NEUCOM.2020.05.101
https://www.doi.org/10.1016/j.compeleceng.2020.106766

Other Journal papers

2.2 Other Journal papers

• Authors: Rafael Vega Vega, Héctor Quintián, Carlos Cambra, Nuño
Basurto, Álvaro Herrero and José Luis Calvo-Rolle

• Title: Delving into Android Malware Families with a Novel Neural
Projection Method

• Journal: Complexity - Published

• Year/Rank: 2019 JCR 31/71 (MULTIDISCIPLINARY SCIENCES) - Q2

• DOI: 10.1155/2019/6101697

• Authors: Nuño Basurto, Ángel Arroyo, Rafael Vega, Héctor Quintián,
José Luis Calvo-Rolle and Álvaro Herrero

• Title: A Hybrid Intelligent System to forecast solar energy production

• Journal: Computers and Electrical Engineering - Published

• Year/Rank: 2019 JCR 50/109 (COMPUTER SCIENCE, INTERDISCI-
PLINARY APPLICATIONS) - Q2

• DOI: 10.1016/j.compeleceng.2019.07.023

2.3 Conference papers

1. Authors: Nuño Basurto and Álvaro Herrero
Title: Data Selection to Improve Anomaly Detection in a Component-
Based Robot
Congress: 14th Computing Models in Industrial and Environmental
Applications - SOCO
Year: 2020
DOI: 10.1007/978-3-030-20055-8_23

2. Authors: Nuño Basurto, Carlos Cambra and Álvaro Herrero
Title: AI-driven Visualizations for Performance Monitoring and Anomaly
Detection in Robots
Congress: IEEE/ACS International Conference on Computer Systems
and Applications - AICCSA
Year: 2020
DOI: 10.1109/AICCSA50499.2020.9316513

13

https://www.doi.org/10.1155/2019/6101697
https://www.doi.org/10.1016/j.compeleceng.2019.07.023
https://www.doi.org/10.1007/978-3-030-20055-8_23
https://www.doi.org/10.1109/AICCSA50499.2020.9316513

2. Thesis Format

3. Authors: Héctor Quintián, Esteban Jove, José Luis Calvo-Rolle, Nuño
Basurto, Carlos Cambra, Álvaro Herrero and Emilio Corchado
Title: Detecting Performance Anomalies in the Multi-component Software
a Collaborative Robot
Congress: 21st International Conference on Intelligent Data Engineering
and Automated Learning - IDEAL
Year: 2020
DOI: 10.1007/978-3-030-62365-4_51

4. Authors: Ángel Arroyo, Nuño Basurto, Carlos Cambra and Álvaro
Herrero
Title: Clustering and Regression to Impute Missing Values of Robot
Performance
Congress: Hybrid Artificial Intelligent Systems - HAIS
Year:2020
DOI: 10.1007/978-3-030-61705-9_8

5. Authors: Nuño Basurto, Michał Woźniak, Carlos Cambra and Álvaro
Herrero
Title: Advanced Oversampling for Improved Detection of Software Anoma-
lies in a Robot
Congress: 15th Computing Models in Industrial and Environmental
Applications - SOCO
Year: 2020
DOI: 10.1007/978-3-030-57802-2_1

6. Authors: Nuño Basurto, Ángel Arroyo, Carlos Cambra and Álvaro
Herrero
Title: A Hybrid Intelligent System to Detect Anomalies in Robot Perfor-
mance
Congress: Hybrid Artificial Intelligent Systems - HAIS
Year: 2021
DOI: 10.1007/978-3-030-86271-8_35

7. Authors: Nuño Basurto, Carlos Cambra and Álvaro Herrero
Title: Visually Monitoring the Performance of a Component-based Robot
Congress: 16th Computing Models in Industrial and Environmental
Applications - SOCO
Year: 2021
DOI: 10.1007/978-3-030-87869-6_11

14

https://www.doi.org/10.1007/978-3-030-62365-4_51
https://www.doi.org/10.1007/978-3-030-61705-9_8
https://www.doi.org/10.1007/978-3-030-57802-2_1
https://www.doi.org/10.1007/978-3-030-86271-8_35
https://www.doi.org/10.1007/978-3-030-87869-6_11

Chapter 3

Conclusions and Future Work

3.1 Conclusions

First, in the development of this thesis, has been essential to locate a data
set that suited our requirements. After finding it, its subsequent analysis was
necessary to understand it better and to observe the countless opportunities
it could provide. The analysis of the previous work has been thorough, given
the need to develop new ways of using the existing data set and to develop new
techniques as the development of the thesis progressed and new knowledge was
obtained.

After all exposed in the development of this doctoral thesis, it can be
concluded that the initial objectives have been satisfactorily achieved. In order
to observe in more detail, each of the different approaches will be analyzed
separately.

As discussed throughout this thesis, dealing with anomalies from a supervised
learning approach, involves an unbalanced data set, which has led to the use of
balancing techniques of different categories. The use of these techniques, has
allowed to observe how the performance has improved significantly, respect the
base value. It has not always been the same techniques which have obtained the
best results, this provides greater versatility on the part of the data set.

On the other hand, when dealing with this dataset have also had to deal with
the problem of Missing Values, for which have been decided to perform imputation
under different perspectives, in which we have observed an improvement in
performance. It can therefore be concluded that the use of imputation techniques
has enriched the development of this thesis. To highlight the use of mixed
techniques of cluster imputation, that is a new approach that had not been
presented so far and which has achieved very good results.

It has not been only in the papers of the thesis that a more complete
development of the data set in question has been possible, as it has been
observed that there are a large number of publications in congresses in which
other perspectives have been addressed. The use of visualization techniques has
been very interesting in order to have a better overview of the layout of the
information. In addition, the development of new balancing techniques has led
to a greater enrichment of the knowledge and capabilities of the data set.

3.2 Future Work

As future lines of research, we will focus on the development of multi-class
techniques that will allow a better discriminate in anomalies which affect more
than one component, in this way can be improved their detection in several
components at the same time.

15

3. Conclusions and Future Work

Another interesting approach to consider is the use of time series on the data
set, since the data set has the same consistency in its different trials.

In terms of machine learning techniques, it is interesting to consider the use of
developed techniques in new areas, for example in the case of the hybrid technique
of cluster imputation, which can allow improvements in the performance of the
data set.

On a personal side, would be interesting the generation of new balancing
algorithms, with special emphasis on the oversampling ones, where have been
observed a lot of work done but the combination of existing techniques can rise
successful algorithms.

16

Papers

Paper I

A Visual Tool for Monitoring and
Detecting Anomalies in Robot
Performance

Nuño Basurto, Carlos Cambra, Álvaro Herrero

Tentatively Accepted in Pattern Analysis and Applications, October 2021

I

Abstract

In robotic systems, both software and hardware components are equally
important. However, scant attention has been devoted until now in
order to detect anomalies/failures affecting the software component of
robots while many proposals exist aimed at detecting physical anomalies.
Accordingly, present paper focuses on the study of anomalies affecting
the software performance of a robot by using a novel visualization tool.
Recent unsupervised visualization methods from the Machine Learning field
are applied in order to upgrade previously proposed Hybrid Unsupervised
Exploratory Plots. More precisely, Curvilinear Component Analysis (CCA)
and t-Distributed Stochastic Neighbor Embedding (t-SNE) are applied
and comprehensively compared in present paper. Thanks to this intelligent
visualization of robot status, interesting conclusions can be obtained to
improve anomaly detection in robot performance.

I.1 Introduction

The European Commission identified smart robotics as an innovation field
that would benefit from the development of Key Enabling Technologies (KETs)
[1]. Undoubtedly, to successfully deploy autonomous robotics systems, further
innovative digital solutions must be conceived and validated in real scenarios.
In the past years, plenty of attention has been devoted to deploy such robots,
with advanced capabilities not only for autonomous operation but also for self-
diagnosis. However, the demands of enhanced systems also lead to a significant
increase in the complexity of them, while reliability and robustness are also
required. While operating in real-world environments, robots fail and analysing
these failures is a keystone in the road to complete autonomy. Both the hardware
and software components of robots suffer from failures. The former has been
widely researched [2], [3] while little effort has been devoted to the latter so far
[4]. In order to bridge this gap, a new tool is introduced in this novel work, based

19

I. A Visual Tool for Monitoring and Detecting Anomalies in Robot Performance

on previously proposed Hybrid Unsupervised Exploratory Plots (HUEPs) [5],
to successfully monitor the performance of software components within a robot
while supporting the detection of software anomalies.

Detection of anomalies can be defined as, once expected behavior is known,
finding certain patterns in the data that do not conform to it [6]. In order
to do that, many proposals based on supervised Machine Learning (ML) are
been successfully applied to anomaly detection in a wide variety of industrial
problems, ranging from service elevator [7] to solar panels [8] or Unmanned
Aerial Vehicles [9], among others. From a complementary perspective, present
work investigates the use of unsupervised ML techniques to exploratory study
performance in order to know more about anomaly datasets. As a result of the
obtained knowledge, the application of some other supervised ML methods
may be enhanced, being out of the scope of present proposal. According
to recent and comprehensive methodologies for cost-efficiently monitoring the
Industry 4.0, “exploratory data analysis must be first done, comprising techniques
such as descriptive statistics, dimensionality reduction and clustering, among
others” [10]. Coherently, a clustering [11] extension of HUEPs is proposed as a
novel combination of some of the above mentioned techniques; more precisely
dimensionality reduction (exploratory projection) and Density-based clustering
ones.

ML methods based on unsupervised learning has been previously applied for
analysing and detecting faults/anomalies. In most cases, these methods have
been proposed in a first (pre-processing) stage to be carried out before applying
a method based on supervised learning. Under this approach, characteristic
components are extracted in [12] by means of PCA. After that, Hidden Markov
Models are applied to process these components. This hybrid system is applied for
fault detection in three-phase asynchronous machines; the faults to be detected
consist of rotor asymmetries caused by the broken bars. Similarly, different EPP
methods (such as Isomap, Sammon mapping, and PCA) were applied in [13].
After a preprocessing of the sensory data, these methods were applied in order
to reduce the dimensionality and extract features to afterwards detect faults
by means of a supervised classifier. Anomaly detection was performed in two
industrial fields: bearing balls and electrical faults in an induction motor. Zhang
et al. [14] applied a variant of Locally Linear Embedding (LLE), called robust
LLE, whose goal is to prevent noise in the data. It was combined with a Support
Vector Machine (SVM) classifier on data obtained from a platform that has an
engine, a gearbox, and bearings. More recently, authors [15] have proposed a
Self-organizing Feature Map as an initial step before applying some variants of
SVM. This way, faults have been detected between motor-end and reduction
gearbox, and between brake-end and planetary gearbox.

Some other applications of unsupervised ML for anomaly detection have also
been proposed. A combination of PCA, k-means, hierarchical, and Fuzzy C-means
clustering methods has been proposed in [16] to improve the modelling of the
target system through a Gaussian Mixture Model. Located in a manufacturing
environment, an exhaust fan has been studied from vibration data. In [17]
authors have tried to detect abnormal condition patterns in gearboxes. To do
that, supervised ML is proposed: a novel method inspired by the main principles

20

Novel Visualization Techniques for HUEPs

of the One Nearest Neighbour and k-means methods.
As mentioned above, little effort has been devoted so far to research on

anomalies affecting the software of robots. One of the pioneer works is [18], whose
authors described the only open dataset [19]. This dataset (comprehensively
described in section I.3) contains data about performance indicators of a robotic
system, comprising both “normal” and anomalous states. It is analyzed in present
work and has been previously studied from a supervised ML perspective. SVMs
were applied by the dataset authors [20] in order to automatically detect the
software anomalies. In the doctoral dissertation [21] associated to this dataset,
that compiles results from all the previous publications by these authors, two
different approaches are described. On the one hand, the previously-mentioned
application of supervised ML for detecting anomalies and consequently activating
automatic reactions in execution time, based on the use of component resources.
On the other hand, a set of tools has been developed to understand and
systematize resource control under the frame of the robotic system itself. Under
the same perspective, supervised ML has been previously applied [22] by present
paper authors, trying to improve the classification results by dealing with missing
values and applying data balancing techniques.

Differentiating from previous work, unsupervised methods are not proposed
as an initial stept for subsequent supervised methods aimed at classifying
data (normal/anomalous)). The idea behind the present proposal is to apply
unsupervised ML in isolation (visualization and clustering techniques are applied
to the same data and then combined) to support the monitoring and study
of robot performance status. Thanks to this improved visualization of high-
dimensional data, deep knowledge can be gained about the structure of anomaly
datasets.

On the other hand, authors [23] have previously explored the application
of dimensionality-reduction techniques for the visualization of similar data.
However, in this previous work exploratory techniques were not combined with
any clustering method, as it is proposed in the present work.

The rest of this paper is organized as follows: the extended HUEPs
formulation is described in section I.2 while section I.3 presents the the real-life
case and the associated data that are analysed. The results obtained by the
proposed solution are presented in section I.4 and the main conclusions are
discussed in section I.5.

I.2 Novel Visualization Techniques for HUEPs

Hybrid Unsupervised Exploratory Plots (HUEPs) [5] have been recently proposed
as a new visualization tool to combine the outputs of Exploratory Projection
Pursuit (EPP) and Clustering methods in a novel and informative way. To
address the well-know “curse of dimensionality” challenge and advancing in
descriptive data analysis, both EPP and Clustering methods are independently
applied and their outputs combined in a new way. More precisely, 3 EPP methods
(mainly based on Artificial Neural Networks) were proposed, namely Principal
Component Analysis (PCA), Maximum Likelihood Hebbian Learning (MLHL),

21

I. A Visual Tool for Monitoring and Detecting Anomalies in Robot Performance

and Cooperative MLHL (CMLHL). Going one step further, a visualization
extension is proposed in present paper, to improve the original HUEPs
formulation. Initially, HUEPs were conceived as a new way of intuitively
visualizing data by applying one partitional (k-means) or one hierarchical
(agglomerative) clustering method together with one EPP method. Advancing
this initial proposal, present paper incorporates more recent visualization
methods, as shown in Figure I.1 (original formulation in grey and present
clustering extension in blue).

Figure I.1: HUEP novel formulation comprising the proposed Visualization
Extension. Adapted from [5].

Visualization is a challenging task, specially when analyzing high-dimensional
and real-life data as the one in present research. To address this issue, the
proposed visualization extension comprises the following methods, that are
applied and validated under the frame of HUEPs for the first time: t-SNE and
CCA. These methods are briefly introduced in the following subsections and
further details about them can be found in the given references.

22

Analysing Performance Anomalies in Robots

I.2.1 Curvilinear Component Analysis

Curvilinear Component Analysis (CCA) was proposed by Demartines and
Herault [24] as a self-organizing neural network to find a representation of
multidimensional datasets by reducing their dimensionality. To do so, an H-
dimensional dataset is projected in an R-dimensional map. CCA is similar to
other nonlinear mapping projection techniques such as Sammon’s nonlinear
mapping [25]. But it mainly differs from these other methods in the use of
a new cost function and a greater courage when it comes to represent. It is
proposed as an improvement of Sammon’s mapping because the latter cannot
reproduce all distances, CCA does this by reproducing first the nearest and then
the farthest distances. The error function used by CCA is the following one.

ECCA =
N∑

i,j=1
(dni,j − (dpi,j)

2Fλ(dpi,j) (I.1)

I.2.2 t-Distributed Stochastic Neighbor Embedding

t-Distributed Stochastic Neighbor Embedding (t-SNE) was proposed by van der
Maaten and Hinton [26]. It is a variation of Stochastic Neighbor Embedding [27]
producing a better visualization of high-dimensional data while reducing the
concentration of points at the same point in the map. This visualization method
is able to take into account the concentration of global structures, revealing
at the same time the presence of different clusters. One of the tricks used
by t-SNE it’s the “early compression” which tries to keep the points together
at the beginning of the compression, as shorter distance between the points
would ease for the clusters to differentiate between them. It tries to reduce the
divergence between two distributions, the first of which measures the similarities
between the input objects in pairs, while the second measures the similarities
in a low dimensionality in pairs of the points. It differs from PCA in that this
visualization technique is non-linear, such as CCA. Its operation is as follows;
first it creates a probability distribution between the different points and their
neighbors. Then, t-SNE create a visualization with a lower dimensionality as a
result of that distribution.

I.3 Analysing Performance Anomalies in Robots

As previously mentioned, present paper proposes HUEPs to study performance
anomalies in the middleware of a component-based robot by analyzing an open
dataset [19]. The development of this dataset was carried out by different
researchers at the University of Bielefeld (Germany), for which different metrics
of a robot were recorded during a test run on several times. This robot is based
on a model developed by Omron Adept Technologies (former MobileRobots).

The robotic system has different components added to the base, which
is why it is called a component-based robot. These components may have
been developed by different companies and integrated, forming the robotic
system, some of the different elements used are: sensors and cameras capable of

23

I. A Visual Tool for Monitoring and Detecting Anomalies in Robot Performance

performing object recognition, voice recognition or person tracking, actuators
responsible for navigation or translation of sentences from text to voice or an
arm that performs human-like movement, along with a grip capable of lifting
objects. All the information obtained from the different sensors together with
the actions to be performed by the actuators are integrated thanks to the RSB
Middleware [28] that provides communication among the components. The
coordination of the system is carried out by the BonSAI Framework allowing the
system to behave as a finite state machine.A graphical summary of the robot
structure, comprising these elements, can be seen in figure I.2.

Figure I.2: Overview of the robot system architecture. Adapted from [18].

The authors of the dataset provide documents in which they indicate in
which moments the anomalies are induced and on which components, allowing
to perform a correct labelled of the data instances. They also comment on the
time instants in which not planned anomalies occur in the system.

There are several anomalies that have been induced and affect one or
several components. There are 11 the anomalies induced; armServerAlgo,
legDetectorSkippable, objectBuilderSkippable, clafuSleep, pocketSphinxLeak,
btlAngleAlgo, bonsaiParticipantLeak, bonsaiTalkTimeout and facerecSkippable
just affect to one component, whereas clockShift affects four components and
SpreadLatency affects all components. In present research two anomalies
have been chosen (armSeverAlgo and legDetectorSkippable), according to the
investigations of the creators of the dataset [20]. The first one (armSeverAlgo) got
the worst results when evaluating the dataset through SVM, while for the second
one (legDetectorSkippable), very accurate classification values were obtained.
ArmServerAlgo (hereinafter referred as A1) affects the armcontrol component,
that takes care of the movement of the mechanical arm as well as the movement
of the gripper. The anomaly causes the arm to make a series of extra moves
to carry out an action, which penalises the performance but does not prevent
the task from being carried out. The anomaly legDetectorSkippable (hereinafter
referred as A2) affects the legdetector component, that is in charge of detecting
people’s legs for recognizing the presence of human beings. Similarly to what
happened with the armServerAlgo anomaly, several unnecessary were performed,
thus affecting the performance but not preventing the task to be carried out.

24

Analysing Performance Anomalies in Robots

When collecting information from the robot, it performs different tasks in
a certain order. The different tasks affect the different components discussed
above. This has been repeated a total of 71 times, which is why the data set
have 71 trials. Not all of them are used in the experimentation because some of
them have undesired anomalies.

For each one of these 71 trials, all the information gathered from each one
of the components is available. Dataset contain the information of when and
which anomalies were induced together with data from several data sources. The
first one of these data sources are the counters, that export the performance
counters of each one of the robot components or a regular basis (less than a
second). The information from this source includes figures such as the active
processor threads or the amount of information sent and received. The second
source are the events, those that were sent between the system bus and the user
code. This information tells which are the relevant events in the component,
including the sending and receiving address or the size information. For every
second of execution of the trial there can be multiple instances that appear
in this dataset, being approximately 60 times larger than those observed in
counters. That’s why the third of the data sources (features) is required. It
combines events with performance counters in counters time instants.The events
presented in features will be the last one received as well as the averages for
different temporal moments. This causes the features to be the dataset with
the highest dimensionality. The authors published more detailed information on
the dataset as well as the source files in [19]. From these three sources of data,
features and counters are analyzed in present work as in previous experiments
they were identified as those that implied best results [29].

Due to length limitation, results from all the anomalies and trials can not be
included in present paper. In order to evaluate the proposed HUEPs extension
under different circumstances, experiments were conducted including only one
trial and all the trials for two anomalies. The motivation for that is to check
whether the HUEP visualizations are equally useful depending on the amount of
trials (and data instances) to be depicted.

Accordingly, anomalies were initially selected. The motivation for such
selection is that A1 obtained the worst classification rate by the dataset authors
when they use an One-class SVM classifier, while on the other hand the A2
anomaly is one of those that obtained best classification rates [20]. Then, trials
for these 2 anomalies had to be selected. Among all the trials containing examples
of the A1 and A2 anomalies, only one was chosen for each case. Firstly, the
smallest trial (lowest number of data instances) was selected. Secondly, for
those trials with the same number of occurrences, the one with lowest balance
ratio between the normal and the anomaly class (the most unbalanced) was
selected. As a result, the proposed HUEPs extension is validated both on small
and unbalanced datasets.

As previously studied, the trials within this dataset contain missing values
(MV), that must be pre-processed before applying most ML methods. In present
paper, MV were removed according to a 0% rate [29]. Accordingly, all the
features containing any MV were removed for the dataset. As a result, datasets
to be analysed in present paper have a different dimensionality.

25

I. A Visual Tool for Monitoring and Detecting Anomalies in Robot Performance

Figures about some characteristics of the employed datasets (one and all
trials) are shown in table I.1.

Table I.1: Characteristics of the datasets analyzed in present paper.

Dataset Trials Cols. Normal Data Anomalous Data Total Data
A1Trial41 1 87 500 (86.2%) 80 (13.8%) 580
A2Trial36 1 23 638 (88.9%) 80 (11.1%) 718
A1AllTrials 10 42 5773 (84.2%) 1032 (15.2%) 6805
A2AllTrials 12 21 6628 (14.5%) 1128 (85.5%) 7756

In addition to the visualization extension that is above described, the
application of HUEPs to present problem unveils another novelty. The additional
information that is provided to the HUEPs consist now on the class information
for each data. Consequently, the glyph metaphor is used to depict the data
according to the class (normal versus anomalous states) it belongs to. This
way, hybridization in HUEPs is maximized as on the top of the combination
of unsupervised methods, class information is used to better understand the
patterns associated to anomalous states of the robot software. Thanks to it, the
structure of the dataset and the results of other ML techniques can be easily
understood.

I.4 Experiments and Obtained Results

In this section, the advance visualizations obtained by applying HUEPs (original
and extended formulations) are shown. For the visualization and clustering meth-
ods, parameters have been tuned according to previous recommendations [30], [31].
As previously mentioned, the glyph metaphor is applied by using the class (nor-
mal versus anomalous) information, once the data are located in the 3D output
space. Accordingly, normal data are depicted as red stars while anomalous data
are depicted as black circles.

As there are many different visualizations obtained by combining several
EPP (PCA, MLHL, CMLHL, CCA, and t-SNE) and clustering (k-means and
Agglomerative) methods for each one of the datasets and parameter values,
only some of them can be included in present paper. Visualizations have been
selected according to different comparison criterion and are shown in the following
subsections. Firstly, results for the A1 anomaly are shown in subsection I.4.1
and then, results for the A2 anomaly are shown in subsection I.4.2, comprising
visualizations of both one and all-trial datasets each. One-trial datasets have
been analyzed in present paper to check the ability of extended HUEPs to
visually depict the structure of small datasets. On the contrary, all-trial datasets
have been included in the comparative study as they contain a great amount of
data.

26

Experiments and Obtained Results

I.4.1 A1 Anomaly Results

In order to compare the large number of visualizations for the A1 anomaly
(A1Trial41 and A1AllTrials datasets) discussed above, only some of them are
shown in present subsection for each one of the datasets. These HUEPs consist
of the combination of the same clustering method (Agglomerative) and cluster
number (5), together with 4 different visualization methods, namely PCA, MLHL,
t-SNE, and CCA.

Figure I.3: HUEP visualizations for A1Trial41 dataset. Agglomerative with 5
clusters + projection techniques. a) PCA, b) MLHL, c) t-SNE, and d) CCA.

HUEPs visualizations of the one-trial (A1Trial41) dataset are shown in
Fig. I.3. Before analyzing these visualizations, it is worth mentioning that in
this dataset all the anomalous instances (80) are duplicated. That is, for all
the features in the dataset, all of them took the same value at the different
times when data were captured. This phenomenon can be observed in Fig. I.3
as for most of the visualization methods (PCA, MLHL, and CCA) anomalous
instances overlap and are depicted as a single data, containing not only the
anomalies but also normal data. However, it is not the same in the case of the
t-SNE visualization, where anomalies do not overlap. Additionally, all these
anomalous instances are grouped together. They are depicted as a group in the
right-bottom corner of Fig. I.3.c). This way, it is easily seen that the group is
formed of both anomalous and normal data.

For comparison purposes, 3D visualizations obtained by the same techniques
are shown in Fig. I.4. It means that the three components of each data are
only calculated by the visualization technique. That it, no clustering results
are combined but the glyph metaphor is applied (depicting in a different way
normal an anomalous data).

The 3D visualizations are quite similar to those obtained by HUEPs.
Anomalous instances overlap except for the t-SNE visualization. Furthermore,

27

I. A Visual Tool for Monitoring and Detecting Anomalies in Robot Performance

Figure I.4: 3D visualizations for A1Trial41 dataset: a) PCA, b) MLHL, c) t-SNE,
and d) CCA.

data are not clearly grouped in the case of the 3D PCA and t-SNE visualizations.
It is worth mentioning that in the case of CCA, the 3D visualization is almost
useless as there is only one group containing all the data and the structure of
the dataset is not revealed at all. In the 3D visualizations, data groups are
less clearly defined that in the corresponding HUEPs. This way, it is shown
one of the contributions of HUEPs, that is reinforced thanks to the novel
visualizations techniques (t-SNE in this dataset): the representation capability
of the visualization techniques is improved by adding the clustering information.

Similarly to the one-trial dataset, some visualizations of HUEPs are shown
for the all-trial (A1AllTrials) dataset in Fig. I.5. For a fair comparison with the
one-trial visualizations, the same clustering method (Agglomerative) is applied
and together with 4 different visualization methods, namely PCA, CMLHL,
t-SNE, and CCA. In this case, a higher number of clusters (10) is set in order to
check the ability of HUEPs to depict such results.

It can be seen in Fig. I.5 that the high number of groups in the
clustering causes poor visualizations where groups can be hardly identified
and normal/anomalous data are not clearly separated. The worst visualization
is obtained by CCA as there is no data grouping at all.

I.4.2 A2 Anomaly Results

As it has been previously explained, HUEPs are also applied to the A2 anomaly
(A2Trial36 and A2AllTrials) datasets. Firstly, HUEPs visualizations for the one-
trial dataset are shown. Each one of these figures shows the HUEPs obtained by
combining the output of the new visualization techniques proposed in this research
(CCA and t-SNE), together with the clustering techniques previously mentioned:
k-means and Agglomerative. This way, a direct comparison between the two

28

Experiments and Obtained Results

Figure I.5: EHUEP visualizations for A1AllTrials dataset. Agglomerative witch
10 clusters + projection techniques. a) PCA, b) CMLHL, c) t-SNE, and d) CCA.

novel techniques is provided for this dataset. Their visualization performance is
also validated in conjunction with the clustering techniques by using a different
number of clusters.

In order to compare the performance of HUEPS, executions have been
performed with different number of clusters: 3 and 9. 3 was chosen as a relatively
small number of clusters while 9 was chosen as a large one, although a larger value
(10) has been used to obtain the visualization of the all-trials dataset. Thanks to
it, the visualization ability of extended HUEPs is validated for clustering results
comprising both low and high numbers of clusters.

Figure I.6: EHUEP visualizations for A2Trial36 dataset. K-means and
Agglomerative with 3 clusters + projection techniques. a) CCA + k-means, b)
CCA + Agglomerative, c) t-SNE + k-means, and d) t-SNE + Agglomerative.

HUEP visualizations of the one-trial (A2Trial36) dataset with 3 clusters are
shown in I.6, where the dataset structure is clearly depicted in all cases. The

29

I. A Visual Tool for Monitoring and Detecting Anomalies in Robot Performance

group containing the anomalous data is more sparsely depicted by CCA while
t-SNE then to concentrate the data in a group of small size. However, it is worth
highlighting that in the case of t-SNE (c and d), the anomalous data is almost
completely isolated from the normal one. Similarly, the clustering techniques are
not able to split all normal and anomalous data: in the case of the Agglomerative
clustering technique (b and d), there are two anomalous instances grouped with
the normal ones. In the case of CCA (a and b) these instances are closer to the
rest of the anomalous instances. Thanks to this visualization, these anomalous
data have been further studied. In a more detailed analysis, it has been observed
that they are data instances associated to those moments of time in which the
induction of anomalies begins and ends. Thanks to the HUEP visualization,
such situations can be identified, leading to a subsequent improvement on the
anomaly detection. All in all, it can be said that HUEPs extended by the new
visualization techniques are able to depict the dataset in a way that its structure
is clearly revealed. As a result, anomalous data can be clearly identified and
split from normal data.

Figure I.7: EHUEP visualizations for A2Trial36 dataset. K-means and
agglomerative with 9 clusters + projection techniques. a) CCA + k-means,
b) CCA + Agglomerative, c) t-SNE + k-means, and d) t-SNE + Agglomerative.

In the HUEP visualization obtained with 9 clusters (Fig. I.7), it can be seen
how the visualization is less clear than that with a smaller number of clusters
(Fig. I.6). As in this previous figure, it can be observed that t-SNE (c and
d) more clearly reveals the structure of the dataset as groups are shown in a
compact way. CCA (a and b) does not generate visualizations as good a those
obtained for a reduced number (3) of clusters. When visualizing same data
with a higher number of clusters there is a more confusing separation between
data classes. One common characteristic of visualizations in Fig. I.7 is that the
normal class is split in a greater number of clusters while the anomalous data
are kept in only one group. This group is much more concentrated in the case
of t-SNE. By taking this into account, it can be concluded that increasing the
number of clusters does not always mean a better visualization.

30

Experiments and Obtained Results

Finally, HUEPs are shown for all the trials of A2 anomaly (A2AllTrials
dataset) in Fig. I.8. These visualizations have been obtained by combining the
Agglomerative clustering with the PCA, MLHL, t-SNE, and CCA visualization
methods. In this case, a reduced number of clusters (4) has been used.

Figure I.8: EHUEP visualizations for A2AllTrials dataset. Agglomerative with 4
clusters + visualization techniques. a) PCA, b) MLHL, c) t-SNE, and d) CCA.

In this case, the visualizations are very similar to those obtained for the
one-trial dataset of the same anomaly (A2Trial36). However, Fig. I.8 shows
the visualizations obtained by two other techniques: MLHL (b) and PCA (a).
Although they have achieved a good separation of clusters, in the case of MLHL
the instances of the different classes overlap, that does not happen with any
of the other visualization techniques. As for PCA, it achieves a very good
separation although slightly worse than that obtained by t-SNE (c). Finally,
CCA (d) generates a good separation of clusters, similar to the one previously
observed in Figs. I.6 and I.7 but slightly worse. All in all, it can be said that the
separation by clusters is quite good, as it happened with the dataset of a single
trial (A2Trial36). It can be said that the extended HUEPs can be successfully
applied to a large dataset (A2AllTrials dataset is the largest one in present
study).

AS in the case of the previous anomaly, the 3D visualizations of A2 by the
different techniques are shown in Fig. I.9. They are slightly different to the
HUEP ones, in a different way to what happened with the A1 dataset (see
section I.4.1). The 3D PCA (a) visualization is quite similar to what can be
observed in the corresponding HUEP (Fig. I.8.a), where the two classes are
separated but closely located in the output space. Visualization is also quite
similar in the case of t-SNE (c), showing a good separation of classes. However,
groups containing normal data are more clearly separated in the case of the
HUEP visualization. The biggest differences can be observed in the case of the
cases of MLHL and CCA. The 3D visualizations are quite bad; groups can not
be identified and classes (normal/anomalous) are mixed up.

It can be concluded that HUEPs generate visualizations where the structure
of datasets can be observed in a more clear way that in the case of visualizations
obtained by other visualizations. By analysing the results of present study,

31

I. A Visual Tool for Monitoring and Detecting Anomalies in Robot Performance

Figure I.9: 3D visualizations for A1Trial41 dataset. a) PCA, b) MLHL, c) t-SNE,
and d) CCA.

classes h ave been more clearly grouped in the case of the A2 anomaly rather
than in the case of the A1 one.

I.5 Conclusions and Future Work

To monitor the performance of the software components within a robot, a
visualization extension of HUEPs is proposed and validated in the present paper.
More precisely, CCA and t-SNE are introduced in the HUEPs formulation to
benchmark such methods against originally proposed ones (PCA, MLHL, and
CMLHL). A comprehensive experimental study has been carried out to validate
the proposed extension, comprising experiments on all the different methods,
parameters and datasets. As a result, the proposed visualization methods have
been applied to the different (small/large and balanced/unbalanced) datasets
when applying different visualization techniques as well as clustering ones.
Furthermore, results are compared with a varying number of clusters.

From a general perspective, from the experimental results it can be concluded
that HUEPs generated by the new visualization methods are better than those
obtained by the original methods. It is worth mentioning that among all
the methods that are applied for the first time, the t-SNE outperforms the
other one, contributing to more informative and intuitive visualizations of
normal/anomalous states. This is mainly given to the ability of such method
to isolate data instances from one class. From a general perspective, it must
be said that in order to select the appropriate visualizations technique, as well
as the optimal number ob clusters, a benchmark study must be conducted on
each dataset. There is not a visualization technique that clearly outperforms
the other one in all cases.

Regarding the dataset size, it can be said that HUEPs visualizations are
better for smaller datasets (one-trial). In the visualizations of these datasets
data are more clearly grouped and projections are more sparse. In an opposite
way, datasets with a larger size (all-trials) are visualized in a less informative

32

References

way, although good results have also been obtained for such datasets.
As a follow-up of this research line, authors aim at testing new clustering

methods to be applied under the frame of HUEPs. Similarly, new ways of
combining different sources of information in the same display could also be
investigated in order to improve HUEP visualizations.

References

[1] Commission, E. Study on cross-cutting KETs (Ro-cKETs). en. Text. July
2014.

[2] Khaldi, B. et al. “Monitoring a robot swarm using a data-driven fault
detection approach”. In: Robotics and Autonomous Systems vol. 97 (2017),
pp. 193–203.

[3] Park, D., Kim, H., and Kemp, C. C. “Multimodal anomaly detection
for assistive robots”. In: Autonomous Robots vol. 43, no. 3 (Mar. 2019),
pp. 611–629.

[4] Khalastchi, E. and Kalech, M. “On Fault Detection and Diagnosis in
Robotic Systems”. In: ACM Comput. Surv. vol. 51, no. 1 (Jan. 2018),
pp. 1–24.

[5] Herrero, A., Jimenez, A., and Bayraktar, S. “Hybrid Unsupervised
Exploratory Plots: A Case Study of Analysing Foreign Direct Investment”.
In: Complexity (2019), p. 14.

[6] Xu, X., Liu, H., and Yao, M. “Recent Progress of Anomaly Detection”. In:
Complexity vol. 2019 (2019).

[7] Canizo, M. et al. “Multi-head CNN–RNN for multi-time series anomaly
detection: An industrial case study”. In: Neurocomputing vol. 363 (2019),
pp. 246–260.

[8] Murtada, W. A. and Omran, E. A. “Robust anomaly identification
algorithm for noisy signals: spacecraft solar panels model”. In: Neural
Computing and Applications (Aug. 2019).

[9] Khalastchi, E. and Kalech, M. “A sensor-based approach for fault detection
and diagnosis for robotic systems”. In: Autonomous Robots vol. 42, no. 6
(Aug. 2018), pp. 1231–1248.

[10] Para, J. et al. “Analyze, Sense, Preprocess, Predict, Implement, and Deploy
(ASPPID): An incremental methodology based on data analytics for cost-
efficiently monitoring the industry 4.0”. In: Engineering Applications of
Artificial Intelligence vol. 82 (June 2019), pp. 30–43.

[11] Jain, A. K., Murty, M. N., and Flynn, P. J. “Data Clustering: A Review”.
In: ACM Comput. Surv. vol. 31, no. 3 (Sept. 1999), pp. 264–323.

[12] Georgoulas, G. et al. “Principal Component Analysis of the start-up
transient and Hidden Markov Modeling for broken rotor bar fault diagnosis
in asynchronous machines”. In: Expert Systems with Applications vol. 40,
no. 17 (2013), pp. 7024–7033.

33

I. A Visual Tool for Monitoring and Detecting Anomalies in Robot Performance

[13] Jin, X. et al. “Weighted local and global regressive mapping: A new
manifold learning method for machine fault classification”. In: Engineering
Applications of Artificial Intelligence vol. 30 (2014), pp. 118–128.

[14] Yansheng, Z., Dong, Y., and Yuanhong, L. “Robust locally linear embedding
algorithm for machinery fault diagnosis”. In: Neurocomputing vol. 273
(2018), pp. 323–332.

[15] Shen, F., Langari, R., and Yan, R. “Transfer between multiple machine
plants: A modified fast self-organizing feature map and two-order selective
ensemble based fault diagnosis strategy”. In: Measurement vol. 151 (2020),
p. 107155.

[16] Amruthnath, N. and Gupta, T. “A research study on unsupervised machine
learning algorithms for early fault detection in predictive maintenance”.
In: 2018 5th International Conference on Industrial Engineering and
Applications (ICIEA). Apr. 2018, pp. 355–361.

[17] Cerrada, M., Sánchez, R.-V., and Cabrera, D. “A semi-supervised approach
based on evolving clusters for discovering unknown abnormal condition
patterns in gearboxes”. In: Journal of Intelligent & Fuzzy Systems vol. 34
(2018), pp. 3581–3593.

[18] Wienke, J., Meyer zu Borgsen, S., and Wrede, S. “A Data Set for Fault
Detection Research on Component-Based Robotic Systems”. In: Towards
Autonomous Robotic Systems. Ed. by Alboul, L., Damian, D., and Aitken,
J. M. Vol. 9716. Cham: Springer International Publishing, 2016, pp. 339–
350.

[19] Wienke, J. and Wrede, S. A Fault Detection Data Set for Performance
Bugs in Component-Based Robotic Systems.

[20] Wienke, J. and Wrede, S. “Autonomous fault detection for performance
bugs in component-based robotic systems”. In: Intelligent Robots and
Systems (IROS), 2016 IEEE/RSJ International Conference on. IEEE.
2016, pp. 3291–3297.

[21] Wienke, J. “Framework-level resouce awareness in robotics and intelligent
systems”. PhD dissertation. Bielefeld University, 2018.

[22] Basurto, N., Cambra, C., and Herrero, Á. “Improving the detection of robot
anomalies by handling data irregularities”. In: Neurocomputing (2020).

[23] Basurto, N., Cambra, C., and Herrero, A. “AI-driven Visualizations for
Performance Monitoring and Anomaly Detection in Robots”. In: 2020
IEEE/ACS 17th International Conference on Computer Systems and
Applications (AICCSA). Los Alamitos, CA, USA: IEEE Computer Society,
Nov. 2020, pp. 1–6.

[24] Demartines, P. and Herault, J. “Curvilinear component analysis: a self-
organizing neural network for nonlinear mapping of data sets”. In: IEEE
Transactions on Neural Networks vol. 8, no. 1 (Jan. 1997), pp. 148–154.

[25] Sammon, J. W. “A Nonlinear Mapping for Data Structure Analysis”. In:
IEEE Transactions on Computers vol. C-18, no. 5 (May 1969), pp. 401–409.

34

References

[26] Maaten, L. van der and Hinton, G. “Visualizing Data using t-SNE”. In:
Journal if Machine Learning Research vol. 9 (2008), pp. 2579–2605.

[27] Maaten, L. van der and Hinton, G. “Stochastic Neighbor Embedding”.
In: Advances in Neural Information Processing Systems vol. 15 (2002),
pp. 833–840.

[28] Wienke, J. and Wrede, S. “A middleware for collaborative research in
experimental robotics”. In: 2011 IEEE/SICE International Symposium on
System Integration (SII). Dec. 2011, pp. 1183–1190.

[29] Basurto, N. and Herrero, Á. “Data Selection to Improve Anomaly Detection
in a Component-Based Robot”. In: 14th International Conference on Soft
Computing Models in Industrial and Environmental Applications (SOCO
2019). Ed. by Martínez Álvarez, F. et al. Cham: Springer International
Publishing, 2020, pp. 241–250.

[30] Schubert, E. et al. “DBSCAN Revisited, Revisited: Why and How You
Should (Still) Use DBSCAN”. In: ACM Trans. Database Syst. vol. 42, no. 3
(July 2017), 19:1–19:21.

[31] Sánchez, R., Herrero, Á., and Corchado, E. “Visualization and clustering
for SNMP intrusion detection”. In: Cybernetics and Systems vol. 44, no. 6-7
(2013), pp. 505–532.

35

Paper II

Improving the Detection of Robot
Anomalies by Handling Data
Irregularities

Nuño Basurto, Carlos Cambra, Álvaro Herrero

Published in Neurocomputing, October 2021, volume 459. pages 419-431. DOI:
10.1016/j.neucom.2020.05.101.

II
Abstract

The ever-increasing complexity of robots causes failures of them as a
side effect. Successful detection of anomalies in robotic systems is a key
issue in order to improve their maintenance and consequently reducing
economic costs and downtime. Going one step further in the detection of
anomalies in robots, different mechanisms to deal with data irregularities
are proposed and validated in present paper in order to increase detection
rates. More precisely, strategies to overcome missing values and class
imbalance are considered as complementary tools to get better one-class
classification results. The effect of such strategies is evaluated through
cross-validation when applying a standard supervised learning model, the
Support Vector Machine. Experiments are run on an up-to-date and public
dataset that contains some examples of different software anomalies that
the middleware of the robot under analysis may experience.

II.1 Introduction

It is widely acknowledged that in present fourth industrial revolution, knowledge
extraction from large volumes of data is a crucial task. There are different
facilitators [1] to support the transfer to Industry 4.0 [2], that include Artificial
Intelligence in general and Machine Learning (ML) in particular. Among all
the resources associated to the smart and future factories, robots play a key
role [3]. There has been a 31% increase of industrial robots, reaching 384,000
units in the world in just one year, as reported by the Industrial Federation of
Robotics [4]. Furthermore, the annual sales volume of industrial robots have
been increasing from last 6 years (2013-2018). In parallel to the increase of sale
figures, the complexity of robots is constantly growing over time. Additionally,
the demands for robustness and reliability are increasing as well. However, as
any cyber-physical system, robots suffer from failures and finding anomalies is

37

https://doi.org/10.1016/j.neucom.2020.05.101

II. Improving the Detection of Robot Anomalies by Handling Data Irregularities

required in order to allow recovery and continuous operation. Further effort
must be devoted to anomaly detection in robots as little attention has been paid
to it by the international research community until now [5].

Present paper addresses the detection of performance anomalies experienced
by the software of a robotic system. Due to the widely acknowledged importance
of data pre-processing, different such mechanisms (mainly data balancing and
handling of missing values - MV) have been applied in order to better identify
anomalies. Based on previous work on the same real-life dataset [6], [7],
experiments are conducted by means of the One-Class Support Vector Machine
(SVM), that is discussed in section II.4.

The successful detection (and identification in multiclass cases) of anoma-
lies/faults is a challenging task that does not only apply to robots [8], [9], [10].
For the benefit of industrial companies in general [11], and for the automatic
anomaly detection in particular, ML techniques have been successfully applied
in different fields [12] up to now.

Among the vast amount of classifiers that exist, SVM is one of the most
widely applied ones for anomaly/fault detection as it has proved to be a successful
model. In [13] it is applied to a multi-sensor motor after preprocessing data by
means of the FShort-Time Fourier Transform. The aim is reducing maintenance
costs of the electro-mechanical system of the motor. More recently, Zidi et
al. [14] proposed the use of SVM in the Wireless Sensor Networks field where
anomalies could come from different sources, such as software, hardware or the
communication system. SVM was benchmarked against some other well-known
classifiers such as Naive Bayes (NB) or Hidden Markov Models, obtaining positive
results.

Within the stage of data preprocessing, necessary before the pattern
recognition one, data irregularities are usually found and must be overcame [15].
Present paper focuses on two of these irregularities, namely MV [16] and data
imbalance [17]. There have been previous proposals to deal with the MV in
robot data, such as the one proposed by Twala [18], in which a probabilistic
approach is used, based on the a-priori probability of each value determined
from the instances in that node which have specified values. Robot failures are
detected by applying a well-known classifier: a Decision Tree (DT). The classifier
is applied to all available data collected from the sensors of the robot; it does
not matter the type of attribute (whether numeric or nominal). The author
applied and compared different imputation techniques for handling the MV. As
opposed to this previous work, present paper deals with the software of a robot
and strategies for discarding MV rather than imputing them, due to the induced
error of imputation.

The imbalanced class distribution is another important issue that must be
addressed before applying supervised learning techniques. Several approaches
to deal with this problem [17], [19] have been proposed up to now. Dataspace
weighting [20] was proposed in order to balance the classes by assigning different
weights to instances of different classes. As a result, classes have the same total
weigh, with a positive impact on classification rate. On the other hand, Cerqueira
et al. [21] adopted an approach for dealing with MV similar to the one in present
research: deleting them. Additionally, they used the Synthetic Minority Over-

38

Introduction

sampling Technique (SMOTE) to get a class-balanced distribution of data that
improved the classification performance. The aim of such classification was
carrying out a predictive maintenance (that is, detecting anomalies) on the air
pressure system of heavy trucks. More recently, another study [22] has been
published where SMOTE is applied for anomaly detection. In order to detect
abnormal events in an assembly line, data are processed (to remove outliers)
with DBSCAN and then SMOTE is applied for data balancing. Finally, Random
Forest (RF) is used as the learning model for anomaly prediction. RF is also
applied in [23] to detect and classify failures of a vehicle fleet. Additionally,
a parameter tuning framework is proposed to overcome the class imbalance
problem. Similarly, Luo et al. [24] considered the problem of imbalanced data
and its implications in anomaly detection. In order to solve it, they generated
new synthetic data samples by means of a technique called Triangle Syntethic
Data, that is an extended version of SMOTE. They have used some standard
classifiers, such as DT, Logistic Regression, SVM, and NB, so they can verify
the universality of the algorithms. Rather than proposing the application of one
balancing method, such as SMOTE, present paper is a comprehensive study of
the application of different balancing methods to improve anomaly detection.

One-class classification has been also addressed before, together with data
balancing techniques. In [25] authors analyze the effect that the imbalance of
classes can have in seven one-class and two multiclass datasets. Six classification
models, such as NB or SVM are compared when applying the Totem-Links
undersampling technique. The model finally proposed by the authors, based
on the SVM classifier, managed to improve the tendency of the minority class
without affecting the majority class.

In the case of robotic systems, most previous work has been focused on the
detection of hardware anomalies while few papers deal with software anomalies,
which have been largely ignored. Software failures often occur in robotic systems
and their automatic detection requires training data. The problem comes from
the difficulty of obtaining the data either because of the lack of execution traces
or because the existing registers do not refer to the exact moment in which
they are produced. That is why it is difficult to find a dataset generated in
a controlled environment where all the information is available. One of the
pioneer works on the detection of software anomalies within the framework
of component-based robots is [7]. In that paper, authors propose the only
publicly-available dataset (further details in section II.3) that gathers data from
different performance indicators of a robot. The dataset [26] has been used in
present paper as a benchmark dataset due to its interest and novelty. Authors
of the dataset applied [27] One-Class SVM (OCSVM) in order to compare its
performance with that obtained when using another model. Thus, present paper
focuses on the effect of data irregularities on classification by OCSVM.

In the doctoral dissertation [28] associated to this dataset, compiling all the
previous papers by these authors, they explored two alternatives. Firstly, they
considered methods to understand and systematize resource control, for which
a set of tools was developed. On the other hand, they studied the topic that
leads to present work: the use of different ML techniques to detect anomalies
and allow automatic reactions in execution time, based on the use of component

39

II. Improving the Detection of Robot Anomalies by Handling Data Irregularities

resources.
The rest of this paper is organized as follows: the proposed framework for

anomaly detection (comprising the applied classifier, the pre-processing strategies
and the performance metrics) is described in section II.2 while the case study
and its associated dataset is described in section II.3. The setup of performed
experiments and the obtained results are presented in section II.4. Finally,
section II.5 introduces the main conclusions derived from present research and
points outs some proposals for future work.

II.2 Proposed Framework for Anomaly Detection

Detection of anomalies is known as the problem of finding certain patterns in
the data that do not conform to a expected behavior [8]. This “anomalous”
behaviour may be associated to failures or malfunctioning of any kind. Anomaly
detection in the software of a robotic system is addressed in present paper by
using the framework that is described in this section. The SVM classifier (see
section II.2.1) is used as the learning method to be trained on the analyzed
dataset (described in section II.3). The applied pre-processing techniques are
then explained in section II.2.2 and the different metrics that have been observed
in order to compare the performance are described in section II.2.3.

II.2.1 Learning Method

The SVM [29], [30] is a widely-applied classifier that implements the Statistical
Learning Theory. The purpose of this shallow ML model is to identify the
hyperplane that maximizes the separation margin of data, according to the
defined classes in the training dataset. For generalization purposes, it tries to
universalize the archetype that will be used to classify the new data samples. This
is the Structural Risk Minimization perspective, as opposed to the Empirical
Risk Minimization one, that is implemented in other models such as neural
networks. SVM for one-class classification (as the anomaly detection in present
paper) is a learning model whose loss function is the Hinge function, defined as:

L[y, f(x)] = max[0, 1− yf(x)] (II.1)

Being x one of the observations taken from the input data, and y is the class
x belongs to. f(x) is the output of the SVM itself. During training, the SVM
identifies the support vectors that are those data samples that maximize the
separation of data. Being S the set of support vectors, α the coefficients of the
classifier, and β the coefficients of the predictor, once trained the SVM can be
defined as in equation II.2.

f(x) = Σiεsα · yi · 〈xi, x〉+ β0 (II.2)

In present paper, a SVM equipped with a sigmoidal kernel function has been
used. This function is defined as:

k(x, y) = tanh(axT y + c) (II.3)

40

Proposed Framework for Anomaly Detection

II.2.2 Data Pre-processing

As previously stated, two data irregularities are addressed in present work. MV
is an issue mainly when working in a field where sensors are involved (as present
case study). It is even more important due to the fact that most supervised
learning methods (SVM included) can not deal with MV. In present paper, MV
are removed from the data in order to apply the mentioned classifier. There
are mainly two ways of removing MV: deleting those data instances containing
at least one of these values for any of the features or deleting those features
containing at least one of these values for any of the data instances. The former
causes a reduction in the number of data samples while the latter causes a
reduction in the number of features, contributing the two of them to negative
effects in the learning of the classifier. In order to find an equilibrium, present
paper proposes establishing permissiveness ratios for MV when removing data
features. That is, features containing a percentage of MV below the threshold
are kept while all the others are removed. For those features that are below
the threshold and contain any MV, data instances comprising such MV are
subsequently removed. Consequently, by increasing the MV ratio more features
are considered by the classifier but less instances and vice versa. To empirically
set up such ratio, values of 0%, 10%, 25%, and 50% have been tested in the
conducted experiments (see section II.4).

On the other hand, the imbalance of classes often appears in datasets for
anomaly detection. It results on the majority class (“normal” status of systems)
getting a benefit from the classifier and being prejudicial to the results for the
minority class (anomalies/failures). In order to deal with this problem, different
solutions (known as balancing methods) have been proposed so far [19]. They are
aimed at ensuring that the different classes have a similar number of instances.
The different methods to get such a class balance can be classified in 3 main
categories [19] by taking into account how do they get a similar number of
instances: undersampling, oversampling, and hybrid methods. The methods
belonging to each one of these categories that have been applied in present
research are:

• Undersampling methods: their strategy to get a balanced number of
instances per class is creating a new subset by removing some instances.
Usually, the data instances to be removed are from the majority classes,
so their prominence is reduced in favor of minority classes. The most
common and widely used method of undersampling is known as Random
Under Sampling (RUS). It is a simple non-heuristic method that gets a
class-balanced subset by randomly selecting those instances to be deleted.

• Oversampling methods: their strategy to get a balanced number of
instances per class is creating a superset by artificially generating data
instances. Usually, these new instances are from the minority classes, so
their prominence is increased. As in the case of undersampling, there is a
common and widely used method of oversampling, known as Random Over
Sampling (ROS) that randomly selects the data instances to be duplicated.

41

II. Improving the Detection of Robot Anomalies by Handling Data Irregularities

A more advanced oversampling method is Synthetic Minority Oversampling
TEchnique (SMOTE) [31]. It introduces synthetic data samples created
by interpolating different minority-class instances. In order to select these
reference instances, k-Nearest Neighbors (KNN) algorithm is applied, as
graphically explained in Figure II.1. SMOTE initially selects an xi minority
class instance as a basis for creating new instances of the minority class. By
considering Euclidean distance, multiple data samples (Nearest Neighbors)
of the minority class (points from xi1 to xi4) are chosen from the dataset.
Finally, an interpolation is performed in order to obtain new instances
ranging from r1 to r4.

Figure II.1: Syntethic data creation with SMOTE. Adapted from [19].

• Hybrid methods: they combine the use of oversampling and undersam-
pling techniques in order to reduce the impact in only one of the classes
that the single methods have. One of the hybrid methods that have been
applied in present work is ROS + RUS, that combines the two simplest
methods of data balancing, previously introduced. Additionally, in keeping
with the idea in [31], SMOTE is combined with RUS, generating synthetic
instances of the minority class while randomly eliminating instances of the
majority one at the same time.

II.2.3 Performance Metrics

The performance of SVM when detecting the anomalies is validated through the
standard metrics for supervised learning methods. These metrics are described
in this subsection and are calculated from the figures associated to a one-class
classification. These figures are the ones usually presented in a confusion matrix,
that in anomaly detection are:

• False Positives (FP): normal data that are mistakenly classified as
anomalous.

• False Negatives (FN): anomalies that are mistakenly classified as normal
data.

42

Proposed Framework for Anomaly Detection

• True Positives (TP): anomalies that are correctly classified as such.

• True Negatives (TN): normal data that are correctly classified as such.

Based on these basic statistics that have been previously defined, some useful
metrics can be calculated:

II.2.3.1 Accuracy

It can be seen as the global hit ratio, without taking into account whether the
data is anomalous or not. It is defined as:

Accuracy = TP + TN

TP + TN + FP + FN
(II.4)

II.2.3.2 Precision

It is designed to reflect the proportion of data that the given classifier successfully
labels as anomalous. This proportion is calculated by taking into account the
total number of data labelled as anomalous (TP + FP). It is defined as:

Precision = TP

TP + FP
(II.5)

II.2.3.3 True Positive Rate (TPR)

This metric, also known as Recall, focuses on the relevant data of the problem
that, in anomaly detection, are the anomalies. It is similar to Precision but the
proportion is now calculated by taking into account the total number of truly
anomalous data (TP + FN). It is defined as:

TPR = TP

TP + FN
(II.6)

II.2.3.4 False Positive Rate (FPR)

This metric reflects the proportion of “normal” data that is mistakenly classified
as anomalous. This proportion is calculated by taking into account the total
number of “normal” data (FP + TN):

FPR = FP

FP + TN
(II.7)

43

II. Improving the Detection of Robot Anomalies by Handling Data Irregularities

II.2.3.5 F1 Score

As there are strong dependencies between some of the metrics that has been
introduced so far, a new one was conceived in order to reflect a balance between
the different aspects to be evaluated. This is the reason to introduce the F1
Score, that is defined as:

F1 = 2 ∗ Precision ∗Recall
Precision+Recall

(II.8)

II.2.3.6 ROC Curve

The well-known Receiver Operating Characteristic (ROC) curve confronts TPR
with FPR in a probabilistic way. It is used to depict the performance of a classifier
in a 2D representation. Thus, it supports easily finding the best operating point
in order to balance the two metrics (TPR and FPR). Based on this curve, the
most important metric for present paper is calculated: the area under the curve
(AUC) [32]. Although the previous metrics have also been calculated in all the
experiments conducted in present study, it is AUC the top one as it is fair for
evaluating classification results on imbalance datasets [17] [33] and it was the
one used by authors of the dataset under analysis [27]. As AUC is calculated as
a portion of the area of the perfect classification (unit square) it takes values in
the range [0, 1]. As a result, the closer the AUC value is to 1, the better.

II.3 Real-life Case Study

As previously stated, present work addresses the detection of performance
anomalies in the middleware of a component-based robot. It is done by
analyzing a dataset [7] that was generated by researchers from the Bielefeld
University (Germany) and is available at [26]. Data were recorded from the
ToBi robot, whose base is PatrolBot, built upon the research platform GuiaBot,
by MobileRobots. As a participant in the RoboCup@Home competition in
2015, its mission was to carry out different tasks related to a waiter’s job, such
as recognizing clients, asking them about the drink or serving. To complete
these tasks, the robot has different components such as two RGBD cameras
for person/object recognition, an arm for manipulating objects, and a speech
recognition sensor, among others. Through a message-oriented, event-based
middleware called Robotics Service Bus (RSB) [34], all the robot components
are connected. Data from this RSB associated to different system executions
have been captured at runtime thanks to a tool called rsbag.

For the induction of anomalies, the authors of the dataset firstly surveyed
researchers, university students, and workers through a questionnaire. As
a result, the most usual software anomalies for the platform were identified.
Then, the anomalies were induced in ToBi and were activated through RSB
middleware in order to know the precise moment they were produced. 11
anomalies were induced and are present in the dataset, namely: armServerAlgo,
legDetectorSkippable, objectBuilderSkippable, clafuSleep, pocketSphinxLeak,
btlAngleAlgo, bonsaiParticipantLeak, bonsaiTalkTimeout, facerecSkippable,

44

Real-life Case Study

clockShift and SpreadLatency. Differentiating from previous work [6], where
only one of them (armServerAlgo) was addressed, present paper addresses 9 of
them. In order to set a common criteria, anomalies affecting more than one
robot component (spreadLatency and clockshift) have been discarded for a fair
comparison. Those anomalies analyzed in present work are shown in Table II.1.
For the sake of brevity and clarity, a code has been assigned to each one of them,
as shown in the first column.

Table II.1: Selected anomalies to be analyzed.

Code Name Description

A1 armServerAlgo Certain movements of the arm are performed from known
valid poses

A2 legDetectorSkippable The ‘legdetector’ processed each scan multiple times
A3 objectbuilderSkippable The person tracking performed transformations for each

person multiple times
A4 clafuSleep The results are returned only after a delay of 5 seconds
A5 pocketSphinxLeak The speech recognition component accumulates memory

for each sound
A6 btlAngleAlgo Adds a mathematical error used to track people
A7 bonsaiParticipantLeak Participants are not cleaned up properly
A8 bonsaiTalkTimeout Configuring a wrong RSB scope for the text-to-speech

engine
A9 fecrecSkippable Temporarily removes a throttling of the main loop of the

‘facerec’ component

The dataset comprises 71 trials, being each one of them an attempt of
the robot to perform some of the tasks. Not all trials are included in present
work; analyzed trials are those that do not have undetected faults and that are
considered valid by the dataset authors. Each trial comprises a file linked to each
component of the robot and the different data associated to it. These data refer
to the interaction of the robot with its environment during a given time interval
and duration varies between trials. Each data instance from the dataset is a
sampling of the different data sources at a certain time. Two data sources are
used to get information about the performance of the robot software: Features
and Counters. The authors of the dataset provided a third set, events, whose
information is found in Features. It contains information about the relevant
events that occurred in the component, including the size of sending and receiving
information. On the other hand, Counters are the raw export of the performance
counters for the component, whereas Features are a combination of performance
counters and events with the timing of the counters. Further details on data
sources are available at [26].

The dataset has the following structure, as described in Figure II.2: the
information of each one of the 71 trials is available. There is the information
gathered from the different components and (in a faults file) all the induced
anomalies, with the starting and ending time as well as its type. For each one of
the components, the three sources of data (Features, Counters and Events) are
available. Additionally, there is another file that indicates if there is an anomaly

45

II. Improving the Detection of Robot Anomalies by Handling Data Irregularities

induced in this component and which is the affected time frame.

Figure II.2: Structure of the dataset under analysis.

Table II.2: Occurrences of each anomaly and distribution per trials. In bold, the
trials selected for the one-trial experiments.

Anom. 1 time 2 times 3 times 4 times

A1 28, 32, 36, 41, 45, 57, 65, 71 21 23
A2 19, 21, 24, 31, 36, 55, 57, 64, 66, 68, 70 71
A3 20, 38, 41, 42, 54, 55, 57, 64, 65, 66 18 63
A4 21, 27, 32, 41, 42, 51, 55, 56 49, 63, 65, 66
A5 28, 29, 31, 32, 35, 37, 38, 41, 45, 68 69
A6 19, 21, 39, 70, 71 29, 37, 45
A7 19, 20, 32, 35, 51, 56, 64 24, 68, 70
A8 23, 24, 28, 35, 36, 38, 39, 42, 45, 49, 56 18, 51
A9 19, 20, 27, 29, 31, 32, 36, 42, 49, 51, 54, 64

In order to evaluate the impact of the proposed strategies, experiments were
conducted comprising only one trial and all the trials containing examples of
a certain anomaly. The underlying idea was to know if the performance of the
applied classifier will significantly vary depending on the amount of trials to be
considered and the balancing of them. The number of occurrences (from 1 to 4)
of each anomaly and the related trials are shown in Table II.2. In bold there can
be identified those trials that have been selected for the one-trial experiments.
Among all the trials containing examples of an anomaly, those that have a
greatest relevance for each one of them were selected individually. The selection
criteria of the trial has been firstly the one with the highest number of anomaly
occurrences. Secondly, for those trials with the same number of occurrences,
it has been selected the one with the longest period of time between each two

46

Real-life Case Study

anomalies. The main reason is to maximize the time between occurrences in
order to let the robot recover from the first occurrence.

Table II.3: Missing values in the dataset per anomaly and data source, with its
percentage to total values.

Anomaly Features Counters Features + Counters
A1 366166 (20.4%) 26025 (8.5%) 392191 (19.06%)
A2 17447(4.43%) 24163 (10.03%) 41610 (7.04%)
A3 16492 (3.59%) 23206 (11.78%) 39698 (6.48%)
A4 66308 (11.65%) 24630 (8.04%) 90938 (10.93%)
A5 67884 (6.74%) 25264 (8.25%) 93148 (7.33%)
A6 469662 (9.17%) 19308 (5.88%) 488970 (9.05%)
A7 469662 (9.17%) 19308 (5.88%) 488970 (9.05%)
A8 469662 (9.17%) 19308 (5.88%) 488970 (9.05%)
A9 175074 (21.62%) 48109 (14.65%) 223183 (20.39%)

Table II.4: Class distribution of data per anomaly and trial in the dataset.

Anomaly
All Trials One Trial

Normal Anomaly Anomaly Normal Anomaly Anomaly
Class Class Percentage Class Class Percentage

A1 20832 1055 5.06% 462 233 50.43%
A2 20765 1127 5.43% 439 206 46.92%
A3 20515 1375 6.70% 445 209 46.97%
A4 20547 1345 6.55% 427 160 37.47%
A5 20738 1147 5.53% 316 320 101.27%
A6 20934 951 4.54% 553 186 33.63%
A7 20837 1048 5.03% 522 160 30.65%
A8 20685 1200 5.80% 554 160 28.88%
A9 20847 1036 4.97% 500 88 17.60%

Since data irregularities are important in present work, some figures about
them are provided. Firstly, the total amount of MV in all the trials affected by
each anomaly are shown in Table II.3 per anomaly and data source. As it can
be seen from this table, the amount of MV significantly varies from one anomaly
to the other ones. It is worth mentioning the case of A6, A7, and A8 anomalies
as MV amount to 488,970 in all of them, when considering both Features and
Counters. This is because they all affect the same robot component, namely
statemachine. A study has been conducted to know whether the presence of MV
adjusts to a given pattern, but no relevant evidences have been found.

Additionally, it can be observed in Table II.4 the distribution of data in the
two classes (normal/anomaly) for the different anomalies and the percentage
of data from the minority class (anomalous). These figures are calculated by

47

II. Improving the Detection of Robot Anomalies by Handling Data Irregularities

setting a MV ratio of zero and this is the reason why the number of instances
is the highest one. In the right part of this Table II.4, it can be seen the data
distribution in classes for the individual trials. As indicated, these subsets of
the data are much more balanced (higher percentage of anomalies) that in the
case of the whole dataset (all trials). Furthermore, in the case of A5 anomaly,
there are few more instances of the anomaly class than that of the normal class.
Then, the effect of applying the pre-processing techniques is checked for similar
data in slightly and strongly unbalanced datasets.

Finally, figures about the size of the different datasets are provided in
Table II.5. The row-wise datasets are presented per anomaly and data-source
and the number of both rows and columns are included. The applied MV ratio
(varying from 0% to 50%) is indicated in the case of all trials and in the case of
the one trial, there is only one value associated to the 0% MV ratio.

II.4 Experiments and Results

In this section, the results obtained after the execution of the different experiments
are shown. 30 of them have been carried out for each one of the anomaly, which
amount to 270 experiments in total (9 anomalies are studied). They have been
conducted on different subsets of the original dataset (see section II.3): on the
one hand, the most significant trial for each one of the anomalies (see Table
II.2) has been analyzed (results in section II.4.1) while all the trials have been
also analyzed (results in section II.4.2). The best results are presented in each
case, regardless the data source (Features, Counters, and both of them). At the
end of the section, results associated to the different data sources are presented
(see Figure II.5) and discussed.

For each one of these subsets of data, several experiments have been performed
with different combinations of the data-preprocessing methods explained in
section II.2.2. With regard to the MV issue, different values of the previously
explained MV ratio have been applied when analyzing all trials. Once MV had
been removed, different experiments have been carried out with a great variety
of data balancing methods, namely ROS, RUS, both at the same time (ROS
+ RUS), SMOTE, and SMOTE with RUS. All in all, one undersampling, two
oversampling, and two hybrid methods have been applied for data balancing.
Additionally, the obtained performance results are also compared with that
for the originally imbalanced dataset without applying any of data-balancing
method (referenced as “None”).

All the results presented in this section have been obtained by training a
SVM (see section II.2.1) on 75% of the available data while validating on the
25% remaining data. For the validation, the well-known technique of k-fold
Cross Validation (with the value k = 10) has been applied. Additionally, 10
executions have been carried out per each experiment in order to obtain more
statistically significant results. Average results for these 10 executions are shown
in present section.

In order to validate the results obtained with the different models and
datasets, the non-parametric Wilcoxon Signed-Ranks Test [35] [36] has been

48

Experiments and Results

Table II.5: Size of the different datasets per anomaly and data source.

Rows Columns
0 0.1 0.25 0.5 1 Trial 0 0.1 0.25 0.5 1 Trial

Fe
at
ur
es

A1 21887 20591 14429 7350 695 35 47 58 68 77
A2 21892 21892 21892 21892 645 17 17 17 17 17
A3 21890 21890 21890 21890 654 20 20 20 20 20
A4 21892 21892 21892 21892 587 22 22 22 22 22
A5 21885 21885 17175 17175 636 42 42 43 43 43
A6 21885 18608 5772 - 739 175 189 207 - 213
A7 21885 18608 5772 2583 682 175 189 207 212 214
A8 21885 18608 5772 2583 714 175 189 207 212 214
A9 21883 21883 21883 21883 588 28 28 28 28 29

Rows Columns
0 0.1 0.25 0.5 1 Trial 0 0.1 0.25 0.5 1 Trial

C
ou

nt
er
s

A1 21887 21887 18530 18350 695 11 11 13 13 11
A2 21892 21892 18534 18534 645 8 8 10 10 10
A3 21890 21890 18533 18533 654 6 6 8 8 8
A4 21892 21892 18534 18534 587 11 11 13 13 13
A5 21885 21885 17175 17175 636 12 12 13 13 13
A6 21885 21885 21885 - 739 14 14 14 - 14
A7 21885 21885 21885 21885 682 14 14 14 14 14
A8 21885 21885 21885 21885 714 14 14 14 14 14
A9 21883 21883 21883 21883 588 12 12 12 12 13

Rows Columns
0 0.1 0.25 0.5 1 Trial 0 0.1 0.25 0.5 1 Trial

Fe
at
ur
es

+
C
ou

nt
er
s A1 21887 20591 11762 5974 695 44 56 69 79 86

A2 21982 21892 18534 18534 645 23 23 25 25 25
A3 21890 21890 18533 18533 654 24 24 26 26 26
A4 21982 21892 18534 18534 587 31 31 33 33 33
A5 21885 21885 17175 17175 636 52 52 54 54 54
A6 21885 18608 5772 - 739 187 201 219 - 225
A7 21885 18608 5772 2583 682 187 201 219 224 226
A8 21885 18608 5772 2583 714 187 201 219 224 226
A9 21883 21883 21883 21883 588 38 38 38 38 40

used, as it suits present work (compare different models on different dataset
without a-priori assumptions). This test supports selecting the best methods
on the varied situations under analysis (different datasets and combinations of
methods).

II.4.1 One-Trial Experiments

As previously mentioned, experiments were carried out on one single trial per
anomaly (that containing most examples of the anomaly as stated in Table II.2).
The same pre-processing methods have been applied in the one-trial and all-trial

49

II. Improving the Detection of Robot Anomalies by Handling Data Irregularities

experiments. However, in the one-trial experiments only one MV ratio was
tested: 0%. The reason for that is that none of the selected trials contains MV.

Obtained metrics, calculated on the different data and methods, are shown
in the following tables. In Table II.6 it is shown the obtained F1 values, while
the AUC ones are shown in Table II.7.

Table II.6: Obtained F1 values per anomaly and data-balancing method in the
one-trial experiments.

None ROS SMOTE RUS
ROS
+

SMOTE
+

RUS RUS
A1 0.3194 0.4128 0.4140 0.4229 0.4135 0.4242
A2 0.9415 0.9387 0.9492 0.9424 0.9397 0.9362

A3 0.8187 0.8226 0.7918 0.8324 0.8194 0.8061

A4 0.5486 0.5373 0.5755 0.5529 0.5656 0.5595
A5 0.6888 0.7149 0.7152 0.6981 0.6907 0.6805
A6 0.4680 0.5995 0.5837 0.6388 0.6114 0.6628
A7 0.5853 0.5881 0.5532 0.5789 0.5796 0.5396
A8 0.1296 0.2985 0.2774 0.2954 0.2825 0.3225
A9 0.7932 0.9034 0.8320 0.8093 0.8339 0.8909

Table II.7: Obtained AUC values per anomaly and data-balancing method in
the one-trial experiments.

None ROS SMOTE RUS
ROS
+

SMOTE
+

RUS RUS
A1 0.5354 0.5592 0.5712 0.5808 0.5515 0.5737
A2 0.9588 0.9622 0.9656 0.9646 0.9582 0.9558
A3 0.8738 0.8796 0.8524 0.8806 0.8800 0.8656
A4 0.6926 0.6904 0.7084 0.6916 0.7040 0.7061
A5 0.7019 0.7188 0.7086 0.6969 0.6986 0.6857
A6 0.6491 0.7584 0.7390 0.7781 0.7571 0.7903
A7 0.7353 0.7464 0.7277 0.7544 0.7444 0.7188
A8 0.4432 0.5828 0.5894 0.5762 0.5885 0.5486
A9 0.8878 0.9594 0.9414 0.9546 0.9360 0.9540

When analyzing the F1-score metric (Table II.6), it can be clearly seen that
the application of balancing techniques has greatly improved the obtained values.
SMOTE (rather applied in isolation or in connection with RUS) has got the
highest F1 values in 5 cases (out of 9). On the other hand, none of the highest

50

Experiments and Results

values has been obtained with the original dataset (no balancing method applied).
Results are greatly improved in the case of the A8 anomaly, varying from 0.1296
(no balancing method) to 0.3225 (obtained with SMOTE + RUS).

The AUC scores (Table II.7) are also provided. As it is the key metric
(see section II.2.3), a bar graph (see Figure II.3) has been generated in order
to ease the comparison of results. Thus, the best AUC scores for each one of
the anomalies obtained by each one of the applied methods can be observed.
Additionally, the results of statistical test for these two metrics are shown in
Tables II.8 and II.9.

Figure II.3: AUC values per anomaly in the one-trial experiments.

When considering these results, some facts are worth highlighting:

• Analysis by anomaly: AUC values strongly vary from some anomalies to
the other ones. While in the case of A1 and A8 anomalies the obtained
values are close to 0.5, for most of the anomalies they are in the range
[0.6 - 0.9]. In the case of A2 and A9, values higher than 0.9 have been
obtained. The case of the A5 anomaly is worth mentioning; it is the only
balanced anomaly and as a result, AUC scores are not improved with the
balancing techniques. Actually, worst results have been obtained with all
the undersampling combinations (RUS, ROS + RUS, and SMOTE + RUS)
than that obtained with the original data.

• Analysis by balancing method: when comparing the results obtained with
the balancing methods and those obtained from the original dataset, similar
values have been obtained except in the anomalies A6, A8, and A9. For
these three anomalies, the AUC values from the original dataset are much
lower than those obtained with any of the balancing methods. As it can be
seen in the Table II.4, these anomalies are three of the most unbalanced
ones, except for the A7 anomaly. Going into more detail it has been
observed that Features and Features + Counters follow this same pattern

51

II. Improving the Detection of Robot Anomalies by Handling Data Irregularities

but it is not followed in the case of Counters itself. This trial has fewer
instances than the other two anomalies with the same component, A6 and
A8. In all anomalies, the best AUC scores are obtained with a balancing
method and not with the original data. However, there is not a balancing
method that gets better AUC values in all anomalies.

As previously stated, the Wilcoxon Signed-Ranked Test has been carried out
to get more statistically significant conclusions from the one-trial experiments.
It has been applied to the obtained values for the F1 score (Table II.8) and AUC
(Table II.9) metrics.

Table II.8: p-values obtained by the non-parametric Wilcoxon Signed-Ranked
Test pairwaise on the one-trial experiments per balancing method for the F1
values.

None ROS SMOTE RUS ROS +
RUS

SMOTE
+ RUS

None - ≥ 0.2 ≥ 0.2 ≥ 0.2 ≥ 0.2 ≥ 0.2
ROS 0.0546 - ≥ 0.2 ≥ 0.2 ≥ 0.2 ≥ 0.2

SMOTE 0.1132 ≥ 0.2 - ≥ 0.2 ≥ 0.2 ≥ 0.2
RUS 0.0195 ≥ 0.2 ≥ 0.2 - ≥ 0.2 ≥ 0.2

ROS + RUS 0.0546 ≥ 0.2 ≥ 0.2 ≥ 0.2 - ≥ 0.2
SMOTE + RUS ≥ 0.2 ≥ 0.2 ≥ 0.2 ≥ 0.2 ≥ 0.2 -

Table II.9: p-values obtained by the non-parametric Wilcoxon Signed-Ranked
Test pairwaise on the one-trial experiments per balancing method for the AUC
values.

None ROS SMOTE RUS ROS +
RUS

SMOTE
+ RUS

None - ≥ 0.2 ≥ 0.2 ≥ 0.2 ≥ 0.2 ≥ 0.2
ROS 0.0078 - ≥ 0.2 ≥ 0.2 ≥ 0.2 ≥ 0.2

SMOTE 0.0976 ≥ 0.2 - ≥ 0.2 ≥ 0.2 ≥ 0.2
RUS 0.0195 ≥ 0.2 ≥ 0.2 - ≥ 0.2 ≥ 0.2

ROS + RUS 0.0195 ≥ 0.2 ≥ 0.2 ≥ 0.2 - ≥ 0.2
SMOTE + RUS ≥ 0.2 ≥ 0.2 ≥ 0.2 ≥ 0.2 ≥ 0.2 -

According to the values in the Table II.8 (F1 values) and the values of R+

and R−, H0 for None is not rejected just in the cases of SMOTE and SMOTE
+ RUS. For all the other balancing methods, it can be said that SMOTE and
SMOTE + RUS do not outperform None. The same happens when considering
both the R+ and R− values and p-values (Table II.9) related to AUC. As a
result, it can be concluded that in the case of one-trial experiments, ROS, RUS,
and ROS + RUS outperform all the other methods (None included) but any of
them can be identified as the best one in all cases.

52

Experiments and Results

II.4.2 All-Trials Experiments

As it has been previously explained, same experiments have been run on data
subsets containing all the trials for each one of the anomalies. That is, data
from all the trials listed in each row of Table II.2 have been merged. As a result,
highly unbalanced datasets have been generated, as can be seen in Table II.4.

Differentiating from the experiments on the one-trial datasets, for the all-
trials ones 4 different MV ratios have been considered: 0%, 10%, 25%, and 50%.
Obviously, with a 0% MV rate, the datasets with the highest number of instances
and the lowest number of features (the ones in Table II.4) have been obtained.
For the sake of brevity, in the case of all-trials datasets, only best AUC scores
for each combination of parameters are shown. Obtained values are compiled in
Table II.10 for the MV ratios of 0%, 10%, 25%, and 50% respectively, and all
data sources.

From the obtained results, it can be stated that the worst performance
has been obtained with the original datasets (no balancing method) for all the
anomalies. On the other hand, from these results no clear conclusion can be
drawn as to which balancing method works best when stating a 0% MV ratio.
With this MV threshold, SMOTE and RUS stand out, being the best ones for 3
of the anomalies each, while the combination of them (SMOTE + RUS) has not
obtained the best result for any of the anomalies.

When increasing the MV ratio to 10% (see second section of Table II.10),
it can be observed with greater clarity that oversampling methods (ROS and
SMOTE) stand out from the rest of balancing methods and the original datasets.
Actually, the highest AUC value (0.9822) of all the performed experiments in
present work has been obtained with the 10% MV ratio and ROS balancing
method for the A2 anomaly. The AUC values for the A9 anomaly are very
similar to those with the 0% MV ratio (they only vary for the undersampling
methods) because there is no change in the number of MV and hence instances.
That is, there is not any original feature containing less than 10% MV. In the
case of the 10% MV ratio, it is ROS that stands out (best one for 4 anomalies).
Once again, the combination of SMOTE and RUS (SMOTE + RUS) has never
obtained the best results, as it has happened with the original data.

From the results with a 25% MV ratio (see third section Table II.10), as
opposed to what was pointed our for the 10% MV ratio, the RUS method
stands out from the other ones (best results in 5 out of 9 anomalies). As an
exception, it has got the worst result of a balancing method in the case of the
A6 anomaly. When combined with the SMOTE method (SMOTE + RUS)
it has also obtained the highest value for the A1 anomaly. For this anomaly,
this combination is the only method that has improved the AUC values when
compared with that obtained from the original (unbalanced) data. SMOTE is
the second best method, obtaining the highest AUC scores in 2 anomalies. The
hybridization of ROS + RUS has not obtained the best value for any anomaly.

Finally, results obtained when applying a 50% MV ratio (see last section
Table II.10) are discussed. No results are available for the A6 anomaly because
when pre-processing it with that threshold of MV, many instances are eliminated.
It causes that none from the anomaly class is kept and hence all the ones

53

II. Improving the Detection of Robot Anomalies by Handling Data Irregularities

Table II.10: Obtained AUC values per anomaly and data-balancing method.
All-trial experiments with 0%, 10%, 25%, and 50% MV ratio.

None ROS SMOTE RUS ROS + SMOTE
+

RUS RUS

0%

A1 0.5255 0.5747 0.5841 0.5639 0.5798 0.5574
A2 0.8855 0.9805 0.9797 0.9785 0.9821 0.9798
A3 0.7268 0.7842 0.7765 0.7919 0.7700 0.7786
A4 0.5067 0.5704 0.5667 0.5603 0.5722 0.5697
A5 0.4993 0.6945 0.7053 0.6994 0.6968 0.6857
A6 0.5041 0.5354 0.5149 0.5144 0.5202 0.5263
A7 0.5946 0.6770 0.6837 0.6871 0.6842 0.6709
A8 0.4879 0.5225 0.5424 0.5479 0.5319 0.5358
A9 0.6557 0.9059 0.9110 0.9098 0.9054 0.9097

10
%

A1 0.5155 0.5531 0.5368 0.5480 0.5415 0.5225
A2 0.8855 0.9822 0.9797 0.9788 0.9810 0.9814
A3 0.7268 0.7774 0.7765 0.7947 0.7852 0.7719
A4 0.5067 0.5775 0.5667 0.5636 0.5683 0.5740
A5 0.4993 0.6945 0.7053 0.7050 0.6927 0.7013
A6 0.5067 0.5158 0.5226 0.5183 0.5260 0.5243
A7 0.5701 0.6806 0.6712 0.6803 0.6751 0.6796
A8 0.4884 0.5196 0.5344 0.5334 0.5329 0.5315
A9 0.6557 0.9059 0.9110 0.9210 0.9104 0.9086

25
%

A1 0.5423 0.5309 0.5289 0.5322 0.5118 0.5524
A2 0.8719 0.9717 0.9702 0.9745 0.9702 0.9709
A3 0.7056 0.7726 0.7711 0.7928 0.7835 0.7646
A4 0.4874 0.5765 0.5701 0.5700 0.5693 0.5744
A5 0.5082 0.6917 0.7079 0.6993 0.6891 0.6924
A6 0.5063 0.7891 0.8010 0.7213 0.7704 0.7866
A7 0.4962 0.6776 0.6744 0.6837 0.6823 0.6811
A8 0.4726 0.5257 0.5386 0.5825 0.5438 0.5344
A9 0.6557 0.9059 0.9051 0.9210 0.9104 0.9086

50
%

A1 0.5379 0.5670 0.5699 0.5646 0.5479 0.5516
A2 0.8719 0.9717 0.9702 0.9745 0.9702 0.9709
A3 0.7056 0.7726 0.7711 0.7928 0.7835 0.7646
A4 0.4874 0.5765 0.5701 0.5700 0.5693 0.5744
A5 0.5082 0.6917 0.7079 0.6993 0.6891 0.6924
A6 - - - - - -
A7 0.4967 0.9090 0.9178 0.7015 0.8458 0.8859
A8 0.4784 0.6417 0.6472 0.6671 0.6439 0.6453
A9 0.6557 0.9083 0.9095 0.9161 0.9159 0.9085

remaining in the dataset belong are from the normal class. For the other
anomalies, it can be pointed out that, as it happened for the 25% MV ratio,
RUS outperforms the other methods, being the best one 4 times. SMOTE has

54

Experiments and Results

obtained the best results 3 times and the hybrid methods have not obtained the
highest AUC value for any anomaly.

Table II.11: p-values obtained by the non-parametric Wilcoxon Signed-Ranked
Test pairwaise on the all-trials experiments per balancing method for the AUC
values.

None ROS SMOTE RUS ROS +
RUS

SMOTE
+ RUS

None - ≥ 0.2 ≥ 0.2 ≥ 0.2 ≥ 0.2 ≥ 0.2
ROS 0.0039 - ≥ 0.2 ≥ 0.2 ≥ 0.2 ≥ 0.2

SMOTE 0.0039 0.1641 - ≥ 0.2 ≥ 0.2 ≥ 0.2
RUS 0.0039 ≥ 0.2 ≥ 0.2 - ≥ 0.2 ≥ 0.2

ROS + RUS 0.0039 ≥ 0.2 ≥ 0.2 ≥ 0.2 - ≥ 0.2
SMOTE + RUS ≥ 0.2 ≥ 0.2 ≥ 0.2 ≥ 0.2 ≥ 0.2 -

Table II.12: p-values obtained by the non-parametric Wilcoxon Signed-Ranked
Test pairwaise on the all-trials experiments per MV ratio for the AUC values.

0% 10% 25% 50%

0% - ≥ 0.2 ≥ 0.2 ≥ 0.2
10% ≥ 0.2 - ≥ 0.2 ≥ 0.2
25% ≥ 0.2 ≥ 0.2 - ≥ 0.2
50% ≥ 0.2 ≥ 0.2 ≥ 0.2 -

Obtained p-values when applying the Wilcoxon Signed-Ranked Test are
calculated per balancing method (Table II.11) and MV ratio (Table II.12). In
the case of the balancing methods, the null hypothesis is rejected in all cases for
None. Thus, we can conclude that all classifiers obtain a better rank than None.
On the other hand, when comparing all the balancing methods, none of them
can be designated as the best one for all the datasets in present study as there
are not statistical differences.

When analyzing the results per MV ratio, in none of the cases the null
hypothesis is rejected, either because of the R or p-value scores. As a result,
it can be said that there are no significant statistical differences between the
different MV ratios.

As in the case of the one-trial experiments, a bar plot has been generated
showing the obtained AUC values for each anomaly, balancing method and
MV ratio. In order to also contribute to easily interpret the obtained AUC
results, several boxplots have been generated. They are presented, summarizing
information according to different criteria: balancing method and MV ratio
(Figure II.4), data sources (Figure II.5 a), b), and c)), and anomalies (Figure II.5
d)).

55

II. Improving the Detection of Robot Anomalies by Handling Data Irregularities

Figure II.4: Boxplot of the obtained AUC values in the all-trials experiments: a)
per balancing method and b) per MV ratio.

From all these results and figures, it can be seen that the variance of AUC
values is pretty similar for the results obtained with all the balancing methods.
On the other hand, the median values are similar as well; those obtained by
SMOTE and RUS are the two highest ones. Paradoxically, it is the combination
of these two the one that has obtained the lowest variance.

In Figure II.4 it can be seen the effect of modifying the MV ratio. The
median value is higher with a 50% Missing Values ratio. On this same boxplot
it is seen as the third and the first quartile are considerably higher than on the
rest, especially in the case of the third quartile. The general trend is that at
a higher percentage of Missing Values in the data set both the first, the third
quartile and the median increase. However, in the case of 10% of Missing Values
the third quartile and the median reach values similar to 0% and on the other
hand the first quartile gets a slightly smaller value.

A continuity in the values obtained in the different data sources is observed
in Figure II.5, where the most different one from the other two is Counters. In
the case of this data source, the variance is higher for the majority of anomalies.
Additionally, the case of A6 anomaly is worth mentioning as the variance is
drastically reduced for the Counters when compared to the other two data
sources (Features and Features + Counters). After a thorough analysis, it has
been identified the results causing this phenomenon, that have been obtained
with the 25% MV ratio (note that no results are available for this anomaly when
applying the 50% MV ratio). It can be seen in the Table II.5 that there is a big
difference in the number of features between the 10% and 25% MV ratios in the
case of the A6 anomaly for the Features and Features + Counters data sources.

Results are also discussed per anomaly, summarizing all the figures for the
different MV ratios and balancing methods (boxplot d) in Figure II.5). Very
concentrated AUC values (comprising few “abnormal” ones) have been obtained

56

Experiments and Results

Figure II.5: Boxplot of the obtained AUC values per anomaly in the all-trials
experiments in each data source. a) Features, b) Counters, c) Features +
Counters, and d) All data sources.

for the A2, A3, A4, A5, A7, and A9 anomalies. Results associated to the A1
and A8 anomalies have a greater variance and lower median. The A6 anomaly
is the one with the lowest median, very distant from the third quartile and close
to the first quartile. This is mainly due to those results that has been previously
highlighted from the last section of Table II.10: with a 50% MV ratio, no result
can be obtained given the absence of instances of the anomalous class.

When analyzing results obtained from the different data sources, the following
ideas can be observed:

• Features: the most prominent algorithm is RUS (best one for 4 of the

57

II. Improving the Detection of Robot Anomalies by Handling Data Irregularities

anomalies) followed by ROS and SMOTE (for 2 anomalies), whereas
SMOTE + RUS ha attained the best results for 1 anomaly. With regard to
the MV ratio, it should be noted that the same results for the A2 and A3
anomalies have been obtained with 50% and 25% values as the size of the
dataset persists (see Table II.5). The 50% MV ratio is the one associated
to most best results (5 out of 9 anomalies).

• Counters: the method of balancing with best results has been ROS (for
4 anomalies), followed by RUS (for 3 anomalies) and SMOTE (for 2
anomalies). There were 3 anomalies attaining the same best results with 2
different MV ratios: A3 with 0% and 10%, A5 with 25% and 50%, and A9
with 10% and 25%. As previously mentioned in the case of Features, the
datasets are the same in all cases. What is different in this case is that the
0% MV ratio is associated to best results for 6 of the anomalies.

• Features + Counters: when combining the two data sources, the methods
obtaining best results are RUS and SMOTE (for 4 anomalies each) while
the combination of them (SMOTE + RUS) is the best one for an anomaly.
In this case, a MV ratio is not clearly the best one for any anomaly: 50%
for 3 anomalies, 25% for 2 anomalies, 10% for 3 anomalies, and 0% for 1
anomaly.

To sum up, a brief summary of the individual results is presented: the
SMOTE algorithm has outperformed all the other ones for 4 anomalies, RUS for
2 and ROS for 2 as well. It is worth highlighting the fact that none of the hybrid
balancing techniques have achieved the best AUC result for any anomaly. When
taking into account the MV ratio, the 0% value is associated to the best results
in 1 occasion, 10% and 25% in 3 occasions and 50% in 2 occasions. Finally, each
one of the data sources is associated to the best results for 3 of the anomalies.
On the other hand, the worst results (from those presented in previous tables)
have always been associated to the A8 anomaly, being the lowest one that with
a 0.5 MV ratio and Features + Counters as data sources.

II.5 Conclusions and Future Work

In present paper, different alternatives for data preprocessing (management
of MV and class-balancing methods) have been validated for the detection of
anomalies in a component-based robotic system. Obtained results when training
and testing the same learning model (SVM) are presented and compared in
section II.4 to validate the effect of pre-processing. All these figures have been
obtained on a real-life and brand new dataset.

From the one-trial experiments it can be concluded that, as expected, the
more balanced datasets are, the higher AUC values are obtained for the great
majority of anomalies. However, in a real-life setting, anomalies are not frequent
and unbalanced datasets are usual. Thus, experiments on more unbalanced
and hence more real datasets have been also conducted. When analyzing the
balancing methods by means of the statistical test, ROS and RUS, together

58

References

with its combination are the ones that outperforms the no-balancing alternative.
However, none of them can be clearly identified as the best one.

From the all-trials experiments when considering the balancing method, it
must be highlighted the results obtained with SMOTE (grey box in Figure II.4.a),
which has stood out from the rest of methods. When individually analyzing the
results (Table II.10), RUS is the balancing technique obtaining the highest AUC
rates in most occasions (40%). Complementary, from the point of view of the the
MV ratio, it can be concluded that the least restrictive value (a 50% ratio) means
better AUC values in general terms (box in the right side of Figure II.4.b). As
previously mentioned in section II.4.2 when discussing the results in Table II.4,
the best results for the anomalies with a lower percentage of anomalous data
(except the case of the A9) have been obtained with a high MV ratio (25% or
50%). For the other anomalies, best results have been obtained with the lowest
ratios (0% and 10%).

As far as data sources are concerned, generally the best values are obtained
with the combination of both (Features + Counters), whereas the highest median
of values is the one associated to Counters. Results with Features greatly vary,
depending on the MV ratio, while those with Counters are more constant.

All in all, it can be concluded that the proposed data-preprocessing techniques
greatly contribute to increase the detection rate of anomalies, outperforming
previous work [27]. However, the balancing method, MV ratio and data source
must be carefully selected in each case as there is not a combination of them
that outperforms the other ones in all cases, according to statistical tests.

Further work will be focused on covering all the anomalies and therefore
analyzing those affecting more than one component. Additionally, due to the
high number of features (columns) in the dataset, the application of feature
selection techniques will also be explored. An alternative way of dealing with MV
such as data imputation will also be considered, as well as benchmarking with
additional learning models. The effect of the different strategies for handling
data irregularities will also be considered for other supervised learning models in
addition to SVM. Finally, some other alternatives for handling data imbalance
(such as class weighting) will also be studied.

References

[1] Shrouf, F., Ordieres, J., and Miragliotta, G. “Smart factories in Industry
4.0: A review of the concept and of energy management approached
in production based on the Internet of Things paradigm”. In: 2014
IEEE International Conference on Industrial Engineering and Engineering
Management. Dec. 2014, pp. 697–701.

[2] Muhuri, P. K., Shukla, A. K., and Abraham, A. “Industry 4.0: A
bibliometric analysis and detailed overview”. In: Engineering Applications
of Artificial Intelligence vol. 78 (2019), pp. 218–235.

[3] Aiman Kamarul Bahrin, M. et al. “Industry 4.0: A review on industrial
automation and robotic”. In: Jurnal Teknologi vol. 78 (June 2016), pp. 137–
143.

59

II. Improving the Detection of Robot Anomalies by Handling Data Irregularities

[4] IFR. Summary - OUTLOOK on World Robotics Report 2019 by IFR. en.
[5] Khalastchi, E. and Kalech, M. “On Fault Detection and Diagnosis in

Robotic Systems”. In: ACM Comput. Surv. vol. 51, no. 1 (Jan. 2018),
pp. 1–24.

[6] Basurto, N. and Herrero, Á. “Data Selection to Improve Anomaly Detection
in a Component-Based Robot”. In: 14th International Conference on Soft
Computing Models in Industrial and Environmental Applications (SOCO
2019). Ed. by Martínez Álvarez, F. et al. Cham: Springer International
Publishing, 2020, pp. 241–250.

[7] Wienke, J., Meyer zu Borgsen, S., and Wrede, S. “A Data Set for Fault
Detection Research on Component-Based Robotic Systems”. In: Towards
Autonomous Robotic Systems. Ed. by Alboul, L., Damian, D., and Aitken,
J. M. Vol. 9716. Cham: Springer International Publishing, 2016, pp. 339–
350.

[8] Xu, X., Liu, H., and Yao, M. “Recent Progress of Anomaly Detection”. In:
Complexity vol. 2019 (2019).

[9] Ranshous, S. et al. “Anomaly detection in dynamic networks: a survey”.
In: Wiley Interdisciplinary Reviews: Computational Statistics vol. 7, no. 3
(2015), pp. 223–247.

[10] Jove, E. et al. “A fault detection system based on unsupervised techniques
for industrial control loops”. In: Expert Systems vol. 0, no. 0 (2019), e12395.

[11] Herrero, Á. and Jiménez, A. “Improving the Management of Industrial and
Environmental Enterprises by means of Soft Computing”. In: Cybernetics
and Systems vol. 50, no. 1 (2019), pp. 1–2.

[12] Malhotra, R. “A systematic review of machine learning techniques for
software fault prediction”. In: Applied Soft Computing vol. 27 (2015),
pp. 504–518.

[13] Banerjee, T. P. and Das, S. “Multi-sensor data fusion using support vector
machine for motor fault detection”. In: Information Sciences vol. 217
(2012), pp. 96–107.

[14] Zidi, S., Moulahi, T., and Alaya, B. “Fault Detection in Wireless Sensor
Networks Through SVM Classifier”. In: IEEE Sensors Journal vol. 18,
no. 1 (Jan. 2018), pp. 340–347.

[15] Das, S., Datta, S., and Chaudhuri, B. B. “Handling data irregularities
in classification: Foundations, trends, and future challenges”. In: Pattern
Recognition vol. 81 (2018), pp. 674–693.

[16] García-Laencina, P. J., Sancho-Gómez, J.-L., and Figueiras-Vidal, A. R.
“Pattern classification with missing data: a review”. In: Neural Computing
and Applications vol. 19, no. 2 (Mar. 2010), pp. 263–282.

[17] López, V. et al. “An insight into classification with imbalanced data:
Empirical results and current trends on using data intrinsic characteristics”.
In: Information Sciences vol. 250 (2013), pp. 113–141.

60

References

[18] Twala, B. “Robot execution failure prediction using incomplete data”.
In: 2009 IEEE International Conference on Robotics and Biomimetics
(ROBIO). Dec. 2009, pp. 1518–1523.

[19] Fernández, A. et al. “Data Level Preprocessing Methods”. In: Learning
from Imbalanced Data Sets. Cham: Springer International Publishing, 2018.
Chap. 5, pp. 79–221.

[20] He, H. and Garcia, E. A. “Learning from Imbalanced Data”. In: IEEE
Transactions on Knowledge and Data Engineering vol. 21, no. 9 (Sept.
2009), pp. 1263–1284.

[21] Cerqueira, V. et al. “Combining Boosted Trees with Metafeature Engineer-
ing for Predictive Maintenance”. In: Advances in Intelligent Data Analysis
XV. Ed. by Boström, H. et al. Cham: Springer International Publishing,
2016, pp. 393–397.

[22] Syafrudin, M. et al. “An Affordable Fast Early Warning System for Edge
Computing in Assembly Line”. In: Applied Sciences vol. 9, no. 1 (2018),
pp. 84–102.

[23] Bergmeir, P. et al. “Classifying component failures of a hybrid electric
vehicle fleet based on load spectrum data”. In: Neural Computing and
Applications vol. 27, no. 8 (Nov. 2016), pp. 2289–2304.

[24] Luo, M. et al. “Using Imbalanced Triangle Synthetic Data for Machine
Learning Anomaly Detection”. In: Computers, Materials & Continua
vol. 58, no. 1 (2019), pp. 15–26.

[25] Devi, D., Biswas, S. K., and Purkayastha, B. “Learning in presence of class
imbalance and class overlapping by using one-class SVM and undersampling
technique”. In: Connection Science vol. 31, no. 2 (2019), pp. 105–142.

[26] Wienke, J. and Wrede, S. A Fault Detection Data Set for Performance
Bugs in Component-Based Robotic Systems.

[27] Wienke, J. and Wrede, S. “Autonomous fault detection for performance
bugs in component-based robotic systems”. In: Intelligent Robots and
Systems (IROS), 2016 IEEE/RSJ International Conference on. IEEE.
2016, pp. 3291–3297.

[28] Wienke, J. “Framework-level resouce awareness in robotics and intelligent
systems”. PhD dissertation. Bielefeld University, 2018.

[29] Cortes, C. and Vapnik, V. “Support-vector networks”. In: Machine learning
vol. 20, no. 3 (1995), pp. 273–297.

[30] Boser, B. E., Guyon, I. M., and Vapnik, V. N. “A Training Algorithm for
Optimal Margin Classifiers”. In: Proceedings of the Fifth Annual Workshop
on Computational Learning Theory. COLT ’92. Pittsburgh, Pennsylvania,
USA: ACM, 1992, pp. 144–152.

[31] Chawla, N. V. et al. “SMOTE: synthetic minority over-sampling technique”.
In: Journal of artificial intelligence research vol. 16 (2002), pp. 321–357.

61

II. Improving the Detection of Robot Anomalies by Handling Data Irregularities

[32] Jin Huang and Ling, C. X. “Using AUC and accuracy in evaluating learning
algorithms”. In: IEEE Transactions on Knowledge and Data Engineering
vol. 17, no. 3 (Mar. 2005), pp. 299–310.

[33] Mullick, S. S. et al. “Appropriateness of performance indices for imbalanced
data classification: An analysis”. In: Pattern Recognition vol. 102 (June
2020), p. 107197.

[34] Wienke, J. and Wrede, S. “A middleware for collaborative research in
experimental robotics”. In: 2011 IEEE/SICE International Symposium on
System Integration (SII). Dec. 2011, pp. 1183–1190.

[35] Gehan, E. A. “A generalized Wilcoxon test for comparing arbitrarily singly-
censored samples*”. In: Biometrika vol. 52, no. 1-2 (June 1965), pp. 203–
224.

[36] Santafe, G., Inza, I., and Lozano, J. A. “Dealing with the evaluation
of supervised classification algorithms”. In: Artificial Intelligence Review
vol. 44 (June 1965), pp. 467–508.

62

Paper III

Imputation of Missing Values
Affecting the Software
Performance of Component-based
Robots

Nuño Basurto, Ángel Arroyo, Carlos Cambra, Álvaro Herrero

Published in Computers & Electrical Engineering, October 2020, volume 87.
DOI: 10.1016/j.compeleceng.2020.106766.

III

Abstract

Intelligent robots are foreseen as a technology that would be soon present
in most public and private environments. In order to increase the trust of
humans, robotic systems must be reliable while both response and down
times are minimized. In keeping with this idea, present paper proposes
the application of machine learning (regression models more precisely) to
preprocess data in order to improve the detection of failures. Such failures
deeply affect the performance of the software components embedded in
human-interacting robots. To address one of the most common problems
of real-life datasets (missing values), some traditional (such as linear
regression) as well as innovative (decision tree and neural network) models
are applied. The aim is to impute missing values with minimum error
in order to improve the quality of data and consequently maximize the
failure-detection rate. Experiments are run on a public and up-to-date
dataset and the obtained results support the viability of the proposed
models.

III.1 Introduction

Wide attention has been devoted to the development of intelligent robots in
recent years. Although significant contributions have been done, it still is a
challenging field where further progress is required to satisfy present and future
demands. One of such demands is the fluent interaction with non-expert humans,
that is required for robotic systems to be widely integrated in a variety of homes
and workplaces [1]. In order to get such fluency, performance of both hardware
and software is a keystone. However, the ever-increasing complexity of robots
leads to a parallel increase in chances of experiencing a failure. Accurate and

63

https://doi.org/10.1016/j.compeleceng.2020.106766

III. Imputation of Missing Values Affecting the Software Performance of
Component-based Robots

prompt detection of such events is required in order to improve performance and
hence fluency. Full attention has been payed to advance in many subfields of the
robotics arena but according to some authors [2], further effort must be devoted
to anomaly detection in such systems. It is even more challenging when failures
happen in a real-world context where complex phenomenon may interfere.

Accordingly, present paper focuses on the preprocessing of robot-performance
data, whose importance is widely acknowledged. More precisely, the aim is the
successful imputation of Missing Values (MV) in order to get as much data
as possible for subsequent anomaly/failure detection. Thus, a wide variety of
Artificial Intelligence (AI) models are applied in order to predict the MV of all
the dataset components.

The successful detection of anomalies/faults is a challenging task that does
not only apply to robots [3] [4] [5]. From a business perspective [6], AI in general,
and Machine Learning (ML) in particular, can greatly contribute to anomaly
detection and some other interesting tasks, maximizing companies benefits.

Since pioneer works [7] in the application of ML to robotics, unsupervised [8],
supervised, and reinforcement [9] learning models have been previously applied.
A variety of problems have been addressed so far such as control [10] [11] and
communications [12] among others. In the case of anomaly detection, most ML
previous work has been focused on the detection of hardware anomalies [13],
while software anomalies have been scarcely investigated. Software failures often
occur in robotic systems and their automatic detection requires training data.
The problem comes from the difficulty of obtaining the data either because of
the lack of execution traces or because the existing registers do not refer to the
exact moment in which anomalies are produced. That is why it is difficult to
find a dataset generated in a controlled environment where all the information is
available. Furthermore, when data are gathered in a real-life environment, quite
likely there will be some or many MV, that can not be processed by ML models.

One of the few works on the detection of software anomalies within the
framework of component-based robots is [14]. In that paper, authors proposed
the only publicly-available dataset (further details in section III.3) that gathers
data from different performance indicators of a robot. The dataset [15] has been
used in present paper as a benchmark dataset due to its interest and novelty.
In this dataset, there are many MV associated to different data so a robust
strategy must be followed in order to deal with them as most ML models can
not process such data. One of the obvious preprocessing alternatives in order to
solve such problem in the data is removing MV, either by deleting data instances
or by deleting attributes. However, a more advanced proposal is to impute
such values, keeping some information that could be useful for the subsequent
anomaly detection. This approach is adopted in the present paper.

AI methods have been previously applied for imputation of MV [16]. However,
scant attention has been devoted to the application of ML methods in order to
solve such problem in robot datasets. One of the very few previous proposals
is [17], where a probabilistic approach for classification using incomplete data
was applied. The author performed a classification (for failure detection) of data
samples by calculating the a priori probability of MV, determined from the data
samples that are not missing. However, the author proposal was only applied to

64

Imputation Methods

outdated (1999) datasets containing hardware anomalies. Differentiating from
previous work, the present paper is the first approach to impute MV in a dataset
containing information about the performance of the software components of a
robot. A comprehensive benchmark comprising a wide variety of methods has
been performed and some of the methods are applied to this problem for the
first time.

The methods applied for imputation of MV are introduced in section 2, while
the analysed case study is described in section 3. The performed experiments,
together with their associated results are compiled in section 4. Finally, the
main conclusions and some proposals for further work are presented in section 5.

III.2 Imputation Methods

As previously stated, ML methods are applied in present study for imputation of
MV. More precisely, experiments have been run with four regression techniques
and two Artificial Neural Network (ANN) models with different training
algorithms. The applied techniques are described in the following subsections.

III.2.1 Regression Techniques

Regression tries to model the relationship between two variables in the dataset by
fitting a linear equation to the input data. One of the variables is the predictor
variable and the other one is considered to be the criterion variable [18]. The
general purpose of multiple regressions is to learn more about the relationship
between several independent or predictor variables and a dependent or criterion
variable. Such relationships can be linear or non-linear, leading to the two
techniques that are described below.

III.2.1.1 Linear Regression

Linear Regression (LR) attempts to model the relationship between two or more
explanatory variables and a response variable by fitting a linear equation to the
dataset [19]. Every value of the predictor variable (x) is associated with a value
of the criterion variable (y). The regression line for p explanatory variables (x1,
x2, ..., xn) is defined as follows:

Uy = β0 + β1x1 + β2x2 + ...+ βnxn (III.1)

This line describes how the mean response Uy changes with the explanatory
variables. The observed values for Y vary about their means Uy and are assumed
to have the same standard deviation σ. The fitted values b0, b1, ..., bn estimate
the parameters β0, β1, ...,βp of the population regression line. Since the observed
values for y vary about their means Uy, the multiple regression models include a
term for this variation. The model is expressed as DATA = FIT + RESIDUAL,
where the "FIT" term represents the expression β0+β1x1+β2x2+ ... +βnxn. The
"RESIDUAL" term represents the deviations of the observed values (y) from
their means Uy, which are normally distributed with mean 0 and variance σ.

65

III. Imputation of Missing Values Affecting the Software Performance of
Component-based Robots

The notation for the model deviations is ε. The model for linear regression, given
n rows, is [19]:

Yi = β0 + β1xi1 + β2xi2 + ...+ βnxin + εi for i=1, 2, ..., n (III.2)

III.2.1.2 Non-Linear Regression

Non-Linear Regression (N-LR) is a form of regression in which observational data
are modeled by a function which is a non-linear combination of the input data
and depends on one or more criterion variables . The parameters can take the
form of an exponential, trigonometric, power, or any type of non-linear function.
To determine the non-linear parameter values, an iterative algorithm is used.
The model can be defined as:

y = f(X,β) + ε (III.3)

Where B represents the non-linear parameter estimates to be computed, X
is the dependent variables and ε represents the error terms.

III.2.1.3 Regression Trees

Regression Trees (RT) are usually shown growing upside down, with its root at
the top. An observation passes down the tree through a series of splits (nodes).
At them, a decision is made as to which direction (branch) to lead based on the
value of one of the criterion variables. When a terminal node (leaf) is reached, a
predicted response is given according to the end node. Trees are often built via
binary recursive partitioning. In RT, values at the terminal nodes are assigned
using the mean of cases in that node [20]. In present study, two variations of RT
are applied:

• Fine Tree (FT). It usually comprises a reduced set of leaf nodes to optimize
building time.

• The Boosting Ensemble (BE) algorithm iterative calls the regression-tree
algorithm to construct an ensemble of trees. This ensemble combines
results from many weak learners (least-squares boosting) with RT learners
into one high-quality ensemble model. The response is calculated according
to the Mean Squared Error (MSE) of the trained regression ensemble model
that takes into account the results of boosting a high number (100) of
trees.

III.2.2 Artificial Neural Networks

Artificial Neural Networks, also known as connectionist systems or adaptive
networks, are simplified models of natural neural systems. The following
definition, given by Hecht - Nielsen in 1988, formalizes the concept: "An ANN is a
parallel processing computer system distributed, consisting of a set of elementary
processing units equipped with a small local memory and interconnected in a

66

Imputation Methods

network through connections with associated weights. Each processing unit has
one or more input connections and a single output connection that links to many
collateral connections as desired. All processing associated with an elementary
unit is a local, i.e. depends only on the values that take input signals from the
unit and the internal state of the same”. Two different models, adjusted to such
definition, have been applied in the present study and are defined in the following
subsections.

III.2.2.1 Multilayer Perceptron

The Multilayer Perceptron (MLP) consists of a system of simple interconnected
neurons or nodes. They are connected by weights and output signals which are
a function of the sum of the inputs to the node modified by a simple activation
function. The architecture consists of several layers of neurons; the input layer
serves to pass the input vector to the network. The terms called as “input
vectors” and “output vectors” refer to the inputs and outputs of the MLP and
can be represented as single vectors. The MLP may own al least one or more
hidden layers and finally an output layer. MLP are fully connected, with each
node connected to every node in the next and previous layer. One of the critical
issues of such model is the training (update) of all the weights as the error can
be calculated in the output but weights in all layers must be updated. To solve
such problem, backpropagation was proposed and several different algorithms
implement it. Due to their known advantages, two of them have been applied in
present study:

• Levenberg-Marquardt (LM) [21]. It is derived from the Newton’s technique
that is designed for minimizing functions that are sums of squares of non-
linear functions.

• Bayesian Regularization (BR) [22]. It aims to improve the model’s
generalization capability, expanding the objective function with the addition
of the sum of squares of the network weights.

III.2.2.2 Radial-Basis-Function Networks

In a Radial-Basis-Function Network (RBFN), each neuron in the hidden layer
has its own centroid, and for each input vector x = (x1, x2, . . . , xn) , it computes
the distance between x and the centroid. As a result, the output of these neurons
is calculated as a non-linear function of this distance. Assuming that there
are r input nodes and m output nodes, the overall response function without
considering non-linearity in an output node has the following form:

M∑
i=1

Wi ∗K
(
x− zi
σi

)
=

M∑
i=1

Wi ∗ g
(
||x− zi||

σi

)
(III.4)

where x is an input vector, MεN is the number of units in the hidden layer,
Wi εRm is the vector of weights linking the ith hidden-layer unit to the output
nodes, K is a radially symmetric kernel function of a unit in the hidden layer,

67

III. Imputation of Missing Values Affecting the Software Performance of
Component-based Robots

Figure III.1: Robot system architecture comprising analyzed modules. Adapted
from [14].

zi and σi, are the centroid and smoothing factor of the kernel node, and g:
[0,∞) → R is the activation function, which characterizes the kernel shape.

III.3 Real-life Case Study

Present research focuses on the imputation of MV in order to optimize anomaly
detection in robot software. As previously stated, researchers at the University
of Bielefeld (Germany) developed the only publicly-available [15] dataset [14]
containing software anomalies. The analyzed robot has different components
from different manufacturers integrated in the GuiaBot platform, developed by
Mobile Robots. This robot was developed to participate in the RoboCup@Home
competition. RoboCup@Home aims to deploy technology to address future
robot-service in domestic contexts. The obtained score in such contest depends
on two main issues [23]: the degree of autonomy and the performance of the
robot. In the dataset under analysis, the robot faced several problems similar
to those addressed by a human waiter, such as the identification of customers,
serving drinks, and interacting with people and objects. The diverse nature of
such tasks requires the robot to have different components to be attached to the
main platform. Examples of such components are a mechanical arm, a sensor to
detect people from their legs, and a camera to recognize people.

The different software components of the robot communicate through the
Robotics Service Bus (RSB) middleware [24], using an event-based system and
whose information is stored in a tool that incorporates the middleware called
rsbag. The transferred information is encrypted as a notification. There is
a framework called BonSAI whose responsibility is the combination between
the sensors (that receive external information) and the actuators. For the
representation and control of the execution flows, a Finite State Machine (FSM)
is used. The general architecture of the robot is depicted in Figure III.1, where it
can be seen how the flow associated to the arm is different from that associated
to the detection of legs because the second one does not lead to a physical action
of the robot.

The two components analyzed in present research are the one for controlling

68

Real-life Case Study

the arm (ArmController) and that for the detection of legs (LegDetector). The
first one performs two actions: to control the movement of the arm in different
directions and to open and close the grip. The induced anomaly (ArmServerAlgo)
increases the amount of movements to carry out the target tasks and hence
penalizes the execution time. As a consequence, the robot performs a series of
unnecessary actions that have a negative effect on the performance counters.
On the other hand, the LegDetector component is responsible for recognizing
and detecting the legs of human beings in order to avoid colliding with them.
The associated anomaly (LegDetectorSkippable) causes the robot to perform
the scan of legs a greater number of times than needed. These components have
been selected because, in the preliminary experiments carried out by the authors
of the dataset [25], ArmController achieved the worst results while LegDetector
achieved the best results when trying to detect the anomalies. Hence, the
present study involves datasets that a priori have differences when performing
classification tasks for failure detection. As it can be seen in Figure III.1, these
components are of different nature since one involves a physical response in the
robot, while the other does not.

The whole dataset comprises data from several trials, being each one of them
an attempt of the robot to perform a target task. The authors who gathered the
data [14], detected that in some of these trials there were undetected anomalies,
that’s the reason why some of them are discarded. The analyzed data for each
one of the components come from the performance counters, measured every
second. Further details about the attributes comprised in the component datasets
can be found in Table III.1. This dataset is described in greater detail in [15].

Table III.1: Explanation of the dataset attributes.

Variables Description
vsize The current size of virtual memory used by a task.

open_fds The current number of file descriptors opened by a process.
rchar Number of bytes that a process has read since the beginning.

open_connections Number of network connections opened by a process.
stime Amount of time of the process in user mode.
wchar Number of bytes that a process has write since the beginning.
utime Amount of time of the process in kernel mode.

num_threads Number of threads that a process has in operation.
rss Current RSS of a process

received_bytes Number of bytes received by the interface.
sent_bytes Number of bytes sent by the interface.
write_bytes Number of bytes written by the device.

The induction of anomalies is not constant in the whole dataset, as anomalies
are induced at a varying rate in the different trials. Table III.2 shows the
distribution of anomaly occurrences for the analyzed components. There are 10
trials associated to the ArmController and 12 to the LegDetector components.

69

III. Imputation of Missing Values Affecting the Software Performance of
Component-based Robots

All of the trials have been fused in present study to generate 2 different datasets,
one per component.

Table III.2: Occurrences of each anomaly and distribution per trials.

Anomaly 1 time 2 times 3 times
ArmServerAlgo 28, 32, 36, 41, 45, 57, 65, 71 21 23

LegDetectorSkippable 19, 21, 24, 31, 36, 55, 57, 64, 66, 68, 70 71

There is a similar rate of MV in the two component datasets. In the
ArmController one there are 26025 (8.5%) data instances containing missing
values while there are 24163 (10.03%) in the case of the LegDetector.

III.4 Experiments and Results

The regression techniques described in Section III.2 have been applied to the
datasets (ArmController and LegDetector) detailed in Section III.3, in order
to evaluate their imputation capability on all the attributes of each dataset.
To get more significant results, they are validated by the well-known n-fold
Cross-Validation (CV) scheme. CV is a technique that splits the data, in order
to measure the performance (MSE in the present study) of each technique in
different subsets of data. The number (n) of data partitions has been set to 10
for all the experiments in the present study, as it is a standard value.

In order to do the regression on all the attributes of the 2 datasets, different
variations have been generated for each dataset, one per each attribute. As a
result, 11 variant datasets have been generated for the ArmController dataset
and 8 for the LegDetector. In each case, the attribute on which the regression is
applied is stated as the target column while the remaining ones are the predictor
variables.

In the case of the ANN models, the training process has been repeated 10
times for each training algorithm (LM and BR for the MLP). The main purpose
of this repetition is to reduce the effect of randomness and therefore obtaining
more representative results. A sigmoid activation function in the hidden layer
and a linear activation function in the output layer have been applied in the case
of the MLP. A radial-basis transfer function was applied in the case of RBFN.
Additionally, different parameters have been tested for some of the techniques.
However, for the sake of brevity, only the results obtained for the following
parameters are shown in Sections III.4.1 and III.4.2:

• FT: minimum leaf size (4).

• BE: minimum leaf size (8), and number of learners (30).

• RBFN: spread (40) and maximum number of neurons (10).

70

Experiments and Results

• MLP (both LM and BR): neurons in the hidden layer (10) and training
epochs (70).

The average MSE and execution time (for the 10 folds) have been calculated
for all the experiments and are shown in Tables III.3 to III.7. In the case of the
MLP, the mean and standard deviation for the 10 executions are shown. MSE is
calculated when trying to impute 25% of the data samples (considered as the
MV) for each one of the CV folds, while 75% of the data samples are used to
build/train the methods.

III.4.1 ArmController Component

Tables III.3 and III.4 show the results obtained for the ArmController component.
More precisely, Table III.3 shows the average MSE obtained by each one of the
regression techniques when predicting values for each one of the attributes in
the original dataset. After analyzing results in this table, it is worth mentioning
that figures significantly vary depending on the applied method and the target
attribute. The N-LR method gets the best results (minimum error) for 9 out of
the 11 components, while 3 other methods get the best result only in one case;
FT for the open_fds component, RBFN for the num_threads component, and
MLP with the BR training algorithm for the vsize component.

Table III.3: Average MSE value per method and dataset attribute on the
ArmController component.

LR N-LR FT BE RBFN MLP_LM MLP_BR
Mean Std Dev Mean Std Dev

vsize 1.67E-06 1.64E-06 1.42E-05 3.12E-04 1.67E-06 3.49E-09 9.25E-26 2.89E-09 0
open_fds 2.80E-23 2.76E-23 3.52E-24 2.43E-12 2.79E-23 7.97E-23 1.97E-39 1.28E-22 5.26E-39
rchar 5.35E-19 5.28E-19 4.83E-10 5.67E-10 5.35E-19 1.50E-15 0 8.54E-16 2.20E-32

open_connections 2.80E-23 1.74E-28 1.31E-14 2.21E-12 2.79E-23 2.31E-22 2.63E-39 2.43E-22 0
stime 1.26E-17 1.26E-17 2.65E-09 2.78E-09 1.26E-17 3.32E-14 0 3.89E-14 0
wchar 6.63E-19 6.52E-19 3.55E-10 4.19E-10 6.63E-19 8.67E-16 0 1.15E-15 4.69E-32
utime 2.17E-14 2.16E-14 4.28E-08 4.97E-08 2.17E-14 6.31E-12 2.82E-30 2.01E-11 2.26E-29

num_threads 5.59E-22 1.43E-22 5.03E-23 1.23E-11 5.59E-22 2.99E-21 7.36E-38 5.66E-21 0
rss 7.44E-11 2.48E-11 1.93E-06 5.82E-06 7.44E-11 6.73E-10 8.67E-27 9.39E-10 0

received_bytes 1.67E-17 1.57E-17 9.95E-10 2.10E-09 1.67E-17 5.19E-14 5.29E-31 1.04E-13 8.82E-32
sent_bytes 5.13E-18 4.83E-18 6.38E-10 1.22E-09 5.13E-18 3.02E-14 1.76E-31 1.61E-14 7.61E-31

The differences in the MSE values are quite big, being the FT (except for
the open_fds component) and BE methods the ones with the worst performance
in terms of MSE.

When considering the attribute which obtain a lower MSE, the open_fds
achieves the best results while the open_connectins is the second one. On the
other hand, the vsize is the attribute that obtain the higher error for all the
methods.

For the MLP neural model (2 training algorithms), the standard deviation
of the MSE is really low (zero in eight times). It means that obtain results are
robust and consistent for the 2 training algorithms (LM and BR).

Complementary to the above-shown errors, Table III.4 shows the average
execution times for each method and attribute.

71

III. Imputation of Missing Values Affecting the Software Performance of
Component-based Robots

Table III.4: Average execution time per method and dataset attribute on the
ArmController component.

LR N-LR FT BE RBFN MLP_LM MLP_BR
Mean Std Dev Mean Std Dev

vsize 8.13E-02 1.57E-01 1.44E-01 5.33E-01 2.00E-02 1.35E-01 1.20E-01 1.40E-01 1.17E-01
open_fds 3.08E-02 1.12E-01 2.08E-01 6.28E-01 3.34E-02 9.81E-02 2.57E-02 9.37E-02 1.30E-02
rchar 3.47E-02 1.75E-01 3.51E-01 1.03E+00 1.44E-02 9.68E-02 2.03E-02 9.60E-02 1.45E-02

open_connections 4.29E-02 1.74E-01 1.33E-01 5.48E-01 2.47E-02 1.04E-01 3.40E-02 9.90E-02 1.80E-02
stime 3.29E-02 1.45E-01 1.21E-01 5.57E-01 1.90E-02 9.76E-02 1.37E-02 1.06E-01 1.88E-02
wchar 3.33E-02 1.67E-01 1.66E-01 5.41E-01 3.88E-02 1.07E-01 2.20E-02 1.08E-01 2.42E-02
utime 3.65E-02 1.37E-01 1.34E-01 5.03E-01 1.32E-02 1.00E-01 1.23E-02 1.08E-01 1.91E-02

num_threads 3.43E-02 1.58E-01 9.89E-02 4.50E-01 1.45E-02 9.57E-02 1.23E-02 1.03E-01 1.52E-02
rss 3.41E-02 1.59E-01 1.87E-01 4.62E-01 1.29E-02 9.81E-02 1.63E-02 1.05E-01 1.17E-02

received_bytes 3.35E-02 1.39E-01 1.33E-01 5.36E-01 1.29E-02 9.78E-02 1.18E-02 1.11E-01 2.85E-02
sent_bytes 3.87E-02 1.49E-01 1.37E-01 5.83E-01 1.38E-02 1.06E-01 2.72E-02 9.61E-02 8.66E-03

Figure III.2: Boxplot of the MSE values (all imputation methods) on the
ArmController component per attribute. (1) vsize, (2) open_fds, (3) rchar, (4)
open_connections, (5) stime, (6) wchar, (7) utime, (8) num_threads, (9) rss,
(10) received_bytes, (11) sent_bytes

As far as execution times are concerned, it can be said that the results
slightly vary. The RBFN neuronal model manages to be the fastest method for
all the attributes. On the other hand, BE is the slowest method, as the highest
execution times are obtained by this method. Analyzing the table by attributes,
no big differences are appreciated in the time. However, the fastest results are
obtained for the rss and received_bytes attributes.

In order to ease a visual analysis of these obtained results, Figure III.2 and
Figure III.3 show the boxplots for the values that are summarized in Table III.3
and Table III.4 respectively. In Figure III.2, all the results obtained by all

72

Experiments and Results

Figure III.3: Boxplot of the execution time (all components) on the ArmCon-
troller component per method. (1) LR, (2) N-LR, (3) FT, (4) BE, (5) RBFN,
(6) MLP_LM, (7) MLP_BR

the applied imputation methods are included for each one of the components.
Similarly, in Figure III.3, all the results obtained on all the dataset components
are included for each one of the imputation methods.

It is worth highlighting from Figure III.2 the great variability in the results
when applying the different imputation methods to each one of the components.
This is specially visible for the components open_fds (2), open_connections
(4), and num_threads (8). For such components, the high error rates obtained
by the BE method for the component open_fds and those obtained by the FT
and BE methods for the other two components can be easily identified. The
remaining error rates obtained for these components are shown in a small box,
with no variance. Something similiar (to a certain extent) can be seen for the
vsize (1) component. For the other components, error rates are pretty similar,
slightly varying between the different methods.

As previously mentioned, it can be seen in Figure III.3 that there is a small
variability in the execution times. In the case of the N-LR and MLP_LM
methods, some outlier values can be observed, while the other values are very
similar. All in all, average values are quite centered in the (25th and 75th)
percentiles shown in the boxplot.

III.4.2 LegDetector Component

Similarly to what is shown above for the ArmController component (Subsec-
tion III.4.1), MSE and execution times are shown for the experiments run on
the LedgeDetector component. Therefore, Table III.5 and Table III.6 shows

73

III. Imputation of Missing Values Affecting the Software Performance of
Component-based Robots

the MSE and execution times respectively obtained in the experiments on the
LegDetector component.

Table III.5: Average MSE value per method and dataset attribute on the
LegDetector component.

LR N-LR FT BE RBFN MLP_LM MLP_BR
Mean Std Dev Mean Std Dev

write_bytes 1.07E-14 1.07E-14 8.42E-08 9.28E-08 1.07E-14 3.68E-11 0 2.8099E-11 4.06E-28
rchar 3.71E-12 3.71E-12 1.68E-06 1.73E-06 3.71E-12 6.87E-09 0 5.5068E-09 0
stime 1.83E-14 1.83E-14 1.02E-07 1.17E-07 1.82E-14 6.20E-11 9.03E-28 1.9076E-11 4.06E-28
wchar 9.66E-17 9.66E-17 1.70E-09 2.29E-09 8.74E-17 5.25E-14 1.76E-31 6.1249E-14 0
utime 1.11E-12 1.11E-12 4.12E-07 5.01E-07 1.08E-12 2.45E-09 4.62E-26 5.0123E-09 1.39E-25
rss 1.79E-05 1.79E-05 2.44E-03 3.48E-03 1.79E-05 1.31E-05 7.19E-08 1.2559E-05 4.68E-07

received_bytes 5.98E-14 5.98E-14 7.72E-08 1.25E-07 5.98E-14 5.83E-12 0 1.5439E-11 2.71E-28
sent_bytes 1.58E-14 1.57E-14 1.82E-08 2.71E-08 1.42E-14 8.29E-13 0 1.0276E-12 1.16E-29

Table III.5 shows quite different results from those observed in Table III.3 for
the ArmController component (Subsection III.4.1). In the case of the LegDetector
component, the model that returns the best results (in terms of the MSE) is the
RBFN neural model, for 7 out of 8 dataset attributes that have been imputed.
For 3 of these attributes, namely write_bytes, rchar, and received_bytes, the LR
and N-LR regression techniques have obtained similar error rates. The MLP with
the BR training algorithm has obtained the best result for the rss component,
while the FT and BE trees have performed poorly (similarly to what is shown in
TableIII.3). As for the previous component, the standard deviation for the two
MLP training algorithms (10 executions each) are really low; it amounts to zero
in 6 out of the 16 cases that are shown. Analyzing the MSE per components
(Table III.5), wchar is the one for which the lowest error rate has been obtained.
Secondly, similar MSE values have been obtained for the write_bytes, stime,
received_bytes and sent_bytes attributes. Oppositely, rss is by far the one with
the highest MSE value.

Table III.6: Average execution time per method and dataset attribute on the
LegDetector component.

LR N-LR FT BE RBFN MLP_LM MLP_BR
Mean Std Dev Mean Std Dev

write_bytes 7.15E-02 1.84E-01 5.36E-01 8.45E-01 1.43E-02 9.43E-02 1.36E-02 1.06E-01 2.43E-02
rchar 3.49E-02 9.30E-02 1.34E-01 9.68E-01 1.18E-02 9.53E-02 2.87E-02 9.93E-02 2.88E-02
stime 3.15E-02 1.33E-01 6.87E-01 7.49E-01 1.11E-02 5.52E-01 1.06E+00 8.84E-02 1.63E-02
wchar 2.98E-02 9.52E-02 5.22E-01 6.90E-01 1.09E-02 9.97E-02 3.29E-02 8.35E-02 9.87E-03
utime 2.91E-02 9.33E-02 7.95E-01 6.75E-01 1.66E-02 8.30E-02 1.08E-02 8.90E-02 1.14E-02
rss 3.09E-02 8.09E-02 7.40E-01 6.53E-01 1.08E-02 4.49E-01 7.53E-01 9.78E-01 6.57E-01

received_bytes 2.83E-02 8.23E-02 6.52E-01 6.04E-01 1.07E-02 8.18E-02 9.15E-03 8.69E-02 1.16E-02
sent_bytes 2.97E-02 8.49E-02 4.28E-01 6.14E-01 1.06E-02 7.98E-02 7.18E-03 8.77E-02 1.09E-02

As far as average execution times are concerned, the results shown in
Table III.6 are very similar to those shown in Table III.4, the RBFN model

74

Experiments and Results

outperforms the other methods, being the fastest one in the calculation of the
missing values for the 8 parameters that have been regressed. On the other hand,
those methods based on regression trees (FT and BE) are the ones with highest
execution times for all the components. Although more trees are generated in
the case of the BE, their execution times are higher that those of the FT only
for 5 of the attributes.

Additionally, it is noted that the execution times are somewhat smaller than
those shown in Table III.4 because the the number of predictors (attributes) for
this component (7) is smaller than those for the ArmController (10).

In order to ease a visual analysis of these obtained results, Figure III.4 and
Figure III.5 show the boxplots for the values that are summarized in Table III.5
and Table III.6 respectively.

Figure III.4: Boxplot of the MSE values (all imputation methods) on the
LegDetector component per attribute. (1) write_bytes, (2) rchar, (3) stime, (4)
wchar, (5) utime, (6) rss, (7) received_bytes, (8) sent_bytes

Figure III.4 shows more compact results than those associated to the
ArmController component (shown in Figure III.2). In the case of the LegDetector
component, there is no outliers in any of the attributes and all the error rates
for the 8 attributes are within the 25th and 75th percentiles. This is a fact that
deserves attention, as it means that the imputation methods perform in a regular
and smooth way for all the attributes.

On the other hand, when considering the boxplot of the execution time
(Figure III.5), it can be said that similar results are shown to those for the
ArmController component (shown in Figure III.3). Once again, in the case of
N-LR and the MLP with the BR training algorithm, an outlier is identified
outside the percentiles. For all the other methods it can be said that time results
are similar to those of the previous component (ArmController).

75

III. Imputation of Missing Values Affecting the Software Performance of
Component-based Robots

Figure III.5: Boxplot of the execution time (all components) on the LegDetector
component per method.(1) LR, (2) N-LR, (3) FT, (4) BE, (5) RBFN, (6)
MLP_LM, (7) MLP_BR

All in all, it can be said that for the two components that are analyzed in
present research, error rates vary according to the regression method that is
applied. As the aim of present work is to validate which one of these methods
outperforms the other ones in order to impute missing values, MSE and time
results (shown in Tables III.3 to III.6) are summarized in Table III.7.

Table III.7: Summary of the best-performing imputation method per component
attribute in terms of both error and execution time.

Dataset ArmController LegDetector
Attribute MSE Time MSE Time

vsize MLP_BR RBFN - -
open_fds FT RBFN - -

open_connections N-LR RBFN - -
num_threads N-LR RBFN - -

rchar N-LR RBFN LR, N-LR, RBFN RBFN
stime LR, N-LR, RBFN RBFN RBFN RBFN
wchar N-LR RBFN RBFN RBFN
utime N-LR RBFN RBFN RBFN
rss N-LR RBFN MLP_BR RBFN

received_bytes N-LR RBFN LR, N-LR, RBFN RBFN
sent_bytes N-LR RBFN RBFN RBFN
write_bytes - - LR, N-LR, RBFN RBFN

By means of Table III.7 it is possible to analyze at a glance the obtained results
that are presented in this section. In nutshell, the methods that have obtained

76

Conclusion

the best results in terms of MSE are RBFN and N-LR. N-LR outperforms the
other ones for most of the attributes in the ArmController component while the
same happens with RBFN in the case of the LegDetector component. For 4
attributes LR, N-LR and RBFN have obtained similar error rates, that are the
lowest ones. In addition to this general perspective, it can be seen that for some
of the attributes, MLR_BR and FT are the best performing methods. This
means that the selection of the regression method must be considered case by
case and several methods must be applied in order to impute missing values
with the minimum error. In terms of execution times, the RBFN model is the
fastest one in all cases.

III.5 Conclusion

In the present study the imputation methods detailed in Section III.2 have
been applied to the two datasets explained in Section III.3. These two datasets
correspond to the ArmController and LegDetector components of the robot.
After preparing the data and applying the CV scheme to obtain more reliable
results, a regression has been performed on the 11 and 8 attributes of the dataset.
From the obtained results (Section III.4) it can be concluded that:

• For the ArmController component (Section III.3), the N-LR method is
the one that obtains the best results in terms of MSE and the neuronal
model RBFN is the second best. The worst error rates are obtained by
the FT and BE techniques. The attributes with lowest error rates have
been open_fds and open_connections, so the imputation of missing values
on them can be reliably performed. As for execution times, the RBFN
method obtains the lowest times on all attributes.

• For the LegDetector component (Section III.5), the RBFN method is the
one that obtains the best results in terms of MSE for the 8 attributes. In
many cases, similar results are obtained by LR and N-LR. Additionally,
RBFN is the fastest method on all attributes.

• It can be observed that there is no single technique that is best in all cases.
Even on the same attribute in the 2 different datasets, the best results can
be obtained with different techniques.

Taking into account all the above mentioned, it can be concluded that imputation
of missing values can be successfully performed. One of the regression methods
that are compared can be selected to impute values of each one of the attributes
from the given components.

As a future line of work, imputation will be combined with some other data
preprocessing techniques (such as data balancing algorithms) to improve anomaly
detection.

77

III. Imputation of Missing Values Affecting the Software Performance of
Component-based Robots

References

[1] Hoffman, G. “Evaluating Fluency in Human–Robot Collaboration”. In:
IEEE Transactions on Human-Machine Systems vol. 49, no. 3 (June 2019),
pp. 209–218.

[2] Khalastchi, E. and Kalech, M. “On Fault Detection and Diagnosis in
Robotic Systems”. In: ACM Comput. Surv. vol. 51, no. 1 (Jan. 2018),
pp. 1–24.

[3] Xu, X., Liu, H., and Yao, M. “Recent Progress of Anomaly Detection”. In:
Complexity vol. 2019 (2019).

[4] Ranshous, S. et al. “Anomaly detection in dynamic networks: a survey”.
In: Wiley Interdisciplinary Reviews: Computational Statistics vol. 7, no. 3
(2015), pp. 223–247.

[5] Jove, E. et al. “A fault detection system based on unsupervised techniques
for industrial control loops”. In: Expert Systems vol. 0, no. 0 (2019), e12395.

[6] Herrero, Á. and Jiménez, A. “Improving the Management of Industrial and
Environmental Enterprises by means of Soft Computing”. In: Cybernetics
and Systems vol. 50, no. 1 (2019), pp. 1–2.

[7] Dorigo, M. and Schnepf, U. “Genetics-based machine learning and behavior-
based robotics: a new synthesis”. In: IEEE Transactions on Systems, Man,
and Cybernetics vol. 23, no. 1 (Jan. 1993), pp. 141–154.

[8] Jayaratne, M., de Silva, D., and Alahakoon, D. “Unsupervised Machine
Learning Based Scalable Fusion for Active Perception”. In: IEEE
Transactions on Automation Science and Engineering vol. 16, no. 4 (Oct.
2019), pp. 1653–1663.

[9] Kober, J., Bagnell, J. A., and Peters, J. “Reinforcement learning in robotics:
A survey”. In: The International Journal of Robotics Research vol. 32,
no. 11 (2013), pp. 1238–1274.

[10] Zhao, D., Ni, W., and Zhu, Q. “A framework of neural networks based
consensus control for multiple robotic manipulators”. In: Neurocomputing
vol. 140 (2014), pp. 8–18.

[11] Xiao, B. and Yin, S. “Exponential Tracking Control of Robotic Manipula-
tors With Uncertain Dynamics and Kinematics”. In: IEEE Transactions
on Industrial Informatics vol. 15, no. 2 (Feb. 2019), pp. 689–698.

[12] H. Alsamhi, s., Ma, O., and Ansari, M. S. “Survey on artificial intelligence
based techniques for emerging robotic communication”. In: Telecommuni-
cation Systems vol. 72, no. 3 (Nov. 2019), pp. 483–503.

[13] Lu, H. et al. “Motor Anomaly Detection for Unmanned Aerial Vehicles
Using Reinforcement Learning”. In: IEEE Internet of Things Journal vol. 5,
no. 4 (Aug. 2018), pp. 2315–2322.

78

References

[14] Wienke, J., Meyer zu Borgsen, S., and Wrede, S. “A Data Set for Fault
Detection Research on Component-Based Robotic Systems”. In: Towards
Autonomous Robotic Systems. Ed. by Alboul, L., Damian, D., and Aitken,
J. M. Vol. 9716. Cham: Springer International Publishing, 2016, pp. 339–
350.

[15] Wienke, J. and Wrede, S. A Fault Detection Data Set for Performance
Bugs in Component-Based Robotic Systems.

[16] Arroyo, A. et al. “Neural Models for Imputation of Missing Ozone Data in
Air-Quality Datasets”. In: Complexity vol. 2018 (Mar. 2018).

[17] Twala, B. “Robot execution failure prediction using incomplete data”.
In: 2009 IEEE International Conference on Robotics and Biomimetics
(ROBIO). Dec. 2009, pp. 1518–1523.

[18] Yale, U. of. Linear Regression. 2017.
[19] Yale, U. of. Multiple Linear Regression. 2017.
[20] Moisen, G. G. Classification and Regression Trees. 2018.
[21] Lv, C. et al. “Levenberg–Marquardt Backpropagation Training of Mul-

tilayer Neural Networks for State Estimation of a Safety-Critical Cyber-
Physical System”. In: IEEE Transactions on Industrial Informatics vol. 14,
no. 8 (Aug. 2018), pp. 3436–3446.

[22] Doan, C. D. and Liong, S.-y. “Generalization for multilayer neural network
bayesian regularization or early stopping”. In: Proceedings of Asia Pacific
Association of Hy drology and Water Resources 2nd Conference. 2004,
pp. 5–8.

[23] Jumel, F. “Advancing Research at the RoboCup@Home Competition
[Competitions]”. In: IEEE Robotics Automation Magazine vol. 26, no. 2
(June 2019), pp. 7–9.

[24] Wienke, J. and Wrede, S. “A middleware for collaborative research in
experimental robotics”. In: 2011 IEEE/SICE International Symposium on
System Integration (SII). Dec. 2011, pp. 1183–1190.

[25] Wienke, J. and Wrede, S. “Autonomous fault detection for performance
bugs in component-based robotic systems”. In: Intelligent Robots and
Systems (IROS), 2016 IEEE/RSJ International Conference on. IEEE.
2016, pp. 3291–3297.

79

Paper IV

A Hybrid Machine Learning
System to Impute and Classify a
Component-Based Robot

Nuño Basurto, Ángel Arroyo, Carlos Cambra, Álvaro Herrero

Accepted in IGPL, July 2021, volume In Press. DOI: Not available

IV

Abstract

In the field of cybernetic systems and more specifically in robotics, one
of the fundamental objectives is the detection of anomalies in order
to minimize loss of time. Following this idea, this paper proposes the
implementation of a Hybrid Intelligent System in four steps to impute the
missing values, by combining clustering and regression techniques, followed
by balancing and classification tasks. This system applies regressions
models to each one of the clusters built on the instances of data set.
Subsequently, a variety of balancing techniques are applied to improve the
classifier’s ability to discern whether it is in an error or a normal state.
These techniques support to obtain better classification ratios in which a
robot is close to error and allow us to bring the behavior back to a normal
state. The experimentation is performed using a modern and public data
set, which has been extracted from a component-based robotic system, in
which different anomalies are induced by software in their components.

IV.1 Introduction

In recent years, the production systems have been including more and more
robotic systems in production lines to automate processes and improve efficiency
in productivity terms. Robotics has been expanding in a variety of ways, such
as quality control, assembly or loading and unloading [1]. The robotic systems
cover different disciplines like cinematic, mechatronics, electronics, and Artificial
Intelligence (AI). Regarding the latter, the European Commission recently
reported that 42% of enterprises use at least one technology related to this
field 1. This percentage will increase in the coming years, showing a clear need
for companies to adopt these technologies, which are already consolidated in the

1European Commission. European enterprise survey on the use of technologies
based on artificial intelligence (July 2020). URL: https://ec.europa.eu/digital-single-
market/en/news/european-enterprise-survey-use-technologies-based-artificial-intelligence

81

IV. A Hybrid Machine Learning System to Impute and Classify a
Component-Based Robot

market. However, everything depends on adapting current systems and hiring
qualified personnel to carry out this work.

In the field of robotics, Machine Learning (ML) algorithms can be applied to
detect errors in executions, in order to reduce the impact of these errors and
return to normal production. To prevent them and reduce downtime, anomaly
detection [1] is required, although not enough efforts are devoted to it from the
scientific community so far [2].

The difficulty of processing real data that has been generated from sensors to
detect anomalies is a challenge due to the presence of Missing Values (MV) [3],
that must be overcame [4]. The need to impute values is enormous in order
to minimize the loss of information when working with a robotic data set [5].
The relevance of having a complete data set to work with in order to obtain
the best possible results is evident. In the case of not being able to impute
the MV, it would be necessary to work with a less complete data set in terms
of instances or attributes. In order to address this problem, a novel Hybrid
Artificial Intelligence System (HAIS) is proposed.

The paper is distributed as follows: the previous work is discussed in IV.2
while the novel HAIS is described in Section IV.3. The component-based robot
dataset is described in Section IV.4 and the experimental results are presented
in Section IV.5. Finally, Section IV.6 deals with the conclusions reached from
this research and future lines of work to be pursued.

IV.2 State of the art

To solve the MV problem, very different techniques have been applied up to
now [5]. These Imputation Methods (IM) are classified as single imputation,
where the method fills in one value for each missing one and multiple imputation
where multiple values are tried at the same time. In this work, single imputation
techniques have been applied to make the resulting imputation data set more
easily usable for classification purposes. To achieve the best possible MV
imputation a nonlinear regression technique together with an Artificial Neural
Network (ANN), more precisely the Radial Basis Function Network (RBFN)
taking advantage of their regression capability [6], are applied to fulfill the data
set.

Other approaches that have been adopted concerning the presence of MV
are carried out by Cerqueira et al. [7], who are committed to the elimination of
MV. Likewise, these authors deal with the use of balancing techniques such as
Synthetic Minority Oversampling Technique (SMOTE) to achieve a balanced
distribution between classes. Following this line of use of balancing techniques,
Syafrudin et al. [8] also relies on the use of SMOTE, in this case, the target
is to detect possible anomalies in an assembly line. The approach used is to
differentiate between two classes (one-class classification), one being normal and
the other abnormal. Another recent study that combines balancing techniques
with a one-class approach is the work related on Debarshhree et al. [9], where
the authors investigated the impact that unbalancing can have on a variety of
data sets. To test the effectiveness of the applied balancing techniques they

82

Hybrid Intelligent System

use a variety of classifiers such as Extreme Learning Machines, Naive Bayes, or
Support Vector Machines (SVM). It was possible to improve the trends of the
minority class for the majority class employing SVM.

In the case of the anomaly dataset that is analysed in the present paper [10],
scant attention has been devoted to it by the research community, mainly due
to its novelty. One of the very few papers addressing this topic is . [11]. The
auhtors (those of the benchmark dataset itself) developed an error detection
model, where they compare their own generated model by relying on a One-Class-
SVM classifier, they act on the total set of anomalies, (detailed in Section IV.4).
Their model obtained improved results in the vast majority of components,
but not in the one analyzed in the present study. In a sequel paper [12], the
authors discuss how to carry out individual performance tests on the different
components of a robotic system, analyzing possible changes in the different
revisions. Subsequently, Wienke et al. [13] further explored the idea of analyzing
resource utilization in the different components, proposing a model that performs
tests aimed at detecting regressions in resource utilization. The claims of this
new model is to reduce the complexity in the creation of performance tests.
Finally, Wienke published his thesis [14] in which he applied the methods seen
in his earlier papers and extended them by emphasizing his component-based
robotic data set and resource utilization improvement techniques.

The problem associated in this paper deals with the imputation of values
through the combined use of regression and clustering techniques. Failure
detection has already been discussed previously on this dataset [15]. However,
the previous work on this data proposed the elimination of MV [16] rather than
their imputation. The problem addressed in this paper have already been dealt
with in less depth [17], where the work focused only on cluster regression but
without performing classification tests on the data resulting from the imputation.
Likewise, the study was conducted only with the k-means clustering technique
and in present work it has been extended with additional techniques.

IV.3 Hybrid Intelligent System

The main goal of the hybrid system presented in this research is to establish a
new type of MV imputation through the data set clustering, where the columns
with MV have been previously extracted. Once the clusters have been obtained,
within each one the columns with MV added again, the regression is applied on
them to perform the imputation of the values later on. The Figure IV.1 shows
the steps of each of the stages of this hybrid System.

The hybrid ML solution proposed in the present work is divided into the
following four steps:

1. Clustering: three clustering techniques are applied to the data set to obtain
more homogeneous groups of data.

2. MV Imputation: two regression techniques are applied to each of the
clusters generated in the previous step to impute the MV, therefore all the
single attributes are valued.

83

IV. A Hybrid Machine Learning System to Impute and Classify a
Component-Based Robot

Figure IV.1: Hybrid system novel formulation.

3. Data Balancing: a series of balancing techniques are applied to already
imputed data set to achieve a greater balance between the minority or
anomalous class and the majority or normal class.

4. Classification: given the large number of sets obtained from the previous
steps developed, the well-known Support Vector Machine (SVM) [18]
classifier is used. For a clear interpretation of the results obtained by this
process, several metrics are used to compare the results.

For the selection of different techniques in each of the steps of the present
hybrid proposal, techniques previously applied to the data set have been used. For
the selection of clustering techniques based on [17], only k-means and clustering
techniques were used, although as detailed in the future work, the inclusion
of hierarchical and density-based methods could be interesting. Secondly, for
imputation techniques in [19] was concluded that, in general, the regression

84

Hybrid Intelligent System

techniques that worked best were those used in the present investigation. Finally,
for balancing techniques in the research carried out [16], all the techniques
presented here were used with the exception of Borderline-SMOTE (BLSMOTE),
whose adhesion is due to the fact that it is derived from SMOTE, a technique
that stood out from the rest and could be of interest.

IV.3.1 Clustering

IV.3.1.1 K-means.

Cluster analysis [20] organizes data by grouping data samples according to a
criterion distance. Two individuals in a valid group will be much more similar
than those in distinct groups. The k-means clustering algorithm [21] groups data
samples into a predefined number of groups. It requires two input parameters:
the number of clusters (k) and their initial centroids. Initially, each data sample
is assigned to the cluster with the closest centroid. Once the clusters are defined,
the centroids are recalculated and samples are reassigned. These steps are
repeated until there is no further change in the centroids. The quality criterion
to measure the grouping is the Sum of Squared Errors (SSE). The algorithm to
minimize it can be defined as follows:

SSE =
k∑
j=1

∑
xεGi

p(xi, cj)/n (IV.1)

where, k is the number of groups, p is the proximity function, cj is the centroid
of group j, and n is the number of samples. Different measures of distance have
been tested to obtain the best results, with the Euclidean distance being the
chosen one. In this distance, each centroid is the mean of the points in its cluster.
Is defined as:

d2
st = (xs − yt)(xs − yt)′ (IV.2)

where d is the distance from point x to centroid c. In the run experiments, the
Means++ algorithm has been used for the initialization of centroids.

IV.3.1.2 Hierarchical.

Hierarchical clustering algorithms are top-down or bottom-up implementations.
Bottom-up approaches treat each sample as a single cluster at the beginning,
and then successively merge pairs of clusters until it merges all clusters into a
single cluster containing all the samples. The bottom-up Hierarchical clustering,
also called Hierarchical Agglomerative Cluster (HAC), generates a cluster tree or
dendrogram by using heuristic techniques. A dendrogram [22] comprises many
U-shaped lines connecting data points in a Hierarchical tree. The height of
each U represents the distance between the two connected data points. The
most popular algorithms that use merging to create the cluster tree are called
agglomerative. There are many implementations of HAC [23]. Similar to
the IV.3.1.1 Section, the Euclidean distance (equation IV.2) is chosen.

85

IV. A Hybrid Machine Learning System to Impute and Classify a
Component-Based Robot

IV.3.1.3 Density-based Spatial Clustering of Applications with Noise
(DBSCAN).

This clustering algorithm is based on density, i.e. it analyzes regions whose
points have a higher density separated by others with a lower density [24]. In
DBSCAN, each point sets a radius around itself, counting the number of points
that fall within it. A minimum number of points that must be within this radius
is established to know if they are part of the same group as the initial point.
This algorithm does not follow centrality hypotheses as in the case of k-means,
but produces complex groups. There are three types of points:

• Core points: the points that are in the interior of a group near the center.

• Border points: those located at the edge of the radius.

• Noise points: those located neither one nor the other and are not part of
any group.

IV.3.2 Regression Techniques

In the proposed ML hybrid system, once data are clustered, two regression
techniques (statistic and ANN) are applied to the defined clusters to get more
accurate results.

Regression attempts to model the relationship between two or more variables
in the data set by fitting a linear equation to the input data. One or more of the
variables are the predictor ones, and the other variable is considered the criterion
variable [25]. The goal of multiple regressions [26] is to learn more about the
relationship between the independent or predictor variables and a dependent or
criterion variable(s). These relationships can be linear or non-linear.

IV.3.2.1 Non-Linear Regression.

Non-Linear Regression (N-LR) is a regression algorithm which models observa-
tional data by a function that is a non-linear combination of the input data and
depends on one or more criterion variables [27]. The parameters can take the
form of an exponential, trigonometric, power, or any type of non-linear function.
To determine the non-linear parameter values, an iterative algorithm is usually
used. The model is defined as:

y = f(X,β) + ε (IV.3)

Where β is a nonlinear parameter estimates to be computed, X is the
dependent variables and ε represents the error term.

IV.3.2.2 Radial Basis Function Network.

An ANN is a simplified model of natural neural systems. The neurons are
connected by weights and output signals which are the sum of the inputs to
the node modified by an activation function. Different ANN models have been

86

Hybrid Intelligent System

tested to achieve the best imputation values, the one with the best results has
been the Radial Basis Function Network (RBFN) which is defined as:

In the RBFN [28] each neuron in the hidden layer has its own n-dimensional
centroid, and for each input vector x = (x1, x2, . . . , xn) , it computes the distance
between x and the centroid of the network. A nonlinear Gaussian function
distance is used to calculate the output of the neurons.

The overall output function has the form [29]:

M∑
i=1

Wi ∗K
(
x− zi
σi

)
=

M∑
i=1

Wi ∗ g
(
||x− zi||

σi

)
(IV.4)

Where x is the input vector,Wi εRm are the weights connecting the ith
neuron in the hidden-layer to the output neurons, MεN is the number of hidden
neurons, K is a radially symmetric kernel function of a unit in the hidden layer, zi
is the centroid and σi is the smoothing factor of the kernel node, g: [0,∞) → R
is the activation function of the output neurons.

IV.3.3 Balancing Techniques

Balancing techniques are a highly utilized resource when dealing with unbalanced
data sets. When the classes of the data set are due to anomalous states, these data
sets are highly unbalanced. The study of the data set, detailed in Section IV.4,
shows that out of 21892 instances, only 1125 belong to the anomalous class, i.e.
5% of the total number of instances. There are mainly three types of approaches
used to carry out the balancing:

IV.3.3.1 Oversampling.

This strategy tries to achieve a similar number of instances of both classes
by increasing the number of instances of the minority class. In this case, it
generates new instances of the anomalous class to obtain a similarity between
the number of instances of both classes. The simplest technique used is Random
Over Sampling (ROS), which generates new instances by duplicating existing
instances of the minority class. Another method widely used in this field, which
is more advanced and has a higher complexity than ROS, is Synthetic Minority
Oversampling TEchnique (SMOTE) [30], which generates new artificial instances
from the existing ones. It achieves this by relying on the well-known k-Nearest
Neighbors (KNN) algorithm, performing an interpolation of a minority instance
with other neighboring instances. Finally, another technique used in this research
is the Borderline-SMOTE (BLSMOTE) [31]. As its name suggests, it is based
on the SMOTE method, in which an oversampling is performed only on those
instances that are on the borderline.

IV.3.3.2 Undersampling.

The balancing algorithms that follow this strategy work in a completely opposite
way to what was observed in the above mentioned methods. They try to reduce
the instances of the majority class in order to achieve a number of similar

87

IV. A Hybrid Machine Learning System to Impute and Classify a
Component-Based Robot

instances. In the case addressed here, they eliminate the instances of the normal
class. The algorithm used is Random Under Sampling (RUS), which selects
completely randomly the instances of the majority class to be eliminated.

IV.3.3.3 Hybrids.

Hybrid techniques are those which use both, undersampling and oversampling
algorithms at the same time. This reduces the impact of using only one of
them. One of the methods presented in this research is ROS + RUS, that
combines the two algorithms based on the random selection of instances above
mentioned. Another technique used is SMOTE + RUS, which generates new
synthetic instances of the minority class and randomly eliminates those of the
majority class.

IV.3.4 Classifiers and metrics

The One-class SVM [32] [33] is one of the best known classifiers in general terms
and specifically in the problems associated with one-class classification [34]. This
classifier aims at identifying a hyperplane that maximizes the separation of the
data instances sent to the algorithm from the training data set. In this way,
once new data instances are used, it will be able to discern which class each one
is, due to the universal archetype generated.

Working on unbalanced data sets, the well-known metric accuracy is not used
on it’s own, because it can lead to a high error in interpretation of its values,
for example, the model may have the ability to distinguish only the majority
class obtaining a good value, but on the other hand, the model does not have
the capacity to detect the minority class. In this research, the results are shown
with a wide variety of metrics, which are detailed below:

• Precision: shows the proportion of minority or anomalous class data that
have been successfully labeled out of the total data labeled as anomalous.

• Recall: also known as True Positive Rate (TPR), shows the proportion
of anomalous class well classified out of the real number of anomalous
instances.

• F-Score: it is a metric that seeks a harmonic mean between Precision and
Recall, given the difficulty in maximizing the values of both at the same
time.

• AUC: this is the Area Under the Curve resulting from the visual ROC
tool. It is used as an indicator of the model’s ability to distinguish between
classes.

• G-mean: it seeks to maximize the accuracy of both the minority and
majority classes, while looking for a balance between them.

88

Component-based Robot

IV.4 Component-based Robot

A data set of a component-based robotic system [10] is used for this
experimentation. Component-based means that the robot is made up of a
variety of components that may have been manufactured by different companies,
but thanks to middle-ware they are interconnected and they can work as a unified
system. The middle-ware used by this robotic system is RSB Middleware [35],
which is an event-based system. Within the middle-ware, a tool called rsbag is
located, which is in charge of gathering the information that circulates through
the middle-ware. This tool is key for the data extraction used in this paper.

The data set has been created by researchers at the University of Bielefeld
(Germany) and is available in the public domain [36]. The robot was developed
for its participation in the RoboCup@Home competition in 2015, where it had to
carry out different tasks similar to a waiter. Some of these tasks are greeting a
customer or serving a glass at the table. These actions are developed by relying
on different components, for example the action of leaving a glass on the table
uses a robotic arm with a gripper to pick up a glass.

Trying to detect possible errors in the robot’s behavior, the authors of this
data set decided to induce anomalies by software, implying that these affect the
system’s performance counters without penalizing the task from being carried
out. For example, in the case of the robotic arm mentioned above, the anomaly
causes the arm to move several times instead of once, thus penalizing these
counters.

Among the various available components and given the great complexity
of the experimentation, the LegDetector component has been selected, with
its associated anomaly LegDetectorSkippable. This component is in charge of
detecting the legs of a person in front of the robot thanks to a laser sensor. The
anomaly in this case affects the counters by performing the reading attempt a
number of times.

The selection of this component is due to a current problem: the need for
visual processing and object recognition [37]. As the good values that were
originally obtained in the experiments carried out by the authors of the data
set [11] and by us in [16].

Among the attributes that constitute this component, two of them contain
MV:

• received_bytes: amount of data in unit of bytes that are hosted on the
interface.

• sent_bytes: amount of data in unit of bytes that are dispatched by the
interface.

IV.5 Experiments and results

This section shows the results of applying the set of techniques discussed in
Section IV.3 to the data set described in the Section IV.4.

89

IV. A Hybrid Machine Learning System to Impute and Classify a
Component-Based Robot

The first step of the hybrid system described above is the application of
three clustering techniques to the data set. To do this, the number of desired
clusters (parameter k) must be provided. Estimating this value for k is not
always straightforward, many techniques help us to estimate this parameter [38,
39, 40, 41]. All of them have been applied with different ranges of values for
parameter k but no satisfactory results have been achieved, since the techniques
return values that diverge from from each other.

Another option to estimate this value for the parameter k is the use of
dendrograms. The Figure IV.2 shows the dendrogram for the original normalised
data set.

Figure IV.2: Dendrogram with 30 leaf nodes (‘Euclidean’ distance, ‘Complete’
linkage method).

Figure IV.2 depicts two clusters of data, one on the right-hand side with a few
samples and the other on the left-hand side which groups most of the samples.
This graphical result induces as most approximate values for the parameter k =
(2, 3). The value of 3 because in the majority group on the right two subsets of
data are distinguished.

Once the number of clusters has been selected, the different algorithms
described in the Section IV.3.1 are applied. The clustering algorithms are
applied in the data set omitting the attributes where the MV were located and
described in Section IV.4. From these generated clusters, the attributes with MV
are added again and the regressions are carried out with the methods detailed
in IV.3.2. The imputation of MV is done in each cluster. After the classification
is carried out in order to compare which combination of regression and clustering
algorithms works best.

For a better understanding of the tests performed, for each of the two
regression techniques, two different clustering distributions (2 and 3) have been
used, and these distributions have been obtained from 3 clustering algorithms,
giving a total of 12 different runs. In each of these runs, 6 balancing algorithms

90

Experiments and results

and the execution of the data set without any type of treatment have been used,
this last one has been denominated as “None”.

1. In Section IV.5.1 the results are analyzed from the perspective of the
regression algorithms used.

2. In Section IV.5.2 from the perspective of the regression methods used.

3. In Section IV.5.3 from the balancing techniques used.

IV.5.1 Regression methods approach

An interesting comparison is the one between the two regression techniques
used in this research (N-LR and RBFN) in each of the three clustering methods
applied (K-means, HAC and DBSCAN). The Figure IV.3 shows a comparison
of the different values achieved by each regression method in metrics. The first
Figure shows the F-Score (a), where the general trend is that N-LR performs
better than RBFN in most of the generated models, but taking special attention
to the value achieved in DBSCAN with 3 clusters where it is observed that RBFN
is slightly better. In the case of AUC (b), a generalized growth of the values
is observed, with very good results in general. The values of both regression
techniques reach similar values, making it difficult to conclude the best approach.
Finally, the g-mean metric again shows greater variability in the results, where
the general trend is that N-LR performs better in general terms, highlighting
the values obtained by DBSCAN.

IV.5.2 Clustering techniques approach

A more global approach is chosen for the analysis of the clustering results,
considering a wider range of metrics. It has been subdivided according to the
number of clusters (k= 2, 3). Following this general approach, the results are
displayed with radar plots IV.4, by this, the differences in the metrics can be
recognized more intuitively. The Figure IV.4 for the two clusters(a) shows
how in the general trend, Hierarchical and DBSCAN algorithms perform better
than K-means, especially outperforming in g-mean and F-Score. Finally, the
similarities achieved in AUC are remarkable. On the other hand, in the values
achieved with 3 clusters(b), these are much more similar highlighting K-means
standing out slightly in Recall.

IV.5.3 Balancing methods approach

The last approach adopted to analyze this novel hybrid system focuses on
the study of the results obtained by each of the balancing methods applied.
Table IV.1 shows the best values obtained for each balancing method. The
values obtained by the Accuracy and Precision metrics are very good, with the
peculiarity of two techniques coinciding in value, ROS + RUS in both cases.
This trend continues with F-Score and g-mean where it stands out again over

91

IV. A Hybrid Machine Learning System to Impute and Classify a
Component-Based Robot

Figure IV.3: Bar plot showing the differences between RBFN and N-LR in the
different metrics. a) F-Score, b) AUC and c) g-mean.

Figure IV.4: Radar diagrams are obtained from the results for each clustering
technique with its different algorithms. Each one shows the results with different
clusters a) k=2 and b) k=3.

the rest, although BLSMOTE results are also very good. Unexpectedly, Recall
technique overcomes the other ones, where the non-application of any kind of
balancing technique stands out from the rest so far.

After analyzing the different possibilities offered by this data set, there is a

92

Conclusions and Future Work

Table IV.1: Metrics values for each of the balancing methods.

None ROS SMOTE BLSMOTE RUS ROS
+ RUS

SMOTE
+ RUS

Accuracy 0.9867 0.9846 0.9889 0.9896 0.9889 0.9896 0.9881
Precision 0.9751 0.9964 0.9893 0.9893 0.9929 0.9964 0.9929
Recall 0.8824 0.7790 0.8293 0.8478 0.8254 0.8457 0.8176
F-Score 0.8680 0.8696 0.9008 0.9055 0.9015 0.9058 0.8953
AUC 0.9694 0.9902 0.9874 0.9860 0.9908 0.9884 0.9903
g-mean 0.8681 0.8767 0.9042 0.9076 0.9053 0.9081 0.8994

general tendency that the data sets treated by the DBSCAN clustering algorithm
provide better results than the other techniques, see Sections IV.5.1 and IV.5.2.
The difference between RBFN and N-LR has not been very marked, although,
as mentioned above, N-LR has generally performed better than RBFN. In terms
of balancing techniques, the hybrid ROS+RUS technique performed better than
the rest, followed closely by the BLSMOTE oversampling technique.

IV.6 Conclusions and Future Work

In this paper, a novel alternative in data imputation has been addressed, together
with a set of techniques which seek to perform a complete data treatment. The
proposed ML hybrid system has been validated on a data set of a component-
based robotic system. The experimentation has been divided into different stages
and the results obtained have been analyzed in Section IV.5.

The data set offered by the robot with anomaly information had some
MV in two of their attributes (received_bytes and sent_bytes). In order to
estimate these MV and have available a complete data set, the ML Hybrid
System proposed in Section IV.3 was applied. A detailed analysis of each of the
techniques of this hybrid system has led to the following conclusions. The three
clustering techniques described offered good results, but DBSCAN stands out on
the positive side and the Hierarchical technique on the negative side due to its
slowness. Regarding to regression, has been performed on each of the clusters,
both N-LR and RBFN obtained very good results with really low MSE values,
highlighting slightly N-LR. These good results in the regression have allow to
achieve a very reliable imputation on the MV and have at its disposal higher
quality data set. In terms of balancing techniques, whose have been applied
to the new dataset, the good performance of the hybrid ROS+RUS technique
stands out overall.

The main objective of this paper was to demonstrate a novel system and the
different alternatives with which to execute it, in terms of combining techniques of
Machine Learning. Satisfactory results have been achieved in the implementation
of the proposed hybrid model, which leads us to conclude that that the Hybrid
Machine Learning System is a valid alternative for future researchers in this
topic.

93

IV. A Hybrid Machine Learning System to Impute and Classify a
Component-Based Robot

As future work, it would be interesting to combine new regression and
clustering methods, but without losing the target of continuing with this modern
hybrid system. The application of this approach to more data sets is undoubtedly
an option to be considered.

References

[1] Jove, E. et al. “Anomaly detection based on one-class intelligent techniques
over a control level plant”. In: Logic Journal of the IGPL (Jan. 2020).

[2] Khalastchi, E. and Kalech, M. “On Fault Detection and Diagnosis in
Robotic Systems”. In: ACM Comput. Surv. vol. 51, no. 1 (Jan. 2018),
pp. 1–24.

[3] García-Laencina, P. J., Sancho-Gómez, J.-L., and Figueiras-Vidal, A. R.
“Pattern classification with missing data: a review”. In: Neural Computing
and Applications vol. 19, no. 2 (Mar. 2010), pp. 263–282.

[4] Das, S., Datta, S., and Chaudhuri, B. B. “Handling data irregularities
in classification: Foundations, trends, and future challenges”. In: Pattern
Recognition vol. 81 (2018), pp. 674–693.

[5] Pigott, T. D. “A review of methods for missing data”. In: Educational
research and evaluation vol. 7, no. 4 (2001), pp. 353–383.

[6] García-Laencina, P. J., Sancho-Gómez, J.-L., and Figueiras-Vidal, A. R.
“Pattern classification with missing data: a review”. In: Neural Computing
and Applications vol. 19, no. 2 (2010), pp. 263–282.

[7] Cerqueira, V. et al. “Combining Boosted Trees with Metafeature Engineer-
ing for Predictive Maintenance”. In: Advances in Intelligent Data Analysis
XV. Ed. by Boström, H. et al. Cham: Springer International Publishing,
2016, pp. 393–397.

[8] Syafrudin, M. et al. “An Affordable Fast Early Warning System for Edge
Computing in Assembly Line”. In: Applied Sciences vol. 9, no. 1 (2018),
pp. 84–102.

[9] Devi, D., Biswas, S. K., and Purkayastha, B. “Learning in presence of class
imbalance and class overlapping by using one-class SVM and undersampling
technique”. In: Connection Science vol. 31, no. 2 (2019), pp. 105–142.

[10] Wienke, J., Meyer zu Borgsen, S., and Wrede, S. “A Data Set for Fault
Detection Research on Component-Based Robotic Systems”. In: Towards
Autonomous Robotic Systems. Ed. by Alboul, L., Damian, D., and Aitken,
J. M. Vol. 9716. Cham: Springer International Publishing, 2016, pp. 339–
350.

[11] Wienke, J. and Wrede, S. “Autonomous fault detection for performance
bugs in component-based robotic systems”. In: Intelligent Robots and
Systems (IROS), 2016 IEEE/RSJ International Conference on. IEEE.
2016, pp. 3291–3297.

94

References

[12] Wienke, J. and Wrede, S. “Performance regression testing and run-time
verification of components in robotics systems”. In: Advanced Robotics
vol. 31, no. 22 (Sept. 2017), pp. 1177–1192.

[13] Wienke, J. et al. “Model-based performance testing for robotics software
components”. In: Proceedings - 2nd IEEE International Conference on
Robotic Computing, IRC 2018. Vol. 2018-January. Institute of Electrical
and Electronics Engineers Inc., Apr. 2018, pp. 25–32.

[14] Wienke, J. “Framework-level resouce awareness in robotics and intelligent
systems”. PhD dissertation. Bielefeld University, 2018.

[15] Basurto, N. and Herrero, Á. “Data Selection to Improve Anomaly Detection
in a Component-Based Robot”. In: 14th International Conference on Soft
Computing Models in Industrial and Environmental Applications (SOCO
2019). Ed. by Martínez Álvarez, F. et al. Cham: Springer International
Publishing, 2020, pp. 241–250.

[16] Basurto, N., Cambra, C., and Herrero, Á. “Improving the detection of robot
anomalies by handling data irregularities”. In: Neurocomputing vol. 459
(Oct. 2021), pp. 419–431.

[17] Arroyo, Á. et al. “Clustering and Regression to Impute Missing Values of
Robot Performance”. In: Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics). Vol. 12344 LNAI. Springer Science and Business Media
Deutschland GmbH, Sept. 2020, pp. 86–94.

[18] Suykens, J. A. and Vandewalle, J. “Least squares support vector machine
classifiers”. In: Neural processing letters vol. 9, no. 3 (1999), pp. 293–300.

[19] Basurto, N., Cambra, C., and Herrero, Á. “Improving the detection of robot
anomalies by handling data irregularities”. In: Neurocomputing (2020).

[20] Jain, A. K., Murty, M. N., and Flynn, P. J. “Data Clustering: A Review”.
In: ACM Comput. Surv. vol. 31, no. 3 (Sept. 1999), pp. 264–323.

[21] MacQueen, J. et al. “Some methods for classification and analysis of
multivariate observations”. In: Proceedings of the fifth Berkeley symposium
on mathematical statistics and probability. Vol. 1. Oakland, CA, USA. 1967,
pp. 281–297.

[22] Sokal, R. R. and Rohlf, F. J. “The comparison of dendrograms by objective
methods”. In: Taxon vol. 11, no. 2 (1962), pp. 33–40.

[23] Day, W. H. and Edelsbrunner, H. “Efficient algorithms for agglomerative
hierarchical clustering methods”. In: Journal of classification vol. 1, no. 1
(1984), pp. 7–24.

[24] Ester, M. et al. “A Density-based Algorithm for Discovering Clusters
a Density-based Algorithm for Discovering Clusters in Large Spatial
Databases with Noise”. In: Proceedings of the Second International
Conference on Knowledge Discovery and Data Mining. KDD’96. Portland,
Oregon: AAAI Press, 1996, pp. 226–231.

[25] Yale, U. of. Linear Regression. 2017.

95

IV. A Hybrid Machine Learning System to Impute and Classify a
Component-Based Robot

[26] Pearson, K. and Lee, A. “On the Generalised Probable Error in Multiple
Normal Correlation”. In: Biometrika vol. 6, no. 1 (1908), pp. 59–68.

[27] Neter, J. et al. Applied linear statistical models. Vol. 4. Irwin Chicago,
1996.

[28] Lippmann, R. P. “Pattern classification using neural networks”. In: IEEE
Communications Magazine vol. 27, no. 11 (Nov. 1989), pp. 47–50.

[29] Park, J. and Sandberg, I. W. “Universal Approximation Using Radial-
Basis-Function Networks”. In: Neural Computation vol. 3, no. 2 (June
1991), pp. 246–257.

[30] Chawla, N. V. et al. “SMOTE: synthetic minority over-sampling technique”.
In: Journal of artificial intelligence research vol. 16 (2002), pp. 321–357.

[31] Han, H., Wang, W. Y., and Mao, B. H. “Borderline-SMOTE: A new over-
sampling method in imbalanced data sets learning”. In: Lecture Notes in
Computer Science. Vol. 3644. Springer Verlag, 2005, pp. 878–887.

[32] Cortes, C. and Vapnik, V. “Support-vector networks”. In: Machine learning
vol. 20, no. 3 (1995), pp. 273–297.

[33] Boser, B. E., Guyon, I. M., and Vapnik, V. N. “A Training Algorithm for
Optimal Margin Classifiers”. In: Proceedings of the Fifth Annual Workshop
on Computational Learning Theory. COLT ’92. Pittsburgh, Pennsylvania,
USA: ACM, 1992, pp. 144–152.

[34] Shin, H. J., Eom, D. H., and Kim, S. S. “One-class support vector machines -
An application in machine fault detection and classification”. In: Computers
and Industrial Engineering vol. 48, no. 2 (Mar. 2005), pp. 395–408.

[35] Wienke, J. and Wrede, S. “A middleware for collaborative research in
experimental robotics”. In: 2011 IEEE/SICE International Symposium on
System Integration (SII). Dec. 2011, pp. 1183–1190.

[36] Wienke, J. and Wrede, S. A Fault Detection Data Set for Performance
Bugs in Component-Based Robotic Systems.

[37] Kasaei, S. H. et al. “Towards lifelong assistive robotics: A tight coupling
between object perception and manipulation”. In: Neurocomputing vol. 291
(2018), pp. 151–166.

[38] Caliński, T. and Harabasz, J. “A dendrite method for cluster analysis”.
In: Communications in Statistics-theory and Methods vol. 3, no. 1 (1974),
pp. 1–27.

[39] Davies, D. L. and Bouldin, D. W. “A cluster separation measure”. In: IEEE
transactions on pattern analysis and machine intelligence vol. PAMI-1,
no. 2 (1979), pp. 224–227.

[40] Rousseeuw, P. J. “Silhouettes: a graphical aid to the interpretation and
validation of cluster analysis”. In: Journal of computational and applied
mathematics vol. 20 (1987), pp. 53–65.

96

References

[41] Tibshirani, R., Walther, G., and Hastie, T. “Estimating the number of
clusters in a data set via the gap statistic”. In: Journal of the Royal
Statistical Society: Series B (Statistical Methodology) vol. 63, no. 2 (2001),
pp. 411–423.

97

	Agradecimientos
	Acknowledgements
	Resumen
	Abstract
	Contents
	List of Figures
	List of Tables
	Introduction
	Previous Work
	Objectives
	Methodology
	Data selection
	References

	Thesis Format
	Selected papers
	Other Journal papers
	Conference papers

	Conclusions and Future Work
	Conclusions
	Future Work

	Papers
	A Visual Tool for Monitoring and Detecting Anomalies in Robot Performance
	Introduction
	Novel Visualization Techniques for HUEPs
	Analysing Performance Anomalies in Robots
	Experiments and Obtained Results
	Conclusions and Future Work
	References

	Improving the Detection of Robot Anomalies by Handling Data Irregularities
	Introduction
	Proposed Framework for Anomaly Detection
	Real-life Case Study
	Experiments and Results
	Conclusions and Future Work
	References

	Imputation of Missing Values Affecting the Software Performance of Component-based Robots
	Introduction
	Imputation Methods
	Real-life Case Study
	Experiments and Results
	Conclusion
	References

	A Hybrid Machine Learning System to Impute and Classify a Component-Based Robot
	Introduction
	State of the art
	Hybrid Intelligent System
	Component-based Robot
	Experiments and results
	Conclusions and Future Work
	References

		2021-09-30T23:33:31+0200
	BASURTO HORNILLOS NUÑO - 71295798F

		2021-09-30T23:36:58+0200
	CAMBRA BASECA CARLOS - 18053084Q

		2021-09-30T23:40:05+0200
	HERRERO COSIO ALVARO - 71268510C

