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ABSTRACT 

Traffic assignment problem (TAP) in static equilibrium conditions is based on the Wardrop´s 
first principle. The mathematical solution of this problem involves significant computation 
times for the analysis of large transportation networks, especially in the context of design. 
Thus, the development of efficient computational methodologies is of the greatest concern.  

In this article, a reduced order model for TAP, based on a Finite Element Approach (FEA), 
is  proposed. Such methodology involves four main ideas: a) the TAP formulation including 
as variables the travel times from any node of the network to the corresponding destination 
points, b) the solution of the governing algebraic equation system by means of an efficient 
iterative approach, known as “Physarum”, that takes the travel times as the main unknowns, 
c) the interpolation of travel times in certain urban subdomains, denominated “finite 
elements”, in terms of the values corresponding to some main nodes previously selected 
(reduced unknowns), d) the use of the Galerkin’s method to express the TAP in terms of the 
reduced unknowns. The model formulation is presented and a numerical example is given 
to show its efficiency.

1. INTRODUCTION

Estimation of users’ choice of routes and the resulting traffic flow on every arc of the 
transportation network, known as TAP, is a very important task in studies of urban planning. 
In static equilibrium conditions, this problem is based on the Wardrop´s first principle 
(Sheffi, 1984). One of the most used approaches for this problem corresponds to the 
Beckmann’s formulation that constitutes a convex optimization problem having the link 
flows as the main unknowns. The TAP Beckmann’s formulation may be appropriately 
solved by means of the Frank-Wolfe method (FW).  

The computational burden to solve this problem increases with the number of network nodes. 
Accordingly, involved calculation times for large networks are significant, especially in the 
context of transportation optimal design because the TAP must be solved many times.  
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For this reason, remarkable research efforts have been directed to the development of 
efficient methodologies to solve the TAP.   

Some investigations were directed to improve the efficiency of the FW, thus originating the 
conjugated FW and the bi-conjugated FW (Hearn et al., 1985; Mitradjieva and Lindberg, 
2013). Also, efficient algorithms based on trajectories were proposed showing faster 
convergence with respect to arc-based methods but with higher requirements of 
computational memory (Florian et al., 2009). On the other hand, Xu et al. (2008) presented 
an improved origin-based algorithm for assignment and distribution problems.   

A strategy to improve the efficiency for solving the TAP is the use of parallel computation.  

For example, Lotito (2006) proposed an approach to parallelize, by origin-destination pairs, 
the disaggregated simplicial decomposition algorithm previously developed by Larsson and 
Patricksson (1992). Another interesting parallelization method for TAP was recently 
developed by Jafari et al. (2017) consisting in the partition of the transportation network in 
small sub-networks. The algorithm alternates between the equilibrium of every sub-network 
and the equilibrium of a simplified version of the whole network. 

In the last years, a new model denominated “Physarum” for solving different optimization 
problems of scientific and technological interest has been proposed (Tero et al., 2007).  

This biologically-inspired algorithm is based on an analogy with the foraging behaviour of 
the slime mould Physarum Polycephalum that consists in generating protoplasmic tubes 
following the shortest route to the food sources. The mathematical modelling of such 
behaviour has been conveniently applied to the determination of the shortest path in 
networks, the reduction of costs in transportation and communication networks, etc. Very 
recently, the Physarum approach has been extended to the TAP in user equilibrium 
conditions following the Beckmann´s formulation (Zang, 2018; Xu et al., 2018). As shown 
in these articles, the Physarum approach may be more efficient than classical methods based 
on the FW. On the other hand, Cortínez and Dominguez (2018) have demonstrated that 
Physarum model, when applied to TAP, may be considered as an iterative strategy for 
solving an alternative TAP formulation based on travel times (Cortínez y Dominguez, 2017). 

This interpretation allows the application of the Physarum approach to the generalized traffic 
assignment problems (including variable demand, multiple user classes, etc.). 

Despite these efforts, the computational burden is still very important in the case of optimal 
design of large transportation networks. Consequently, several methods have been directed 
to reduce the number of unknowns. Some of these ones consist in eliminating arcs with low 
vehicular flow, and other techniques consist in aggregating several arcs in another fictitious 
equivalent link (Raadsen et al., 2020).  
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Many of these approaches present certain arbitrariness in the selection of the reduced 
network topology that can lead to inaccuracies in the calculated flows.  
 
Another kind of models conceives the traffic network as an equivalent two-dimensional 
continuum medium. To solve these models, discretization methodologies, such as finite 
differences or finite elements, could be applied with a number of unknowns lesser than that 
of the original network (Sasaki et al., 1990; Ho et al., 2006, Dominguez, 2013, Cortínez and 
Dominguez, 2013, 2017). 
 
In the present paper, in order to reduce the number of necessary variables to define the TAP, 
a finite element approach is proposed.  This methodology involves four main ideas: a) the 
TAP formulation including, as variables, the travel times from any node of the network to 
the corresponding destination points, b) the solution of the governing algebraic equation 
system by means of an efficient iterative approach known as “Physarum” that takes the travel 
times as the main unknowns, c) the interpolation of travel times in certain urban subdomains, 
denominated “finite elements”, in terms of the values corresponding to some main nodes 
previously selected (reduced unknowns), d) the use of the Galerkin’s method to express the 
TAP in terms of the reduced unknowns. 
 
The model formulation is presented and a numerical example is given to show its efficiency.   

 
2. TRAFFIC ASSIGNMENT PROBLEM IN TERMS OF TRAVEL TIMES 
 
A traffic urban network during the rush hour, when users travel from their homes distributed 
over the city to certain destination points d (d=1,2,...Nd), is considered.  
 
The network topology, assumed as a set of nodes i (i=1,2,…Nn) connected by directed arcs 
a (a=1,2,…Na), and the properties of every arc (capacity, length, maximum speed, etc.) are 

known. Moreover, trip generation rates d
iq  (veh/h), at every node i of the network to the 

different destinations d, are known. TAP consists in obtaining the link flows ag (veh/h) and 

the travel times d
iu (h), from each node i to the corresponding destinations d, according to 

the users route choices in equilibrium condition.  
In the following, the TAP is formulated incorporating the travel times d

iu  as variables 

(Dominguez, 2013; Cortínez y Dominguez, 2017). 
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2.1 Congestion function 
Urban traffic congestion may be defined as the increment of the link travel time ta caused by 
the increment of the link flow ag (veh/h).  

From a mathematical point of view, congestion may be defined by means of the following 
analytical expression: 

( )a a at t g (1)

This strictly increasing function (Figure 1a) is known in the literature as cost function. 
Several empirical functions have been developed for expressing (1) explicitly, such as the 
well-known BPR formula (Sheffi, 1984). 

The total flow ag on a link a may be expressed as the sum of the flow directed to a certain 

particular destination d, d
ag , and the flows going to the rest of destinations, d

aRg . This last

one may be denominated residual flow with respect to the destination d:  

d dd
aR a

dd

g g dd d   (2)

From (1) and (2), the flow on the link a going to d may be expressed as: 

 d d
a a a aRg g t g  (3)

where ( )a ag t  is the inverse function of (1). 

2.2 Wardrop’s first principle 
Wardrop’s first principle (Sheffi, 1984) for user’s equilibrium (UE) states that the used paths 
travel times, between every origin-destination pair, are less than, or equal to, the travel times 
of the other paths. According to this sentence, the travel time between a given point of the 
network to the destination point is unique (and the minimum) for all the paths really used.  

Then, such principle may also be formulated by postulating that the travel time between a 
given point (x,y) of the transportation network until the destination d is only a function of 
(x,y) and not of the employed trajectory (it is a potential function): 

( , )d du u x y (4)
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being by definition ( , ) 0d
d du x y   , where dx  and dy   correspond to the coordinates of the 

destination d. Then, travel time from node i to destination d may be written as: 
 

( , )d d
i i iu u x y  (5) 

 
Using this potential function, the link travel time can be expressed as: 
 

d d d
a a i jt t u u    (6) 

 
It is important to observe that, in equilibrium conditions, the link travel time at  is the same 
for every user circulating on the link independently of its destination.  
 

 
Fig. 1 – Basic definition of UE: a) Cost function, b) flow on link a, c) nodal flows at i. 
 
2.3 Conservation of vehicles 
To formulate the TAP, the conservation of vehicles law at a node must be considered (the 
number of vehicles entering and exiting a node is a conservative quantity). In order to 
express such a law, it is convenient to write, making use of (6), the following identity: 
 

d d d
a i jd

a
a

g u u
g

t


  (7) 

 
Then, the nodal flows, corresponding to a link a (Figure 1b), are defined in the following 
form: 
 

 d d d
a i jad ad

i j
a

g u u
f f

t


    (8) 
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In (8) such flows have been defined positive when they enter the node and negative when 

they exit. In fact, in (8)  d d
i ju u  is positive when the flow is directed from i to j (in the

direction of decreasing u). Expression (8) is then useful for non-directed arcs, that is to say 
those links in which flows can be directed from i to j or from j to i according to the sign of 

 d d
i ju u . However, TAP involves directed arcs (one-way links). To define the correct

direction of a link a, the indicator a
ij  is introduced:  

1
1

a
ij

i j

j i



  

      a a
ij ij   (9)

Therefore, the expression for nodal flows corresponding to directed arcs should be re-
written, generalizing (8), in the following form: 

 
d

ad d d da
i e i j

a

g
f u u

t
  (10)

where: 

 
 

1 0

0 0

a d d
ij i jd

a a d d
ij i j

u u

u u






   
 

(11)

As can be observed, d
a  has a unit value when the travel time decreases in the allowed link 

direction and is null in the other case (vehicles cannot flow in a not allowed direction). One 
can observe that:  

d ad
a ig f (12)

According to expressions (8) and (10), the nodal flows on link a going to d, may be re-
written as: 

ad ad d ad d
i ii i ij j

ad ad d ad d
j ij i jj j

f k u k u

f k u k u

  

  

(13)

where the link conductivity matrix has been introduced: 
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;
d d d d

ad ad ad ada a a a
ii jj ij jid d

a a

g g
k k k k

t t

 
      (14) 

 

This matrix depends on ( )d
a ag t  and at , and then, according to (6), depends on the potential 

functions ui. Expressions (13) involve the travel time corresponding to the considered link 
a. However, it is possible to generalize expressions (13) involving all the nodes of the 
network by defining in an enlarged form the conductivity matrix. This definition can be 
performed by adding zeros in those elements connecting two nodes m, n not belonging to 
the considered link a:  
 

0, , ,ad
mnk m n i j   (15) 

 
In this way, nodal flow to destination d, at node i of link a, can be written as: 
 

1

NN
ad ad d

i ij j

j

f k u


  (16) 

 
Therefore, the conservation of vehicles, at generic node i, may be expressed by the following 
equation (Figure 1c):  
 

0d ad
i i

a

q f   (17) 

 
In (17), the sum involves all the arcs, although, obviously, the nodal flows are null for the 
links not connected with node i (in agreement with expression 15):       
 

0ad
if        i a  (18) 

 
Substituting (16) into (17), the vehicle conservation equation may be written in the following 
form: 
 

ad d d
ij j i

j a

k u q
 

 
 
 

   (19) 

 
Or, using a matrix notation: 
 

d d dK u q     1, 2,...,d Nd  (20) 
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In (20), the elements of the global conductivity matrix for vehicles going to d have been 
defined in the form: 

d ad
ij ij

a

K k (21)

Such system must be complemented with the expressions (corresponding to the definition 
of travel times): 

0d
du      1, 2,...,d Nd (22)

As can be seen in (14), conductivity matrices dK depend on at  and d
ag  and, accordingly, 

expressions (1), (2), (3), (6), (20) and (22), constitute a non-linear algebraic equation system 

whose unknowns are given by d
iu , d

ag , ag  and at .  Cortínez and Dominguez (2017) have

shown that this system can be iteratively solved by means a sequence of problems whose 

unknowns are given by d
iu . It can be demonstrated that the system (1), (2), (3), (6), (20) and

(22) is equivalent to Beckmann’s variational formulation (Dominguez, 2013; Cortínez y
Dominguez, 2017).

3. NUMERICAL SOLUTION BY USING PHYSARUM APPROACH

The previous system can be iteratively solved by means of a Newton-Raphson technique 
(Cortínez and Dominguez, 2017). One of the difficulties found with this methodology is due 

the fact that if some links are decongested, d
ag  tends to zero and then, according to (14), also

the conductivity matrix tends to zero.  

Therefore, the system becomes indeterminate. This methodology makes use of the Physarum 
iterative approach (Zhang and Mahadevan, 2018; Xu et al., 2018; Cortínez and Dominguez, 
2018), based on an analogy with a biological process, that works appropriately even in 
presence of decongested links.  

The methodology starts with the approximation of the numerator and the denominator of the 
conductivity matrix elements (see expressions 14 and 15): 

d d d
a a a

a a

g D

t L

 


(23)
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Consequently, expression (10) is approximated as: 
 

 *
d

ad d da
i i j

a

D
f u u

L
   (24) 

 

where *ad
if  is an approximation to ad

if . Therefore, following (14), matrix ad
ijk may be 

approximated by *ad
ijk defined as: 

 

*

/

/
0 ,

d
a a

ad d
ij a a

D L i j

k D L i j a

i j a

 
   
 

 (25) 

 
Thus, considering (21), system (20) is approximated by the following linear system with 
unknowns du : 
 

*d d dK u q  (26) 
 
Before solving (26), it is necessary to take into account conditions (22). This may be 
performed easily modifying *dK by means of a penalization approach (summing very large 

values to the diagonal elements corresponding to the unknowns d
du , Chandrupatla and 

Belegundu, 2012). One can observe that (26) (modified by 22) constitutes a decoupled 
system of linear equations for every destination. Formally, the solution may be expressed as: 
 

  1*d d d
u K q  (27) 

 

Once determined du , better approximations for link flows *d
ag are obtained by means of (12) 

and (24): 
 

*
d

d d da
a i j

a

D
g u u

L
   (28) 

 

Then, new approximations for *d
a are calculated using (11). Now, it is possible to obtain 

updated values for coefficients D:   
 

* *
( )

2

d d d
d new a a a
a

D g
D


  (29) 
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The new approximation for total flow on the link a is obtained as: 
 

* * *d d
a a a

d

g g   (30) 

 

Finally, using expression (1), a new approximation for the link travel time *
at  is achieved 

and then, the updated coefficient L is expressed as:  
  

 * *
( )

2
a a anew

a

L t g
L


  (31) 

 
With the updated values, matrix conductivity * ( )d newK is re-calculated and the procedure is 

iterated. When convergence is achieved, d
aD  and aL  converge to d d

a ag   and at ,  
respectively. The fact that, in each iteration, the systems (26) should be solved separately for 
every destination d, allows the application of this methodology in a context of parallel 
computing. 
 
4. REDUCED MODEL: FINITE ELEMENT METHOD 
 
System (26) for every d is often very large for urban or regional networks and, accordingly, 
very demanding from the computational point of view, because it should be solved many 
times up to convergence. This is especially true in the context of optimal design. For this 
reason, it is of interest to develop a model with lesser unknowns being approximately 
equivalent to system (26). In this section, an approach for reducing unknowns is developed 
by taking ideas from the Finite Element Method (FEM) commonly used in the field of 
continuum mechanics (Chandrupatla y Belegundu, 2012). 
 
The methodology starts with the subdivision of the transportation network in subdomains, 
denominated finite elements (FE), each one containing a part of the network, as shown in 
Figure 2. The geometrical shapes of such elements may be relatively simple: rectangles, 
triangles, irregular quadrilaterals, etc.  
 

Over these elements certain nodes are identified corresponding to the main unknowns d
KU  

that represent the travel times from each point K to the corresponding destination d. Inside 
each FE, travel time from a generic point, with (x,y) coordinates, to destination d, is 
approximated by means of an interpolation in terms of travel times corresponding to the 

main nodes d
KU : 
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( , ) ( , )d e d
K K

K

u x y N x y U  (32) 

 

For a consistency reason, the interpolation functions ( , )e
KN x y , must adopt the values 

1e
KN   if  ( , ) ,K Kx y x y  and 0e

KN  if ( , )x y  correspond to any of the other main element 

nodes. Moreover, such functions are null outside the considered e element: 0e
KN  if 

( , )x y e . There are many ways to select the interpolation functions (Chandrupatla y 
Belegundu, 2012). One of them will be presented in the numerical example given below. 
According to (32), travel time from i-node to destination d may be approximated as: 
 

 d e d
i iK K

K e

u N U  (33) 

 

where ( , )e e
iK K i iN N x y . On the other hand, if one defines: 

 
e

iK iK

e

N N  (34) 

 
expression (33) could be written as: 
 

d d
i iK K

K

u N U  (35) 

 
Or, in matrix form: 
 

d du NU  (36) 
 

That is to say, the travel time d
iu  may be expressed in terms of travel times corresponding 

to the main nodes d
KU . It should be observed that, using (36), the number of unknowns are 

significantly reduced with respect to the original network. 
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Fig. 2 – Scheme of the finite element reduced model 

To obtain the reduced equation system with unknowns dU , the Galerkin’s method is 

employed (Chandrupatla y Belegundu, 2012; Cortínez y Dominguez, 2017). Accordingly, a 
virtual vector u  is defined, with arbitrary values at all nodes excepting at those 
corresponding to destinations d where takes zero value. Now, pre-multiplying expression 
(26) by the transposed of u  one arrives at:

 * 0T d d d  u K u q (37)

Interpolating u  in a form similar to (36), that is to say:  

d T d u N U (38)

expression (37) can be re-written in the form: 

 * 0T T d d d  U N K NU q (39)

Then, taking into account that d U is an arbitrary vector, equation (39) is true if: 

 *T d d T dN K N U N q (40)

This expression may be conveniently re-written as: 

d d dΨ U Q (41)

considering the following definitions: 

*d T dΨ N K N ,  d T dQ N q (42 a, b) 
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dΨ  is a reduced conductivity matrix and dQ is a reduced trip demand vector. One should 
observe that for representing appropriately the network in a reduced form, the destinations 
d must be included among the main nodes. On the other hand, the rest of the main nodes do 
not need to match with the real nodes. Before solving (41) matrix dΨ should be modified 
using the conditions (22) by means of the penalization approach described in the previous 
section. 
 
5. COMPUTATIONAL PROCEDURE 
 
According to the methodology explained in the above sections, the present algorithm to solve 
TAP is the following: 

 
I) Definition of FE model (reduced model). 

a. Choice of main nodes K. 
b. Definition of nodes and links in each element. 

II) Initialization of the iterative process. 
a. Adoption of initial values for d

ag , d
a and at  ( , )d a . 

b. Determination of the initial values for d
aD  and aL ( , )d a   Expression (23) 

III) Iterative calculation up to convergence 
a. Determination of the conductivity matrix for each link *ad

ijk ( , , , )d a i j   

Expression (25). 
b. Determination of the global conductivity matrices *d

ijK ( , , )d i j   

Expression (21). 
c. Determination of the reduced FR conductivity matrices *d

IJ ( , , )d I J   
Expression (42a). 

d. Determination of the reduced EF trip demand vector *d
IQ ( , )d I  

Expression (42b). 
e. Determination of travel time from main nodes to destinations d: *d

IU ( , )d I

.  Solution of system (41) for every destination d. 
f. Recovery travel times for the transportation network nodes *d

iu  Expression 
(35). 

g. Updating of *d
ag , *d

a ( , )d a  Expressions (28) and (11). 

h. Updating of *
ag  and *

at a  Expressions (30) and (1). 

i. Updating of d
aD and aL ( , )d a   Expressions (29) and (31). 

j. Verification of convergence. If  * *max d d
i i previous

u u Tolerance   end of 

iterative calculation. 
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6. NUMERICAL EXAMPLE 
 
A fictitious transportation network of 2.9x2.9 km2 consisting in 1740 one-way links of 100m 
length and 900 nodes (Figure 3) is analysed. The links, normal one each other, have a BPR 

cost function given by   20.1 1 0.15 / 600a at g  , corresponding to a link 

capacity of 600 vehicles/h and a maximum allowable speed of 60 km/h. Trip demand is 
assumed to be 6308 trips/h uniformly distributed among all the nodes with an only one 
destination.  
 
In Figure 3, three paths from different origins to the destination, with arrows showing the 
circulation direction, are depicted. The nodes and links identified with numbers and letters, 
respectively, correspond to those used in the following figures to show the numerical results.  
 
 

 
Fig. 3 – Scheme of the transportation network under analysis.  
 
To solve the TAP corresponding to the described network, the explained methodology is 
applied using two different meshes, one of 16 elements (shown in Figure 4) and the other of 
64 elements.  
 
Each element has been assumed to be rectangular, with four main nodes (one per vertex). 
Bi-linear interpolation functions have been adopted. That is to say, they have the generic 
form ( )( )K K Ka b x c y  , where constants , ,K K Ka b c are determined in such a way the 

following conditions are verified: 1e
KN   if  ( , ) ,K Kx y x y , and 0e

KN  if ( , )x y

correspond to any other main node.    
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Fig. 4 – Scheme of the reduced model (considering 16 finite elements). 
 
In order to perform a numerical study on the accuracy of the present methodology, TAP has 
also been solved: a) using the classical Beckmann’s formulation along with Frank-Wolfe 
method (FW) and b) with the iterative Physarum method (Physarum) for the full network. 
The results of these two methods are considered to be exact.   
 
Observe that Beckmann’s formulation involves 1740 link flows as basic unknowns, 
Physarum solution to the full network involves 900 travel times (one for each node) while 
the FE reduced models of 16 and 64 finite elements involve only 25 and 81 main unknowns, 
respectively.  
 

 
Fig. 5 – Travel times ui from nodes corresponding to Path 1.  
 
In Figure 5 a comparison of travel times obtained with FW, Physarum and FE (16 elements) 
for the nodes of Path 1 is shown. A very good agreement between the values obtained with 
all the models is observed. The same observation is valid for the nodes corresponding to 
Path 2 (Figure 6). 
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Fig. 6 – Travel times ui from nodes corresponding to Path 2.  

In Figure 7, a comparison for link travel times (expressed as the ratio between link travel 
time and free link travel time) determined by Physarum and the reduced FE (16 and 64 finite 
elements) for different links of Path 1, is shown. As observed, the results are almost identical 
except for link e, where the FE reduced model with 16 elements presents an error of 
approximately 10%, and the FE reduced model, with 64 elements, an error less than 5%. 

Fig. 7– Ratio between link travel time and free link travel time 0/at t  on links of Path 1 

On the other hand, in Figure 8, a comparison for the link flows corresponding to Path 1, 
obtained by means of Physarum and the FE reduced model (64 elements), is shown. The 
maximum error of the reduced model is of 8% approximately.  

0,00

0,50

1,00

1,50

2,00

2,50

3,00

3,50

1 2 3 4 5 6 7 8 9 10

M
in
u
te
s

Nodes
FW Physarum FE (16 elements)

0,0

0,2

0,4

0,6

0,8

1,0

1,2

1,4

a b c d e
Links

FE (16 elements) FE (64 elements) Physarum

0
/

at
t



R-EVOLUCIONANDO EL TRANSPORTE 1165 

 

 
Fig. 8 – Link flows ( ag ) for Path 1.  

 
Fig. 9 – Convergence of the methodology in terms of traffic flow on the first link of Path 
1 using the 64 FE reduced model.  
 
The iterative procedure converges quickly, as can be observed in Figures 9 and 10. Figure 9 

shows the convergence of  d
aD  and ag  for the first link of Path 1. Convergence is achieved 

in less than 15 iterations. It is interesting to note that this convergence is reached even when 
the link is practically decongested. Figure 10 shows a similar information for the last link 
(e) of the same path. Although this link is congested, the convergence is also achieved in the 
same number of iterations. 
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Fig. 10 – Convergence of the methodology in terms of traffic flow on the last link (e) of 
Path 1 using the 64 FE reduced model.  

Finally, in Figure 11, a comparison of the convergence behaviour shown by Physarum, 16 
FE and 64 FE reduced models, is shown in terms of the travel time from node 1 of Path 3 
until the destination. As can be seen, the three approaches show a similar convergence 
behaviour. 

Fig. 11 – Convergence behaviour of travel time at node 1 of Path 3 for Physarum, 16 
FE and 64 FE reduced models.  
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7. CONCLUSIONS 
 
A finite element approach for reducing TAP unknowns is presented. This methodology 
employs an efficient iterative technique (Physarum analogy) to solve the governing non-
linear equation system taking travel times as basic unknowns. This procedure works 
appropriately, even in presence of links with very low flow (avoiding indeterminacy of the 
system). The present approach allows a notable reduction of unknowns (more than 100 times 
in the analysed example), maintaining an accuracy similar to the full model, with an 
important reduction of the computing time. The methodology can be easily programmed in 
a context of parallel computing. 
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