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ABSTRACT 

Operational problems in agri-food supply chains usually show characteristics that are 
scarcely addressed by traditional academic approaches. These characteristics make an 
already NP-hard problem even more challenging; hence, this problem requires the use of 
tailor-made algorithms in order to solve it efficiently. This work addresses a rich vehicle 
routing problem in a real-world agri-food supply chain. Different types of animal food 
products are distributed to raising-pig farms. These products are incompatible, i.e., multi-
compartment heterogeneous vehicles must be employed to perform the distribution 
activities. The problem considers constraints regarding visit priorities among farms, and 
not-allowed access of large vehicles to a subset of farms. Finally, a set of flat tariffs are 
employed to formulate the cost function. This problem is solved employing a reactive 
savings-based biased-randomized heuristic, which does not require any time-costly 
parameter fine-tuning process. Our results show savings in both cost and traveled distance 
when compared with the real supply chain performance. 

1. INTRODUCTION

Feeding pigs in the pork production industry is a highly relevant activity to achieve 
successfully the supply chain goals (Rodríguez, 2014). Such activity requires a precise 
logistics from the production plant to the farms where the pigs are raised. Hence, our work 
consists in designing a set of vehicle routes that meet the feed demand of a set of pig 
farms, considering the real case of a pork production company in Spain. From an academic 
point of view, the analyzed problem can be considered as a rich vehicle routing problem 
(RVRP) (Caceres-Cruz et al., 2014), since: (i) vehicles are heterogeneous and have 
multiple compartments to separate different types of incompatible products that must be 
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distributed to a set of farms; (ii) each farm may require multiple products; (iii) some farms 
admit only that a small-medium vehicle deliver the feed; (iv) a visit priority must be met, 
which indicates that some farms must be visited as soon as possible, whereas other farms 
must be the last to be served; and (v) the cost function considers a set of flat tariffs, which 
depend on both the location of the farm and the number of farms visited in the same route.  

A flexible and enriched heuristic is then proposed to address this problem. Apart from the 
multi-product and multi-compartment RVRP, this heuristic must be able to deal with an 
objective function that relies on a flat-rate policy instead of the traditional distance-based 
minimization. Then, this enriched savings-based heuristic is extended into a biased-
randomized algorithm (BRA), which is able to provide multiple solution configurations in 
short computational times. As described in Grasas et al. (2017), biased-randomized 
techniques are based on the introduction of an oriented (non-uniform) randomization 
process inside the constructive stage of a given heuristic. By doing so, a deterministic 
heuristic is transformed into a randomized algorithm that can be run multiple times (either 
in sequential or in parallel) without losing the logic behind the heuristic. Hence, the main 
contributions of our paper can be stated as follows: (i) the consideration of a flat-rate cost 
function, together with multi-product and multi-compartment characteristics; (ii) the design 
of a flexible and agile heuristic, which enriches the traditional savings heuristic, to solve a 
rich and real-life problem in the agri-food distribution industry; (iii) the extension of the 
former heuristic into a biased-randomized algorithm capable of providing, in short 
computational times, a set of alternative solution configurations to the problem, each of 
these including different dimensions; and (iv) the introduction of a reactive (automatic) 
fine-tuning process for the main parameter of the biased-randomization process. 

Rich vehicle routing problems have been increasingly addressed by the academic 
community, since they incorporate highly realistic constraints, especially when these are 
considered simultaneously (Azadeh and Farrokhi-Asl, 2019). Characteristics regarding 
input data, decision management components, vehicles, time constraints, among others, 
turns a classical VRP into a rich VRP (Lahyani et al., 2015b). For instance, Alemany et al. 
(2016) combine the well-known savings heuristic (Clarke and Wright, 1964) with Monte 
Carlo simulation to solve a heterogeneous-fleet, multi-depot, multi-compartment, multi-
product, and multi-trip VRP. In general, vehicles can be classified according to their 
physical characteristics, e.g., they can be homogeneous or heterogeneous, or 
compartmentalized or not. The relevance of considering compartmentalized vehicles 
emerges whenever different types of products are demanded and they are incompatible, 
i.e., products must be carried separately into the same vehicle and not be mixed. Despite
the practical applications of this strategy for addressing real-world problems, the multi-
compartment VRP has been scarcely studied (Derigs et al., 2011). Both theoretical and
real-world cases can be found in the multi-compartment VRP literature. Silvestrin and Ritt
(2017) and Muyldermans and Pang (2010) show examples of the former.
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These works propose metaheuristic approaches given the combinatorial nature of this 
problem. Regarding real-world cases, products as diverse as apparel, fuel, food, and waste 
require the use of compartmentalized vehicles for performing an appropriate transport 
(Wang et al., 2014; Reed et al., 2014; Vidovic et al., 2014; Coelho and Laporte, 2015). 
 
Agri-food supply chains represent also a field where the multi-compartment VRP has been 
addressed. These chains have special characteristics that should be taken into account in its 
modelling, such as products perishability (Tordecilla-Madera et al., 2018) or supply and 
demand seasonality (Vlajic et al., 2012). For instance, Lahyani et al. (2015a) propose a 
branch-and-cut algorithm to solve a multi-period and multi-compartment VRP with 
heterogeneous vehicles. A real case from the olive-oil collection process in Tunisia is 
considered, where compartments cleaning activities are considered. Oppen et al. (2010) 
address also cleaning activities in a multi-compartment VRP where inventory constraints 
are considered. Different types of animals are transported in this case, as well as a 
heterogeneous fleet and multiple trips. An exact method based on column generation is 
used as solving approach. Alternatively, employing approximate methods is a usual 
approach in agri-food multi-compartment VRPs. For instance, Caramia and Guerriero 
(2010) propose a hybrid approach combining mathematical programming and local search 
techniques to solve a real-life case regarding the collection of different types of milk in 
Italy. Finally, the number and capacity of compartments can also be a variable to consider, 
i.e., compartments are flexible. For instance, a large neighborhood search algorithm is 
proposed by Hübner and Ostermeier (2019) to solve this variant of the multi-compartment 
VRP. A relevant contribution of this paper is the consideration of loading and unloading 
costs, which are a function of the number of compartments. 
 
The remainder of this paper is structured as follows: Section 2 shows the main 
characteristics of our addressed problem, and Section 3 describes the algorithm employed 
to solve it. Section 4 shows our main found results based on a real case study, and Section 
5 shows the concluding remarks and future work. 
 
2. PROBLEM DESCRIPTION 
 
The part of the supply chain addressed in this paper is that in charge of distributing the 
animal food from central depots to the farms, as displayed in Figure 1. We consider each 
day as an independent instance, where the subset of farms requiring service can be 
different. Each farm generates an order, and each order may be composed of different 
types of feed, e.g., Figure 1 displays circles, hexagons and triangles representing three 
different products. In general, products can be classified in medicated and non-medicated.  
 
Also, the characteristics of each type of product depend on the growth stage of each herd, 
i.e., the required diet mix is different according to the age (in weeks) of each individual.  
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The demand of each product in each farm is deterministic. The feed distribution is carried 
out from a depot through a set of compartmentalized heterogeneous vehicles. For instance, 
Figure 1 shows two types of vehicles with three and four compartments, respectively.  

Compartments are also heterogeneous, i.e., each compartment has a different known 
capacity. The demanded quantity per product and farm is at most the capacity of a vehicle.  

Hence, each vehicle can visit multiple farms in the same route, as long as the aggregate 
demand does not exceed the vehicle's capacity. Split deliveries are not allowed, i.e., a 
single farm must be served by a single vehicle. The objective of using compartmentalized 
vehicles is to separate each type of feed, since they cannot be mixed during a trip. In 
addition, if the demand of a product is higher than the capacity of a single compartment, it 
can be split into two or more compartments in the same vehicle. Nevertheless, in general, 
medicated feed cannot be transported in the same route as non-medicated feed. Not all 
types of vehicles can visit all customers, since some farms have access constraints. That is, 
a subset of farms can be served by all types of vehicles, whereas another subset cannot be 
served by large vehicles. An additional constraint assigns a sanitary priority indicator, 
which determines a specific order in which a subset of farms must be visited in case they 
are in the same route. The company classifies the farms into 3 types according to this 
sanitary priority: (i) a subset of farms with an assigned priority according to a consecutive 
natural number. These farms must always be served in ascending order whenever they are 
in the same route, e.g., a farm with a priority of 2 must always be visited before a farm 
with a priority of 5; (ii) a subset of farms with no priority; and (iii) a subset of farms with a 
“negative” priority, which indicates that they must be the last to be served in any route. 

Fig. 1 – Representation of our real-life problem. 

Our main objective is to minimize the total distribution cost.  
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As the company outsources the feed transportation, the distribution cost calculation has 
been settled in a distribution agreement. This cost is computed as the product of the 
delivered quantity and a pre-established tariff. The whole distribution region is clustered in 
zones, so that the tariff 𝑐ሺ𝑛, 𝑧ሻ depends on both the zone 𝑧 where the customer is located 
and the number of farms 𝑛 visited in the same route. Each customer has three different 
tariffs according to 𝑛 (Equation 1), where 𝑐ଵሺ𝑧ሻ ൏ 𝑐ଶሺ𝑧ሻ ൏ 𝑐ଷሺ𝑧ሻ. 
 

𝑐ሺ𝑛, 𝑧ሻ ൌ ቐ
𝑐ଵሺ𝑧ሻ, if 𝑛 ൌ 1
𝑐ଶሺ𝑧ሻ, if 𝑛 ൌ 2
𝑐ଷሺ𝑧ሻ, if 𝑛  3

 (1) 

 
Figure 2 displays a few examples of tariffs (expressed in €/t) employed by the company.  
 
Figure 2a shows the case in which each farm is the only one visited in its route. Hence, the 
tariff of all customers in the Zone 1 is 𝑐ଵሺ1ሻ ൌ 7.74 and the tariff of the customer 4, 
located in the Zone 2, is 𝑐ଵሺ2ሻ ൌ 8.98. Figure 2b shows the case in which all customers in 
the Zone 1 form a single route, therefore, the employed tariff is 𝑐ଷሺ1ሻ ൌ 8.76. The 
customer 4’s tariff remains the same as in the former case. Finally, Figure 2c shows the 
case in which customers of different zones form a unique route. Under these 
circumstances, the distribution agreement indicates that the employed tariff must be the 
greatest one. Hence, as 𝑐ଷሺ1ሻ ൌ 8.76 and 𝑐ଷሺ2ሻ ൌ 9.24, the final distribution tariff for the 
route in this instance is 9.24 €/t. Since the total satisfied demand is the same in the 3 cases 
of Figure 2, and the total variable cost depends on the supplied food-load in tonnes, the 
case in Figure 2b incurs a higher variable cost than the instance in Figure 2a, and the case 
in Figure 2c incurs the highest variable cost in the example. This means that merging 
routes increases the variable cost in our problem, which is the opposite of merging routes 
in traditional routing problems. This behavior is caused by the flat tariffs indicated in the 
distribution agreement. 
 

 
Fig. 2 – Examples of tariffs used by the company. 
 
The considered problem requires that the total delivery cost is not the only key 
performance indicator (KPI), i.e., the approach used to solve this problem must show 
enough flexibility to consider additional KPIs, such as the number of designed routes and 
the total traveled distance.  
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Despite its non-typical objective function and unique constraints, the problem can be 
classified as a rich variant of a multi-product and multi-compartment open VRP (RVRP). 
Hence, it is an NP-hard problem and, as such, the use of heuristic-based approaches 
(Londoño et al., 2020) is justified whenever the size of the problem goes beyond a certain 
level. 

3. FROM A FLEXIBLE AND FAST HEURISTIC TO A REACTIVE BIASED-
RANDOMIZED ALGORITHM

This section shows our approach for dealing with the described RVRP. This approach is 
based on both multi-start (Martí et al., 2013) and biased-randomized algorithms (BR) 
(Grasas et al., 2017). Algorithm 1 provides a general view of the proposed heuristic to 
solve the RVRP. The core of our approach is a flexible and fast two-stage heuristic, which 
includes all problem characteristics considering multiple KPIs. In the stage 1, a first initial 
solution is generated, in which each customer is assigned to a vehicle in a single round-
trip, meeting all the considered constraints. Once this initial solution is generated, the 
algorithm merges routes in stage 2 as much as possible, reducing the number of used 
vehicles. Algorithm 2 outlines the stage 2, which consists of the following steps: firstly, it 
computes the savings associated with potential route merges. These savings are computed 
for every edge and are based on both the distance between farms and the tariff per zone.  

Then, a list of edges associated with the savings values is created and sorted in decreasing 
order. The main loop iterates on the sorted savings list, where each edge is selected to be 
part of the solution only if it meets the following merging conditions: (i) both customers in 
the origin and the end of the edge belong to different routes; and (ii) these customers are 
adjacent to the depot. Unlike the traditional savings method, we do not consider the total 
vehicle capacity. Instead, it is evaluated whether the demand of each product fits in the 
available compartments, considering both their capacity and a feasible layout. When a 
feasible assignment is found, the algorithm merges the routes and updates the solution; 
otherwise, the current edge is rejected and the algorithm proceeds to the next iteration with 
a new alternative. The current solution is updated by removing the routes at both extremes 
of the selected edge and adding the resulting new merged route. All KPIs are then updated, 
including the cost, which considers the flat-rate delivery tariffs (Figure 2). Again, notice 
that this approach is different to the distance-based cost computation employed in most 
articles on the VRP, which do not consider a flat-rate tariff. Finally, the current edge is 
removed from the list, and the whole process is repeated until the savings list is empty, 
returning a complete new solution sol. 
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The previous heuristic is extended into a reactive BR algorithm (R-BR). This procedure 
allows not only to diversify the search for good solutions, but also to generate alternative 
solutions assessed in terms of multiple KPIs. Our proposed methodology in Algorithm 1 
uses both stages 1 and 2 (Algorithm 2) as the base for the R-BR. Previously described 
steps are followed the same, except for the selection of the next edge in the savings list.  
 
This selection is now performed by considering a skewed probability distribution, which 
introduces a sort of randomness into this process. In our case, the selection of the next 
element is performed according to a geometric distribution with parameter 0 ൏ 𝛽 ൏ 1.  
 
Employing this distribution introduces diversification to explore other regions of the 
solution space, preserving at the same time the savings heuristic original purpose. Unlike 
previous works, our algorithm is reactive, since the parameter 𝛽 is automatically fine-
tuned. The R-BR implementation procedure is described next: firstly, initialize parameters 
𝛽ଵ and 𝛽ଶ using a symmetric Triangular probability distribution with mode 𝑚 ൌ 0.5. 
Secondly, generate two complete solutions using 𝛽ଵ and 𝛽ଶ, respectively.  
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Then, compare the yielded costs (or any other KPI) to obtain the best-found mode 𝑚∗ and 
the best-found solution sol so far. Then, the algorithm iterates while the time limit is not 
reached. For each iteration, a new 𝛽௦ is computed using a Triangular distribution with 
mode equal to 𝑚∗.  
 
Later, generate a new complete solution newsol using 𝛽௦. Again, obtain the best-found 
mode 𝑚∗ and solution sol. Finally, introduce the new solution sol in the pool of solutions 
𝑆∗. 
 
4. CASE STUDY 
 
Real-world instances representing multiple products demands from 44 workdays have been 
provided by the company. They represent daily deliveries made to 214 farms. Currently, 
the company performs a delivery only when the customer generates an order. Hence, only 
a subset of farms is served each day. Furthermore, the delivered product mix also changes 
every day, and each customer may require multiple types of food at the same day. The feed 
shelf life is greater than one day; therefore, perishability is not included in our case study.  
 
The number of vehicle types are 3: a vehicle type with 6 compartments and a total capacity 
of 26 t, a vehicle type with 6 compartments and a total capacity of 21 t, and a vehicle type 
with 5 compartments and a total capacity of 21 t. A single product demand can vary 
between 1 t and 26 t. Our approach yields 4 KPIs: (i) total distance, computed as an 
approximation by employing the Euclidean distance between two farms, considering their 
real Cartesian coordinates; (ii) total cost, computed employing the flat tariffs described in 
Section 2; (iii) total number of routes; and (iv) average utilization of vehicles, computed 
considering the utilization percentage of every vehicle used in every route of a complete 
solution. The algorithm is implemented in Python 3 and executed in a personal computer 
with 16 GB RAM and a 2.8 GHz Intel Core i7-1165G7 processor. 
 
Table 1 shows the average results after running our biased-randomized algorithm 
employing 44 instances. This table compares the results obtained when considering a non-
reactive and a reactive biased-randomized (BR) heuristic. The latter refers to the procedure 
described in Section 3. The former refers to the case already described in the literature, in 
which the parameter 𝛽 of the geometric probability distribution must be fine-tuned by 
hand. In our experiments, our manual fine-tuning process found the best results when 𝛽 
follows a uniform probability distribution between 0.01 and 0.40. Both BR procedures 
employ a time limit of 60 seconds. Table 1 also shows the results obtained by the company 
in its real daily operations. Obviously, these results are independent of our both BR 
procedures. Four types of solutions are generated, where each one is the best-found 
solution assessed in terms of each aforementioned KPI. For instance, the Best-distance 
solution is the one that achieves the minimum distance. Hence, the reached value of the 
KPI Distance is underlined for this solution.  
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The reasoning in this example can be extended for the rest of the KPIs. The greater the 
utilization, the better. The other KPIs have an opposite interpretation. Values obtained by 
the non-reactive BR are only slightly better than the ones yielded by the reactive BR, i.e., 
differences are minimal. Nevertheless, the non-reactive BR requires a few work hours for 
performing the fine-tuning process, whereas the reactive BR is automatic and does not 
require any fine-tuning. 
 
The average percentage difference between our solution and the company solution is 
shown in the columns Gap of Table 1. This indicator is computed considering the gap 
between each KPI obtained for each instance. A negative gap indicates that our solution 
outperforms the company's. If the gap is positive, then the smaller the gap, the better.  
 
Hence, a few results can be highlighted. Firstly, our heuristic always reaches a smaller cost 
than the company, regardless of the type of solution. Secondly, savings in distance 
provided by our heuristic are high when considering the Best-distance solution. Thirdly, 
the company slightly outperforms our algorithm when considering the number of routes 
and the vehicle utilization. Finally, the cost is a KPI whose behavior is opposite to the rest 
of the indicators’, i.e., when the cost improves, the other KPIs worsen. This behavior is a 
result of considering the flat tariffs explained in Section 2. 
 

Type of 
solution 

Non‐reactive BR  Reactive BR 

KPI  KPI 

Distance  Cost  #Routes  Utilization  Distance  Cost  #Routes  Utilization 

Real 
company 

1153.6  5555.5  23.9  95.8%  1153.6  5555.5  23.9  95.8% 

Best‐
distance 

1104.0  5541.7  24.7  92.5%  1106.6  5540.6  24.8  92.3% 

Best‐cost  1201.3  5495.7  26.7  86.2%  1196.9  5497.5  26.8  86.1% 

Best‐
#routes 

1178.8  5544.3  24.2  94.1%  1173.3  5542.4  24.3  93.8% 

Best‐
utilization 

1168.5  5549.6  24.2  94.8%  1174.7  5548.6  24.3  94.6% 

Gap  Gap 

Best‐
distance 

‐4.4%  ‐0.2%  3.5%  3.3%  ‐4.1%  ‐0.3%  3.7%  3.5% 

Best‐cost  4.3%  ‐1.1%  12.3%  9.6%  4.0%  ‐1.1%  12.6%  9.6% 

Best‐
#routes 

2.0%  ‐0.2%  1.4%  1.7%  1.5%  ‐0.2%  1.7%  2.0% 

Best‐
utilization 

1.1%  ‐0.1%  1.4%  1.0%  1.7%  ‐0.1%  1.7%  1.2% 

Table 1 – Average results considering different KPIs. 
 
The best-found distance and best-found cost gaps between our solution and the company 
solution for the 44 instances are displayed in Figure 3. This figure also shows a comparison 
between our both tested heuristics, i.e., non-reactive BR (NR-BR) and reactive BR (R-BR). 
Regarding the distance, only a few instances exceed the 0% limit, i.e., our agile approach is 
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able to outperform the company’s distance results for the vast majority of instances. 
Furthermore, our approach always reaches a negative gap in costs, which is a great result 
considering the tough restriction imposed by the flat tariffs. Finally, Figure 3 also shows 
that our reactive BR is able to yield solutions highly similar to the ones achieved by the 
non-reactive BR. 

Fig. 3 – Distance and cost gaps of our best-found solutions with respect to the 
company’s. 

4. CONCLUSIONS

This work has proposed a reactive biased-randomized heuristic to solve a real-world rich 
vehicle routing problem for the distribution of animal food. A set of complex constraints 
have been considered, such as multi-compartment heterogeneous vehicles, flat tariffs, visit 
priorities, among others. Four KPIs have been proposed to assess the solutions quality.  

Advantages of employing our agile approach are mainly twofold. Firstly, our yielded 
results outperform the real company's outcomes in terms of traveled distance and 
distribution cost. These results are obtained in only a few seconds, whereas designing these 
routes by the company takes a few work hours. Secondly, results yielded by our reactive 
biased-randomized algorithm are highly competitive when compared with a non-reactive 
one. However, the latter requires a time-costly fine-tuning process, whereas our proposed 
heuristic does not require to perform this procedure. Future work includes considering 
inventory planning jointly with the vehicle routing. In this case, both food perishability 
conditions and a multi-period planning can be included. 
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