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ABSTRACT 

Connected and Autonomous Vehicles (CAV) is the developing summit of the integration 
between artificial intelligence (AI), robotics, automotive design and information 
technologies. Many researchers are investigating their effects on traffic safety. This study 
tries to quantify the volume of incidents when sharing the road human-driven vehicles and 
fully CAV. After modeling the geometry of 4.5 km of motorway and the parameters of 
connectivity and automation using Aimsun Next platform, several scenarios of the 
percentages of CAV (0%, 25%, 50%, 75%, and 100%) were driven in microsimulation runs. 
Then the microsimulation generated vehicles trajectories that are used to identify conflicts 
using the Surrogate Safety Assessment Model (SSAM). The results of this analysis confirm 
previous research in that the reduction of number of conflicts will be up to 35% with low 
and moderate penetration rates of CAV and more than 80% if the road is operated only with 
CAV.  

1. INTRODUCTION

The proposed advances in Connected and Autonomous Vehicles (CAV) will widely change 
the traffic system to make it more efficient. CAV’s most common positive effects discussed 
in the literature are reducing traffic congestion, delay time, and vehicles emissions (Poczter 
& Jankovic, 2014; Fagnant & Kockelman, 2015) to the way in which CAV are expected to 
operate in traffic flow.  In addition, ongoing CAV manufacturers’ field trials expect that 
CAV are capable to enhance traffic safety. Theoretically, NHTSA (2008) expected that 
vehicle automation (i.e. limiting human controls and performing the bulk of driving tasks 
without the need for a human) can play an important role in achieving the target of zero 
collisions as the majority of traffic conflicts are due to human errors. Connectivity goes 
besides and strengthens automated vehicle capabilities by enabling them to share their 
location and other relevant data with nearby vehicles and infrastructures for safer 
repositioning and streaming (Petit & Shladover, 2015).  
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The Society of Automotive Engineers (SAE, 2014) developed a scale for manufacturing 
levels of CAV from zero to five to define their progression. Level 0 indicates that there is 
no driving automation. Level 1 is equipped with lateral or longitudinal system for driver 
assistance. Level 2 uses partial driving automation upon driver request. Level 3 represents 
the conditional driving automation (i.e. the car transfers the control to the driver and the 
driver should respond to the car request). Level 4 is with high driving automation and full 
responsibility for driving task. Finally, Level 5 is with full driving automation and able to 
operate the car everywhere. 
 
In the last five years, the volume of work evaluating the safety gain hypothesis has increased 
(e.g. Xie et al., 2019; Papadoulis et al., 2019, Morando et al., 2018). Almost all the related 
research contend that the safety impact is primarily governed by market penetration rates of 
CAV. Due to a lack of enough real data, simulation-based microscopic, stochastic methods 
have been used. These methods involve the CAV penetration rates in car-following and lane 
changing driving models to reflect the individual vehicles interaction with other vehicles, 
geometry, and other road elements (HCM, 2016). Consequently, the potential traffic 
conflicts resulting from vehicles interaction is the measure to evaluate the safety impacts of 
CAV involved in microsimulation.  
 
Traffic conflicts are situations in which vehicles travel close in time and space in such a way 
that they could potentially end up in a crash (Hydén & Linderhonm, 2012). To identify these 
risky situations (traffic conflicts), the vehicle trajectories resulting from simulation are 
scrutinized using surrogate safety measures indicators (e.g. time-to-collision (TTC), post-
encroachment time (PET), etc.). 
 
This study expands the insight into the dynamics of CAV and their impact on safety. It 
provides a connectivity and automation modeling with the microsimulation platform that 
enables the modeler to deal with driving dynamics with more details, control, and reliability. 
In this platform (Aimsun Next platform with V2X extension) many penetration rates of CAV 
are operated on the case study (motorway segment). Later, the Surrogate Safety Assessment 
Model (SSAM) is used to quantify the effect of CAV on the corridor safety and compare the 
results with previous research.  
 
The paper is organized as follows: next section, identifies the most relevant literature on 
CAV safety evaluation. A detailed description of the motorway segment drawn in Aimsun 
Next platform guided by Open Street Map, and modeling the car-following and lane-change 
behavior of the CAV are introduced in section three. The fourth section of the paper presents 
the results obtained from the simulation, and discusses them with previous literature. Finally, 
the last section summarizes the conclusions of the research, presents the study limitations 
and proposes future directions for CAV simulation research. 
 



R-EVOLUCIONANDO EL TRANSPORTE 2655 

2.  LITERATURE REVIEW 
 
Most prior research performed traffic efficiency assessment of connected and/or automated 
vehicles (e.g. Guériau et al. 2016; Talebpour & Mahmassani, 2016; Stanek et al., 2018; 
Makridis et al., 2018) , but few safety evaluation studies exist (e.g. Morando et al., 2018; 
Papadoulis et al., 2019; Rahman; 2019). To these studies: introduction of CAV would 
increase the throughput of highway facilities and improve traffic flow stability (Talebpour 
& Mahmassani, 2016). CAV can also make about 20% of speed improvement (Stanek et al., 
2018) and increase the road capacity with the increase in the CAV-penetration rate within 
even a heterogeneous flow (Ye and Yamamoto, 2018). 
 
The initial work on CAV was based on stability analysis and simulating CAV using a 
proposed simulation framework (e.g. Talebpour & Mahmassani, 2016, Pereira & Rossetti, 
2012). These studies created an integrated multi-level simulation framework that includes 
traffic, sensors (robotics), and network simulators in order to achieve detailed CAV 
simulation. Nevertheless, the results of these one-of-a-kind models were less reliable and 
difficult to compare.  
 
Further studies started to use a traffic microsimulation platform and its internal/external 
extensions. This approach showed a considerable ability to model a large scale networks and 
gave reasonable results (Roncoli et al., 2015; Park et al., 2012). However, since the 
operational behaviour of CAV is described differently in each study, their results are not 
always comparable.  
 
Particularly, most of researchers in this approach chose VISSIM to simulate CAV. ATKINS 
(2016) provided a milestone in simulating the CAV in VISSIM when they use the COM 
interface to change the CAV-related parameters, penetration rates, time headways that end 
up with changing driving behaviour when applying the driver model of VISSIM 
(Wiedemann 99 flow model). Following the criteria of ATKIN (2016) report, Jeong et al. 
(2017) improved an algorithm to control the longitudinal movement and gave powerful 
insights with micro safety results. But they still have a weakness since they did not develop 
a lateral movement control. Meanwhile, Stanek et al. (2018) changed the default VISSIM 
driver models parameters to show the effect on traffic behaviour. Similarly, Papadoulis et 
al. (2019) and Gueriau & Dusparic (2020) followed the mentioned approach for analyzing 
traffic safety. 
 
In microsimulation-based studies, they used to apply the Surrogate Safety Assessment 
Model (SSAM) developed by the Federal Highway Administration for CAV traffic safety 
evaluation.  Rahman et al. (2019) investigated the safety effect of vehicles with low levels 
of automation and vehicle-to-vehicle (V2V) and infrastructure-to-vehicle (I2V) connectivity 
technologies. From SSAM indicators, they integrated several measures (e.g. time exposed 
time-to-collision (TET), time integrated time-to-collision (TIT), lane changing conflicts 
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(LCC), etc.) to quantify the conflict risk on an intersection. They found that there is a 
significant safety enhancement resulting from introducing CAV. 

Papadoulis et al. (2019) used the VISSIM API’s External Driver Model to develop a 
decision-making CAV control algorithm and then SSAM time-to-collision indicator was 
used to measure the number of conflicts. A comprehensive safety evaluation study showed 
the percentage of conflicts reduction with different CAV market penetration rates: daily, in 
space, and by conflict type. A fully-CAV-operated motorway showed an extreme reduction 
in number of conflicts (about 94%) which is very close to the theoretical expectation made 
by NHSTA (2008). 

Moreover, Gueriau & Dusparic (2020) studied the effect of CAV on both efficiency and 
safety in three types of networks (urban, national, and motorway), simulating different 
penetration rates of vehicles with various levels of automation. Their results showed that 
lower penetration rates result in a 30% rise in conflicts, but higher penetration rates result in 
a 50-80% reduction in conflicts, with steady growth of the increased penetration. 

On the other hand, Zhang et al. (2020) developed a platoon control algorithm to represent 
the cooperation of CAV. To assess the safety impact of setting exclusive lanes for CAV, 
four surrogate safety indicators were used, including both longitudinal and lateral safety risk 
indexes. In high-truck ratios scenarios, setting exclusive lanes improves longitudinal and 
lateral protection up to 55% and 85% respectively.  

Finally, it could be shown that safety evaluation of CAV depends primarily on the 
assumptions of CAV’s simulated behaviour in movement. Once there is lack of information 
about CAV and Human Driven Vehicles (HDV) contact, a special and direct platform of 
calibrating CAV is need. To this intention this study uses the Aimsun Next API with new 
versions and extensions that are made especially to model CAV behaviour. 

3. METHODOLOGY

The procedure was to design fully CAV (i.e. totally depending on the technology in driving 
process). This begins with understanding the driving behaviour difference between HDV 
and CAV. Accordingly, different parameters values affecting car following and lane-
changing models used in Aimsun Next platform are applied to CAV and HDV. 

3.1 Connectivity between vehicles 
Vehicles connection was conducted by building the connection network using V2X Aimsun 
Next extension. This network includes: On Board Unit (OBU) in each CAV, that represents 
the receiver and transmitter in a vehicle; Channels, which is the simulated representation of 
the radio hardware and protocols that provide communication between vehicles; and 
Cooperative Awareness Messages (CAM), that provide information about the presence, 
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activity and position of CAV. Channel design depends basically on the number of probable 
CAV in the channel range, their speed, and the channel reliability. This is expressed using 
three characteristics:  
 
 Latency: The delay in packet transmission,  
 Range: The range of transmission, and 
 Packet Loss: The percentage of packets which are not received. 
 
Following many research works (Teixeira et al., 2014; Mir and Filali, 2014; Ahmadvand et 
al., 2016; Chen et al., 2019) and based on our case (higher than 125 connected vehicles in 
the channel range if the speed is about 100km/h), the selected channel was: IEEE 802.11p 
(250 m range) with 2100 ms latency and 0.75 packet loss. 
 
3.2 Automation parameters  
As many studies did, vehicle full automation was modeled by calibration of all needed 
parameters that control both longitudinal and lateral movements on the road and distinguish 
the CAV over HDV. The traffic flow model used in Aimsun Next API is Gipps model, so 
the parameters discussed below are those entering the model’ equations.  
 
Specifically, vehicles parameters are modified according to vehicle behavior models: "Car-
Following" and "Lane-Changing" as they move through the network.  
 
Gipps (1981) car-following model was created by incorporating the parameters that are 
influenced by local parameters such as: the “type of driver” (speed limit acceptance of the 
vehicle), the geometry of the section (speed limits on the section, speed limits on turns, etc.), 
and the impact of vehicles on adjacent lanes. 
 
However, acceleration and deceleration are the two main elements of Gipps model. The first 
reflects a vehicle's willingness to reach a certain desired speed, while the second simulates 
the restrictions imposed by the preceding vehicle when attempting to travel at that speed. 
The maximum speed that a vehicle (n) can accelerate during a time period (t, t+T) is given 
by this model: 
 

Va (n, t+T) = V(n,t) + 2.5a(n)T ቀ1 െ  ሺ,௧ሻ

∗ሺሻ
ቁ ට0.025  ሺ,௧ሻ

∗ሺሻ
 (1) 

 
Where:  
 
Va(n,t) is the speed of vehicle n at time t;  
V*(n) is the desired speed of the vehicle (n) for current section;  
a(n) is the maximum acceleration for vehicle n;  
T is the reaction time.  
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At the same time, the maximum speed that the same vehicle (n) can reach during the same 
time interval (t, t+T), according to its own characteristics and the limitations imposed by the 
presence of the lead vehicle (vehicle n-1) is: 

Vb (n, t+T) = d(n) T +ට𝑑ሺ𝑛ሻଶ𝑇ଶ െ 𝑑ሺ𝑛ሻ ቂ2ሺ𝑥ሺ𝑛 െ 1ሻ, 𝑡ሻ െ 𝑠ሺ𝑛 െ 1ሻ െ 𝑥ሺ𝑛, 𝑡ሻሻ െ 𝑉ሺ𝑛, 𝑡ሻ𝑇 െ  
ሺିଵ,௧ሻ²

ௗ´ሺିଵሻ
ቃ (2) 

where:  

d(n) ( < 0) is the maximum deceleration desired by vehicle n;  
x(n,t) is position of vehicle n at time t;  
x(n-1,t) is position of preceding vehicle (n-1) at time t;  
s(n-1) is the effective length of vehicle (n-1);  
d’(n-1) is an estimation of vehicle (n-1) desired deceleration. 

Gipps (1986a and 1986b) lane-change is modelled as a decision process, analyzing the 
necessity of lane change (such as for turn maneuvers determined by the route), the 
desirability of lane change (to reach the desired speed when the leader vehicle is slower, for 
example), and the feasibility of lane change (using forward, backward, and adjacent gap 
evaluation) depending on the position of the vehicle in the road network with respect to the 
lane geometry and adjacent vehicles.  
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   HDV CAV 
Parameters  Definition References mean s.d. mean s.d. 
Main parameters 
Speed 
acceptance 

How much vehicles could take 
a speed greater than speed 
limit 

Atkin (2016), 
Stanek et al. (2018), 
Ye and Yamamoto 
(2019) 

1.1 0.1 1 0.05 

Clearance (m) Distance that vehicle keeps 
with the preceding one when 
stopped 

Atkin (2016), 
Stanek et al. (2018) 
 

1 0.3 0.2 0.2 

Max give-way 
time (sec) 

Give-way time at a Yield or 
stop junction or an on-ramp 

Atkin (2016)  10 2.5 7.4 0.5 

Guidance 
acceptance 
(%) 

The probability that a vehicle 
will follow the 
recommendations 

Stanek et al. (2018) 
 

70 10 100 0 

Reaction time 
(sec) 

The time to react in general Zhang et al., (2020) 0.8 - 0.6  - 

Reaction time 
at stop 

The time to react at stop Zhang et al., (2020) 1.2 - 1 - 

Max 
acceleration 
(m/s²) 

The highest value that the 
vehicle can achieve under any 
circumstances 

Atkin (2016), 
Stanek et al. (2018), 
Karjanto et al. 
(2017) 

3.28 0.2 3.72  0.15 

Normal 
deceleration. 
(m/s²) 

The maximum deceleration 
that the vehicle can use under 
normal conditions 

Atkin (2016), 
Naujoks et al. 
(2016), Karjanto et 
al. (2017) Zhang et 
al., (2020) 

3.27 0.25 4.12 0.18 

Max 
deceleration 
(m/s²) 

The most severe braking can 
be applied under special 
circumstances 

Atkin (2016), 
Naujoks et al. 
(2016), Karjanto et 
al. (2017), Zhang et 
al., (2020) 

5.39 0.5 6.2 0.3 

Safety margin 
factor  

a multiplier of a normal range 
of gap acceptance range 

- 1 0 1.5 0.2 

Table 1- Gipps models parameters affected by the type of driver 
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HDV CAV
Parameters  Definition References mean s.d. mean s.d.
Car-following model 
Sensitivity 
factor 

How much the vehicle could 
be sensitive to the deceleration 
of the leader 

- 1 0 1.5 0.5

Gap (sec.) How much override the 
headway calculated by car 
following model 

Karjanto et al. 
(2017) 

0 0 0.6 0.1 

Headway 
aggressivenes
s 

How much vehicles could 
enter with shorter gaps 
without forcing the rear 
vehicle to brake 

Stanek et al. (2018) 0.8 0.2 0 0 

Lane-changing model 
Overtake 
speed 
threshold 

The threshold that delaminates 
an overtaking maneuver  

Stanek et al. (2018) 90 - 95 - 

Percentage 
staying in 
overtaking 
lane 

The probability that a vehicle 
will stay in the faster lane 
instead of recovering to the 
slower lane after an overtake 
maneuvers 

Naujoks et al. 
(2016) 

40 - 20 - 

Imprudent 
lane change 

Defines whether a vehicle will 
still change lane after 
assessing an unsafe gap 

Naujoks et al. 
(2016) 

Ticke
d 

- Non 
ticked 

- 

Cooperate in 
creating a gap 

Vehicles can cooperate in 
creating a gap for a lane 
changing vehicle 

Stanek et al. (2018) non 
ticked 

- ticked - 

Aggressivenes
s Level 

The higher the level, the 
smaller the gap the vehicle 
will accept, being a level of 1 
is the vehicle’s own length 

Stanek et al. (2018) 0-1 - 0-0.75 - 

Distance Zone 
Factor 

To modify the distance zones 
used in the Lane Changing 
Model to adjust where lane 
changes start to be considered 
and, if a range is given, to 
randomize behavior 

Stanek et al. (2018), 
Talebpour and 
Mahmassani (2016)  

0.8-
1.2 

- 0.6-
1.5 

- 

Table 1 (cont.) - Gipps models parameters affected by the type of driver 

Consequently, while default values in most of the model’s parameters are supposed to 
represent HDV, CAV tend to keep smaller standstill distances, accelerate and decelerate 
faster and smoother, keep constant speed with no or smaller oscillation at free flow, form 
platoons of vehicles and follow the leader, perform more co-operative lane change as lane 
changes could occur at a higher speed co-operatively (Stanek et. al, 2018). 

Table 1 shows the specific parameters that are affected by automation in Gipps’ car 
following and lane-change models depending on previous research (Atkin, 2016; Stanek et 
al., 2018; Zhang et al., 2020; Karjanto et al., 2017; Naujoks et al., 2016) and logic. 
Parameters definitions are summarized from Aimsun user manual. Table 1 presents both 
mean and standard deviation (s.d.) values that were defined before microsimulation. The 
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values follow a normal distribution as it is proposed in Gipps’ model. The discussion about 
the values for both HDV and CAV is provided below.  
 
3.2.1 The main parameters 
It is supposed that CAV will respect the speed limits. CAV’s clearance is directly adopted 
from ATKINS (2016) report as minimum space headway. Stanek et al. (2017) showed lower 
deviation values because of full-dependence on technologies. Maximum give-way time is 
suggested to be the same to the minimum time gap in ATKINS (2016) report. The report 
also showed lower deviation for CAV. Guidance acceptance is proposed to be 100% with 
no deviation in fully CAV. 
 
No previous research has directly detailed CAV’s reaction times and it is not a parameter 
considered in VISSIM car following model (Wiedemann 99). Also, in Aimsun Next old 
versions, it was considered a global parameter (i.e., with fixed value in the simulation). 
Recently, since version Aimsun Next 4.3, this parameter is subjected to calibration 
depending on the type of vehicle that allows the change for CAV. However, Zhang et al. 
(2020) suggested a hint value that was depending on Adaptive Cruise Control (ACC) 
platoons applied on the field. 
 
In general, connection-automation technologies are supposed to show higher speed in 
reaction. Thus, it should be significantly lower when the driving is fully connected and 
automated (Zhang et al., 2020). The same behaviour will be on unexpected stops, that 
requires highly connection technology or referring to the driver.  
 
For acceleration and deceleration, ATKINS (2016) and Stanek et al. (2017) suggested that 
CAV will be accelerating and decelerating faster and smoother, resulting in higher values. 
Besides, the deviation will be lower than in HDV values by 25% according to achieving 
higher uniformity in dynamic driving process (Stanek et al., 2017). 
 
As CAV will be more cooperative in gap acceptance, a multiplier of 1.5 is proposed for 
safety margin factor. 
 
3.2.2 Car-following parameters 
It is supposed that CAV will be more sensitive to leader action. Thus, a multiplier of 1.5 is 
proposed for sensitivity factor. In addition, it could override the headway calculated by car 
following model by 0.6 sec (Karjanto et al., 2017), but without any aggressiveness (Stanek 
et al., 2017). 
 
3.2.3 Lane-change parameters  
As CAV show more co-operation in considering maneuvers, a slight increase of percentage 
of vehicles that travel at less than Overtake Speed Threshold is suggested. Moreover, they 
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cooperate in creating a gap (Stanek et al., 2018). However, CAV prefer to go back to the 
original lanes and will not make a lane-change if the gap is not safe (Naujoks et al., 2016). 
Furthermore, in Stanek et al. (2017), CAV showed a reduction of 0.75 of human vehicle 
driven gap acceptance in lane changing. As a result, the zones that are considered as lane-
change distance will be modified by the same factor (Stanek et al., 2017; Talebpour & 
Mahmassani, 2016). 

3.3 Simulated scenarios  
After adjusting car following and lane-change models’ parameters, five scenarios were 
considered with different sharing percentages of both HDV and CAV (100/0, 75/25, 50/50, 
25/75, and 0/100). The developed models, were calibrated for the times of the real-world 
trips; between 10:00 and 12:00 am (off-peak hours) in a regular day. The number of 
replications for each scenario needed in order to achieve a 90% confidence interval level for 
the simulation output was calculated using Shahdah et al. (2015) equation (Eq. 3). It was 
shown that 15 runs is a sufficient sample. 

N = ቀ
  ௧ሺభషഀ/మሻ,ಿషభ∗ఙ

ா
ቁ
ଶ

(3)

Where, N equals the required number of simulation runs, σ equals the sample standard 
deviation of the simulation output, t is the student’s t-statistic for two-sided error of a α/2 
with N − 1 degrees of freedom and E equals the allowed error range, where E = ε * μ; μ is 
the mean of the number of simulated conflicts based on the initial set of simulations runs 
and ε is the allowable error specified as a fraction of the mean For example in 100% CAV 
scenario we tested a 15 runs trial (with σ = 28.06, t = 2.14 (with α = 0.05 and degree of 
freedom =14), E = (0.10*305) and it was a sufficient sample. Likewise, 15 runs were a 
sufficient value for all scenarios. 

3.4 Safety evaluation 
As expected, the model does not generate any crashes in the simulation. So, the model cannot 
be used to explicitly calculate collisions or traffic safety. In order to assess the safety, the 
outputs of vehicles trajectories from Aimsun microsimulation runs have to be analyzed using 
SSAM. The trajectories at each time step of simulation (0.2 s) are examined to check the 
existence of traffic conflicts instead of crashes.  

The indicator that has been applied in most studies (Gueriau & Dusparic, 2020; Papadoulis 
et al., 2019; Rahman et al. 2019) to assess traffic safety is the time-to-collision (TTC). It is 
defined as the time that remains until a collision could occur if two successive vehicles 
maintain a speed difference (Hayward, 1972). The TTC of vehicle i with respect to a leading 
vehicle i + 1 at time step t can be calculated with: 

TTC (i,t) = 
ௗ ሺ,௧ሻ

௩ ሺ,௧ሻି௩ ሺାଵ,௧ሻ
  Ɐ v(i,t) > v (i+1,t) (4)
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Where d(i, t) and v(i, t) denote the real space gap and the speed of vehicle i at time step t, 
respectively. 
 
Following the recommendation of Papadoulis et al. (2019) and after a sensitivity analysis, 
we used a threshold value of TTC equal to 1.5 to identify conflicts. 
 
4. RESULTS AND DISCUSSION 

 
Safety assessment of CAV in this study is conducted on a modeled motorway segment in 
Aimsun Next platform. Imported Open Street Map was used as a background to create the 
geometry (i.e. curves of the road segment, lane width and the length of links, merging and 
diverging areas) of the segment using drawing tools and overlapping the sections created 
with the map. As case study, a three-lane motorway section was chosen of the GR-30 
freeway, close to Granada city in Spain. The designed corridor was 4.57 km long, with 
fourteen on and off-ramps and nine vehicle input points (seven ramp entrances and two 
major entrances from south and north) After including the segment geometry, many 
information from the network has also been modeled, including speed limit, detectors 
location, and traffic volume. Directional traffic flow (pc/hr) was obtained from several 
detectors managed by the Dirección General de Tráfico (DGT) in Granada.  
 
Firstly, this section provides a check of the simulation performance by presenting the 
distribution of TTCs, velocity difference, and acceleration during simulation steps along the 
five scenarios modeled. Then a sensitivity analysis of TTC thresholds is laid out. Afterwards, 
the resulted conflicts are discussed among scenarios. 
 
4.1 Traffic flow dynamics 
4.1.1 TTC distribution 
The introduction of low CAV penetration rates increases both low and high TTC values due 
to non-consistent flow dynamics (Figure 1). Under high CAV penetration rates, smoother 
traffic flow reduces large TTC values while reducing the gaps by CAV increasing the ratio 
of small TTCs. This distribution is logic and agrees with Ye and Yamamoto (2019) research 
work. 
 
4.1.2 Acceleration distribution  
Figure 2 shows that under low penetration rates scenarios, acceleration ratio about 0 slightly 
decrease due to the lack of harmony in traffic flow, but with high penetration rates the ratio 
of acceleration rate about 0 increases obviously that indicates smoother dynamic flow. 
Similarly, this distribution is logic and agrees with Ye and Yamamoto (2019). 
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Fig. 1- TTC distribution under the proposed scenarios 

Fig. 2 - Acceleration distribution under the proposed scenarios 
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4.1.3 Velocity difference distribution 
The distribution of difference between the vehicle and its leader velocities for each scenario 
are shown in Figure 3. A bell shape with a lower peak is present in the distribution of low 
penetration rates and covers a wider range. The velocity difference ratio of the bell peak 
slightly increases at high sharing percentages of CAV. The difference in velocity tends to 
cluster around small values (0, 1). This phenomenon shows that the velocity difference 
between vehicles is reduced and traffic flow is harmonized with the rise in the CAV 
penetration rate which is logic and agrees with Ye and Yamamoto (2019). 

 

 
Fig. 3 – Velocity-difference distribution under the proposed scenarios 
 
4.2 TTCs sensitivity analysis 
TTC threshold is critical in analyzing traffic conflicts and it is more questionable for CAV. 
Thus, CAV traffic safety studies used to make a sensitivity analysis to check the effect of 
changing this value and chose a proper threshold (Zhang et al., 2020; Papadoulis et al., 2019; 
Morando et al., 2018). In this study, a sensitivity analysis for TTC thresholds of 0.5, 1.0, 1.5, 
2.0, and 2.5 seconds has been conducted for CAV introduction scenarios (25% CAV, 50% 
CAV, 75% CAV and 100% CAV). Using the analysis of variance (ANOVA), the change in 
percentages of conflicts between each CAV penetration scenario and the HDV scenario was 
not significantly different in most cases when comparing 1.5 seconds and both 1.0 and 2.0 
seconds. But 0.5 and 2.5 seconds (the lowest and the highest thresholds) were statistically 
significant from the other values (Table 2). Graphical illustration (Figure 4) of mean and 
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standard deviation for the change in percentages of conflicts also showed the same results in 
variance. The significant values in 0.5 and 2.5 values is normal since the potential conflicts 
will noticeably change with such extreme time to collision thresholds. Meanwhile 
Papadoulis et al. (2019) have found non-significant variance even with extreme values; 
Zhang et al. (2020) have used just 1.0, 1.5, and 2.0 values in their analysis and found the 
same results of this study. Consequently, both studies used 1.5 seconds as a threshold value.  
 

 Time-to-Collision (TTC) 
 0.5 s 1.0 s 1.5 s 2.0 s 2.5 s 
Scenario 25% CAV 39.50 a -21.54 b -2.56 c 1.84 c 34.08 a 
Scenario 50% CAV 11.39 a -39.26 b -35.90 b -29.81 b -3.67 c 
Scenario 75% CAV -9.57 a -54.53 b -60.83 b -55.75 b -29.01 c 
Scenario 100% CAV -47.07 a -77.16 b -82.66 c -80.53 b,c -68.42 d 
For each scenario, a, b and c values denote differences statistically significant (p < 0.05). Two or more TTC 
values with the same letter denote a homogeneous subgroup. 

Table 2-The percentage of change in the number of conflicts for each TTC value 
 

 
Fig. 4 – Sensitivity analysis of TTCs thresholds under the proposed scenarios 
 
4.3 Quantifying the safety impact of CAV penetration 
Using 1.5 s as TTC threshold, the average results of the conflicts tried out of microsimulation 
runs are shown in Figure 5. Increasing the penetration rates of CAV has positive effect on 
decreasing the number of possible conflicts. The reduction percentages of conflicts for 25%, 
50%, 75% and 100% CAV scenarios are 2.56%, 35.9%, 60.83%, and 82.66% respectively. 
These results agree with Papadoulis et al. (2019) for motorways and Morando et al. (2018) 
for intersections. On the other hand, Gueriau & Dusparic (2020) and Xie et al. (2019) have 
shown that low levels of automation could increase the potential conflicts especially in low 
penetration scenarios.  
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Figure 5 (a) shows the previous main result by density of resulted conflicts within the 
segment at the conflicts distribution map. The density representative points of each 500 m 
range show decreasing in the number of conflicts by increasing the percentages of shared 
CAV that agrees Papadoulis et al. (2019) results. In addition, the figure shows that the 
probable conflicts are near to the entrances and exits of the motorway as it was observed in 
Gueriau & Dusparic (2020). This is due to speed differences at these points that affect the 
possibility of resulting conflicts. 
 

 
(a) 

 
(b) 

Fig. 5 – Conflicts resulted by the proposed scenarios: (a) Conflicts density 
representative points. (b) Number of conflicts by type 

 
Figure 5 (b) shows the effect of penetration rates of fully CAV on conflict type. The resulting 
conflicts at this motorway are mostly rear-end conflicts in the base scenario (only HDV 
scenario). While rear-end conflicts are probably to be 93.95%, 86.9%, 83.64%, 83.37%, and 
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88.12% of overall conflicts, lane-change conflicts will be of much lower percentages 
(5.96%, 13.09%, 16.32%, 16.59%, and 11.89%).  

Whereas rear-end conflicts had the same direction of reduction of the total conflicts, the 
effect was different in the case of lane-change conflicts. Even sharing just 25% of CAV can 
over duplicate the percentage of lane-change conflicts. This is related to the significant 
difference in behaviour between HDV and fully CAV in lane-change process (imprudent 
lane change, cooperation in create gap, and aggressiveness level) (ATKINS, 2016; Stanek 
et al., 2018). After that the percentage of lane-change conflicts was not affected significantly 
with increasing CAV ratios.  

5. SUMMARY, CONCLUSIONS AND LIMITATIONS

In this paper, it was applied a simulation-based safety assessment of introduction of fully 
connected and automated vehicles. It was conducted on a motorway segment with free flow 
condition. The modeling of CAV was done using Aimsun Next API by building connection 
network and calibration the automation behaviour of both longitudinal and lateral 
movements. This platform enables the user to calibrate the behaviour parameters with a 
range rather than fixed value (i.e. mean, min, max, deviation values) that improve the 
calibration to be realistic and reliable. Moreover, the used models (Gipps models) in this 
platform deal with parameters that reflect a direct and explicit driving behaviour such as 
reaction time, speed and guidance acceptance, driving aggressiveness. 

Traffic flow dynamic was configured by drawing the distribution of some indicators (TTCs, 
acceleration and velocity-difference) resulted after traffic microsimulation. These 
distributions demonstrate that increasing the penetration rates of CAV will make the flow 
dynamics more harmonized and smooth. 

The potential conflicts were detected by calculating the time to collision (TTC) indicator 
using SSAM. To test the proposed value of TTC threshold (1.5 s), a sensitivity analysis was 
applied for a range around this value (between 0.5 and 2.5 seconds) and the results showed 
a significant difference in case of extreme values (0.5 s and 2.5 s) but non-significant 
difference between the values 1.0, 1.5, and 2.0 seconds on the impact of CAV.  

The effect of introducing the fully CAV is through with the theoretical and experimental 
exist research. The positive effect (i.e. the reduction in the total number of conflicts) reached 
about 35% for medium penetration rates and 80% for fully operated motorway of CAV.  

This work is limited to various circumstances: it considers only HDV and fully CAV 
vehicles, while in the real world several type of vehicles, with several automation levels will 
be circulating simultaneously; and it considers only one type of road section.  Further studies 
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could deal with different levels of automation. Also, many types of road sections, traffic 
conditions, and vehicles could be simulated. 
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