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ABSTRACT 

Combinatorial optimization problems abound in the field of airline planning. Aircraft and 
passengers fly on networks made up of flights and airports. To schedule aircraft, assignments 
of fleet types to flights and of aircraft to routes must be determined. The former is known as 
the fleet assignment problem while the latter is known as the aircraft routing problem in the 
literature. Aircraft routing is typically addressed as a feasibility problem, the solution to 
which is required for the construction of crew schedules. All these issues are typically 
resolved 4 to 6 months before the day of operations. As a result, there is little information 
available about each aircraft's operational status when making such decisions. The tail 
assignment problem, which has received little attention in the literature, is solved when 
additional information about operational conditions is revealed, with the goal of determining 
each aircraft's route for the day of operations while accounting for the originally planned 
aircraft routes and crew schedules. As a result, it is a problem that must be resolved closer 
to the day of operations. We propose a mathematical programming approach based on 
sequencing that captures all operational constraints and maintenance requirements while 
minimizing operational costs and schedule changes relative to original plans. The 
computational experiments are based on realistic cases drawn from a Spanish airline with 
over 1000 flights and over 100 aircraft. 

1. INTRODUCTION

Tail assignment is the step in the airline planning process in which specific aircraft (tails) 
are assigned to flights on a specific schedule. This task is completed a few days before the 
operation and is subject to several constraints. Firstly, and foremost, all maintenance 
activities must be ensured. Secondly, information that becomes available following fleet 
assignment and aircraft routing should be considered. Finally, all operational constraints 



2310 PLANIFICACIÓN DEL TRANSPORTE 

must be adhered to. The availability of information is the reason for performing tail 
assignment in the operational horizon. Little to no information about the maintenance needs 
of each tail is known months or weeks before the day of operations; therefore, generic 
maintenance opportunities are only considered in the aircraft routing problem. Also, as late 
adjustments in the schedule occur, the series of flights to be flown by the same tails (line-of-
flights) can be modified; certain flights can be cancelled, and others can be added 
immediately before the service. 

The aircraft routing problem has been studied for decades and described in a variety of ways 
(Barnhart et al., 1998). The following is a generally accepted term. Given the assignment of 
fleet types to flights, the aircraft routing involves deciding the sequence of flights, i.e., line-
of-flights, to be flown by each aircraft and ensuring that each flight is flown exactly once, 
each aircraft visits maintenance stations at regular intervals, and the solution uses only 
available aircraft of each type (Desaulniers et al., 1997). It should be noted that it is standard 
practice to produce flight sequences for aircraft quite early in the planning phase. This early 
decision is essential to provide input data to the crew planning process and to prepare long-
term maintenance, not considering individual constraints but generic maintenance 
constraints. Then, as the day of operations approaches, the aircraft must be assigned to flight 
sequences. However, on average, only 80–85 percent of the sequences can be used in actual 
operations (Liang et al., 2015). This is due to the quality and level of detail of knowledge 
available about aircraft operational status when solving the aircraft routing, which, on 
average, is insufficient. 

Consequently, the tail assignment problem is addressed very close to the day of operations. 
Here, all individual operational and maintenance constraints are considered. The problem is 
solved for a time horizon, which usually spans several days, and provides fully operational 
assignments of aircraft (tails) to sequences of flights. In practice, the input sequences of 
flights, which are determined in the aircraft maintenance routing problem, are usually not all 
suitable for satisfying operational constraints on the day of operations and they must be 
updated (Liang et al., 2015). Some variants of this problem have been developed in response 
to different airline business practices and involving planning horizons from months to days 
(Maher et al., 2018; Grönkvist, 2005; Gabteni and Grönkvist, 2009). 

Because of the different approaches to the problem in the literature and real practice, there 
is not a widely accepted objective function. For example, the aircraft routing problem is not 
universally recognized as an optimization problem. Many authors have defined it as a 
feasibility problem, and others have attempted to maximize same-aircraft connections for 
passengers or to minimize expected delays (Lan et al., 2006). Also, it is common practice 
for airlines addressing the problem to consider it to be a feasibility problem (Grönkvist, 
2005). 
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A mathematical model, which minimizes constraints violations and conflicts among others, 
and a solution strategy are proposed to find optimal solutions to real-world large-scale tail 
assignment problem instances in a short amount of time. The mathematical formulation 
presented here is based on the one developed for the crew scheduling problem, and it is 
capable of capturing all of the operational requirements for problem instances as given by 
our airline partners, including apron-related requirements. Existing methods in the literature 
fail to capture such a level of detail. Attempts to achieve this while still providing good 
quality solutions have failed. A rolling horizon approach is used to solve large-scale 
instances and achieve feasible solutions, in which the model is solved in many smaller sub-
models. This approach is useful for finding a viable solution to a problem in a limited amount 
of time. The obtained solution is then fed into a heuristic-based method, which allows us to 
empirically demonstrate optimal solutions to the overall model. Computational studies based 
on data from Vueling Airlines, one of Spain's major airlines, are presented. The model's 
solutions outperform the airline's solutions, according to empirical proof. Besides, as 
evidence of the presented approach's effectiveness, a decision support tool was developed 
and given to the airline. This tool, which is based on the methods described in this report, is 
now being used in real-world operations. 
 
2. PROBLEM DESCRIPTION 
 
A time-directed graph represents the airline network, with nodes representing tasks such as 
flights and maintenance duties, and arcs representing relations between tasks. An origin 
airport, a departure time, a destination airport, and an arrival time define tasks. One tail must 
be assigned to each task. The remainder of this section introduces rotations, maintenance 
duties, the guidelines to be followed when assigning tails, and the goals to be pursued. 
 
2.1 Rotations 
A rotation is a series of flights performed by the same tail on the same day. A Line of Work 
(LoW) is a series of rotations to be performed by the same tail over a set period of time, 
usually several days. It should be noted that rotations and LoWs are results of the aircraft 
routing problem, which is solved after flight schedules and fleet assignments are determined. 
Rotations and the fleet allocated to them are the key inputs in tail assignment, and they 
should be kept as consistent as possible when allocating tails to tasks because crew schedules 
are dependent on them.  
 
However, if planned rotations become infeasible, for example, due to tail operational 
conditions, the tail assignment must update them such that the flight schedule remains 
feasible. When allocating tails to rotations, the maintenance requirements of the tails must 
be considered, or else assignments will be infeasible. Swaps are used to help or make it easier 
to meet those requirements. A swap is the recombination of sections of two rotations with 
different bases, allowing the tails assigned to them to switch bases. Some rules, such as those 
requiring space-time compatibility, must be followed by swaps. Furthermore, their effect on 
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crews must be minimal, so only a limited collection of all the potential swaps is allowed, as 
defined when the aircraft routing problem is solved and following the airline’s criteria. 
 
2.2 Maintenance duties 
Maintenance entails arranging the repair of identified issues, removing objects after a certain 
amount of flight hours or calendar time, correcting previously found defects (e.g., pilot or 
crew reports, line inspection, items postponed from previous maintenance), and conducting 
scheduled maintenance. On an aircraft, various types of maintenance duties must be 
performed, which may or may not be planned ahead of time. Scheduled duties are identified 
in advance since they must be completed on a regular basis, while others are the product of 
operations, typically following equipment failures. They can be classified based on their 
frequency: flight line inspections are carried out on a regular basis, overnight checks (also 
known as "daily checks") are small checks conducted every two days during the night, A 
checks are light checks that are performed every few hundred flying hours, B checks are 
light checks that are performed every few months, C checks are heavy checks that are 
performed every 2 years, and D checks are heavy checks that are performed every 6–10 
years. The aim of these checks is to perform both routine and non-routine aircraft 
maintenance. It should be noted that some maintenance checks (hereafter referred to as 
maintenance tasks) are more flexible than others when conducting tail assignment. Since the 
tail assignment planning horizon features several calendar days, flight line checks and 
overnight checks are thoroughly considered. The remaining checks are also fully considered, 
but are well established prior to operations. 
 
2.3 Allocation rules 
Several rules govern the assignment of tails to tasks. They can be classified as hard or soft 
requirements. Any hard requisite must always be met, while soft ones may be related to 
market considerations, such as a preference for particular tails due to capacity or efficiency, 
and may be violated, but, if violated, have a negative effect on the solution efficiency. The 
number of current rules is usually enormous, and they are complicated, making this problem 
difficult for planners to solve. They can be general or global rules, but they can also be fleet, 
aircraft, or airport specific (Grönkvist, 2005).  
 
The following is an example of a hard constraint. Owing to noise restrictions, a specific tail 
cannot operate at a specific airport at certain times. And an example of a soft constraint 
follows. Because of its maximum takeoff weight, an aircraft type has limited performance 
at a specific airport. It will fly from that airport if the tail is not at its maximum weight. 
 
2.4 Objectives 
The tail assignment problem can have several objectives. In reality, they can change as the 
revealed information develops as the day of operations approaches. The primary goal in the 
early stages is viability, while in the later stages, meeting optimization requirements 
becomes more important. The following are some of the most important key performance 
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indicators to be minimized: soft restriction violations, fleet changes, swap use, prolonged 
idle periods, fuel costs, and apron conflicts. Simultaneous departures of neighbouring 
aircraft on the apron or ramps may cause conflicts and delays. They could need the same 
airport services at the same time. As a result, they should be kept to a minimum. 
 
3. MATHEMATICAL MODEL 
 
We propose an Integer Linear Programming (ILP) model. Its mathematical formulation is 
built on a framework in which the tasks to be assigned are nodes and the relations between 
them are arcs. Mathematically, we consider one type of node (we treat all tasks the same, 
regardless of their nature) and one type of arc. The model's employed sets, parameters, and 
variables are described next. The mathematical formulation is then explained. 
 
3.1 Sets 

 𝐹 is the set of tasks to be covered in the given time-horizon. Tasks are indexed by 𝑖 
and 𝑗. 

 𝐹𝐹 ⊆ 𝐹 is the subset of tasks which are flights. 
 𝐹𝑆𝑀 ⊆ 𝐹 is the subset of tasks which are soft maintenance tasks. They can be 

postponed if necessary, to improve schedule performance. If they are postponed, they 
must be rescheduled.  

 𝐹𝐻𝑀 ⊆ 𝐹 is the subset of tasks which are hard maintenance tasks. They cannot be 
postponed.  

 𝐹௜
ାሺ𝐹௜

ିሻ  ⊆ 𝐹 is the set of tasks which may follow (precede) task 𝑖 in a line of work. 
 𝑃 is the set of fleet types. 
 𝑃௜ ⊆ 𝑃 is the set of fleet types compatible with task 𝑖. 
 𝑇 is the set of tails. 
 𝑇௜

ி ⊆ 𝑇 is the set of tails compatible with task 𝑖. 
 𝑇௣௉ ⊆ 𝑇 is the set of tails belonging to fleet type 𝑝. 
 𝐹௧் ⊆ 𝐹 is the set of tasks which may be assigned to tail 𝑡. 
 𝐹𝐴௧ ⊆ 𝐹 is the set of tasks which may be the first task in a line of work assigned to 

tail 𝑡. 
 𝐶 is the set of conflict events. Each conflict event is characterized by a combination 

of 10-minute time periods and a collection of adjacent parking spots. A possible 
conflict is identified at each conflict event by combinations of flights scheduled to 
depart within the predefined time periods and tails located in adjacent parking spots. 
It should be noted that there is a possible conflict with each flight for which there are 
other flight departures within a 10-minute time span beginning with the flight's 
departure.  
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3.2 Parameters 
 𝑐௧

௜ is a penalty for operating flight 𝑖 with tail 𝑡. This cost accounts for soft operating
restrictions.

 𝑏ଵ
௜  is the cost of not covering flight 𝑖.

 𝑏ଶ
௜  is the cost of not covering soft-maintenance task 𝑖. Recall that some maintenance

tasks, which do not feature urgent, strictly needed, or important repairs or checks
may be postponed.

 𝜅௧
௜,௝ is a penalty for each combination of tail 𝑡 and consecutive tasks 𝑖 and 𝑗.

 𝜆௖ is a penalty for each excess conflict at conflict event 𝑐.
 𝜇௜ is the change penalty for not operating flight 𝑖 using the originally planned fleet

type.
 𝑤ෝ௜

௣ is 1 flight 𝑖 was originally scheduled to be operated by fleet type 𝑝, and 0
otherwise.

 𝜈௜,௝ is the change penalty for not operating tasks 𝑖 and 𝑗 consecutively using the
originally planned line of work (where task 𝑗 follows task 𝑖 in the line of work).

 𝑢ො௜,௝ is 1 flight 𝑖 was originally scheduled to precede task 𝑗, and 0 otherwise.

3.3 Variables 
 𝑥௜

௧ ∈ ሼ0,1ሽ is 1 if tail 𝑡 is assigned to task 𝑖, and is 0 otherwise.
 𝑦௜,௝

௧ ∈ ሼ0,1ሽ is 1 if tail 𝑡 is assigned to consecutive tasks 𝑖 and 𝑗 in a line of work, and
is 0 otherwise.

 𝑤௜
௣ ∈ ሼ0,1ሽ is 1 if fleet type 𝑝 is assigned to task 𝑖, and is 0 otherwise.

 𝑎௜
௧ ∈ ሼ0,1ሽ is 1 if tail 𝑡 starts a line of work whose first task is 𝑖, and is 0 otherwise.

 𝑠௜ ∈ ሼ0,1ሽ is 1 if task 𝑖 is not covered, and is 0 otherwise.
 𝑢௜,௝ ∈ ሼ0,1ሽ is 1 if tasks 𝑖 and 𝑗 are consecutive in a line of work, and is 0 otherwise.
 𝑜௖ ∈ ℝା is the number of conflicts in excess of the maximum number of allowed

conflicts at conflict event 𝑐.

3.4 Objective function 

𝑧 ൌ ∑ ∑ 𝑐௧
௜𝑥௜

௧
௧∈ ೔்

ಷ௜∈ிி ൅ ∑ 𝑏ଵ
௜𝑠௜௜∈ிி ൅ ∑ 𝑏ଶ

௜ 𝑠௜௜∈ிௌெ ൅ ∑ ∑ ∑ 𝜅௧
௜,௝𝑦௜,௝

௧
௧∈ ೔்

ಷ∩ ೕ்
ಷ௝∈ி೔

శ௜∈ி ൅

∑ 𝜆௖𝑜௖௖∈஼ ൅ ∑ ∑ 𝜇௜ห𝑤௜
௣ െ 𝑤ෝ௜

௣ห௣∈௉೔௜∈ிி ൅ ∑ ∑ 𝜈௜,௝ห𝑢௜,௝ െ 𝑢ො௜,௝ห௝∈ி೔
శ௜∈ி (1)

The objective function in (1) has a total of seven terms in the following order. Penalties for 
unsuitable task-tail combinations, costs for not covering flights, costs for not covering soft-
maintenance duties, penalties for any task link, and penalties for any conflict over the 
maximum allowed number. The objective function's last two terms penalize deviations from 
the originally intended schedule. The first penalizes deviations from the initial fleet type 
assignment. The second penalizes deviations from the initial line of work. 
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3.5 Task covering constraints 
 
∑ 𝑤௜

௣
௣∈௉೔ ൅ 𝑠௜ ൌ 1                    ∀𝑖 ∈ 𝐹 (2) 

 
∑ 𝑥௜

௧
௧∈ ೛்

ು∩ ೔்
ಷ ൌ 𝑤௜

௣                    ∀𝑖 ∈ 𝐹,𝑝 ∈ 𝑃 (3) 

 
Constraints (2) state that each task is assigned to one fleet type or it remains unassigned. 
According to constraints (3), if a task is assigned a fleet type, it must also be assigned a tail 
that belongs to that fleet type and is compatible with the tail. 
 
3.6 Line-of-work constraints 
 
∑ 𝑎௜

௧
௜∈ி஺೟ ൑ 1                            ∀𝑡 ∈ 𝑇 (4) 

 
𝑢௜,௝ ൌ ∑ 𝑦௜,௝

௧
௧∈ ೔்

ಷ∩ ೕ்
ಷ                    ∀𝑖 ∈ 𝐹, 𝑗 ∈ 𝐹௜

ା (5) 

 
Constraints (4) are constraints on line of work initialization. They assign the first task in the 
line of work to each tail. Constraints (5) define task lines in terms of succession regardless 
of the allocated tail. 
 
3.7 Task sequencing constraints 
 
∑ 𝑦௜,௝

௧
௜∈ிೕ

ష∩ி೟
೅ ൅ 𝑎௝

௧ ൌ 𝑥௝
௧            ∀𝑗 ∈ 𝐹, 𝑡 ∈ 𝑇௝

ி (6) 

 
∑ 𝑦௜,௝

௧
௝∈ி೔

శ∩ி೟
೅ ൑ 𝑥௜

௧                     ∀𝑖 ∈ 𝐹, 𝑡 ∈ 𝑇௜
ி (7) 

 
Task sequencing restrictions are constraints (6) and (7). Constraints (6) are backward 
sequencing constraints; for each task in a line of work to be allocated to a compatible tail, it 
must be preceded by another task, unless it is the first task in the line of work. Constraints 
(7) are forward sequencing constraints; there can be up to one successor for each task in a 
line of work to be allocated to a compatible tail. 
 
3.8 Other constraints 
Owing to space constraints, other constraints are not directly shown here. Seating capacity 
on each cabin type must be equal to or greater than the number of confirmed reservations. 
Constraints to ensure that operational restrictions are not broken. Constraints preventing 
night flights from taking place on two consecutive nights. Constraints stating that no tail can 
fly consecutive nights in order to ensure that every tail rests overnight at least once every 
two days. Constraints restricting the number of tails that can be used for each day's schedule 
to the number that are available. Constraints to ensure that hard maintenance and regular 
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maintenance activities are allocated to the appropriate tail. Constraints stating that daily 
maintenance duties are conducted at every airport where possible for the tails that need it. 
Constraints on the number of conflicts that may occur, limiting the number of conflicts 
exceeding the airline's overall allowable. 
 
4. COMPUTATIONAL EXPERIMENTS 
 
We assessed the model's success using case studies based on real-world examples from 
Vueling Airlines. The information was given by the airline and represents its operations in 
Europe in 2019. The data set includes operational schedule details, operating expenses, 
passenger demand values, the BCN airport apron layout, maintenance capacities, and the 
available fleet from October 6 to October 10, 2019. The air network features 173 airports 
spread across Europe, as well as those in Asia and Africa. On a typical day, approximately 
700 flights operate throughout the network. Three fleet types were available in this case 
study: a fleet of A-319s with 141 seats per plane, a fleet of A-320s with 171 seats per plane, 
and a fleet of A-321s with 200 seats per plane. A series of case studies was suggested to 
evaluate the model and solution methods for real-world instances. All of the case studies 
were set in the same time period but had different planning horizons ranging from one to 
five days. This essentially means that the problem size was different with each case study. 
The tests were performed on an Intel NUC machine equipped with an Intel Core i7-8559U 
@ 2.70GHz processor and 2x16GB SO-DIMM DDR4 2400 MHz RAM, running Windows 
10 Pro. The models were written in Python 3.7.3 and solved with the commercial solver IBM 
ILOG CPLEX 12.9.0. Many of the instances tested were either solved to perfection or ran 
for less than 24 hours. 
 
Table 1 displays the mathematical model size for each of the case studies, with each row 
representing a different case study. Table 1 also indicates how many flights, maintenance 
duties, and tails are available in each case study. The number of (discrete) variables, 
constraints, and nonzero elements were given as model sizes. 
 

No. of 
days 

Flights Maintenance 
tasks 

Tails Variables Constraints Non-zero 
elements 

1 682 59 127 117,217 120,342 352,884 
2 1,376 77 127 454,550 242,922 1,150,661 
3 1,999 86 127 998,446 352,142 2,347,908 
4 2,626 95 127 1,729,013 464,960 3,925,464 
5 3,279 100 127 2,731,427 581,291 6,048,599 

Table 1: Model size for different case studies. 
 
We began by solving all of the case studies using the branch-and-cut and heuristics 
approaches given by the commercial solver IBM ILOG CPLEX 12.9.0. Table 2 displays 
these findings. It contains a case study for each row, which is defined by the number of days 



R-EVOLUCIONANDO EL TRANSPORTE 2317 
 

 

in the planning horizon, the number of flights, the number of maintenance duties, and the 
number of tails. Table 2 also displays the lower bound (L.B.), incumbent solution (I.S.), 
optimality gap (O.G.), and computational time in seconds for each case study (T.). The lower 
bound is equal to the solver's highest bound. The incumbent solution is the best solution 
discovered. The optimality gap is the relative gap between the incumbent solution and the 
lower bound. The computational time is the amount of time the solver spent running. Except 
for the case study involving 5 days, all of the case studies were solved to optimality; 
however, as the problem size grew, the computational time increased exponentially, 
implying that this solution strategy was unable to produce solutions within a reasonable time 
if the timeframe to be solved was longer than a few days. 
 

No. of 
days 

Flights Maintenance 
tasks 

L.B. I.S. O.G. (%) T. (s) 

1 682 59 193.050 193.050 0.00 1.05 
2 1,376 77 333.025 333.025 0.00 7.88 
3 1,999 86 451.525 451.525 0.00 1,200.27 
4 2,626 95 599.350 599.350 0.00 47,312.28 
5 3,279 100 728.100 18,690.100 2,466.96 86,403.72 

Table 2: Solutions of all the case studies using the branch-and-cut and heuristics 
approach 
 
To efficiently solve the problem, we created and implemented an algorithm based on rolling 
horizon methods (Sethi and Sorger, 1991) to obtain solutions. The Rolling Horizon 
Algorithm (RHA) is a technique for solving mixed 0-1 deterministic optimization problems 
that is based on rolling horizon methods. It involves solving a series of integer programming 
subproblems in which the variables are partitioned into three subsets. The values of the 
variables in the first subset are fixed to previous solution values, the 0-1 variables in the 
second subset are held free, and the values of the variables in the third subset are fixed to 0. 
However, the RHA cannot prove optimality. A particular approach should be taken to 
demonstrate it. To that end, the solution can be used as an initial solution for another 
approach and the whole problem solved. While exact methods should be used to ensure 
optimality, we have empirically discovered that feeding the CPLEX “solution polishing” 
heuristic with the initial solution obtained by the RHA provides the optimal solution. Table 
3 displays the solutions obtained for the case studies with planning horizons of 4 and 5 days. 
The obtained incumbent solutions are equal to the respective lower bounds in Table 2, 
indicating that they are optimal. Furthermore, computational times are significantly reduced. 
 

No. of days Flights Maintenance tasks I.S. O.G. (%) T. (s) 
4 2,626 95 599.350 0.00 279.50 
5 3,279 100 728.100 0.00 407.42 

Table 3: RHA solution for the case studies featuring planning horizons of 4 and 5 days 
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To determine the quality of the model's solutions, they were compared to the actual solutions 
implemented by the airline. In this comparison, three major performance indices were 
examined: the number of unassigned tasks (U.), which were either flights or maintenance 
tasks, the number of hard constraint violations (H.V.), and the number of soft constraint 
violations (S.V.). Table 4 shows the comparison, which is made the day before the day of 
operations, when schedules are ready to be implemented. The case study is described in the 
first column of Table 5. The other two main columns, Model and Airline, display the key 
performance indices for the mathematical model's and the airline's solutions, respectively. 
Note that the solutions provided by the model never violate hard restrictions. Moreover, the 
number of soft restriction violations is significantly reduced. 

Model Airline
No. of days U. S.V. H.V. U. S.V. H.V.
1 0 26 0 0 42 3 
2 0 56 0 0 90 7 
3 0 80 0 0 126 18
4 0 95 0 0 171 27
5 0 119 0 0 224 35 

Table 4: Comparison of the model solutions with those used by the airline 

Maintenance operations scheduling in airlines is a difficult and complex issue. Maintenance 
plans are usually prepared in practice based on the expertise of maintenance operators. 
However, this method is typically time consuming and can result in subpar solutions. Many 
industries, including the airline industry, are designing better maintenance plans in order to 
maximize asset availability and performance (Deng et al., 2020). Predictive maintenance 
techniques predict when maintenance should be done. It saves money over preventive 
maintenance since tasks are only done when they are required. The aim of predictive 
maintenance is to make it simple to schedule corrective maintenance in order to avoid 
unexpected failures. Two additional studies were carried out to demonstrate the possible 
benefits of using a holistic predictive maintenance method. For the two tests, a 5-day 
planning horizon was selected. In the first experiment, there is insufficient knowledge on 
maintenance duties for the entire planning horizon, which means that some of them are 
revealed as time passes. The aim of this environment is to mimic the airline's current 
operating model, in which a near-perfect predictive maintenance method is currently 
unavailable. In the second experiment, maintenance duties feature full or perfect details, 
implying that a perfect predictive maintenance tool is usable. In the first experiment, the 
mathematical model was solved every day, which means the model must be solved 5 times. 
The number of disclosed maintenance duties varied for each run of the model, implying that 
the schedule is not static. It should be noted that the model's 5 runs were also embedded in 
a rolling horizon approach. In the second experiment, the knowledge was perfect, so the five 
days could be solved in a single execution. Table 5 shows the results. The first column lists 
the main performance indicators (KPIs), the second the solution to the first experiment, i.e., 
the imperfect information scenario, and the third the solution to the second experiment, i.e., 
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the perfect information scenario. The value of the objective function for the incumbent 
solution (I.S.) in the second row of the table, the number of unassigned tasks (U.) in the third 
row, and the number of violations of soft constraints (S.V.) in the last row of the table were 
used to compare the two scenarios. The findings of the perfect information scenario clearly 
outperform those of the imperfect information scenario. 
 

KPI Imperfect information scenario Perfect information scenario 
I.S. 1,655.975 1,072.450 
U. 6 0 
S.V. 125 119 

Table 5: Results for the imperfect and perfect information scenarios 
 
4. CONCLUSIONS 
 
We took a novel approach to the tail assignment issue in airlines. The method we devised 
gathers a broad range of data and offers a basis for generating optimal proposals rather than 
just feasible solutions. Among the specifics considered are all applicable aircraft 
maintenance constraints and flight activity requirements. Furthermore, possible conflicts 
during aircraft taxi operations in aprons are considered, so that departures are optimally 
planned to prevent multiple aircraft from departing the same place at the same time. We 
were able to solve real-world instances in short computational times while proving the 
optimality of the given solutions using the methodology we devised. The algorithms we 
created to solve the problem are divided into two stages. Firstly, a feasible solution is found 
using the rolling horizon process. Secondly, a heuristic-based approach improves the 
feasible solution obtained. We presented the findings of several computational experiments 
conducted using data from Vueling Airlines, a major Spanish airline. 
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